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ABSTRACT

Structural locality is a ubiquitous feature of real-world datasets, wherein data points
are organized into local hierarchies. Some examples include topical clusters in text
or project hierarchies in source code repositories. In this paper, we explore utilizing
this structural locality within non-parametric language models, which generate
sequences that reference retrieved examples from an external source. We propose
a simple yet effective approach for adding locality information into such models
by adding learned parameters that improve the likelihood of retrieving examples
from local neighborhoods. Experiments on two different domains, Java source
code and Wikipedia text, demonstrate that locality features improve model efficacy
over models without access to these features, with interesting differences. We also
perform an analysis of how and where locality features contribute to improved
performance and why the traditionally used contextual similarity metrics alone are
not enough to grasp the locality structure.

1 INTRODUCTION

Language models (LMs) predict a probability distribution over sequences, and are most widely
studied to model and generate natural languages (Bengio et al., 2003; Merity et al., 2018; Baevski
& Auli, 2018; Brown et al., 2020). Advances in LMs benefit many natural language processing
downstream tasks, such as machine translation (Bahdanau et al., 2015), dialog systems (Sordoni et al.,
2015), question answering (Yang et al., 2019; Raffel et al., 2019), and general representation learning
for natural language (Devlin et al., 2018; Liu et al., 2019). Recently, LMs have also been adopted to
model sequences other than text, such as source code written in programming language (Hindle et al.,
2016; Hellendoorn & Devanbu, 2017; Alon et al., 2020; Karampatsis et al., 2020), which can enable
useful downstream tasks like code completion (Raychev et al., 2014).

Most current neural LMs are based on parametric neural networks, using RNN (Mikolov et al., 2010)
or Transformer (Vaswani et al., 2017) architectures. These models make predictions solely using
a fixed set of neural network parameters. Recently, more and more neural LMs also incorporate
non-parametric components (Grave et al., 2017; Guu et al., 2018; He et al., 2020; Khandelwal et al.,
2020), which usually first select examples from an external source and then reference them during the
prediction. For example, Khandelwal et al. (2020) model the token-level probability by interpolating
the parametric LM probability with a probability obtained from the nearest context-token pairs in an
external datastore. Using such non-parametric components in LMs is beneficial because the model
no longer needs to memorize everything about the language in its parameters.

For such non-parametric LMs, one important concept is a distance metric between the current context
and other contexts in the datastore. One example of such metric is the `2 distance between context
vectors calculated by the parametric model (Khandelwal et al., 2020). This distance can be used in
both retrieval and probability calculation; items in the datastore that are less distant from the current
context are more likely to be retrieved and have a higher influence on the final probability. However,
given that non-parametric datastores are typically very large, containing a myriad of contexts from
disparate sources, calculating a metric that accurately reflects semantic similarities is non-trivial; as
we demonstrate in experiments, there is much room for improvement in current practice.
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Table 1: Locality features designed for each data type according to domain knowledge.

Locality Wikipedia text Java projects

l0 different article category, different section title different project

l1 same article category, different section title same project, different subdirectory

l2 same section title, different article category same subdirectory

l3 same section title, same article category –

(ci, wi) ∈ D, we create a datastore (K,V) = {(ki, vi)}, which contains key-value pairs:

(K,V) = {(f (ci) , wi) | (ci, wi) ∈ D} (1)

During inference, the parametric component of the LM generates the output distribution over next
tokens pLM (wt|ct; θ) and the corresponding context representation f(ct), given the test input context
ct. Then the non-parametric component of the LM queries the datastore with f(ct) representation to
retrieve its k-nearest neighbors N according to a distance function d(·, ·). We can then compute a
probability distribution over these neighbors using the softmax of their negative distances. The model
aggregates the probability mass for each vocabulary item across all its occurrences in the retrieved
targets. This distribution is then interpolated with the parametric LM distribution pLM to produce the
final kNN-LM distribution:

pkNN(wt|ct) ∝
∑

(ki,vi)∈N

1wt=vi
exp(−d(ki, f(ct))) (2)

p(wt|ct; θ) = λpkNN(wt|ct) + (1− λ)pLM(wt|ct; θ) (3)

In our experiments, we follow Khandelwal et al. (2020) in setting the interpolation factor λ to 0.25.

