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ABSTRACT

Sampling-based motion planners such as RRT* and BIT*, when

applied to kinodynamic motion planning, rely on steering func-

tions to generate time-optimal solutions connecting sampled states.

Implementing exact steering functions requires either analytical

solutions to the time-optimal control problem, or nonlinear pro-

gramming (NLP) solvers to solve the boundary value problem given

the system’s kinodynamic equations. Unfortunately, analytical solu-

tions are unavailable for many real-world domains, and NLP solvers

are prohibitively computationally expensive, hence fast and opti-

mal kinodynamic motion planning remains an open problem. We

provide a solution to this problem by introducing State Supervised

Steering Function (S3F), a novel approach to learn time-optimal

steering functions. S3F is able to produce near-optimal solutions

to the steering function orders of magnitude faster than its NLP

counterpart. Experiments conducted on three challenging robot

domains show that RRT* using S3F significantly outperforms state-

of-the-art planning approaches on both solution cost and runtime.

We further provide a proof of probabilistic completeness of RRT*

modified to use S3F.
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1 INTRODUCTION AND RELATED WORK

This work tackles the kinodynamic motion planning (KDMP) prob-

lem, which is the problem of computing a kinodynamically feasible

motion plan that takes a robot from an initial configuration to a

goal region. We begin by formally defining the KDMP problem and

then survey the various approaches to solving it.

Let -� be the configuration space of the robot. The state space

- is defined as the Cartesian product of -� with -� , the set of

dynamics variables needed to fully describe the dynamics of the

robot at any given instance in time. -� typically consists of time

derivatives of elements of -� . Let * be the control space of the

robot. The kinodynamic constraints are described by the differential

equation ¤G (C) = 5 (G (C), D (C)), where G (C) ∈ - and D (C) ∈ * . The
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KDMP problem differs from the purely kinematic motion planning

(KMP) problem in that the KMP problem operates only on the

configuration space-� . Let-obs ∈ - be the set of obstacle-colliding

states and let -free = -\-obs be the set of valid states. Let Ginit ∈

-free be the initial state of the robot and let-goal ⊂ -free be the goal

region. The objective of the KDMP problem is to find a collision

free path that takes the robot from Ginit to -goal while obeying the

kinodynamic constraints. The solution to the KDMP problem is

a mapping 2 (C) : [0, C5 ] → * from time to control inputs such

that applying 2 (C) starting from the state Ginit traces out a path

b (C) : [0, C5 ] → -free such that b (C5 ) ∈ -goal. A motion plan is

considered optimal if it minimizes some cost function � (C5 , 2, b).

The time-optimal solution minimizes the total time C5 .

We review the state of the art approaches to solving the KDMP

problem, including search-based planning, sampling-based plan-

ning, and learning-based solutions.

Search-based planning typically involves constructing a state

lattice � = (+ , �) where + ⊂ -free and the edges � are pre-defined

kinodynamically feasible motion primitives [23]. This lattice can

then be searched using any graph search algorithm to obtain a so-

lution. Increasing the resolution of the lattice increases the chances

that a solution can be found, but comes with an exponential in-

crease in computational cost. Finding a set of motion primitives

that work well can also be difficult. Search-based planning algo-

rithms are resolution optimal, in that they can find solutions that

are optimal with respect to the discretization used.

Sampling-based planning makes use of a continually improv-

ing discretization of the state space through random sampling. One

of the most effective sampling-based planning algorithms is the

Rapidly Exploring Random Tree (RRT) [17] algorithm. The RRT

algorithm works by incrementally sampling the state space and ex-

tending the nearest vertex in the tree towards that sample. Because

this extension can be made by a random propagation of controls,

the RRT algorithm can be applied to kinodynamic systems.

RRTs have also been integratedwithmachine learning approaches

to solve the KDMP problem. One such work employs the k-nearest-

neighbors algorithm within the RRT framework to approximate the

cost-to-go function and expand vertices in the tree [29]. It however

suffers from lack of optimality of computed trajectories and is only

demonstrated to work for simple environments. Reinforcement

Learning RRT (RL-RRT) [6] trains an RL agent to do local planning

and uses an RRT to guide exploration. The resulting motion plan is

suboptimal and since the RL local planner is trained on particular

obstacle configurations, may not generalize well to new obstacle

environments. Probabilistic Roadmap RL (PRM-RL) [8] also uses RL

for local planning but maps sensor observations directly to actions

and does not attempt to produce optimal trajectories.



