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—— Abstract

An error correcting code C: X¥ — X" is efficiently list-recoverable from input list size £ if for any sets
Li,...,Ln CX of size at most £, one can efficiently recover the list £ = {x € £¥ : Vj € [n],C(z); €
L;}. While list-recovery has been well-studied in error correcting codes, all known constructions with
“efficient” algorithms are not efficient in the parameter ¢. In this work, motivated by applications in
algorithm design and pseudorandomness, we study list-recovery with the goal of obtaining a good
dependence on £. We make a step towards this goal by obtaining it in the weaker case where we
allow a randomized encoding map and a small failure probability, and where the input lists are
derived from unions of codewords. As an application of our construction, we give a data structure
for the heavy hitters problem in the strict turnstile model that, for some parameter regimes, obtains
stronger guarantees than known constructions.
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1 Introduction

Let C: % — X" be an error correcting code. We say that C is (efficiently) list-recoverable!
from list-size ¢ with output list-size L if, for any lists £4,..., L, C ¥ with |£;]| < ¢ for all 4,
there is an (efficient) algorithm to recover the list

L={zeXF: Vien],Cx); € L},

and |£] < L. List recovery has historically been studied in the context of list-decodable
codes, where it has been used as a tool to obtain efficient list-decoding algorithms (see,
e.g., [17, 16, 19, 27, 22]). However, even though efficient list-recovery algorithms have been

1 In this paper we focus on zero-error list-recovery, which is the definition given here. Other works focus
on the more general problem of list-recovery from errors, in which C(z); needs to be in £; only for some
fraction of the i-s.
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developed, all of them have a poor dependence on the parameter £. For example, Hemenway,
Ron-Zewi, and Wootters [22] presents near-linear-time (in n) list-recovery algorithms, but
the output list £ has size doubly-exponential in £.

In this work, we are motivated by the following goal (which we do not fully achieve):

» Goal 1. For ¢ > 2, design a family of codes C: £* — ¥ so that:

1. C can be encoded in time O(n);

2. The rate k/n of the code is a constant (independent of n and ¢);

3. The alphabet size |X| is polynomial in £ (and independent of n);

4. The code C can be list-recovered in time O(n - £) (linear in both n and £), with output list

size |L] = O(Y).

To the best of our knowledge, this goal is open even if we allow the output list size |£| and
the running time to depend polynomially on ¢, rather than linearly.

Goal 1 is desirable for several reasons. First, it represents a bottleneck in our understanding
of algorithmic coding theory, and it seems likely that achieving it would involve developing new
techniques that would be useful elsewhere. Second, list-recovery with reasonable dependence
on / is related to questions in pseudorandomness, where the the parameter ¢ is often very
large (see our discussion in Section 1.2). Third, as we explore in this paper, obtaining Goal 1
has applications in algorithm design, in particular to algorithms for heavy hitters.

Probabilistic list-recovery with good dependence on ¢

In this work, we make progress on Goal 1 by achieving a relaxed version where the encoding
map C: ¥ — ¥ is allowed to be randomized, and where the input lists are generated from
unions of codewords; we must succeed with high probability over the randomness in C. In
particular, our main result implies the following theorem.

» Theorem 2 (informal; weaker than main result). For all £ > 0, there is a randomized

encoding map C: ¥ — X" so that

1. C can be encoded in time O(n);

2. The rate of C, k/n, is a constant independent of £ and n;

3. The alphabet size |X| is polynomial in £ (and independent of n);

4. For any list zM, 22 . 20 € $F  there is an algorithm that runs in time O(nf polylog ¢)
that has the following guarantee. With probability at least 1 — o(1) over the randomness of

C, given the lists L; = {C(z9)); : j € [(]}, the algorithm returns a list £ so that () € £

for all i, and so that |L| = O(¥).

This statement is weaker than our main result because in fact our result still holds even if a
random subset of the lists £; in Item 4 are erased, and moreover the result still holds when
some of the lists £; in Item 4 contain some extra “distractor” symbols that occur according
to any sufficiently “nice” distribution. We defer the formal statement of our list-recovery
guarantee to Section 2.

Our code is essentially an expander code with aggregated symbols. That is, we begin
with an expander code Co: ¥§ — X2, as in [39], and we aggregate together the symbols as
in [1]. (We discuss this construction in more detail below.) Our recovery algorithm uses ideas
from previous algorithms, propagating information around the underlying expander graph
given some advice. What makes our work different are the facts that (a) we leverage the
randomness of C and a small failure probability, and (b) our underlying expander graph comes
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from a high-dimensional expander.? In particular, using the randomness in C we are able
to obtain an algorithm with running time nearly-linear in ¢, and using a high-dimensional
expander we are able to boost our success probability to a level appropriate for an application
to heavy hitters, which we discuss next.

Motivation from Heavy Hitters

One of the reasons we are interested in Goal 1 is because of the potential algorithmic
applications of such a code. To illustrate this potential, we work out an application of our
construction to the heavy hitters problem. We emphasize that our focus is on the
parameter regime where N is very large, specifically log N > poly(1/e). In
particular, we are interested in optimizing the dependence on N, rather than on e.

The set-up is as follows. We are given a stream of updates (x(i), A(i)), for (" in some
universe U of size N, and A®) € R. For all m,z, we assume that f(z) £ 2 jelml AW .
1,.G)—, > 0. we think of f(x) as the “frequency” of item x. The A-s are updates: we may

add or remove some quantity of each item x, provided that f(x) never becomes negative.

This is called the strict turnstile model. The goal is to maintain a small data structure (a
“sketch”) so that, after m (efficient) updates (9, A)), we can (efficiently) query the data
structure to return a list of e-heavy hitters. That is, we would like to recover a list L of size
at most O(1/¢) that contains all z € U so that f(z) >e-[|fl1 £ X oy f(@).