3 DEFINING STRUCTURAL LOCALITY

We define structural locality as a categorical feature calculated between a pair of contexts (ci, cj) in
a collection of data, that describes whether the pair share some common, potentially hierarchical,
attributes (e.g., the section title of a Wikipedia article section, or the directory path of a source code
file). For each domain, a set of hierarchical attributes {l0, l1, ..., ln} can be defined based on prior
knowledge of the domain. We denote lk(ci, cj) ∈ {0, 1} as the boolean locality feature value for
the context pair, representing whether ci and cj share the same hierarchical attributes lk. Here, l0 is
reserved for “no locality”, in case the pair shares none of the attributes. Without loss of generality,
we set a constraint that

∑
k lk(ci, cj) = 1, as new features can be introduced by conjunction and

negation of the attributes if needed.

Specific Instantiations. We instantiate these features on our two case studies of Wikipedia text and
Java source code, as summarized in Table 1.

In Wikipedia, for every context ci, we define four mutually exclusive hierarchical attributes, l0 − l3.
We calculate these features based on the Wikipedia article and section titles, using simple pattern
matching. We then link each article to a set of categories (one article may belong to multiple
categories) using the knowledge graph WikiData,1 by aggregating all the category entities involving
two properties: P31 (instance of) and P279 (subclass of). The criterion for “same section title” is
exact string match (Hayashi et al., 2020). If there is at least one common category between the sets
of categories for two articles, the pair is assigned the “same article category”.

For Java source code, we define 3 mutually exclusive attributes, l0 − l2 based on the location of the
code. For each source file, we use the full file path to obtain the two attributes: project name and
sub-directory path.2 The criterion for both “same project” and “same subdirectory” is exact string
match. Note that these features are strictly hierarchical, hence only two features are used to capture
specific locality here.

An Aside: Connections to Domain Adaptation. Domain adaptation typically refers to reusing
existing information about a given problem (e.g., data or model) to solve a task in a new domain.

1
https://www.wikidata.org/

2For example, full path .../Journal.IO/src/main/java/journal/io/api/DataFile.java has project
Journal.IO and sub-directory src/main/java/journal/io/api/ for package journal.io.api.
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Domain adaptation for neural models generally focuses on fine-tuning models on in-domain data (Sen-
nrich et al., 2016; Chu et al., 2017) or making direct modifications to the model to consider domain
information (Britz et al., 2017) or latent topic features (Khudanpur & Wu, 2000; Mikolov & Zweig,
2012; Wang & Cho, 2016). Most of these methods do not natively support new test-time contexts that
were not seen at training time. In comparison, one immediate advantage of non-parametric LMs is the
ability to adapt to different domains at test time without re-training (Merity et al., 2016; Grave et al.,
2016; 2017; Khandelwal et al., 2020). For example, some adaptive LMs (Grave et al., 2016; 2017)
make use of the previous hidden states of test documents dynamically during inference. Similarly,
our proposed locality features do not require re-training on the training set.

Note that within the scope of this paper, although connected, the proposed structural locality is a
different concept from domain. We consider domains as higher-level classifications describing the
text where one example belongs to one domain label; e.g., a section about Kim Kardashian’s early life
belongs to a category of texts describing celebrities. One the other hand, with the structural locality, a
user could define multiple levels of locality: to that same section, we can assign not only the domain
label, but also, the section title “Early Life”. The lightweight nature of our model combined with
non-parametric LMs also makes adding more levels of features straightforward, as the features only
need to be calculated for the top nearest neighbors, and the number parameters that need tuning in
our proposed method (Section 5) is only about twice the number of locality features.

4 STRUCTURAL LOCALITY AND NEAREST NEIGHBORS

In this section, we examine the relationship between distances derived from neural LM features
d(f(ci), f(ct)), structural locality features l(ci, ct), and the accuracy of the next-word prediction wi.
Specifically, the underlying assumption of the kNN-LM is that less distant contexts will be more
likely to accurately predict the next word wt. We would like to test whether this correlation between
distance d(·) holds uniformly across different locality levels l(·), or if locality provides additional
information indicative of whether a particular context is useful for predicting wi beyond just that
provided by the neural representations.

Data. We use two different corpora from different domains to examine this question.

