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Neural Cascade Architecture for Multi-Channel
Acoustic Echo Suppression
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Abstract—Traditional acoustic echo cancellation (AEC) works
by identifying an acoustic impulse response using adaptive algo-
rithms. This paper proposes a neural cascade architecture for joint
acoustic echo and noise suppression to address both single-channel
and multi-channel AEC (MCAEC) problems. The proposed
cascade architecture consists of two modules. A convolutional
recurrent network (CRN) is employed in the first module for
complex spectral mapping. Its output is fed as an additional input
to the second module, where a long short-term memory network
(LSTM) is utilized for magnitude mask estimation. The entire
architecture is trained in an end-to-end manner with the two
modules optimized jointly using a single loss function. The final
output is generated using the enhanced phase and magnitude
obtained from the first and the second module, respectively. The
cascade architecture enables the proposed method to obtain robust
magnitude estimation as well as phase enhancement. The proposed
method is investigated under different AEC setups. We find that the
deep learning based approach avoids the no-uniqueness problem
in traditional MCAEC. For MCAEC setups with multiple micro-
phones, combining deep MCAEC with supervised beamforming
further improves the system performance. Evaluation results
show that the proposed approach effectively suppresses acoustic
echo and noise while preserving speech quality, and consistently
outperforms related methods under different setups.

Index Terms—Acoustic echo cancellation, deep learning, neural
cascade architecture, multi-channel AEC, nonlinear distortions.

I. INTRODUCTION

ACOUSTIC echo arises when a loudspeaker and a micro-
phone are coupled in a communication system such that

the microphone picks up the desired near-end speech plus the
loudspeaker signal. If not properly handled, a user at the far end
of the system hears his or her own voice in the loudspeaker
signal delayed by the round trip time of the system (i.e. an
echo), mixed with the target speech signal from the near end.
The acoustic echo is one of the most annoying problems in
speech telecommunication such as teleconferencing, hands-free
telephony, and mobile communication.
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Conventionally, acoustic echo is removed by adaptively iden-
tifying an acoustic impulse response between the loudspeaker
and the microphone using a finite impulse response (FIR) fil-
ter [1]. Many algorithms, such as normalized least mean square
(NLMS), affine projection, and recursive least squares algo-
rithms, have been proposed [1]–[4]. The performance of these
algorithms depends on how well their parameters control the
speed of convergence while keeping misalignment in check.
Especially when near-end and far-end speakers both talk (i.e.
double-talk), convergence rates have to compromise between
the two. Moreover, nonlinear distortions may be introduced to
the recordings due to the poor quality of electronic devices such
as amplifiers and loudspeakers [5]. Traditional AEC algorithms
are linear and fundamentally cannot handle nonlinear distor-
tions [5], [6].

To enhance user experience, modern hands-free communica-
tion devices are commonly equipped with multiple loudspeak-
ers and multiple microphones. The availability of additional
devices makes it necessary to design multi-channel acoustic
echo cancellation (MCAEC), which presents additional chal-
lenges and opportunities compared to single-channel AEC. Al-
though conceptually similar, MCAEC is fundamentally different
from single-channel AEC and a straightforward extension of
single-channel AEC does not result in satisfactory performance.
First, the number of echo paths to be modeled is increased
and the convergence of the individual filter could depend on
the performance of other filters. Therefore, it is crucial to use
well-designed step-size control for proper convergence of all the
filters. Second is the well-known non-uniqueness problem [3],
[7], which arises because multi-channel far-end signals are
typically highly correlated. As a result, the echo paths cannot
be determined uniquely, impacting the convergence of adaptive
techniques [7]. Many methods have been proposed to circumvent
this problem [3], [8], [9], among which coherence reduction
methods are most commonly used. Such methods, however,
inevitably degrade the perceptual audio quality of the signals
reproduced by loudspeakers, and a compromise must be made
between convergence and audio quality [10].

In MCAEC with multiple microphones, microphone array
speech enhancement techniques such as beamforming (BF) can
be combined with AEC for efficient reduction of noise and
acoustic echoes [11]. The most straightforward combination
applies them in sequence, i.e., applying single-channel AEC
to each microphone signal before beamforming or applying
single-channel AEC to the output of a beamformer [11]. In
general, the former outperforms the latter since the beamformer
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in the latter introduces time variations to the echo path and
affects AEC convergence [12], [13]. Other algorithms employ
relative echo transfer functions [14], [15] or joint optimization
strategies [16], [17] to improve the MCAEC performance. How-
ever, these strategies tend to introduce convergence issues and
effective combinations of AEC and beamforming are yet to be
found [10].