The beautiful Count-Min Sketch (CMS) data structure of Cormode and Muthukrishnan [7]
gives a solution to this problem. It uses optimal space O(¢~!log N) and has update time
O(log N). However, the query time to return all O(1/e) heavy hitters is large, O(N log N)
(essentially, one performs a point query for each x € U to see if it is a heavy hitter). The
work [7] showed how to alleviate this with a so-called “dyadic trick,” bringing the query time
to O(log2 N) at the cost of an extra log N factor in both the space and update time.? (See
Table 1 for a summary of the parameters in these and other works).

The starting point for our work is the work of Larsen, Nelson, Nguyén and Thorup [29].

That work studied a much more general problem — heavy hitters for all £, norms in the
general turnstile model — but for the special case of the £; norm and the strict turnstile
model, they were able to get a nearly optimal algorithm, with the same space and update
time complexity as the original CMS, but with query time O(e~* log!™ N ) for any constant
~ > 0. That work highlighted a connection to list-recovery (see [29, Section CJ; a similar
connection is also present in earlier works on group testing and compressed sensing, for
example [24, 35, 36, 13, 12]), which is one of our motivations to study Goal 1.

The approach of [29] was the following (we have modified the description to be more
explicitly coding-theoretic). To perform an update on an item x € U, encode it as C(x) € X"
with our (randomized) encoding function. Then insert each symbol C(x); into n different
e-heavy hitters data structures that work on universe ¥ (this could be a small CMS sketch, or
something else). To query all of the heavy hitters, we first query each smaller data structure
to find a list £;. Notice that since |X| < |U|, it does not matter that the query algorithm
for the small data structures is slow. Now, we do list-recovery on the lists £; to recover a
list £ that contains all of the heavy hitters.*

2 We note that the construction of Dinur et al. [9] is similar to ours, also using an ABNNR-style [1] symbol
aggregation with a high-dimensional expander. However, in that work they have a more ambitious goal
— list-decoding with no randomness in the encoder — but in return the parameters are not close to those
in Goal 1.

3 See also the work by Cormode and Hadjieleftheriou [6] who consider a generalization of the dyadic trick
that trades off between the query time and the overhead in update time and space.

4 Provided that the output £ of the list-recovery algorithm is not too large, we can use an additional
large CMS data structure to efficiently do point queries on each item = € £, pruning it down to O(1/¢).
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Table 1 Some relevant results on e-heavy hitters in the strict turnstile model where the universe
has size N, for log N > poly(1/e). We consider schemes with failure probability § > 1/ poly(NV);
see the discussion in Section 1.3 for smaller failure probability where the works marked with  shine.
The O notation hides loglog(N) factors and log(1/¢) factors. Above, c is a constant independent of
N and €, and + is any constant larger than 0. Unfortunately, the failure probability for our algorithm
is only N~P°W(®) rather that N ¢ for some constant ¢. By repeating our algorithm poly(1/e) times
we can boost the success probability to N™°. We note that each of Space, Update, Query time
for [7] (with the dyadic trick) and [31] can be multiplied by €° if one replaces the failure probability
with N=°" and the results from [29, Theorem 9] remain the same for that larger failure probability.

’ Reference ‘ Space ‘ Update ‘ Query ‘ Failure probability ‘
[7] ) O(log N) O(Nlog N) N—¢
7] (“dyadic trick”) | O (—log: N) O(log’N) | O (le£XN N-°
29 0(=28) | oogn) | o () N
[31]* 16} (log2 N) 15} (5 log? N) %poly(log N) N—¢
[5]* O (*&f) O(log N) L poly(log N) 0

This work (0) (IDiN) (]Qg N) [0) <@) N~ Poly(e)

This work 0] <1°§CN) (logN) 0] (1o€ch) N~°¢

However, as Goal 1 remains open, [29] did not use a list-recoverable code to obtain their
results. Instead, they (like us) took advantage of the fact that the lists £; can be viewed as
random variables over the randomness in the encoding map C, and then use a construction
based on “cluster-preserving clustering” to solve the problem. While in some sense this
construction must be a list-recoverable code for randomized input lists, it is not clear (to
us) how to extract a natural code out of it: the work [29] took the perspective of graph
clustering, rather than coding theory. In contrast, our code is very natural in the context
of coding theory, as it is simply an expander code with aggregated symbols (albeit using a
high-dimensional expander for the underlying graph).

As an example of the utility of our construction, we plug our randomized list-recoverable
code (as in Theorem 2) into the framework of [29]. This gives us an algorithm for heavy
hitters that, in some parameter regimes, even slightly outperforms that of [29]. When &
is constant and N is growing, we are able to improve the query time from O(log' ™ N ) to
O(log N). In particular, we prove the following theorem. (See Table 1 for a comparison to
other work when log N > poly(1/¢)).

» Theorem 3 (informal; see Theorem 5.11 in the full version). There is a data structure that
solves the heavy hitters problem in the strict turnstile model, that uses space O(s~!log N),
update time O(log N), and query time O(e~!log N polylog(1/¢)), with failure probability
§ = N=9C") s long as e > (log N)~2(1),

By repeating this data structure O(e=3) times, we obtain a data structure that takes
space O(e~*log N), update time O(c~3log N) and query time O(s~*log N polylog(1/¢)),
with failure probability 6 = N~°.

Our algorithm has the added property that a successful £ of size O(1/¢) not only contains
all the true heavy hitters, but also does not contain “false-positives”, in the sense that each
x € L satisfies, say, f(x) > £[|f||1. This property also applies to most previous heavy hitters
algorithms.
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Contributions

To summarize, our main contributions are the following.