RRT and the aforementioned RRT based algorithms do not pro-

duce optimal solutions. An alternative algorithm that produces

optimal solutions while maintaining the computational efficiency

of RRT is the RRT* algorithm [14]. The RRT* algorithm makes use

of a rewiring step to ensure that the path from the root to any

vertex in the tree is optimal with respect to the connections in the

tree. Because of this, the RRT* algorithm is asymptotically optimal.

Many variants of the RRT* algorithm exist that have proven to

work well in practice. Informed RRT* [9] improves on RRT* by

ensuring that after an initial solution has been found, only states

that have the potential to improve the solution are considered as

candidate vertices. The BIT* algorithm [10] integrates graph-based

and sampling-based planning techniques to more efficiently find

and improve on solutions to the planning problem.

One caveat of optimal sampling-based algorithms including RRT*

and BIT* is that they all require an optimal steering function to

connect states. For any two states G0, G1 ∈ - , a steering function

( (G0, G1 ) produces a trajectory ) : [0, C5 ] → * , a mapping from

time to control inputs. Integrating) from G0 according to the equa-

tion of motion 5 produces a path Γ : [0, C5 ] → - , a mapping from

time to states. An optimal steering function (∗ (G0, G1 ) produces

a trajectory ) ∗ : [0, C5 ] → * and a path Γ
∗ : [0, C5 ] → - that

in addition to satisfying the aforementioned constraints, satisfies

Γ
∗ (C5 ) = G1 and minimizes some cost function, most commonly

time. There exist algorithms like Stable-Sparse RRT (SST) [19] and

Asymptotically Optimal RRT (AO-RRT) [12] that do not require

a steering function, but in practice they tend to take a significant

amount of time to find good quality solutions. Analytical solutions

to the steering function exist for some robots, such as those with lin-

ear dynamics [28], and so do iterative solutions for specific systems

such as omnidirectional robots with bounded acceleration [2], but

for most systems computing the optimal steering function requires

a call to a computationally expensive nonlinear programming (NLP)

solver. There are ways to decrease the computational overhead of

NLP solvers to make planning tractable [30], but the NLP solver

still remains a significant bottleneck. Previous work has explored

whether the steering function can be learned [32]. The learning

setup used however was unable to connect arbitrary start and goal

states, a necessity if the steering function is to be used in an optimal

sampling-based planning algorithm.

Reinforcement learning has also been applied to the KDMP

problem. One approach to KDMP for linear systems uses continuous-

time Q-learning [16] to deal with dynamics whose differential equa-

tions of motion are inaccurate or unreliable. Some have also pro-

posed formulating the KDMP problem entirely as a Markov Deci-

sion Process (MDP), where the solution KDMP policy is learned by

RL [5].

Learning optimal control policies is a research area that has

also been recently explored. Past works [11] [27] [25] [26] have

attempted to train a neural network to learn to produce optimal

controls. All of these works however keep the goal state fixed, and

so a new policy would need to be learned for every goal state.

Optimization-based planning methods rely on numerical

optimization to find a solution to the goal that minimizes some

cost objective. Example works that fall under this category in-

clude GuSTO [4], CHOMP [24], and STOMP [13]. While such

optimization-based methods are effective at finding solutions given

good initialization, they find difficulty in handling cases where

initial solutions are unknown, or when the optimization objective

function has local minima (often due to obstacles).

Integrated planning and learning approaches have recieved

significant attention lately. Search on the Replay Buffer (SoRB) [7]

demonstrates how the success rate of goal-conditioned RL on long

horizon tasks can be improved by adding a planning component.

SoRB however is unable to provide theoretical guarantees on com-

pleteness and faces difficulty when run on unseen environments.

One approach [1] uses precomputation and machine learning to

enable real-time kinodynamic planning for quadrotors. It is able

to avoid solving two-point boundary value problems directly on

quadrotor dynamics by using minimum snap polynomial splines,

a technique that only works for a limited class of systems. Model-

Predictive Motion Planning Networks (MPC-MPNet) [18] proposes

the integration of multiple neural components along with Model

Predictive Control to solve the kinodynamic motion planning prob-

lem. The algorithm is compared with SST and is shown to have

faster planning times. It however is unable to produce lower cost

paths than SST and drops in performance on unseen environments.