Deep learning has been utilized for addressing AEC problems
due to its capacity in modeling complex nonlinear relations.
Birkett and Goubran [18] use a cascaded time-delay neural
network to model the nonlinearity of the acoustic channel.
Lee et al. [19] use a neural network as a residual echo sup-
pressor to remove the nonlinear echo components. Zhang and
Wang [20] formulate AEC as supervised speech separation
and suppress echo by extracting the near-end speech from a
microphone recording. Carbajal et al. [21] utilize a multi-input
neural network to estimate phase-sensitive masks. Early studies
focus on magnitude enhancement and use magnitude masks
as the training targets [19]–[22]. Recently, complex-domain
estimation is employed for phase enhancement to improve the
quality of estimated near-end speech. A convolutional recurrent
neural network (CRN) is introduced to perform complex spec-
tral mapping for echo suppression [23]. AEC methods using
complex-valued neural networks for phase-aware enhancement
are studied in [24], [25]. AEC Challenges [26], [27] show that
various deep learning architectures can be utilized to address
AEC problems. There is a trend of combining traditional and
deep AEC methods as multi-stage systems where a traditional
algorithm is utilized in the first stage for initial echo removal
and deep learning is used in the second stage for residual
echo suppression [24], [28], [29]. Moreover, multiple neural
networks have been combined to perform joint echo and noise
suppression [30]–[32].

Motivated by a recently introduced neural cascade archi-
tecture for speech enhancement [33], we propose a neural
cascade architecture (NCA) for joint acoustic echo and noise
suppression. The proposed cascade architecture consists of two
modules where a CRN is used in the first module for complex
spectral mapping. The estimated magnitude is then used as
an additional input in the second module for magnitude mask
estimation, which allows for progressive enhancement of the
target speech. Different from previous multi-stage studies that
employ sequential training steps with separate loss functions,
the proposed cascade architecture is trained in an end-to-end
manner using a single loss function. Training the two modules
simultaneously using the single loss function allows for the
correction of estimation errors of the first module. Finally, the
estimated magnitude from the second module, together with
the enhanced phase from the first module, is used to generate
time-domain near-end speech. Hence the cascade architecture
leverages the advantages of the two modules and is expected to
obtain robust magnitude as well as phase estimation.

We further extend the neural cascade architecture to AEC
with multi-loudspeakers and multi-microphones. Instead of es-
timating acoustic echo paths, our deep MCAEC works by di-
rectly estimating near-end speech, which intrinsically avoids
the non-uniqueness problem in traditional MCAEC algorithms.

Fig. 1. Typical single-channel acoustic echo cancellation system.

Although there are multiple acoustic paths in MCAEC setups,
the proposed approach naturally addresses the problem through
model training using a deep learning model, rather than training
a separate AEC model for each echo path. In addition, our
deep MCAEC can be combined with supervised beamforming
with a microphone array to further improve echo suppression
performance.

Compared to the preliminary version [34], this paper intro-
duces a different network structure, conducts more extensive
evaluations, and investigates the performance of the proposed
method under different AEC setups. Comparisons with other
deep learning based methods are provided to show the effective-
ness of the proposed method.

The remainder of this paper is organized as follows. Section II
describes the problem and introduces magnitude and complex
domain estimation. Section III presents the proposed neural
cascade architecture. Its multi-channel version is introduced
in Section IV. Evaluation metrics and experiment settings are
given in Section V. In Section VI, we present evaluation and
comparison results. Section VII concludes this paper.

II. PROBLEM FORMULATION

A. Signal Model

1) Single Channel AEC: Fig. 1 illustrates a typical single-
channel AEC system. The far-end signal x(n) is played through
the loudspeaker in the near end and reaches the microphone via
the acoustic echo path h(n). The microphone signal y(n) is a
mixture of echo d(n), near-end speech s(n), and background
noise v(n):

y(n) = d(n) + s(n) + v(n) (1)

where n indexes a time sample and the echo signal is gener-
ated by convolving the loudspeaker signal (or the transformed
version of x(n)) with a room impulse response (RIR) between
loudspeaker and microphone, h(n).

Traditional AEC algorithms achieve echo removal by adap-
tively estimating the acoustic echo path given y(n) and x(n)

as inputs. Then the estimated echo signal d̂(n) is subtracted
from the microphone signal to get the system output. Residual
echo suppression and post-filtering are usually used to further
suppress residual echo and noise.

2) Multi-Channel AEC: The demand for MCAEC has in-
creased in recent years with the rise of hands-free devices
and teleconferencing systems. To provide realistic audio ef-
fects, multiple loudspeakers are used, to achieve enhanced
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sound quality, microphone arrays are used. This transforms
a single-channel AEC structure to a more complex MCAEC
structure. For a general MCAEC setup with L loudspeakers
and M microphones, the signal picked up by microphone m is
represented as:

ym(n) =

L∑
l=1

dlm(n) + sm(n) + vm(n) (2)

where m = 1, 2, . . . ,M , and dlm(n) denotes the echo signal
from loudspeaker l to microphone m at the near end.

There are two major differences between MCAEC and single-
channel AEC. First, the system topology is different and the
number of echo paths increases from one to ML. Ideally, there
should be an adaptive filter for each echo path. Second, when
exposed to highly correlated input channels, the convergence
of adaptive techniques is affected and the echo paths cannot be
determined uniquely (non-uniqueness problem).