1. A code with probabilistic list-recovery. We give a natural code construction that
achieves a probabilistic version of Goal 1, as per Theorem 2. Our code construction
leverages recent progress in high-dimensional expanders in order to succeed with high
probability. We hope that our construction and techniques may be used in the the future
to make further progress on Goal 1.

2. Proof of concept: application to heavy hitters. As an illustration of the utility
of our construction — and as an proof-of-concept meant to encourage study of Goal 1 —
we obtain a new data structure for e-heavy hitters in the strict turnstile model. Our
data structure has slightly stronger guarantees than existing constructions for failure
probability 1/ poly(IN) when ¢ is constant and the universe size N is growing (although
it is outperformed by previous work when ¢ is small compared to 1/log(N)).

1.1 Construction Overview

In this section, we give a brief overview of our probabilistically list-recoverable code. We
use this code to solve the e-heavy-hitters problem following the paradigm described above,
by using small heavy-hitters sketches for each symbol of the (randomized) encoding C(x) of
rel.

At a high level, we construct our code C: £ — £ as follows. We start with some base
code Cy: BF — X2, as well as a bipartite expander graph G = (R, L, E), where L = [n] and
R = [n/], for some n’ = O(n).> We will need Cy and G to have specific properties, which we
will come to below. For € Xk, we generate the encoding C(z) as follows. For j € [n/], the
encoded symbol C(z); will be gotten as the concatenation of the symbols Co(z); for ¢ € T'a(j),
where I'¢(j) denotes the neighbors of j in the graph G. This sort of “aggregation along
an expander” technique, introduced in [1], has become a standard distance amplification
technique in error correcting codes. Because of the concatenation, our final alphabet ¥ will
be ¥ = X2,

0

To perform list recovery, we will start with a small piece of “advice,” and then recover
the (hopefully unique) message a consistent with that advice. We will generate our final list
L by iterating over all possible values of the advice. Towards this end, we will choose some
coordinate j € [n/] for which £; is not erased, and some o* € L; as our guess for Co(z)|r, ()
to act as our advice. Given this advice ¢*, we wish to keep propagating information until we
obtain enough coordinates of Cy that would allow us to uniquely determine x; this amounts
to decoding the code Cy from erasures.

In the exposition below, we start with a naive attempt to do this propagation, and build
up the properties that we will need Cy and G to satisfy as we refine it. Our construction is
depicted in Figure 1.

A naive attempt

Our first attempt (which will not work) is the following. Let j € [n] be as above, so we
assume that we are given as advice the my symbols Co(z)|r,(;); our goal is to recover (a
hopefully unique) = given this advice and given the input lists £,/ for j° € [n’]. Choose some
coordinate j’ € [n] such that ¢ (j) NT¢(j") # 0. As we already know the symbols in the

5 Using the notation of the full version, g = Fy, = = Fy* for some constant ma, and n’ = |[Va| = O(n).
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C(](,’f’)h [} T
CU C()(.i’),.z
_ >' C(x); = (Co(®)is; - - Co(E)i,)

7 =m(xr) €D T

1

Co() € 53 L=
M
R = [n/] for n’ = O(n)

Figure 1 Illustration of our construction. The coordinates of the inner code Cy live on the
vertices of L. The final code C consists of symbols aggregated by vertices in R. The randomness in
the encoding comes from the permuations 71 and 72, which scramble the messages in ¥ and the
coordinates in [n], respectively. We use the vertices in 7 C R to define parity checks that partially
define the code Cy. The “middle layer” M is not used in the definition of the code, but is a necessary
auxiliary structure for our recovery algorithm.

coordinates indexed by I'¢(j), this gives us partial information about C(z);s in the form of
ITa(4) NTe(y")] elements of ¥p in known locations. One can hope that this information
would be enough to pinpoint a specific entry in the list £;/, allowing us to recover all symbols
of Cy(x) in the coordinates indexed by I'¢(j'), and keep going in the same manner until
enough information is propagated.

Clearly, when we have no guarantee on the input lists £;, this approach fails miserably,
as it may be the case that £;, contains numerous elements in 33" that agree in some of
the mqy locations, and the information coming from our advice for j will not uniquely pin
down an element of £;. However, note that for a completely random input list £;/, such an
attempt would be successful with probability at least 1 — |£;/| / |Zo|, and we could set the
parameters in such a way that |£;/| < |Xo|. That is, in this case it would become reasonably
likely that the choice of 0* € £; would uniquely pin down an element o € £;, allowing us to
propagate information to another vertex in the graph. The hope is that we could propagate
this information throughout the graph, using the fact that G is an expander to guarantee
that most vertices will be determined. Of course, the problem with this is that we do not
want to assume that the input lists are completely random, but this leads us to our next
attempt, where we inject randomness into the encoding procedure.

Injecting randomness

While we won’t get completely random lists £; as we might have wanted for the naive attempt,
we can make the input lists randomized via a randomized encoding. More specifically, our
base code Cy will be deterministic, and to apply C we will make use of two permutations: a
permutation 71 acting on the universe I and a permutation 7o acting on [n]. More formally,
given z € Xk we first apply 7 () and apply the encoding Cy to m;(z). Next, we permute
the coordinates of the outcome according to me. Finally, we aggregate symbols according to
G, yielding C(z) € ' Roughly speaking, the first permutation — which will be pairwise
independent — will make Co(x) uniformly distributed over the code’s image, even conditioned
the value of Cy(a’) for some 2’ # x. The second permutation will make sure that querying
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any particular symbol Co(x); symbol will behave like sampling a uniformly random symbol
in Cy(z), and even more strongly, combined with 7 it will behave like a random sampling
from a nearly uniform distribution over Y.