While many approaches exist for kinodynamic planning, none so

far are able to find low cost solutions in a computationally efficient

manner. Approaches either sacrifice low solution cost or perfor-

mance in pursuit of the other. We propose with this work that both

are attainable. In contrast to many learning approaches, our work

is also agnostic to obstacle configurations, and so generalizes well

to new environments.

In summary, in this paper we contribute: 1) State Supervised

Steering Function (S3F), a learning-based technique to efficiently

compute the steering function required by optimal sampling-based

planners; 2) S3F-RRT*, a probabilistically complete RRT* algorithm

that uses S3F as its steering function; and 3) Empirical results for

three kinodynamically-complex robots that demonstrate that S3F-

RRT* outperforms state-of-the-art kinodynamic planners.

2 KINODYNAMIC PLANNINGWITH STATE
SUPERVISED STEERING FUNCTION

Recall from earlier that given two arbitrary states G0, G1 ∈ - the

optimal steering function (∗ (G0, G1 ) produces a trajectory )
∗ that

optimally connects these two states. We are interested in learning

a function (̃ that approximates (∗ such that (̃ (G0, G1 ) produces a

near-optimal trajectory )̃ ≃ ) ∗. The control trajectory )̃ can be

integrated to obtain a path Γ̃.

2.1 Steering Function Formulation

Rather than learning (̃ that produces )̃ directly, we simplify the

learning problem by constructing )̃ in an iterative manner. This

can be done by learning a policy c : - × - → * where c takes

as input the current state of the robot GC and the goal state G1 and

produces as output a constant-time control input D to be executed

for a fixed period of time g , resulting in a new state GC+1. Iteratively

calling c for a fixed number of iterations = results in the genera-

tion of a piecewise constant control function that we denote )max.

Integrating )max from the start state G0 yields the state function

Γmax.





S3F-RRT*()

1: + ← {Ginit}, � ← ∅

2: for 8 = 1..= do

3: Grand ← SampleFree()

4: Gparent ← ∅, Gext ← ∅, 2min ←∞

5: -near ← NearTo(� = (+ , �), Grand)

6: for each G ∈ -near do

7: ) ← Steer(G, Grand)

8: Gnew ← EndState(G,))

9: 2traj ← SteeringCost())

10: 1 ← Dist(Gnew, Grand) < Aerror∧ObstacleFree(G,))

11: if Cost(G) + 2traj < 2min ∧ 1 then

12: Gparent ← G

13: Gext ← Gnew
14: 2min ← Cost(G) + 2traj
15: end if

16: end for

17: if 2min ≠ ∞ then

18: + ← + ∪ {Gext}

19: � ← � ∪ {(Gparent, Gext)}

20: end if

21: Rewire(+ , �, Gext)

22: end for

23: return � = (+ , �)

Rewire(+ , �, Gext)

1: -near ← NearFrom(� = (+ , �), Gext)

2: for each G ∈ -near do

3: ) ← Steer(Gext, G)

4: Gnew ← EndState(Gext,))

5: 2traj ← SteeringCost())

6: 1 ← Dist(Gnew, G) < Aerror ∧ ObstacleFree(Gext,))

7: if Cost(Gext) + 2traj < Cost(G) ∧ 1 then

8: + ← + \{G} ∪ {Gnew}

9: � ← �\{(Parent(G), G)} ∪ {(Gext, Gnew)}

10: PropagateRewiring(G, Gnew)

11: end if

12: end for

PropagateRewiring(G , Gnew)

1: for each Gchild ∈ Children(G) do

2: ) ← Trajectories(G, Gchild)

3: if ObstacleFree(Gnew,)) then

4: Gnext ← EndState(Gnew,))

5: + ← + \{Gchild} ∪ {Gnext}

6: � ← �\{(G, Gchild)} ∪ {(Gnew, Gnext)}

7: PropagateRewiring(Gchild, Gnext)

8: else

9: DeleteSubtree(Gchild)