B. Deep AEC

The ultimate goal of AEC is to transmit only near-end speech
to the far end. From the speech separation point of view, AEC can
be naturally considered as a supervised speech separation prob-
lem where near-end speech is the target source to be separated
from the microphone recording. Therefore, instead of estimating
the acoustic echo path, a deep learning based approach works
by directly estimating the near-end speech from the microphone
signal with the accessible far-end speech as an additional input.
Many deep AEC methods have been proposed in the literature
and these methods can be generally categorized into two groups:
magnitude mask estimation and complex-domain estimation.
Magnitude mask estimation focuses on the magnitude spectro-
gram of the target signal and estimates masks, such as the ideal
ratio mask (IRM) and phase sensitive mask (PSM), in the time-
frequency (T-F) domain. The other group uses complex-domain
estimation to achieve both magnitude and phase enhancement.

Echo and noise suppression performance depends on the
accuracy of estimated magnitudes while the quality of separated
near-end speech also depends on phase information. Magnitude
mask estimation based methods utilize ideal ratio masks as
the training targets. The value range of these masks is usually
bounded to [0, 1], which facilitates mask estimation and leads
to better echo and noise suppression. Complex-domain methods
jointly estimate magnitude and phase, resulting in improvement
in speech quality. However, the value range of the real and imagi-
nary targets used in complex-domain estimation methods, either
complex ratio mask [35] or complex spectral mapping [36], is
unbounded. Although techniques have been proposed to bound
the output range [37], it is still harder to achieve a robust
magnitude estimate compared to magnitude mask estimation
methods.

III. NEURAL CASCADE ARCHITECTURE

We start by introducing the proposed approach for single-
channel AEC. The proposed neural cascade architecture consists
of a complex module and a magnitude mask module, as shown in

Fig. 2. The main idea of this design is to leverage the advantages
of complex-domain estimation and magnitude mask estimation
so as to obtain phase enhancement as well as robust magnitude
estimation. We have also explored other cascading options such
as using magnitude mask estimation before complex-domain
estimation. The architecture presented in this paper achieves the
best overall performance.

A. Complex Module

The complex module employs a CRN for complex spec-
tral mapping. The CRN takes the real and imaginary spectro-
grams of microphone and far-end signals [Y(r)(t, f), Y(i)(t, f),
X(r)(t, f), X(i)(t, f)] as inputs to predict the real and imaginary

spectrograms of near-end speech [Ŝ ′
(r)(t, f), Ŝ

′
(i)(t, f)], where

Y (t, f), X(t, f), and Ŝ′(t, f) are the short-time Fourier trans-
form (STFT) of microphone signal, far-end signal, and estimated
near-end speech obtained from the first module within the T-F
unit at time t and frequency f , respectively, and sbuscripts (r)
and (i) denote the real and imaginary parts of the corresponding
signals. The enhanced magnitude and phase are then calculated,
respectively, as:

|Ŝ′(t, f)| =
√
Ŝ ′2
(r)(t, f) + Ŝ ′2

(i)(t, f) (3)

θŜ′(t, f) = arctan
(
Ŝ ′
(i)(t, f)/Ŝ

′
(r)(t, f)

)
(4)

The CRN has an encoder-decoder architecture with a two-
layer grouped LSTM in the bottleneck to model temporal depen-
dencies. The encoder and decoder comprise five convolutional
layers and five deconvolutional layers, respectively, as illustrated
in Fig. 2. A detailed description of the CRN architecture is
provided in [36] except that our CRN has four input channels.

B. Magnitude Mask Module

The estimated |Ŝ ′(t, f)|, together with |Y (t, f)| and |X(t, f)|
are fed to the magnitude mask module to predict a T-F mask
M(t, f) using an LSTM network. The estimated magnitude
spectrogram is obtained as:

|Ŝ(t, f)| = M(t, f)� |Y (t, f)| (5)

where � denotes element-wise multiplication.
The final output, near-end speech ŝ(n), is generated by feed-

ing the estimated magnitude |Ŝ(t, f)| and the enhanced phase
from the complex module θŜ′(t, f) to inverse short time Fourier
transform (iSTFT):

ŝ(n) = iSTFT
(
|Ŝ(t, f)|, θŜ′(t, f)

)
(6)

The LSTM has four hidden layers with 300 units in each layer.
The output is fully connected. In our implementation, we bound
the value range of the mask output between [0, 1], and use the
sigmoid function as the activation function in the output layer.