Analyzing the permutation-aided construction carefully, we are able to show that indeed,
with probability roughly 1 — 5 for 1 & |£;| /1/|%0[, We can pinpoint a single list element
of L;,. One conceptual observation that will help us establish that result is the fact that
the distribution of symbols in most codewords of a high-rate code is close to uniform, and
indeed we will need the rate of Cy to be very high (see Section 3.3 of the full version). We
leave the more technical details to Section 5 of the full version.

Although promising, this approach is still problematic. We start with ms = O(1) symbols
that we know, and at each iteration the set of revealed coordinates grows by a small constant
factor, using the expansion properties of GG. As initially our sets are of constant size, we

cannot hope for success probability much greater than 1 — 7 for the initial propagation steps.

A failure probability of 7, even if we disregard the need for a problematic union bound over
all propagation steps, is far too large for us, and in particular for our application to heavy
hitters. The problem described here is common to various expander-based techniques, and
in this work we resolve it by choosing G to be a special expander graph that comes from a
high-dimensional expander, and by choosing Cy to be a suitable Tanner code. We discuss
these modifications next.

Using high-dimensional expanders to get a good head start

We resolve the issue described above — that we cannot possibly get a good failure probability
if we start with only a few known symbols — by using techniques from high-dimensional
expanders. Suppose that, starting with only the advice o* for my symbols of Cy(z), we
could deterministically identify a large subset 7 C [n'] for which we know all symbols of
Co(x) indexed by I'¢(7). This way, concentration bounds can kick in, and hopefully each
propagation step would be successful with probability roughly 77!, provided we can get a
enough independence between query attempts at the same propagation step. We defer the
independence issue to the full version (this ends up following from the amount of independence
we have in our permutations m; and ms), and concentrate on obtaining such a 7.

Recall that we work over the bipartite expander graph G = (R = [n/], L = [n], E). We
will construct G’, a tripartite extension of G, with an added middle layer M, |M| = O(n),
having the following property. Identify each vertex j of R with a subset I'¢(j) C [n] of
cardinally ms in the natural way. Each vertex in M is identified with a subset S C [n] of
cardinality mq, for 1 < m; < meo, such that S is connected to all its m, elements on the left,
and to all its supersets on the right. More specifically, each vertex j in R will be connected
to all (zf) subsets of I'¢(j) in M. (See Figure 1 for an illustration.)

We will choose the code Cy to be a Tanner code with respect to the structure of the
graph G. That is, as before, we associate the n symbols of a codeword Cy(x) with the left
hand vertices L of G, and we define Cy so that a codeword Cy(z) is a labeling of L so that
to following property holds: For every j in an appropriate subset 7 C R, the labels on the
vertices of I'¢(j) form a codeword in some error correcting code Cyg of length mq with good
distance; in particular, given any my symbols of Cog(z") for some z’, we can recover all of
Coo (.ﬁ/)

The reason to choose Cy like this is the following. Say we know that j and j’ are in the set
T, and that they have a common neighbor in M. This implies that |T'¢(j) NTa(4')] > ma,
since there is some set of size m; that both of those sets contain. In particular, by our choice
of Cpp, once we know the symbols of T'¢(j), we can deterministically reveal all symbols of
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T'¢(4') by decoding Cyp. Then we can continue this process until we recover the symbols in
I'c(j) for all j € T. By counting constraints, it turns out that we can choose 7 to be large
and still have a high-rate code Cy. This gives us our set T so that we can deterministically
fill in the symbols of I'¢(T) to use as a head start and increase our success probability.

How do we construct such a tripartite graph, that on the one hand has not too many
vertices in R and M (i.e., R = O(n) and M = O(n)), but on the other hand has favorable
intersection and expansion properties? This is where high-dimensional expanders enter the
picture, and indeed the tripartite graph comes from an (ms — 1)-dimensional simplicial
complex (see the full version for the formal definitions). A similar object was used by
Dinur et al. [9] as a double sampler, and in Dikstein et al. [8] as a multilayer agreement
sampler. We note that the construction of [9] is quite similar to ours, as they also use the
symbol-aggregation technique of Alon et al. [1]; the main difference in the construction is
that we use a very specific inner code Cy that uses the structure of G as part of its parity
checks, while the work of [9] chooses Cy to be an arbitrary code with good distance.

In our actual construction, the code Cy is a bit more involved, and its constraints arise
both from the special subset 7 of R and from an additional bipartite expander. Each of the
two types of constraints is helpful for a different aspect of our algorithm. Roughly speaking,
the constraints that come from 7 C R help us as described above (filling in the set T'¢(7T) to
get a head start). The other constraints are there to ensure that the final code Cy has good
enough distance to allow for the final unique decoding. All in all, we are able to achieve a
set T that has size about | 7| ~ poly(e) - n. We remark that this is the point where we don’t
quite get the failure probability that we want, resulting in a sub-optimal dependence on ¢
for our application to heavy hitters: we want failure probability exp(—n) (we will choose
n logarithmic in N, so this would be poly(1/N)), and we end up with failure probability
exp(—|T1) = exp(—poly(e)n).

There are plenty of details that are swept under the rug in the description above,
including implementation details needed to keep the recovery algorithm linear-time. We give
the recovery algorithm in detail in the full version of the paper. We present our list-recovery
algorithm in the context of a query algorithm for heavy hitters, since for our analysis we
want to focus on the distribution of input lists that arises from the heavy hitters example,
and it is easiest to present everything together. In particular, the input lists do not arise
simply from the union of ¢ codewords C(x), but (a) may be erased if the corresponding small
data structure failed, and (b) may contain extraneous symbols that arise from items z®
that appear in the stream that are not heavy hitters.