10: end if

11: end for

Figure 2: S3F-RRT* Algorithm

state function Γ
∗. We term this approach State Supervised Steer-

ing Function (S3F). Due to the differential equation 5 that defines

the kinodynamic constraints, state functions are guaranteed to be

differentiable (and thus continuous), making learning the optimal

state function a feasible problem. Figure 1b shows an example of

such a state function for the quadrotor robot – note that despite

the associated control function (Figure 1a) being discontinuous,

the state function is smooth and continuous. The goal now is to

have Γ̃ imitate Γ
∗ for each trajectory in the dataset. This can be

done by ensuring that for various time points C in the range [0, C5 ],

Γ̃(C) = Γ
∗ (C). Recall that Γ̃ is only obtained by integrating )̃ . This

can be accounted for with the following procedure: sample a series

of time points (C0 ...C: ) in the range [0, C5 −g]. For each time point C ,

assume that the robot is currently at Γ∗ (C). If Γ̃ is to imitate Γ∗, the

robot should be at Γ∗ (C + g) at time C + g . The actual location of the

robot at this time under the current policy c can be calculated by

evaluating � (Γ∗ (C), c (Γ∗ (C), GC5 )) where GC5 is the goal state of the

trajectory and � : - ×* → - is an integration function that given

a current state and a constant control, integrates the differential

equation of motion 5 to compute the state g units of time later. To

get Γ̃ to imitate Γ
∗ we can thus optimize the following learning

objective:

argmin
\

∑

Γ∗∈�

∑

C ∈(C0,...,C: )

[� (Γ∗ (C), c (Γ∗ (C), GC5 )) − Γ
∗ (C + g)]2 (2)

where \ is the parameter set of c and � is the dataset of optimal

trajectories. The key takeaway from this learning procedure is that

we are learning c indirectly. c is a component of a state function

that we are training to be optimal, and by learning this state function

we are indirectly learning the control function c .

2.3 Sampling-based Planning With Learned
Steering Functions: S3F-RRT*

We present S3F-RRT*, a sampling-based planning algorithm that

uses the learned steering function to solve the optimal kinodynamic

motion planning problem. S3F-RRT* uses S3F as the steering func-

tion, and employs a modified rewiring procedure to overcome any

potential local inaccuracies in S3F’s trajectories.

Figure 2 presents the algorithmic formulation of S3F-RRT*. Fig-

ure 3 shows a visualization of what goes on in each S3F-RRT*

iteration. Each iteration begins by sampling a random collision-free

state Grand. The NearTo function is then called to obtain the set of

all vertices in the current RRT* tree that are near Grand. A state is

considered to be near Grand if the time of the optimal trajectory from

that state to Grand is below some threshold. Each state in -near is

then evaluated as a possible parent to Grand. Steer(G, Grand) invokes

S3F to compute a control function ) that connects G to Grand. To

determine Gnew, where the trajectory actually ends, EndState(G,) )

integrates ) from G . SteeringCost() ) returns the cost of the tra-

jectory ) , which for a time-optimal planning problem is simply

the duration of ) . Cost(G) returns the cost of going from the start

state to G in the current RRT* tree. The Dist function returns the

Euclidean distance between two states and is used to ensure that the

terminal state of the trajectory is close enough to the target state.

ObstacleFree(G,) ) integrates the control function) beginning at

G to obtain a state function that maps time to states. ObstacleFree



Figure 3: Illustration of the steps that take place in one iteration of S3F-RRT*

then ensures that every state in this state function does not collide

with obstacles.

After the best parent has been found and the state has been added

to the tree, the rewiring procedure is invoked. Here, the set -near is

constructed by calling NearFrom(� = (+ , �), Gext). The difference

between NearFrom and NearTo is that NearFrom(� = (+ , �), Gext)

considers connections from Gext to other states as opposed to from

other states. Parent(G) returns the parent of G in the current RRT*

tree.

The rewiring procedure internally calls PropagateRewiring.

Children(G) returns the set of all children states to G in the current

RRT* tree. Trajectories(G, Gchild) returns the control function

that was computed earlier by S3F to connect G and Gchild.

One of the key differences between this algorithm and the origi-

nal RRT* algorithm is the absence in this algorithmic formulation

of finding the nearest state. In the original RRT* algorithm, after a

state is randomly sampled, the nearest state in the tree is selected

as a source of expansion. A new state is obtained by extending the

nearest state towards the randomly sampled state up to a distance

[, and the resultant state is used as the target for the subsequent

steering function evaluations. We entirely eliminate this compo-

nent of the algorithm for simplicity, a modification that was first

proposed in Kinodynamic RRT* [28]. This modification is known to

not hurt theoretical asymptotic optimality of the RRT* algorithm.

The main other difference in this algorithm is a series of modifica-

tions that deal with the fact that the learned steering function will

reach within an error radius of the goal state. Notable among these

is the existence of the PropagateRewiring procedure.