C. Loss Functions and Model Training

The training objective of the cascade architecture consists of
two parts, corresponding to the complex and magnitude mask
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Fig. 2. Diagram of the proposed neural cascade architecture for joint echo and noise suppression. The first module employs a CRN for complex spectral mapping,
the output is concatenated with original inputs and fed to an LSTM to predict T-F masks. Subscripts (r) and (i) denote real and imaginary spectrograms of signals,
respectively, θŜ′ denotes the phase of Ŝ′, and | · | denotes magnitude.

modules. Following [38], we define the first loss Lcomplex as the
real, imaginary, and magnitude differences betweenS ′(t, f) and
S(t, f):

Lcomplex =
1

TF

∑
t,f

(|S ′
(r)(t, f)− S(r)(t, f)|2

+ |S ′
(i)(t, f)− S(i)(t, f)|2

+ ||S ′(t, f)| − |S(t, f)||2) (7)

where T and F denote the number of time frames and frequency
bins, respectively. The second loss corresponding to the magni-
tude mask module is given below:

Lmag-mask =
1

TF

∑
t,f

(
|Ŝ(t, f)− |S(t, f)|

)2

(8)

Rather than undergoing multiple sequential training stages
with separate loss functions, we propose to combine Lcomplex

and Lmag-mask and train the cascade architecture only once with
the following single loss function:

Lcombined = λLcomplex + (1− λ)Lmag-mask (9)

where λ is a coefficient for combining the two losses, and set to
2/3 based on the performance on validation data.

IV. NEURAL CASCADE ARCHITECTURE FOR MCAEC

This section expands the proposed neural cascade architecture
to address MCAEC problems. Broadly speaking, we investigate
two different MCAEC setups, stereophonic AEC and AEC
setup with a microphone array. The configurations of these two
MCAEC setups are provided in Fig. 3.

A. Stereophonic AEC

As shown in Fig. 3(a), a stereophonic AEC (SAEC) system
is composed of two microphones and two loudspeakers, respec-
tively. The far-end signals x1(n) and x2(n) are generated by
convolving a common source with two RIRs, g1(n) and g2(n),
and then transmitted to two loudspeakers in the near end with its

Fig. 3. Two multi-channel acoustic echo cancellation setups: (a) stereophonic
AEC, and (b) AEC setup with multiple microphones.

own microphones. The signal picked up by microphone m at the
near end consists of two echo signals d1m(n), d2m(n), near-end
speech sm(n), and background noise vm(n):

ym(n) =
2∑

l=1

dlm(n) + sm(n) + vm(n), m = 1, 2 (10)

Instead of estimating all the acoustic echo paths, NCA-based
SAEC directly estimates the near-end speech. Therefore, the
proposed SAEC method avoids the non-uniqueness problem and
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there is no need to decorrelate the stereophonic signals of d1m

and d2m.
Two training strategies are proposed to train the SAEC mod-

els. The first strategy trains a single-input and single-output
(SISO) network and estimates each target sm(n) individually
given ym(n), x1(n) and x2(n) as inputs. The training signals
used in this strategy are sampled from the two microphones
with m randomly selected from {1, 2}. Through this, the model
is exposed to all the microphones during training and a model
trained this way can be used to achieve echo suppression for both
microphones in the SAEC system. The second strategy trains a
multi-input and multi-output (MIMO) network that predicts the
target speech at all microphones jointly. Specifically, it utilizes
the two microphone signals and two far-end signals as inputs to
simultaneously estimate the near-end speech signals received
by the microphones. SAEC models trained using these two
strategies are found to produce similar results while the first
strategy requires smaller input and output dimensions, which
results in less training time, especially under MCAEC setup
with multiple microphones.

B. MCAEC With Multiple Microphones

Considering a multi-microphone AEC (MMAEC) setup with
M microphones and one loudspeaker, as shown in Fig. 3(b). The
signal received at microphone m can be represented as:

ym(n) = dm(n) + sm(n) + vm(n), m = 1, 2, · · ·M (11)

where dm(n) denotes the echo.
Different MMAEC methods have been discussed in [11]–

[13]. In this paper, we apply AEC separately to each microphone
signal before beamforming [11]. The SISO training strategy is
employed for model training. During training, we use ym(n)
and x(n) as inputs and set the corresponding near-end speech
sm(n) as the training target.

Once the model is trained, the estimated speech is used for
complex spectral mapping (CSM) based minimum variance
distortion-less response (MVDR) beamforming [38]. Designat-
ing the first microphone as the reference microphone, the MVDR
beamformer is given as:

ŵ(t, f) =
Φ̂−1

N (t,f)ĉ(t,f)

ĉ(t,f)H Φ̂−1
N (t,f)ĉ(t,f)

(12)

where superscript H denotes conjugate transpose, Φ̂N (t, f) is
the estimated covariance matrix of interference (acoustic echo
and background noise), ĉ(t, f) is the estimated steering vector,
which is estimated as the principal eigenvector of the estimated
speech covariance matrix Φ̂S(t, f) [39]. The estimated covari-
ance matrices of speech and interference are obtained as follows

Φ̂S(t, f) =
1

t

t∑
t′=1

Ŝ(t,′ f)Ŝ
H
(t,′ f) (13)

Φ̂N (t, f) =
1

t

t∑
t′=1

N̂(t,′ f)N̂
H
(t,′ f) (14)

Fig. 4. Deep learning for multi-microphone AEC.

where Ŝ(t,′ f) is the STFT representation of all the CSM esti-
mated speech signals at time t′ and frequency f , and N̂(t,′ f) =
Y (t,′ f)− Ŝ(t,′ f) is the estimated interference [38].