WIKITEXT-1033 is a standard language modeling benchmark (Merity et al., 2016) consisting of
natural language text from English Wikipedia. It contains a 250K token, word-level vocabulary, with
103M tokens in the training set and 250K tokens in both the validation and test sets.

JAVA GITHUB
4 is a programming language corpus containing Java source code from Github (Allama-

nis & Sutton, 2013) that is widely used in source code modeling (Hellendoorn & Devanbu, 2017;
Karampatsis et al., 2020). It contains 1.44B tokens from 13,362 projects in the training split, 3.83M
tokens from 36 projects in the validation split and 5.33M tokens from 38 projects in the test split. The
splits are separated by whole projects. The dataset is tokenized with byte-pair encoding (Sennrich
et al., 2015) using the vocabulary from Karampatsis et al. (2020) with 2,000 subtokens.

Base Model. As the neural model used to calculate context features, we follow Khandelwal et al.
(2020),5 train an LM with the exact architecture and optimization described by Baevski & Auli
(2018): a decoder-only Transformer (Vaswani et al., 2017), with 1024 dimensional hidden states
for the WIKITEXT-103 dataset and 512 for JAVA GITHUB. We set the number of retrieved nearest
neighbors to be analyzed to 1024, and the distance metric to `2 following the default.

Datastore. To capture the effect of our proposed locality features, the datastore should ideally be both
closely related to the test examples, sufficiently large to ensure precise kNN retrieval performance for
a wide range of contexts, and not too sparse in terms of the prevalence of locality features.

For WIKITEXT-103, we include the training set, as well as the validation/test set (excluding the text
currently being evaluated) in the datastore. For the JAVA GITHUB, due to the relatively large size of
the validation/test set, and the unwieldy size of the training set, we include only the validation/test set
(also excluding the current file).

3
https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/.

4
https://zenodo.org/record/3628665.

5
https://github.com/urvashik/knnlm
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from the (right-most) plot of rank versus the negative distance, the average distances of the neighbors
with higher locality levels are also significantly smaller than the distance of those without locality.
This suggests that the distance in the Java source code domain already correlates well with the level
of locality, which may render incorporating locality features less beneficial. We study the precise
benefit under one instantiation of this model next.

5 INCORPORATING STRUCTURAL LOCALITY IN NON-PARAMETRIC LMS

Now that we have demonstrated that locality is additionally indicative of next-word prediction
accuracy beyond context distance, we propose a method to incorporate this information into the non-
parametric retrieval module. In the case of kNN-LMs (Section 2), recall that pkNN is calculated based
on the softmax of the negative distance −d(f(ci), f(ct)). Assuming locality features {l0, l1, ..., ln}
for each pair (ci, ct) consisting the retrieved nearest neighbor and the current inference context ct,
we modify the formulation of pkNN (Equation 3) to consider these features as below:

pkNN(wt|ct; {θn}) ∝
∑

(ki,vi)∈N

1wt=vi exp(−g(ki, ct; {θn})) (4)

g(ki, ct; {θn}) = gn(d(ki, f(ct)); θn) if ln(ci, ct) = 1. (5)

where gn(d(·, ·); θn) is a learnable function of the distance of the nearest neighbors, with parameter
θn for each type of locality feature ln. One can view function g(·) as a “modified” distance for nearest
neighbors after taking locality information into consideration. In our experiments, we adopt a linear
form of g(·):

gn(d(·, ·);wn, bn) = wnd(·, ·) + bn (6)

We omit the bias for g0(·) by setting b0 = 0 to remove one free parameter from the model and
potentially make optimization easier.6 To learn these functions, a user needs to provide just a small
sample of annotated data in the same domain, as there are only 2n+ 1 parameters to optimize. In our
experiments, we use the validation split for optimization. The parameters are trained to minimize the
negative log-likelihood of the kNN prediction of the gold token:

argmin
{θn}

− log pkNN(wt = wtgold |ct; {θn}) (7)

To optimize the parameters, we use the Adam (Kingma & Ba, 2014) optimizer with a learning rate of
0.0001 on the validation set for 200 epochs. It converges within 20 minutes for both datasets.