1.2 Motivating Goal 1 from Pseudorandomness

In this section, we briefly explain why Goal 1 — and in particular, getting a good dependence
on the parameter ¢ — is of interest in pseudorandomness. There is a tight connection between
error correcting codes and fundamental constructions in pseudorandomness, notably the
equivalence between (strong) seeded extractors and list-decodable codes [41, 40]. Tt turns out
that list recovery can also play a prominent role in the study of related objects from extractor
theory. In seeded condensers, first studied in [38], the goal is to “improve” the quality of a
random source X using few additional random bits. A bit more formally, given a random
variable X ~ {0,1}" with min-entropy k, a condenser Cond: {0,1}" x {0,1}* — {0,1}™
is such that Cond(X,U;) has min-entropy k', where we want the entropy rate to improve,
namely, % > %, and to maintain a small entropy gap m — k’. (For the formal definition,
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see, e.g., [18].) List recoverable codes in the errors model® give seeded condensers, and
vice versa. More specifically, the input and output entropies k and k' are almost in one-
to-one correspondence with the (logarithm of the) output and input list sizes, log|£| and
log ¢ (for the precise statement, see [10]). Thus, to get meaningful condensers from list-
recoverable codes, the dependence between L and ¢ needs to be good, in all regime of
parameters, and in particular handle ¢ that grows arbitrarily with the message length. In
fact, the best list-recoverable code in this regime is the (folded) Parvaresh-Vardy code [18],
giving |£| ~ £.7 The connection between condensers and list-recoverable codes was recently
utilized in the computational setting to construct nearly-optimal pseudorandom generators
for polynomial-sized circuits [10].

The model of zero-error list recovery, described in Goal 1 (when |£| depends nicely on ¢
and ¢ can be arbitrary), has applications to pseudorandomness too. A (strong) disperser is a
function Disp: {0,1}" x {0,1}* — {0,1}™ such that for any random variable X ~ {0,1}"
with sufficient min-entropy, the support of Disp(X, Uy) is large. Such dispersers have found
several applications, and are tightly connected to open problems in expander graphs. It is
not hard to show, and we do so in Appendix B of the full version, that dispersers, in some
parameter regime, are equivalent to zero-error list-recoverable codes. We are not aware of
this equivalence being stated elsewhere. For completeness, we note that dispersers in another
parameter regime give rise to erasure list-decodable codes [3].

Finally, observe that in order to get good pseudorandomness primitives from list-
recoverable codes, efficient recovery is not an issue, and all that is needed is an efficient
encoding.

Even though a probabilistic guarantee as in Theorem 2 does not immediately yield
improved pseudorandom objects, it is our hope that our progress on Goal 1 is a first step
towards achieving that goal, which would imply improved dispersers.

1.3 Related Work
Algorithmic List-Recovery

List-recovery was originally introduced as an avenue towards list-decoding, where the goal is,
given a vector z € X", to recover the list £ of all messages = € X¥ so that C(x) is sufficiently
close to z in Hamming distance. For example, the celebrated list-decoding algorithm of

Guruswami and Sudan for Reed-Solomon codes [17] is in fact a list-recovery algorithm.

However, the Guruswami-Sudan algorithm stops working at the so-called Johnson bound,

which in the context of list-recovery means that the rate k/n of the code can be at most 1/£.

Since the Guruswami-Sudan algorithm, there has been a great deal of work, mostly based
on algebraic constructions, aimed at surpassing the Johnson bound for list-decoding and
list-recovery. In particular, the works [16, 19, 27, 28] show variations of Reed-Solomon codes,
like folded RS codes and multiplicity codes, can be efficiently list-decoded and list-recovered
beyond the Johnson bound. For list-recovery, these constructions are able to obtain rate
k/n = Q(1), but unfortunately the size of the lists £ returned (and in particular the running
time of the algorithm that returns that list) is at least quasipolynomial in ¢ [16, 28], and
sometimes exponential in £. Moreover, those constructions naturally have large alphabet
sizes, polynomial in n. In order to reduce the alphabet size, constructions using algebraic

6 In the errors model, we are given L1,...,L, C ¥ with |£;] < £ for all i, and we require the list
L= {:c exk: PricpnlCi(z) € Li] > 1 — *y} to be small, for some error parameter ~.
7 Note, however, that the rate of the code in [18] is only B9 for k being the message length.

55:9

ICALP 2022



55:10

High-Probability List-Recovery, and Applications to Heavy Hitters

geometry codes have been used (e.g. [20, 21, 15]), although these works still have parameters
with an exponential dependence on ¢. Moreover, all of the works mentioned above have
polynomial — and not linear — time recovery algorithms. Using expander-based techniques
(e.g. that of Alon et al. [2]), these algorithms can be improved to near-linear time in n (e.g.,
as in [22]), but at the cost of increasing the dependence on ¢ to doubly-exponential.

In addition to algebraic constructions, there have also been a few constructions of purely
graph-based codes, which are more similar to our constructions. The work of Guruswami
and Indyk [14] gives a linear-time algorithm for list-recovery of graph-based codes, which
does even better in the setting of mixture-recovery (similar to the setting that we study here)
where the input lists are generated from unions of codewords. That work achieves output
list size |£| exactly equal to ¢, but has rate O(1/¢) and the alphabet size is exponential in .
The work of Hemenway and Wootters [23] gives an O(n)-time algorithm for list-recovering
graph-based codes (the expander codes of [39, 42], with an appropriate inner code); these
can have high rate (close to 1), but unfortunately the dependence on ¢ in other parameters
is quadruply-exponential.