The MVDR beamformer is applied to array signals and the
enhanced results are calculated as:

ŜBF (t, f) = ŵH(t, f)Ŝ(t, f) (15)

The beamformer performs spatial filtering to maintain signals
from the desired direction while suppressing interferences from
other directions. The overall structure of the deep MMAEC is
shown in Fig. 4. Note that the covariance matrices and beam-
former are updated each time frame using only past information,
hence the MVDR is a casual beamformer. To ensure that the
calculated covariance matrices are nonsingular, the first 3 frames
of each signal are grouped together in our implementation to
calculate the beamformers for these frames. Compared to the
non-causal version in a previous study [34], the causal MVDR
beamformer achieves similar PESQ values and slightly lower
ERLE values.

Besides SAEC and MMAEC, the proposed method can han-
dle the most general situation with arbitrary numbers of mi-
crophones and loudspeakers. For such a setup, via SISO or
MIMO training we can estimate the near-end speech at each
microphone, and the estimated signals can be further enhanced
using CSM-based MVDR beamforming before feeding to the
corresponding loudspeakers at the far end.

V. EXPERIMENTAL SETUP

A. Experiment Setup

The TIMIT dataset [40] is used to perform experiments in
AEC situations with double-talk, background noise, and non-
linear distortions. TIMIT contains 6300 sentences from 630
speakers. From these speakers, we randomly choose 100 pairs
of speakers (40 pairs of male-female, 30 male-male, and 30
female-female) as near-end and far-end speakers. Out of the
ten utterances of each speaker, seven are randomly chosen to
create training mixtures, and the remaining three to create test
mixtures. To be specific, the three chosen utterances from a
far-end speaker are concatenated to generate a far-end signal. A
randomly chosen utterance from a near-end speaker is extended
to the same length as that of the far-end signal by zero padding
at the beginning and the end, with the number of leading zeros
randomly chosen between zero and the maximum number that
needs no zero padding at the end. By doing this, the starting
position of near-end speech is randomized in each mixture.

RIRs are simulated using the image method [41]. To inves-
tigate RIR generalization, we simulate 20 rooms of different
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sizes a× b× c m3 for training, where a ∈ {4, 6, 8, 10}, b ∈
{5, 7, 9, 11, 13}, and c = 3. For single-channel AEC, we gen-
erate ten pairs of random positions in each room with a fixed
microphone-loudspeaker distance (1 m) and a fixed micro-
phone to near-end speaker distance (0.5 m) to simulate RIRs
for loudspeaker and near-end speaker. For stereophonic AEC
setup, the two microphones and the two loudspeakers are po-
sitioned at (a/2, b/2 + 0.05, c/2) m, (a/2, b/2− 0.05, c/2) m,
(a/2, b/2 + 0.6, c/2 + 0.5) m, and (a/2, b/2− 0.6, c/2 + 0.5)
m, respectively. The near-end speaker is placed at 20 random
positions in each room with 1 m apart from the center of
the microphones. The MMAEC setup consists of a uniform
linear array with four microphones and one loudspeaker. The
center of the microphone array is positioned at the center of
the room with a 4 cm inter-microphone distance. Twenty pairs
of positions are simulated randomly for the loudspeaker and
the near-end speaker in each room, and the distance from the
loudspeaker and the near-end speaker to the center of the array
are set to 0.6 m and 1 m, respectively. The reverberation time
(T60) is randomly selected from {0.2, 0.3, 0.4, 0.5, 0.6} s. For
testing, we simulate three untrained rooms of size 3× 4× 3 m,
5× 6× 3 m, 11× 14× 3 m, set T60 to 0.35 s, and generate
ten pairs of RIRs by placing the near-end speaker at 10 random
positions in each room. The corresponding RIRs are denoted as
RIR1, RIR2, and RIR3, respectively.

We consider different nonlinear distortions in our experi-
ments [19], [23], [42], [43]. In [19] the nonlinear distortions
introduced by a power amplifier and a loudspeaker are simulated
in the following steps. First, hard clipping [44] is applied to each
far-end signal to simulate the characteristic of a power amplifier:

xhard(n) =

⎧⎨
⎩
−xmax x(n) < −xmax
x(n) |x(n)| ≤ xmax
xmax x(n) > xmax

(16)

where xmax is set to 0.8 as the maximum amplitude of |x(n)|.
Then a sigmoidal nonlinearity [45] is applied to the clipped
signal to simulate an asymmetric loudspeaker distortion:

xNL(n) = γ (2/ (1 + exp (−a · b(n)))− 1) (17)

where b(n) = 1.5× xhard(n)− 0.3× x2
hard(n). The gain γ is

set to 4, and the slope a is set to 4 if b(n) > 0 and 0.5 otherwise.
These parameter values are taken from [45].

Another commonly used nonlinear distortion for loudspeaker
is the saturation type simulated using the scaled error function
(SEF) [42]:

fSEF(x) =

∫ x

0

e
− z2

2η2 dz (18)

where x is the input to the loudspeaker, and η2 represents the
strength of nonlinearity. The SEF becomes linear as η2 tends
to infinity and becomes a hard limiter as it tends to zero. Four
loudspeaker functions are used during the training stage: η2 =
0.1 (severe nonlinearity), η2 = 1 (moderate nonlinearity), η2 =
10 (soft nonlinearity), and η2 = ∞ (linear).