6 HOW DOES STRUCTURAL LOCALITY IMPROVE LANGUAGE MODELING?

6.1 EXPERIMENTAL SETUP

Baselines. Since we base our model on kNN-LMs, this model will be our most directly comparable
baseline. We also compare our model to the underlying parametric LM (Baevski & Auli, 2018),
without the kNN module. For the JAVA GITHUB dataset, we additionally compare to the recent
state-of-the-art model from Karampatsis et al. (2020) on code language modeling, which uses BPE
and LSTMs. In all experiments, the maximum number of tokens per input sample is 3,072.

Evaluation. We evaluate the performance of the LM with the standard perplexity metric and token
prediction top-k accuracy on the held-out data.7 The top-k accuracy is calculated by checking if
the ground truth token is among the predicted top-k list. This metric, primarily for k ∈ {1, 5} (with
more k values in Appendix A.2), is commonly used to evaluate predictive models of source code
(Hindle et al., 2016). In order to more easily incorporate and analyze the locality features, and also
following Karampatsis et al. (2020), we split the evaluation dataset into independent test examples to
evaluate, where each of the example is an atomic unit in the locality hierarchy. For JAVA GITHUB,
each test example is a source code file, and for WIKITEXT-103, each example is an article section.8

6We also experimented with an adaptive variant that conditioned the weights and biases ({wn}, {bn}) on
the current context representation f(ct) parameterized by a MLP. However, this did not result in significant
improvement over directly optimizing w and b (Appendix A.3).

7For JAVA GITHUB, the perplexity is calculated on full tokens by aggregating the likelihood of subtokens.
The accuracy is calculated that all subtokens in a full token have to be predicted correctly.

8Note that because we predict WIKITEXT-103 section-by-section instead of article-by-article the perplexity
numbers reported here are somewhat worse than other works. Article-by-article calculation is not inherently
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Table 2: Perplexity and top-k token prediction accuracy results on two datasets. ∗Uses released
pre-trained model, †no stochastic training, for all others stddev < 0.01 for 5 runs.

Dataset Model Dev PPL Test PPL
Rel.

Gain
Top-1 Acc.

(Rel. Err. Red.)
Top-5 Acc.

(Rel. Err. Red.)

WIKITEXT

-103

Transformer1 ∗23.31 ∗23.73 – 39.0% (–) 64.0% (–)

+kNN2 †20.21 †19.94 16.0% 41.3% (3.79%) 66.8% (7.91%)
+kNN + locality 19.51 19.16 3.9% 43.2% (3.29%) 68.0% (3.56%)

JAVA

GITHUB

BPE LSTM3 – ∗5.27 – – –
Transformer 3.29 3.07 41.7% 75.6% (–) 87.6% (–)

+kNN †2.43 †2.18 29.0% 83.9% (34.0%) 96.0% (67.9%)
+kNN + locality 2.37 2.13 2.3% 84.7% (4.91%) 96.6% (15.0%)

1Baevski & Auli (2018), 2Khandelwal et al. (2020), 3Karampatsis et al. (2020)

6.2 RESULTS

The high-level results are shown in Table 2. At first glance, we can already see that the two
datasets vary greatly in predictability. With a similar Transformer architecture, performance on JAVA

GITHUB is much better than on the WIKITEXT-103 across the board, partly due to the rigid nature
of programming language syntax. With a Transformer model, we achieved a strong state-of-the-art
language model on Java code, with low perplexity and very high prediction accuracy (∼75%).

By adding kNN module onto the Transformer-based LMs, perplexity and accuracy in both domains
improves by a large margin. This is expected and in line with previous experiments on kNN-
LMs (Khandelwal et al., 2020). The Wikipedia domain enjoys less relative improvement in perplexity
(16%) than the Java source code domain (29%). This is particularly interesting, considering that
the datastore used for WIKITEXT-103 contains both the current held-out split and the training data
(∼100M contexts), compared to that for JAVA GITHUB with only the current held-out split (∼5M
contexts). This reflects the fact that source code is known to benefit strongly from project- and
package-specific locality (Tu et al., 2014; Hellendoorn & Devanbu, 2017).

Table 3: Learned parameters θ0, {θn}
for each locality level and a non-local
level g0.