2.4 Correctness of S3F-RRT*

There are two criteria for correctness: solutions returned by S3F-

RRT* must satisfy the kinodynamic constraints and must avoid

obstacles. Any operation on the S3F-RRT* tree (such as rewiring)

can be reformulated as a sequence of state addition and state dele-

tion operations. State deletion by default cannot violate correctness.

State addition also satisfies correctness because (1) a state is only

added to the tree if the path from the parent to the state is collision

free and (2) the path from the parent to the state is generated by

integrating the differential equation of motion, implying that the

path to the state satisfies kinodynamic constraints. Thus S3F-RRT*

is correct.

2.5 Probabilistic Completeness Proof of
S3F-RRT*

Here we present a summary of the proof of probabilistic complete-

ness (PC) of the S3F-RRT* algorithm. S3F-RRT* is a modification of

the original RRT* algorithm [14] designed to make use of a learned

steering function. The proof largely follows the structure of the

proof of probabilistic completeness of geometric RRT [15], though

significant modifications have been made to take into account the

presence of kinodynamic constraints and the use of a learned steer-

ing function. The full proof can be found in the supplementary

materials.

Let 2∗ (G0, G1 ) denote the cost of the optimal trajectory from G0
to G1 , or equivalently the kinodynamic distance from G0 to G1 . We

assume that 2∗ obeys the triangle inequality, that is, 2∗ (G0, G1 ) ≤

2∗ (G0, G) + 2
∗ (G, G1 ) for all G ∈ - . Let (̃ be a learned steering func-

tion. We assume that with nonzero probability ? , (̃ (G0, G1 ) yields

a state function Γ̃ that satisfies 2∗ (Γ̃(C), G1 ) ≤ 2∗ (G0, G1 ) for all

C ∈ [0, C5 ]. This assumption in essence states that every state along

the path produced by (̃ is kinodynamically closer to the goal state

than the start state is. For a steering function trained to be optimal,

this is a reasonable assumption.

We will use �A (G) to denote the subset of the state space -

defined by {G ′ |2∗ (G ′, G) ≤ A }. For simplicity, we assume that there

exist Xgoal > 0, Ggoal ∈ -goal such that �Xgoal (Ggoal) ⊆ -goal. We

denote this simplified goal region �Xgoal (Ggoal) as -
∗
goal

. The goal of

the motion planning problem is to find a kinodynamically feasible

path c : [0, Cc ] → -free such that c (0) = Ginit and c (Cc ) ∈ -
∗
goal

.

The clearance of c is the maximal Xclear such that �Xclear (c (C)) ∈

-free for all C ∈ [0, Cc ].

We assume for this proof that there exists a valid trajectory

c : [0, Cc ] → -free with clearance Xclear > 0. Without loss of

generality, assume that c (Cc ) = Ggoal, i.e., the trajectory terminates

at the center of the goal region. Let ! be the total cost of c , and

let E = <8=(Xclear, Xgoal). Let < =
3!
E . Define a sequence of < +

1 points G0 = Ginit, ..., G< = Ggoal along c such that the cost of

traversal from one point to the next is E
3 . Therefore, 2

∗ (G8 , G8+1) ≤
E
3

for every 0 ≤ 8 < <. We will now prove that as the number of

iterations increases, the S3F-RRT* algorithm will generate a path

passing through the vicinity of these< + 1 points with probability

asymptotically approaching one.
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1 SUPPLEMENTARY MATERIALS

1.1 Robot State/Control Space Bounds

The following are the bounds of the state and control variables for

the Dubin’s Car with Acceleration robot domain:

G : [−5, 5]< ~ : [−5, 5]<

\ : [0, 2c]A03 E : [−3, 3]
<

B

: : [−1, 1]<−1 0 : [−1, 1]
<

B2

The following are the bounds of the state and control variables for

the Tractor Trailer robot domain:

G : [−5, 5]< ~ : [−5, 5]<

\ : [0, 2c]A03 E : [−1, 1]
<

B
U : [0, 2c]A03 ! : 0.25<

� : 0.5< 0 : [−1, 1]
<

B2

q : [tan−1 (−!), tan−1 (!)]A03

The following are the bounds of the state and control variables for

the Quadrotor robot domain:

G : [−5, 5]< ~ : [−5, 5]<

I : [0, 5]< ¤G : [−3, 3]
<

B

¤~ : [−3, 3]
<

B
¤I : [−1, 1]