We use 10000 noises from a sound effect library (http://
www.sound-ideas.com) to create training mixtures (see [46]) for
single-channel AEC setup. Operational room noise (oproom),

speech shaped noise (SSN) from NOISEX-92 dataset [47], bab-
ble noise from an Auditec CD (http://www.auditec.com), and
white noise are used for creating test mixtures. For multi-channel
AEC setup, the babble noise from the NOISEX-92 dataset is
used as the background noise and the algorithm proposed in [48]
is employed to make the noise diffuse. The diffuse babble noise
is then split into two parts, the first 80% of which is used for
training and the remaining 20% is used for testing.

We create 20000 training and 300 test mixtures. Each training
mixture is created by first passing a far-end signal through the
nonlinear model to generate a loudspeaker signal. The loud-
speaker signal is then convolved with a randomly chosen RIR
from the training RIRs for the loudspeaker to generate an echo
signal. A randomly chosen near-end utterance is convolved
with an RIR for the near-end speaker and then mixed with
the echo at a signal-to-echo ratio (SER) randomly chosen from
{−6,−3, 0, 3, 6} dB. Finally, a noise of the same length is added
to the mixture at a signal-to-noise ratio (SNR) randomly chosen
from {8, 10, 12, 14} dB. The SER and SNR, which are evaluated
during double-talk periods, are defined as:

SER = 10 log10

[∑
n

s2(n)/
∑
n

d2(n)

]
(19)

SNR = 10 log10

[∑
n

s2(n)/
∑
n

v2(n)

]
(20)

Test mixtures are created similarly but using different utterances,
noises, RIRs, SERs and SNRs.

B. Comparison Methods

We compare with four deep learning methods for single-
channel AEC setup. The LSTM baseline is a causal version of
the method proposed in [20]. It achieves echo suppression by
estimating a magnitude mask and using the phase of microphone
signal. The CRN method [23] achieves echo suppression through
complex spectral mapping and estimates the real and imaginary
spectrograms of near-end speech jointly. The multi-input resid-
ual echo suppression (MI-RES) method is a two-stage system
that combines an adaptive algorithm with a neural network [21].
The neural network in MI-RES is used to estimate a phase
sensitive mask of near-end speech with the estimated echo as
additional input. The LFM-NFM [28] is a cascaded deep AEC
method that consists of a linear-filtering model (LFM) and a
nonlinear-filtering model (NLM), where the LFM removes the
linear part of the echo and the NLM handles the nonlinear
residual echo.

For stereophonic AEC setup, we compare with a stereo-
phonic joint-optimized normalized least mean square algorithm
(SJONLMS) and two deep learning methods. SJONLMS is a
stereophonic version of joint-optimized normalized least mean
square algorithm (JONLMS) [49] equipped with a coherence
reduction technique described in [50]. The global step size of
JONLMS is adjusted iteratively based on joint optimization with
respect to system misalignment. Therefore, it is robust to double-
talk and achieves faster convergence and lower misalignment
compared to the NLMS algorithms that use a constant step
size. Post-filtering (PF) [51] is employed to further suppress
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TABLE I
AEC RESULTS IN THE PRESENCE OF DOUBLE-TALK, WHITE NOISE, NONLINEAR DISTORTIONS AND UNTRAINED RIRS (RIR1) WITH 10 DB SNR

residual noise and echo (SJONLMS-PF). The parameters of
SJONLMS and PF are given in [49]–[51]. CRN-complex is a
CSM based MCAEC method [34]. CRN-mask focuses on SAEC
and employs CRN with gated recurrent unit for magnitude mask
estimation [52].

For the MCAEC setup with multiple microphones, we em-
ploy single-channel JONLMS [49] for each microphone as a
baseline and then combine the outputs with the ideal MVDR
beamformer (JONLMS-IBF). The ideal MVDR beamformer
(IBF) is calculated by inserting the true speech and interfer-
ence signals (S(t, f) and N(t, f)) into (12), (13), and (14).
The CRN-complex based MCAEC method proposed in [34] is
employed as another comparison method.

Signals are sampled at 16 kHz, and windowed into 20-ms
frames with 10-ms frame shift. Then a 320-point STFT is applied
to each frame to produce a spectrogram. All the deep networks
are trained for 30 epochs with a learning rate of 0.001. We
apply utterance level normalization to the input mixtures in our
experiments. The normalization is implemented by dividing the
signal by the root mean square power of the microphone signal.

C. Evaluation Metrics

AEC performance is evaluated in terms of ERLE [4] for
single-talk periods and perceptual evaluation of speech quality
(PESQ) [53] for double-talk periods. Evaluation results are
presented as mean ± standard deviation (std).