WIKITEXT-103 JAVA GITHUB

w b w b

g0 1.233 – 0.022 –

g1 1.246 -1.087 0.033 -3.627

g2 1.288 -1.250 0.041 -5.920

g3 1.285 -1.464 – –

Adding proposed locality features and finetuning the pa-
rameters on the validation set improves the performance
further on both datasets, albeit with a smaller relative gain.
This confirms our hypothesis that incorporating locality
into the non-parametric retrieval-based LMs is beneficial.
We also see that locality features in the Wikipedia domain
result in fairly consistent gains, while the Java source code
domain sees especially strong accuracy improvements.
This echoes our analysis of the source code corpus in
Section 4, where we found that distance was generally
strongly correlated with accuracy, but that locality was particularly informative at low distances.
There, it may help discriminate between top-ranked completion candidates (as also shown later in Tab.
4). It is notable that despite the fact that the perplexity and accuracy on JAVA GITHUB are already
very strong with the vanilla Transformer, we still see a noticeable relative error reduction of 4.9% by
adding locality levels information.

We next study how locality features guide towards a “better” distance distribution among nearest
neighbors. We plot the relationship between the nearest neighbor ranks and “modified” distance
g(ki, ct) in Figure 3. Table 3 shows the specific learned parameters for each level of g(·, ·). Evidently,
the biases and weights vary accordingly with locality levels, as the model tries to “correct” the
original distance by emphasizing more local contexts. Compared with the original negative distance
−d(ki, f(ct)) depicted in Figure 2, the negative modified distance is more separated between the
different locality levels on either dataset, showing the relative importance of different locality more
clearly. We analyze several alternative approaches to parameterizing locality in Appendix A.3.

For WIKITEXT-103, comparing Figure 3a with Figure 2a, we can see that with the original distance
different localities cluster together, and the modified distance separates them much better. We can also

incompatible with our proposed method, but it would require additional implementation to use different locality
features for different locations in the output. Hence, we used section-by-section calculation for expediency.
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Table 4: Examples from two domains where incorporating locality features (non-local, local) lead
to a significant increase in the cumulative pkNN for the gold token, with corresponding change in
probability (normalized negative distance) for two nearest neighbors.

Test Context
Test

Target
Initial
log pkNN

∆
log pkNN

Section: Seasonal forecasts; Category: Pacific typhoon season The
forecast indicated the potential for 26.2 tropical storms, compared to
the 10– and 30-year average of 27.8 and 26.3 storms, respectively. The
following month, the group raised their ...

forecast -2.20 +0.89

Datastore Context
Datastore
Target

Orig.
Log-Prob.

∆Log-
Prob.

Section: Seasonal forecasts; Category: Pacific typhoon season Their
main reasons behind this is due to weaker trade force winds occurring
in many parts of the basin, and there would be an enhanced cyclonic
vorticity over the northwestern part of the Pacific. On April 27, the
GCACIC made their first ...

forecast -2.91 +1.25

Section: Earthquake; Category: earthquake Nickson Sioni from Simbo
came on the (HF) radio and announced the arrival of a huge wave that
had washed away several houses and come inland about 200m. This
information was passed on by telephone to the Hawaii-based Pacific
Tsunami Warning Center who then upgraded their ...

warning -3.01 -0.31

Test Context
Test

Target
Initial
log pkNN

∆
log pkNN

Directory: .../android/twitter/AuthConstants.java; Project: twitterdroid
public static final String CONSUMER_SECRET = "YOUR_CONSUMER_SECRET";

public static final String REQUEST_URL = "http://www. ...

twitter -2.03 +0.49

Datastore Context
Datastore
Target

Orig.
Log-Prob.

∆Log-
Prob.

Directory: .../jtwitter/TwitterConnection.java; Project: twitterdroid
public static final String FRIENDS_TIMELINE_URL =

"http://api.twitter.com/1/statuses/friends_timeline.xml";

public static final String UPDATE_URL = "http://api. ...

twitter -1.99 +0.17

Directory: .../impl/ActivityTemplate.java; Project: spring-social-google
private static final String ACTIVITIES_PUBLIC = "/activities/public";

private static final String ACTIVITIES_URL = "https://www. ...

googleapis -1.87 -0.09

accuracy across both domains show the effectiveness and ubiquity of such locality information.
Besides language modeling, we also envision that the method can benefit other applications that
could be enhanced using user-defined prior domain knowledge such as conditional generation or
representation learning using retrieved information.