The work of Dinur, Harsha, Kaufman, Livni-Navon and Ta-Shma [9], which directly
inspired our work, used double-samplers derived from high-dimensional expanders, combined
with an expander-based symbol aggregation technique of ABNNR that we also use [1]. The
goal of that work was to give an efficient list-decoding algorithm for any code that follows
the ABNNR construction. This is much more general that what we are aiming to do (since
we get to carefully design our code before applying the ABNNR construction), and also the
goal is different (list-decoding in the worst case, rather than randomized list-recovery). That
work is able to get efficient (polynomial-time) algorithms, but when one tries to turn their
algorithm into a list-recovery algorithm in the most direct way, the parameters are not close
to those in Goal 1; in particular, the algorithm is only poly(n)-time, and the dependence on
¢ is again exponential. It is not clear (to us) how to use the approach of [9] to achieve Goal 1.

We also mention a recent work of Dikstein, Dinur, and Harsha [8] that suggests an
approach for constructing locally testable codes. In particular, as in our construction they
also use the underlying graph (an agreement expander coming from a high-dimensional
expander) both for symbol manipulation and for defining the parity checks. However, their
goal is quite different than ours: they obtain locally testable codes via lifting a set of “smaller”
locally testable codes, extending the natural Tanner tests.

Heavy Hitters

The first work with provable guarantees for the heavy hitters problem was by Misra and
Gries [32], which applied to the cash register model where each of the updates A® are equal
to 1. We work in the more general strict turnstile model described above. For the strict
turnstile model, the Count-Min Sketch data structure of [7] above already gets good results,
and the best current results for the parameter regime we are motivated by (in particular,
with failure probability 1/ poly(IN), and where log N > poly(1/¢)) are those of [29] described
above. It is known [25] that Q(e ! log V') words of memory are required for this setting, and
thus the space used by these works are optimal.

We next mention three works that study heavy hitters when the failure probability is
extremely small (or zero) [31, 5, 33]. Relative to our work, these works achieve — as with
[29] — a better dependence on € but worse dependence on N; however, these works can
additionally get away with extremely small or even zero failure probability. In [31], Li et al.
modify the Count-Min Sketch by looking at different hash functions, and they present a data
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structure with failure probability § with space 9] (log(aN ) (5_1 + log(1/ 5))), update time
O(log?(1/2)1og(eN) (1 + £log(1/6)), and query time O(c~* log?(1/¢)log(eN)log(1/6)). For
d = N~¢ and log N > poly(1/¢), this gives the parameters stated in Table 1. However, when
¢ is much smaller — for example, § = N—%(1/¢) _ this gives better results than the works
previously discussed, and in particular implies a result that is uniform over all sets of heavy
hitters by union bounding over the N9(1/¢) choices for such sets. In [5], Cheraghchi and
Nakos give a randomized construction of a data structure that also solves the heavy hitters
problem uniformly over all streams =, z(?), ... (that is, with error probability zero assuming
that the data structure was constructed correctly). This scheme uses space O(¢~! log(Ne)),
has update time O(log?(1/¢)log(eN)), and query time £~* polylog(N).® That work actually
provides solutions to several problems, not just heavy hitters, via a construction of list-
disjunct matrices. Finally, we mention the work of Nelson et al. [33], which gives a fully
deterministic construction of a data structure for heavy hitters (and more generally for £, /¢;
sparse recovery) with zero error probability; the space and query time is O(e~2 poly log(V)),
and the update time is O(¢~! poly log(n)).?

We note that there are algorithms that achieve O(log N) update and query time for
constant €, but with only a constant failure probability. For example, such an algorithm is
given in the full version of [29] (see [30, Theorem 10]).

Omne can generalize to the general turnstile model, where there is no guarantee that f(x)
is positive at each point in the stream, and one can generalize to ¢,-heavy hitters, where
the goal is to return all x so that |f(x)| > ¢l f||,. There has been a great deal of work along
both of these lines; see [29] and the references therein. In particular, for ¢, heavy hitters in
the general turnstile model, the work [29] gives a data structure with space O(¢ P log N),
update time O(log N), and query complexity e~? polylog(n).

We briefly discuss the approach of [29], in order to illustrate the differences between their
approach and ours. While that work inspired the list-recovery approach we take, and they
also use error correcting codes and expander graphs, the construction itself is quite different.
That work takes the perspective of graph clustering. In more detail, their sketch can output
a graph in which each heavy hitter is represented by a well-connected cluster in the graph.
They then develop a clustering algorithm that can recover the clusters, and hence the heavy
hitters. In order to make the connection to graph clustering, they first encode = with an
error correcting code Cy as we do; but they only need this code to have good distance, as they
do not go down the list-recovery route. Then they break Co(z) up into n’ chunks. Before
putting the j-th of these chunks into the j-th smaller data structure, they append it with
tags hj(x) and {hp;),(2)}, where the h; are hash functions and I' is the adjacency function
for an expander graph G. Thus, the j-th chunk of Cy(z) is essentially connected by edges in
G to the other chunks of Cy(z), and in particular the chunks of Cy(z) form a cluster that can
be recovered by a clustering algorithm.