ERLE is the most commonly used metric for AEC and it is
defined as:

ERLE = 10 log10

[∑
n

y2(n)/
∑
n

ŝ2(n)

]
(21)

This variant of ERLE is widely used for evaluating AEC systems
in the presence of background noise [20], [28], [29], [54]. It
considers both echo and noise and is calculated as the ratio of
the input energy to the output energy. PESQ is a widely used
quality metric for speech enhancement, and its values range from
−0.5 to 4.5. For both metrics, a higher score indicates better
performance.

VI. EXPERIMENTAL RESULTS

A. Single-Channel AEC

1) Evaluation and Comparison Results: We first evaluate
the proposed method under the single-channel AEC setup and
compare it with other deep learning methods. The evaluation

TABLE II
AEC RESULTS USING DIFFERENT CASCADING OPTIONS UNDER 3.5 DB SER,

10 DB SNR, AND BABBLE NOISE

TABLE III
AEC RESULTS USING THE SAME NETWORK STRUCTURE BUT DIFFERENT

TRAINING STRATEGIES UNDER RIR1, 3.5 DB SER, 10 DB

SNR AND WHITE NOISE

TABLE IV
AEC RESULTS UNDER UNTRAINED SPEAKERS, RIRS, AND ECHO PATH

CHANGES WITH 3.5 DB SER,10 DB SNR,
AND WHITE NOISE

TABLE V
SAEC RESULTS FOR PROPOSED METHOD USING DIFFERENT TRAINING

STRATEGIES UNDER 3.5 DB SER, 10 DB SNR, RIR2,
AND LINEAR DISTORTIONS

results in situations with double-talk, untrained background
noise, untrained RIRs, and nonlinear distortions are presented in
Table I. These methods can all suppress echo and the proposed
method consistently outperforms baseline methods in terms of
ERLE and PESQ. The proposed method, which can be regarded
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TABLE VI
SAEC RESULTS OF PROPOSED AND BASELINE METHODS IN THE PRESENCE OF DOUBLE-TALK, BACKGROUND NOISE WITH 3.5 DB SER,

10 DB SNR, AND LINEAR DISTORTIONS

TABLE VII
SAEC RESULTS IN THE PRESENCE OF DOUBLE-TALK, BACKGROUND NOISE

WITH RIR2, 10 DB SNR, 3.5 DB SER,
AND NONLINEAR DISTORTIONS

Fig. 5. ERLE and PESQ values in the presence of different untrained noises,
with SER = 3.5 dB, SNR = 10 dB, RIR1, and nonlinear distortions.

as a combination of the LSTM and CRN methods, further
improves ERLE of LSTM by 8.76 in situations with 3.5 dB SER.
Compared with the CRN-based CSM, the proposed method
improves ERLE significantly while achieving comparable and
slightly better speech quality. Moreover, we increase the model
size of the CRN baseline to a comparable level to the size of the
proposed method (see Fig. 7 later). The resulting larger model,
denoted as CRN-L, achieves a little higher PESQ and slightly
lower ERLE scores compared to the CRN baseline. Compared
to the proposed method, CRN-L achieves comparable PESQ
results but lower ERLE values. Fig. 5 shows the results of the
proposed method tested under different untrained noises, which
indicate that the proposed method generalizes well to different
untrained noise.

Table II shows the AEC results for cascade architectures with
different combinations of the complex module (CRN-Complex)
and magnitude mask module (LSTM-Mask). Besides different
cascade architectures, three other rows are provided for further
comparisons. Among the rows, CRN (phase) + LSTM (mag-
nitude) stands for the method that trains the CRN and LSTM
model separately, and then generates the final output using the
estimated phase and magnitude, respectively, from the CRN and

the LSTM model. Proposed (1st module only) and Proposed
(2nd module only) refer to the enhanced results obtained from
the first and second module of the proposed method alone.
The table shows that the proposed neural cascade architecture
achieves the best overall performance.

2) Training Strategies: This part evaluates the proposed cas-
cade architecture trained using different strategies. The results
under RIR1, 3.5 dB SER, 10 dB SNR, and white noise are
given in Table III. There are two reasonable masking strategies
for the magnitude mask module in the proposed architecture:
applying the estimated magnitude mask to microphone signal
Ym or the estimated near-end speech S ′

m. The models trained
using these two strategies are comparable while the proposed
method achieves slightly better performance. This is because
the estimated S ′

m contains distortions, and applying a mask to
S ′
m could further distort speech components. The fourth row

of the table shows the results of the cascade architecture trained
sequentially using separate loss functions. The last row gives the
results of the proposed architecture trained by only optimizing
the loss function at the final output,Lmag-mask. Comparisons show
that the proposed method, which is trained in an end-to-end
manner using a single combined loss function, outperforms the
alternative training strategies. This illustrates that the strong
performance of the proposed method is due to not only the neural
network structure, but also the combined loss function and the
training strategy.