Limitations. Our method applies to settings where locality effects are present, there is sufficient
data to build a reliable datastore for each locality level, and that locality is not already meaningfully
captured by the model. While this may not apply to every domain, these features are common:
besides source code & Wikipedia, domains including books (features: authorship & dewey decimal
system information), research papers (venue, research area), product manuals (kind, sections), and
online discussions (time, topic) are all plausible candidates. The features in our studied domains
were selected based on availability and prior knowledge of the domain (e.g., for Java, Hellendoorn &
Devanbu (2017)). While they did provide measurable improvements and were natural to interpret,
these may not be the optimal choice, and other options are worth investigating. It is also possible that
LM improvements will eventually lead to learned context representations that almost perfectly capture
the relevant locality information. However, we believe this to be unlikely: in many practical settings,
there is some inherent ambiguity in partial contexts that cannot be solved with the surface text only.
For instance, in Java source code files, it is common to declare a package, which will obviously match
perfectly based on the first few tokens (e.g., package org.) with many other contexts. Yet given the
scoped nature of this declaration, locally retrieved continuations are inherently far more useful.
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ETHICS STATEMENT

There are several ethical considerations regarding our proposed method. First, while language models
have a large variety of positive uses in generating natural language (Li et al., 2021) or source code
(Allamanis et al., 2018), there is also a potential for dual use. For example, previous work has cited
the potential to generate fake news (Zellers et al., 2019) or undesirable/defamatory content (Wallace
et al., 2019). Our methodology improves the accuracy of language models, which has the potential to
increase their applicability not only in positive use cases but also in ethically questionable scenarios.
In order to mitigate these risks, methods to detect machine generated content may be employed,
although these are not perfect remedies (Zellers et al., 2019).

Second, because our methodology explicitly references the training corpus in generation it may
increase the likelihood of copying content more-or-less verbatim from the training text. This raises
potential issues of copyright violation (Chen et al., 2021) or privacy violation (Carlini et al., 2021).
However, at the same time, because non-parametric models increase traceability through direct
references to the training corpus, it also provides a tool to identify the provenance of the original
content, providing a tool to identify such verbatim copying compared to standard parametric models.

Finally, there has been much recent interest in the energy and environmental impact of large language
models (Strubell et al., 2019). Due to the necessity to look up information in a datastore, non-
parametric models have additional computational overhead compared to parametric models. However,
at the same time, as noted by Khandelwal et al. (2020), non-parametric models also provide a tool
for quickly adapting to new domains through the use of domain-specific datastores, obviating the
necessity for domain-specific fine-tuning. Our work takes this a step further, allowing models to
leverage locality of the datastores, potentially making this an even more attractive alternative for
efficient adaptation.

REPRODUCIBILITY STATEMENT

The source code package containing a README document on how to reproduce the results and
analysis and experiment scripts is available in the paper’s supplementary material. The details about
the dataset used, model hyper-parameters, and analysis performed are described in Section 4 and
Section 6.1. All experiments are conducted on a single machine with a 48 core CPU and 8 NVIDIA
V100 32GB GPU. For WIKITEXT-103 we use the pretrained model provided by (Khandelwal et al.,
2020) for fair comparison. For JAVA GITHUB the Transformer model is trained until it converges,
requiring approximately 2 days. The datastore size is about 5GB for JAVA GITHUB and 351GB for
WIKITEXT-103.
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Edouard Grave, Moustapha Cissé, and Armand Joulin. Unbounded cache model for online language
modeling with open vocabulary. arXiv preprint arXiv:1711.02604, 2017.

Kelvin Guu, Tatsunori B Hashimoto, Yonatan Oren, and Percy Liang. Generating sentences by
editing prototypes. Transactions of the Association for Computational Linguistics, 6:437–450,
2018.

Tatsunori B Hashimoto, Kelvin Guu, Yonatan Oren, and Percy S Liang. A retrieve-and-edit framework
for predicting structured outputs. In Proceedings of NeurIPS, 2018.

Hiroaki Hayashi, Zecong Hu, Chenyan Xiong, and Graham Neubig. Latent relation language models.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 7911–7918, 2020.

Junxian He, Taylor Berg-Kirkpatrick, and Graham Neubig. Learning sparse prototypes for text
generation. arXiv preprint arXiv:2006.16336, 2020.

Vincent J Hellendoorn and Premkumar Devanbu. Are deep neural networks the best choice for
modeling source code? In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pp. 763–773, 2017.