<

B

\ : [−
c

2
,
c

2
]A03 q : [−

c

2
,
c

2
]A03

W : [−c, c]A03 ¤\ : [−c, c]
A03

B

¤q : [−c, c]
A03

B
¤W : [−

c

2
,
c

2
]
A03

B
F : 1.2:6 ! : 0.3<

A : 0.1< 1 : 0.0245

g1 : [1.994, 10.095]# g2 : [1.994, 10.095]#

g3 : [1.994, 10.095]# g4 : [1.994, 10.095]#
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1.2 Implementation Details

All of the experiments were run on a Parallels Desktop virtual

machine running Ubuntu ARM64 on a 2020 M1 Macbook Air. The

virtual machine was equipped with 4 processing cores and 4 GB

RAM.

For the planning experiments, the S3F-RRT*, NLP-RRT*, and RRT

algorithms were implemented in C++ by the authors. The Open

Motion Planning Library (OMPL) [4] was used for the implementa-

tion of the SST algorithm. For training dataset generation and in

NLP-RRT*, the PSOPT [1] optimal control library was used as the

NLP solver.

The policy c in S3F was represented as a feedforward neural

network. A two hidden layer 256 neuron network with tanh acti-

vations was used for both the Dubin’s car with acceleration and

tractor trailer problem spaces. A three hidden layer 256 neuron net-

work with the same activations was used for the quadrotor problem

space.

1.3 Probabilistic Completeness Proof

Here we present a proof of probabilistic completeness (PC) of the

S3F-RRT* algorithm. S3F-RRT* is a modification of the original

RRT* algorithm [2] designed to make use of a learned steering

function. The proof largely follows the structure of the proof of

probabilistic completeness of geometric RRT [3], though significant

modifications have been made to take into account the presence of

kinodynamic constraints and the use of a learned steering function.

Let 2∗ (G0, G1 ) denote the cost of the optimal trajectory from G0
to G1 , or equivalently the kinodynamic distance from G0 to G1 . We

assume that 2∗ obeys the triangle inequality, that is, 2∗ (G0, G1 ) ≤

2∗ (G0, G) + 2
∗ (G, G1 ) for all G ∈ - . Let (̃ be a learned steering func-

tion. We assume that with nonzero probability ? , (̃ (G0, G1 ) yields

a state function Γ̃ that satisfies 2∗ (Γ̃(C), G1 ) ≤ 2∗ (G0, G1 ) for all

C ∈ [0, C5 ]. This assumption in essence states that every state along

the path produced by (̃ is kinodynamically closer to the goal state

than the start state is. For a steering function trained to be optimal,

this is a reasonable assumption.

We will use �A (G) to denote the subset of the state space -

defined by {G ′ |2∗ (G ′, G) ≤ A }. For simplicity, we assume that there

exist Xgoal > 0, Ggoal ∈ -goal such that �Xgoal (Ggoal) ⊆ -goal. We

denote this simplified goal region �Xgoal (Ggoal) as -
∗
goal

. The goal of

the motion planning problem is to find a kinodynamically feasible

path c : [0, Cc ] → -free such that c (0) = Ginit and c (Cc ) ∈ - ∗
goal

.

The clearance of c is the maximal Xclear such that �Xclear (c (C)) ∈

-free for all C ∈ [0, Cc ].

We assume for this proof that there exists a valid trajectory

c : [0, Cc ] → -free with clearance Xclear > 0. Without loss of



generality, assume that c (Cc ) = Ggoal, i.e., the trajectory terminates

at the center of the goal region. Let ! be the total cost of c , and

let E = <8=(Xclear, Xgoal). Let < =
3!
E . Define a sequence of < +

1 points G0 = Ginit, ..., G< = Ggoal along c such that the cost of

traversal from one point to the next is E
3 . Therefore, 2

∗ (G8 , G8+1) ≤
E
3

for every 0 ≤ 8 < <. We will now prove that as the number of

iterations increases, the S3F-RRT* algorithm will generate a path

passing through the vicinity of these< + 1 points with probability

asymptotically approaching one.

Lemma 1.1. Suppose that S3F-RRT* has reached � E

3
(G8 ), that is, its

tree contains a vertex G ′8 such that G ′8 ∈ � E

3
(G8 ). If Grand ∈ � E

3
(G8+1)

and 2∗ (G8 , Grand) ≤
E
3 (equivalently G8 ∈ � E

3
(Grand)), then the path

from the nearest neighbor Gnear to Grand lies entirely in -free with

probability ? .

