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Sample-Driven Connectivity Learning for Motion Planning
in Narrow Passages

Sihui Li

Abstract— Sampling-based motion planning works well in
many cases but is less effective if the configuration space has
narrow passages. In this paper, we propose a learning-based
strategy to sample in these narrow passages, which improves
overall planning time. Our algorithm first learns from the
configuration space planning graphs and then uses the learned
information to effectively generate narrow passage samples.
We perform experiments in various 6D and 7D scenes. The
algorithm offers one order of magnitude speed-up compared to
baseline planners in some of these scenes.

I. INTRODUCTION

Sampling-based motion planners are effective and widely-
used tools for high-dimensional motion planning. Their key
advantages are guarantees on convergence [1], [2] and a
convenient problem formulation—essentially, requiring only
a configuration space validity checker to apply to new
scenarios. Typically using random sampling, these planners
efficiently expand the search to cover the configuration
space [3], [4], [5], [6], [7]. However, narrow passages along
feasible paths increase planning difficulty and time. With
uniform random sampling, the probability of sampling part
of the free space is proportional to its volume. Although
random sampling is generally effective, sampling in narrow
passages— particularly in high-dimensional environments—
presents challenges due to the small volume of narrow
passages compared to the entire configuration space. The
key to addressing this challenge is to infer locations of
narrow passages from previous samples or local geometric
information and then guide sampling towards those regions,
as applied in previous works [8], [9], [10].

Machine learning offers the potential to gather information
from previous samples, due to the generality of learning
techniques and their effective use of modern GPU computing.
Learning has been previously applied to improve planning
performance [11], [12], [13], [14]. Most such prior approaches
learn from workspace information, e.g., trajectories or visual
data. In contrast, this paper explores configuration space
learning. In previous work [15], we introduced a configuration
space learning approach to prove motion planning infeasibil-
ity. Now, we show that the same learned structures used to
construct infeasibility proofs also offer key information about
configuration space connectivity and provide an effective
heuristic to guide sampling in difficult motion planning
problems containing narrow passages.
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Fig. 1: As the number of training nodes grows, the learned
manifold is gradually “pushed” onto the narrow passage
regions. As a result, samples on the manifold in Cgee
(identified by yellow triangles) reveal the narrow passage.
New samples on the manifold are added to the planning graph
and used for learning in the next iteration.

We introduce an algorithm to learn configuration space
connectivity and guide sampling through narrow passages. We
call the approach sample-driven connectivity learning (SDCL),
and we integrate the learning procedure with a Probabilistic
Roadmap (PRM) [16]. SDCL has two major procedures, (1)
learning a manifold and (2) sampling the manifold, which
runs in parallel with the construction of PRM. This approach
effectively leverages the increasing parallelism of modern
multi-core and GPU computing in these two procedures.

The first step of SDCL is learning a binary classier from
the planning graph—though we will not use this classifier in
a typical fashion. Geometrically, the classifier is a manifold
in the configuration space, that essentially learns the critical
areas for connecting the separated graph components. The
second step of SDCL is to sample on the manifold, i.e., the
decision boundary of our classifier, and add these points to
the planning graph. We emphasize that (1) no training data
beyond the planning graph is required and (2) this learning
step happens as part of planning and learning times are
included in our experimental runtime results; modern GPU-
accelerated learning techniques [17] require only a small
fraction of total planning time to learn the manifold.

This learning and sampling process continues until we find
a valid path. Figure | shows this process for a 2D scene with
a long narrow passage. We learn the manifold that separates
the two classes; free space samples on the manifold discover
the must-connect regions between the two classes of nodes;
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and we add these samples to the planning graph for training
in the next iteration.

In section V, we perform experiments in narrow passage
scenes to evaluate the algorithm and an easy planning problem
scene to identify possible overhead. While a small overhead
is introduced in the easy problem, SDCL produces one
order of magnitude speedup in some of the narrow passage
scenes when compared with previous planners. Besides this
comparison, we note that SDCL may be applicable to other
planners beyond PRMs. Learning and sampling the manifold
could be used to guide sampling for other bi-directional or
multi-directional motion planners to improve planning in
narrow passages.