Abram Hindle, Earl T Barr, Mark Gabel, Zhendong Su, and Premkumar Devanbu. On the naturalness
of software. Communications of the ACM, 59(5):122–131, 2016.

Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and Andrea Janes. Big
code!= big vocabulary: Open-vocabulary models for source code. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE), pp. 1073–1085. IEEE, 2020.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through memorization: Nearest neighbor language models. In Proceedings of ICLR, 2020.

Sanjeev Khudanpur and Jun Wu. Maximum entropy techniques for exploiting syntactic, semantic and
collocational dependencies in language modeling. Computer Speech & Language, 14(4):355–372,
2000.

11



Published as a conference paper at ICLR 2022

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, and Ji-Rong Wen. Pretrained language models for text
generation: A survey. arXiv preprint arXiv:2105.10311, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM
language models. In Proceedings of ICLR, 2018.

Tomas Mikolov and Geoffrey Zweig. Context dependent recurrent neural network language model.
In 2012 IEEE Spoken Language Technology Workshop (SLT), pp. 234–239. IEEE, 2012.
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A APPENDIX

A.1 ADDITIONAL EXAMPLES

We provide additional examples on WIKITEXT-103 in Table 5.

Test Context
Test

Target
Initial
log pkNN

∆
log pkNN

Section: Design; Category: ship class In an effort to outmatch the
American New York class, planners called for a ship armed with twelve
14-inch (36 cm) guns and faster than the 21 knots (39 km/h; 24 mph) of
their rivals. Vickers files show that the Japanese had access to the designs
for double- and triple-gun turrets, yet opted for six double turrets over
four triple turrets. The final design—designated A-64 by the IJN—called
for a ...

displacement -2.54 +1.09

Datastore Context
Datastore
Target

Orig.
Log-Prob.

∆Log-
Prob.

Section: Design; Category: ship class Both ships were also given torpedo
bulges to improve their underwater protection and to compensate for the
weight of the additional armour. In addition, their sterns were lengthened
by 7.62 metres (25 ft). These changes increased their overall length to
213.8 metres (701 ft), their beam to 31.75 metres (104 ft 2 in) and their
draft to 9.45 metres (31 ft). Their ...

displacement -3.25 +1.23

Section: History; Category: gun mount The British Admiralty ordered a
prototype of Coles’s patented design in 1859, which was installed in the
ironclad floating battery, HMS Trusty, for trials in 1861, becoming the
first warship to be fitted with a revolving gun turret. Coles’s aim was to
create a ...

ship -2.98 -0.24

Test Context
Test

Target
Initial
log pkNN

∆
log pkNN

Section: La Venta; Category: colossal statue When discovered it was
half-buried; its massive size meant that the discoverers were unable to
excavate it completely. Matthew Stirling fully excavated the monument
in 1940, after clearing the thick vegetation that had covered it in the
intervening years. Monument 1 has been ...

moved -2.97 +1.22

Datastore Context
Datastore
Target

Orig.
Log-Prob.

∆Log-
Prob.

Section: San Lorenzo; Category: colossal statue The sculpture suffered
some mutilation in antiquity, with nine pits hollowed into the face and
headdress. San Lorenzo Colossal Head 10 (also known as San Lorenzo
Monument 89) has been ...

moved -4.18 +1.36

Section: San Lorenzo; Category: castle The excavations investigated the
north of the fortress, searching for an entrance postulated by architect
Eugene Viollet-le-Duc, but no such entrance was found. However, the
excavation did reveal was that there was an addition to the north of the
castle to enable the use of guns. Typologically, the structure has been ...

dated -4.63 -0.11

Table 5: Additional WIKITEXT-103 examples where incorporating locality features (non-local, local)
lead to a significant increase in the cumulative pkNN for the gold token, with corresponding change in
probability (normalized negative distance) for two nearest neighbors.

A.2 ADDITIONAL RESULTS ON TOKEN PREDICTION ACCURACY

We show additional results on top-k (k = 10, 20) accuracy and relative error reduction (RER) on two
datasets in Table 6.

A.3 ALTERNATIVE FORMULATIONS TO LEARN PARAMETERS FOR LOCALITY FEATURES

An alternative way to incorporate locality features into the model is an adaptive variant that conditions
the weights and biases ({wn}, {bn} in Equation 6) on the current context representation f(ct)
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Table 6: Additional token prediction top-k (k = 10, 20) accuracy results and relative error reduction
(RER) on two datasets.