We note that [4] was also inspired by [29], and builds on their approach to develop
differentially private heavy-hitters algorithms. In fact, that work even casts the scheme
of [29] as a list-recovery scheme, in a relaxed definition of list-recovery that is different

We note that here the guarantee is to return a list £ of size O(1/¢) containing all the true heavy hitters,
although in both [31] and [5], the list is allowed to contain elements with frequencies f(z) < €| f]|1,
while most of the heavy-hitters work surveyed above, including ours, does not have such false positives.
We note that in [33], the query time to recover the list of the heavy hitters is Q(N) and the space
involves a single factor of log(N), but the “dyadic trick” can be used to obtain the bounds mentioned
above.
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from our relaxed version in Theorem 2. In particular, their notion of list-recovery will not
handle input lists L1, ..., L, that are generated by any ¢ distinct messages, as we handle in
Theorem 2.'°

Algorithmic applications of list-recovery

Our work is inspired by the use of list-recovery in [29], but there is a rich history of using
list-recoverable codes in similar algorithmic applications. One example is group testing, where
the goal is to identify d “positive” items out of a universe of size N, given tests of the form
V,er 1[i is positive] for subsets I C [N]. A classic construction of Kautz and Singleton [26]
reduces this question to the question of list-recovery. This connection, and elaborations on
it, has been exploited in several works, which aim to both minimize the number of tests and
to develop sublinear-time algorithms to recover the set of positive items [24, 35].

A second example, even closer to our work, is in compressed sensing. In compressed
sensing, the goal is to approximately recover an approximately sparse vector v € RY given
linear measurements Av for some A € R**N. The heavy-hitters problem is closely related,
as a (linear) solution to the heavy hitters problem can approximately recover the support of
v. List-recoverable codes have been used in the context of compressed sensing in a similar
way as it was used in [29]: associate each i € [N] with a message, and encode it with a
list-recoverable code to get a codeword C(i) = (¢1,. .., ¢,) € ™. Then reduce the compressed
sensing problem to n smaller instances of the same problem for vectors of length |X|: for each
j € [n], we have a vector w) indexed by ¥ so that the entry w§ is obtained by aggregating
all of the coordinates v; of v so that C(i); = o. Now we can either recurse or solve these
smaller problems in another way. Previous works [36, 13, 12] have observed that a good
list-recoverable code (e.g., satisfying Goal 1) would solve this problem. However, they ran
into the same issue that we did, namely that we do not know of any such codes. Instead,
they either used sub-optimal codes or developed work-arounds, as we describe below.

The work of Ngo et al. [36] was, to the best of our knowledge, the first to apply list-recovery
in compressed sensing. We mention two results in that work that use a framework quite
similar to that of [29] (and thus to ours), making explicit use of (sub-optimal) list-recoverable
codes. The first result is based on the list-recoverability of Reed-Solomon codes. As RS
codes do not achieve Goal 1, this results in a sub-optimal number of measurements, but is
nice and simple. The second is based on Parvaresh-Vardy (PV) codes. PV codes have good
rate and output list-size, but unfortunately the alphabet size is very large. To get around
this, [36] (inspired by the work [35] on group testing mentioned above) considered a code
constructed by repeatedly concatenating PV codes with themselves. This does not lead to a
code that achieves Goal 1 — the rate depends on ¢, and either the alphabet size or the rate
must depend on n — but they are able to make these dependencies not too bad. This leads
to schemes with near-optimal number of measurements ¢, although the schemes only work
for non-negative signals. Further, since PV codes do not have near-linear-time algorithms,
the recovery algorithm runs in time poly(¢) rather than near-linear in ¢.

101 a bit more detail, the notion of list-recovery in [4] allows for L1, ..., L to be generated by £ messages
=z 29, provided that the messages lie in distinct “buckets,” according to any fixed bucketing of
the message space. The choice of the code may depend on the bucketing. In this language, the result
of [29] (see [4, Theorem 3.6]) says that it is possible to obtain a code with constant rate, output list
size L = O(¢), and alphabet size that is polynomial in the number of buckets, and a polynomial-time
decoding algorithm. If the number of buckets is poly(¢), the alphabet size is also poly(¢), as we would
hope, but as the number of buckets grows (to approach the general case with |E|k buckets of size one,
where there is no “bucketing” restriction) the alphabet size grows accordingly.
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The work of Gilbert et al. [13] follows a similar outline, using the Loomis-Whitney-based
codes of [34]. For d > 0 some integer parameter, these are codes C: [N] — [N/4]9~1 are
(¢,£4/(d=1)) Jist-recoverable in time O(¢4/(?=1) log N). In terms of the desiderata of Goal 1,
this does give near-linear-time recovery with good dependence on ¢; however the alphabet size
is huge, growing exponentially in the message length. In [13], they deal with this by applying
the scheme mentioned above recursively until the alphabet size becomes manageable. As a
result, they are able to get a nearly optimal number of measurements, with a recovery time
that depends polynomially (but not linearly) on log N, and with an extremely small error
probability, smaller than 1/ poly(N).

We also mention [12], which uses list-recoverable codes (PV codes) in a more complicated
way to achieve a near-optimal compressed sensing algorithm in the uniform (“forall”) model.
They also treat the indices ¢ as messages and encode them with a list-recoverable code, but
they develop more machinery — using an expander to add linking information between the
symbols for example — in order to reduce to the list-recovery problem.

1.4 Open Questions and Future Work

In this work we have made progress towards Goal 1 by constructing a randomized code that
supports, with high probability, linear-time list-recovery from certain lists. This was enough
for our application to heavy hitters, but many open questions still remain.

1. The most obvious open question is to fully attain Goal 1. In addition to furthering our
knowledge in algorithmic coding theory, it seems likely that attaining Goal 1 (or the
techniques used to do it), would have other applications in algorithm design, as well as in
pseudorandomness (as per Section 1.2).

2. While we are able to use techniques from high-dimensional expansion to obtain a failure
probability of N~ (in the setting of e-heavy hitters), we would like a failure probability
of N=9(),

3. In this paper we studied only zero-error list-recovery (or, more accurately, list-recovery
from a small fraction of erasures). While this question is interesting and challenging on its
own, one can ask about extending our results to list-recovery from errors. In particular,
this might lead to improved heavy-hitters schemes in the general turnstile model.