Proof. Because Gnear is the nearest neighbor, it is true that

2∗ (Gnear, Grand) ≤ 2∗ (G ′8 , Grand). Invoking the triangle inequality,

2∗ (Gnear, G8+1) ≤ 2∗ (Gnear, Grand) + 2
∗ (Grand, G8+1)

≤ 2∗ (G ′8 , Grand) + 2
∗ (Grand, G8+1)

≤ 2∗ (G ′8 , G8 ) + 2
∗ (G8 , Grand) + 2

∗ (Grand, G8+1)

≤ 3
E

3
= E

ThusGnear ∈ �E (G8+1), meaningGnear ∈ -free. Assume that 2∗ (Γ̃(C), G1 ) ≤

2∗ (G0, G1 ). The probability that this occurs is ? . Since each state

along Γ̃ is closer or as close to Grand as Gnear, the same logic that was

applied above to Gnear can be applied to each respective state. Thus,

with probability ? , the path from Gnear to Grand will lie entirely in

Gfree. �

Theorem 1.2. The probability that S3F-RRT* fails to reach - ∗
goal

from Ginit after : iterations is at most 04−1: , for some constants

0, 1 ∈ R>0.

Proof. Assume that � E

3
(G8 ) already contains an S3F-RRT* ver-

tex. Let A8 be the probability that in the next iteration a S3F-RRT*

vertex will be added to � E

3
(G8+1). Recall that due to lemma 1.1,

Grand ∈ � E

3
(G8+1) and 2

∗ (G8 , Grand) ≤
E
3 implies that the path from

Gnear to Grand will lie entirely in -free with probability ? . In the

S3F-RRT* algorithm, after Grand is sampled, all states in -near are

considered as possible parent states. By the definition of-near, Gnear
is a part of this candidate set. Thus, it is guaranteed that Gnew will be

added as a S3F-RRT* vertex with probability greater than or equal

to ? . Assume that the probability that both Grand ∈ � E

3
(G8+1) and

2∗ (G8 , Grand) ≤
E
3 isW8 > 0. It is safe to assume that this probability is

nonzero because any state along the path produced by (∗ (G8 , G8+1)

satisfies these constraints, and so does any state along the por-

tion of c from G8 to G8+1. Finally, let the conditional probability that

Gnew ∈ � E

3
(G8+1) given that Grand ∈ � E

3
(G8+1) and 2

∗ (G8 , Grand) ≤
E
3

be ^8 > 0. It is again safe to assume that this probability is nonzero

because Γ̃ closely approximates Γ∗, meaning Gnew will be close to

Grand. Taking into account these probabilities, we have A8 = ?W8^8 .

Note that this expression is independent of : .

Let A be the minimum of the probabilities {A8 |∀8 (0 ≤ 8 < <)}. In

order for the S3F-RRT* algorithm to reach - ∗
goal

from Ginit, a S3F-

RRT* vertex must be added to � E

3
(G8+1)< times for 0 ≤ 8 < <. This

stochastic process can be defined as a Markov chain. Alternatively,

this process can be described as : Bernoulli trials with success

probability A . The planning problem can be solved after< successful

outcomes. Note that the success probability A is an underestimate of

the true success probability for each trial, and that it is possible that

the process ends after less than< successful outcomes. Defining

the problem in such a manner allows us to obtain an upper bound

on the probability of failure.

Next, we bound the probabilty of faiure, that is, the probability

that the process does not reach state< after : steps. Let -: denote

the number of successes in : trials, then

%A [-: < <] =

<−1
∑

8=0

(

:

8

)

A 8 (1 − A ):−8

≤

<−1
∑

8=0

(

:

< − 1

)

A 8 (1 − A ):−8

≤

(

:

< − 1

)<−1
∑

8=0

(1 − A ):

≤

(

:

< − 1

)<−1
∑

8=0

(4−g ):

=

(

:

< − 1

)

<4−A:

=

∏:
8=:−<

8

(: − 1)!
<4−A:

≤
<

(< − 1)!
:<4−A:

where the second statement is justified since < << : , the third

statement uses the fact that A <
1
2 , and the fourth statement relies

on (1 − A ) ≤ 4−g . As A,< are fixed and independent of : , the

expression 1
(<−1)!

:<<4−A: decays to zero exponentially with : .

Therefore, S3F-RRT* is probabilistically complete. �
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