Dataset Model Top-10 RER Top-20 RER

WIKITEXT-103
Transformer 72.0% - 78.9% -
+kNN 74.6% 9.29% 81.0% 9.98%
+kNN + locality feat. 74.9% 1.30% 81.1% 0.84%

JAVA GITHUB

Transformer 89.5% - 90.8% -
+kNN 97.3% 74.86% 98.2% 80.33%
+kNN + locality feat. 97.9% 21.89% 98.6% 25.41%

Table 7: The perplexity results comparing alternative formulation using MLP to contextualize
parameters for locality features on two datasets.

Dataset Model Dev PPL Test PPL

WIKITEXT-103

Transformer 23.31 23.73
+kNN 20.21 19.94
+kNN + locality (MLP contextualized) 20.11 19.92
+kNN + locality (direct) 19.51 19.16

JAVA GITHUB

Transformer 3.29 3.07
+kNN 2.43 2.18
+kNN + locality (MLP contextualized) 2.47 2.20
+kNN + locality (direct) 2.37 2.13

parameterized by a MLP:

[w0 ... wn b1 ... bn]
T
= MLP (f(ct)) (8)

In our experiments, we used a two-layer MLP with ReLU activations, with 64 hidden units and 0.3
dropout rate during training. The perplexity results compared with directly optimizing weights and
biases ({wn}, {bn}) are shown in Table 7.

We find that contextualizing the parameters does not result in significant improvements over directly
optimizing w and b, and sometimes makes the performance even worse. This is perhaps because the
context vector space is very large (512-1024 dimensions) compared to the relatively few data points
from the validation set used to train.

In Section 6.2, we discuss the effect of learned parameters for each locality level. Observing that the
bias terms (bi) and weights (wi) vary according to the locality levels in the learned parameters and to
study the weights of the non-local level w0, we freeze all weights except for non-local weights (wi>0)
to 1 and only optimize bias terms and the weight for the non-local level (w0). This is to exacerbate
the effect of bias on different locality levels. The learned parameters are shown in Table 8. We see
similar results where the bias terms vary aggressively to modify the “distance” with different levels
of locality, and the weights for the non-local level are less than 1, lowering the importance of those
non-local retrieved candidates. It’s worth mentioning that for JAVA GITHUB these learned biases
are much larger in amplitude than before, to compensate for the small scale weights learned before
(only around 0.03). However, the perplexity results on both datasets are slightly worse than the full
optimization setting that we use in the main experiments (19.33 vs. 19.16 in WIKITEXT-103 and
2.15 vs. 2.13 in JAVA GITHUB).

A.4 CONNECTION WITH RELATED WORK AND NOVELTY

Previous work (Hellendoorn & Devanbu, 2017) has made the observation that source code files from
the same GitHub repository or sub-directory tend to be relatively similar, but did not include an
empirical analysis of this effect. Rather, their observation was backed up by an improved performance
of their n-gram language model with multiple tiered caches. Our work improves on this in a
number of ways, including 1. directly examining the internal representations of a neural language
model, 2. demonstrating that the internal representations do not sufficiently capture structural locality
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Table 8: Learned parameters θ0, {θn} for each locality level and a non-local level g0, with fixed
wi>0 = 1 during optimization.

WIKITEXT-103 JAVA GITHUB

w b w b

g0 1.127 – 0.901 –

g1 1.000 -0.385 1.000 -28.716

g2 1.000 -0.475 1.000 -55.428

g3 1.000 -0.726 – –

features, 3. providing efficient ways to compensate for this disconnect, leading to improved language
modeling performance, and 4. showing that this carries over to Wikipedia, which has not been
previously examined in this way. As a result, our work both gives more fine-grained insights into this
phenomenon and expands the applicability to neural models and new domains. In addition, our work
proposes a more generalized formulation for encoding multiple localities across multiple domains
than the one proposed in Hellendoorn & Devanbu (2017), which treated locality as strictly nested
(e.g. project → sub-directory → file). Our formulation in Eq. 5 can encode more general hierarchies,
such as the lattice we used in the Wikipedia case:

same section & category

same section same category

any section & category
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