II. RELATED WORK

A. Guided Sampling

Sampling-based motion planning methods [2], [16] rapidly
cover the search space, typically using uniform random
sampling. For planning in narrow passages, however, uniform
random sampling usually requires a large number of samples
to discover the small free spaces in the configuration space,
especially in high dimensions [16]. Since sampling is key to
finding plans, one approach is to employ guided sampling
rather than uniform sampling. One of the generally applicable
sampling methods is Gaussian sampling [18], which produces
samples close to the obstacle region and is thus more likely
to cover narrow passages. Another sampling method, a bridge
test based sampling [19], is designed to increase the sampling
density in narrow passages based on local geometrical features
of narrow passages.

Previous work has also used topological tools in motion
planning to guide sampling. Some variations of RRT [&],
[9] control the exploring domain of the samples dynamically
using previous samples’ modified Voronoi regions. In recent
work [20], the authors use discrete Morse theory to identify
critical points near the obstacle region and build a topology
map for improved planning time and path cost, though this
method requires pre-processing to build the topology map.
The work in [21] represents fixed rotation sub-configuration
space explicitly with Minkowski sums, then uses it to create
collision-free samples in PRM. This method works for robots
with ellipsoid parts and translation-dominated motions.

There are also other strategic ways to guide sampling. The
KPIECE algorithm [22] uses multi-level grids in the search
space to guide sampling in less explored areas. Bi-directional
search [5] and lazy collision checking [23] combined with
KPIECE are effective in many scenarios. Motion planning
in quotient-spaces [24], [25] projects the configuration space
onto a series of lower dimensional spaces such that the lower-
dimensional paths serve as heuristics to guild sampling in
higher dimensions to improve the planning time, and the
authors also proposed a method for efficient exploration
around narrow passages [26]. The algorithm works best when
the configuration space is more decoupled (e.g., a mobile
base and robot manipulator on the base; the position and
orientation of single object).

Some approaches use information from previous samples
to guide current sampling. The tree expansion in [10] is
guided by calculating the useful directions and distances of
nearby spaces from previous sampling information. Learning
methods have been employed to guide sampling. In [27],
the authors learn a model of the configuration space, which
is improved online and used to determine sample validity,
reducing overall collision checking time in PRM. In [28],
the authors employ principal component analysis (PCA) to
detect narrow passage areas and improve sampling along the
passages. The work in [29] takes a multi-tree RRT approach
based on bridge tests and clustering, where a reinforcement
learning approach guides the selection of trees. In [30], the
algorithm biases sampling towards optimal path using a model
trained with previous planning/demonstration data.

Our work develops a novel guided sampling strategy that
learns from previous samples and interprets the learning re-
sults geometrically to sample in narrow passages. Experiments
show improved runtime when compared with previous works.
This algorithm is also applicable to bi-directional and multi-
directional planners if we consider it as a general sampler
like Gaussian sampling [18] and bridge-test sampling [19],
since it requires minimal change to the base planner.

B. Connection with Infeasibility Proofs

This work is inspired by the construction of infeasibility
proofs in [15], [31]. An infeasibility proof ensures that there
is no valid path between a start and a goal in a given motion
planning problem. In [15], infeasibility proof construction
uses the learned manifold as a strong heuristic to form a
polytope in Cops that completely separates the start and the
goal. While this current work also uses configuration samples
to learn a manifold, the emphasis is now on using the manifold
to identify samples in narrow passages and returning these
samples for planning purposes. The two pieces naturally
follow one another. When constructing infeasibility proofs,
there is a negligible cost for the additional step to return the
samples for planning. On the other side, close integration of
SDCL and the base planner may also accelerate the learning
process to construct infeasibility proofs.

III. PROBLEM DEFINITION

We consider a motion planning problem [32] consisting of
a configuration space C of dimension n, start configuration
Qgtari> and goal configuration g,,,;. The configuration space
C is the union of the closed set obstacle region C,p,s and
the open set free space Cpree- Both gy, and g, are in
Ctree- Cobs and Cyee are implicitly defined through a validity
checker which provides a binary response indicating whether
a configuration q is valid (g € Cgee) or not (q € Cops)- A
feasible plan is defined as a path o such that o[0,1] € Cree,
o[0] = Ggtart> and o[1] = gy, The goal is to efficiently
find such a path when there exist narrow passages.