4. We motivated our “probabilistic list-recovery” model by an application to heavy hitters.
However, we hope that there are many other algorithmic applications for such a model
and for our construction. Indeed, there are several algorithmic applications of list-recovery
mentioned in Section 1.3 (e.g., [24, 35, 36, 13]) that explicitly use list-recoverable codes
and would be improved by codes that achieve Goal 1. It is our hope that some of
these applications could also be improved by better constructions of the probabilistically
list-recoverable codes that we study here. As one example, if one could obtain Theorem 2
with |E| = O(¢) (rather than polynomial in /), then by the construction of Kautz and
Singleton mentioned above [26] this would yield optimal constructions of probabilistic
group testing matrices with sublinear-time decoding, matching a recent result of [37] in a
black-box way.

2 Randomized List Recovery

Inspecting our main theorem’s proof (in particular, Section 5 in the full version), we can
extract a list recovery result for our (randomized) code C that tolerates a small fraction
of erasures. Our randomized encoding can handle input lists that come from a union of
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codewords {C(x) : € Lo} for some Ly C IFZ; this is what we stated in Theorem 2. Moreover,
our algorithm can also handle some extra “distractor symbols,” provided that those symbols
are randomized and unlikely to collide with the symbols that come from Ly. In order to
state this formally, we first give a definition that captures the sort of input lists that our
algorithm can handle.

» Definition 4. Let C: IF’; — " be a randomized encoding, for % = ]FZ. Consider a
randomized function of C ~ C and a set of messages Ly C ]F’;, that outputs lists L1, ..., Ly C
Y. We say that such a function is (t,n)-nice w.r.t. C if the following holds for all Lo C F’;
(note that the lists L; can depend on Ly):
1. For any i € [n/],

with probability at least 1 —n, |L;] = O(|Lo]), and,

with probability 1, C(x); € L; for all x € L.
2. For any x € Lo and i € [n'], with probability at least 1 — 1 it holds that (C(x);); # o for

every j € [b] and o € L; \ {C(y); : y € Lo}

Furthermore, we require that the above properties should hold t-wise independently across the
lists. Namely, for any x € Ly, whether (1) and (2) hold for some i € [n'] is independent of
whether it holds for any t — 1 other values of i’ € [n’].

To illustrate this definition, we give a few examples.

» Example 5 (lists from a union of codewords). The simplest example of a nice distribution
is the function that gives

L; = {C(CIT)Z S EQ} .

That is, the lists £; are just given by the union of the codewords in £y. To see that this is
(n = 0,t = n/)-nice, observe that both (1) and (2) hold deterministically, with probability 1.
Indeed, (1) holds by construction, and (2) holds because there are no o € L;\{C(y); : y € Lo},
so the condition is trivial.

» Example 6 (lists with random distractor symbols). Another natural example of a nice
distribution is the example above, with some uniformly random extra “distractor” symbols.
That is,

L; = {C(.’E)l S ,Co} U {Ui,h che [T]}

where r > 0 is some parameter and where o; ;, are i.i.d. and uniform in ¥. Again, this
satisfies item (1) deterministically, provided that » = O(|Lg|). For (2), we can compute the
probability of a collision between the distractor symbols {o; ; : j € [r]} and a given codeword
C(z) for x € Ly:

Pr|(C(z);); #0; Vi€ bl,o€{oin:he [r}}} = (1 - Clj)br

< exp(—br/q).

In particular, when ¢ > br, thisis 1 — O (%) Thus, this distribution is (7, t)-nice where
n=0(br/q) and t = n.
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Finally, we note that the distribution of distractor symbols that arises in our heavy hitters
application is also nice for the code C that we use. The first point of Item (1) holds because
the lists £; can only become too large if the inner InnerHH fails and includes items that
are not /4-heavy hitters. The second point of Item (1) holds because our instantiation of
InnerHH has only one-sided error. Item (2) holds even for any o € £; \ {C(x);}, which follows
from Lemma 5.4 in the full version.

With this definition in place, we can now state our main theorem for list-recovery.
Theorem 7 generalizes Theorem 2, because it allows for input lists with some extra “distractor”
symbols, as per Definition 4.

» Theorem 7. There exist constants ¢ > 1 and v € (0,1) such that the following holds for
any positive integers k and ¢ < kY. There exists a randomized encoding C: F’; — E”/, for
g =rpoly(¥), X = qu(l) and n’ = ©(k), and a randomized list recovery algorithm A running
in time £° - k, with the following guarantee.

For some constant n < 1, and an integer t = #v(f)’ for any list of messages Ly C ]F’; of
size £, and any distribution over input lists Ly, ..., L, to A which are randomized functions

of C and Ly and are (t,n)-nice w.r.t. C, the list recovery algorithm A, with probability
1 —¢=®) (over the randomness of the encoding and the lists), outputs £ C F% of size O(()
such that Lo C L. Furthermore, the encoding time of C is O(klogt), with a preprocessing
step which takes poly(k) time.

We stress that unlike in standard state-of-the-art efficient list recovery algorithms, here we
have a good dependence on ¢, namely g = poly(¢) and |L| = O(¥).

We hope that Theorem 7 will find more applications. As discussed in Section 1.3, there are
many algorithmic applications of list-recovery in the literature, and several previous applica-
tions of list-recovery have ended up with sub-optimal parameters due to the unavailability of
codes that achieve Goal 1. It seems possible that Theorem 7 (or a further improvement on
our techniques) could lead to improved results in (non-uniform or “for-each”) group testing
or compressed sensing.
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