3) Robustness Test: We further test the proposed method in
situations with untrained speakers, untrained RIRs (RIR2 and
RIR3), and echo path changes to show its robustness. To create
test mixtures with untrained speakers, we randomly select 10
pairs of untrained speakers from the 430 remaining TIMIT
speakers and create 100 test mixtures using RIR1. The test
mixtures under untrained rooms are generated using RIR2 and
RIR3. The echo path change is simulated by randomly selecting
two pairs of RIRs from RIR1 and switching between them every
1.5 seconds for generating each test mixture. The SER level is
set to 3.5 dB and white noise is added to the mixture at an SNR
level of 10 dB for all the test sets. The results given in Table IV
indicate the strong robustness of the proposed method.

B. Stereophonic AEC

This part evaluates the performance of the proposed method
under the stereophonic AEC setup. We first compare the per-
formance of the proposed method trained using two different
strategies described in Section IV-A, namely SISO and MIMO.
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TABLE VIII
MMAEC RESULTS FOR PROPOSED AND BASELINE METHODS IN THE PRESENCE OF DOUBLE-TALK, BACKGROUND NOISE WITH RIR2, 3.5 DB SER, AND 10 DB

SNR

Fig. 6. Spectrograms of a test sample under SAEC setup with 3.5 dB SER,
10 dB SNR (babble noise), RIR2, and nonlinear distortions: (a) microphone
signal, (b) near-end target speech, and outputs of (c) CRN-complex, (d) CRN-
mask, and (e) Proposed.

The results tested on both microphones (Mic1 and Mic2) are
given in Table V. It is seen that the models trained using these
two strategies obtain similar results. Considering that the SISO
strategy requires less training time, we utilize it for model
training in the following experiments.

Table VI compares the results obtained using different SAEC
methods in situations with double-talk, diffused babble noise,
and linear distortions. Since the two microphones are handled
in the same way and achieve similar results, only the results
tested at Mic1 are presented in this table. The proposed method
consistently outperforms the other comparison methods in terms
of ERLE and PESQ and the performance generalizes well to
untrained RIRs.

The results of the methods in situations with nonlinear distor-
tions are provided in Table VII. All these deep learning meth-
ods can handle nonlinear distortions and the proposed method
achieves the best results. Fig. 6 presents the spectrograms of
a test sample in situations with double-talk, background noise,
and nonlinear distortions. It is evident that the proposed method
achieves the best echo suppression and has the least residual
echo and noise in the enhanced speech.

C. Multi-Microphone AEC

The performance of the proposed method under MMAEC
setup is evaluated in this subsection. Three results are provided

TABLE IX
SAEC AND MMAEC RESULTS OF PROPOSED METHOD UNDER UNTRAINED

AND MOVING SPEAKERS WITH 3.5 DB SER,10 DB SNR, RIR2, AND

NONLINEAR DISTORTIONS (η2 = 0.1)

Fig. 7. Numbers of trainable parameters (in million) for different models.

for each deep learning method, where ŝ is the enhanced sig-
nal obtained at the reference microphone, yBF and ŝBF are,
respectively, the time-domain beamformed microphone signal
and beamformed enhanced signal introduced in Section IV-B.

The comparison results with both linear and nonlinear distor-
tions are summarized in Table VIII. In general, the NCA-based
MMAEC outperforms traditional and CRN-complex methods.
All deep learning methods can suppress most of the echo and
noise from microphone recordings, as seen from the ŝ results.
Combining with MVDR beamformer (ŝBF ) further improves
the overall performance in almost all the cases.

To test robustness, Table IX shows the behavior of the pro-
posed SAEC and MMAEC methods in situations with un-
trained speakers and moving speakers. The test signals for
untrained speakers are created by randomly selecting 10 pairs of
new speakers from the TIMIT dataset. The test signals for
moving speakers are generated by changing the position of a
near-end speaker at the middle point of an utterance. To simulate
this, we randomly select two RIRs generated for the near-end
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speaker from RIR2 and convolve them with the first half and
second half of the utterance, respectively. The results in this table
demonstrate the strong robustness of the proposed methods.

Model sizes (the number of trainable parameters within a
model) of the baselines and the proposed model are presented in
Fig. 7. The MI-RES has the smallest number of parameters. The
proposed neural cascade architecture has about 11.96 million
parameters for the single-channel AEC and MMAEC cases and
12.15 million parameters for the SAEC case. Our model achieves
strong performance with reasonable model sizes.

VII. CONCLUSION

This paper introduces a neural cascade architecture to address
the multi-channel AEC problem, where single-channel AEC
becomes a special case. The proposed method cascades com-
plex spectral mapping and magnitude mask estimation in order
to leverage their advantages to achieve phase and magnitude
enhancement jointly. The cascade architecture is trained using
a single loss function in an end-to-end manner. The final output
is obtained using the enhanced magnitude from the magnitude
mask module and the enhanced phase from the complex module.
Experimental results demonstrate that the proposed method
outperforms related deep AEC methods and generalizes well to
untrained scenarios. Moreover, the proposed method overcomes
the limitations of traditional MCAEC methods and produces
superior ERLE and PESQ scores. Combining deep MCAEC
and CSM-based beamforming further improves the system per-
formance. Future work will explore the performance of deep
MCAEC using real-recorded signals and address practical issues
such as computational complexity.
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