The current work applies to kinematic motion planning
problems without differential constraints. We assume that
invalid configurations are only caused by the obstacle region
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Fig. 2: Block diagram of SDCL. The planning graph is shared
between two threads. Both threads contribute to the graph,
and the SDCL thread uses the graph for training. todo: change
graph to SDCL

and configuration space boundaries. Planning for dynamic
cases with narrow passages is part of our future work.

To apply the learning technique, we also assume that the
configuration space is a Euclidean space: configurations are
real-valued vectors with a Euclidean distance metric. This
assumption is suitable for a variety of configuration spaces,
including typical serial manipulators with joint limits. We
treat the boundaries of the configuration space (e.g. joint
limits) as a special obstacle region, which is described in
more detail in previous work [31].

IV. ALGORITHM

In this section, we explain our SDCL algorithm and
integration with PRMs [16]. SDCL thread runs in parallel
with the PRM thread and requires only minor modifications to
the PRM algorithm. We first briefly review PRM construction
and then describe the integration with SDCL.

The main data structure in a PRM is the roadmap—an
undirected graph G—where nodes are configurations and
edges indicate a feasible connection between two nodes.
Growing the roadmap iterates between two procedures. First,
the construction step picks a random sample, adds this new
sample to the roadmap, and tries to connect the new sample to
neighboring nodes in G. Second, the expansion step improves
the connectivity of G by choosing the difficult-to-connect
points and performing a random-bounce walk from these
points to reach other components in G. Integration with
SDCL requires a slight change in the construction step. When
sampling a new configuration, we not only add the free
space configurations to G, but also save the obstacle region
configurations in a separate set that we will later use to
sample points on the learned manifold.

SDCL directly contributes to the roadmap G by providing
more constructive samples for the narrow passage regions.
The overall process iterates between two steps: learning the
manifold and sampling the manifold (see Figure 2). The
following sub-sections cover these steps in more detail.

A. Learning the Manifold

In this step, we learn the manifold using the planning
graph G. If no plan has been found, then the start and goal
components in G are disconnected. We take all nodes in G’s
goal component (the graph component connectable to the
goal) as one class, and all other nodes of G as the other

o (u}
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Fig. 3: Part of the learned manifold and points sampled on
the manifold, before and after we add the two Cgpo manifold
points (yellow triangles) to the planning graph. The Cgee
manifold points connect to their nearest neighbors in the
planning graph (shown with dashed lines), and become part
of the training data in the next iteration.

class. Thus, we separate the nodes of G into two classes,
which are the input data to learn the manifold.

We learn the manifold as a classifier with the input
data. Our implementation uses a support vector machine
(SVM) with Radial Basis Function (RBF) kernel, which
learns a classification function F'(x). While other learning
methods may also work for SDCL, the RBF-kernel SVM
has advantages for this application. It provides a closed-
form function with only one hyper-parameter (over-fitting
parameter ), and SDCL is not sensitive to this parameter.
We use v = 1 for all the experiment scenes. Further detail
on the using RBF-kernel SVMs to learn configuration space
manifolds is described in [15], [31].

Since we use the samples in G for training, the distributions
of samples also affect the learning results. For the experiments
we run in section V, Gaussian sampling [18] has advantages
over uniform sampling in some cases. Specifically, Gaussian
sampling produces samples close to the obstacle regions,
which may force the manifold into the narrow passage regions
faster. This is similar in concept to the analysis in [31].

The manifold is a separation in C for the two classes of
nodes in the planning graph. Figure 1 shows learned manifolds
for 2D case with a narrow passage as more points are added to
G and used for training. More closely in Figure 3, we see that
the two growing classes of nodes “push” the manifold to cross
the narrow passage regions, so we can use the manifold as a
heuristic to sample in the narrow passages for connectivity.
We describe this second step, sampling the manifold, next.

B. Sampling the manifold

The two classes of nodes from disconnected components
of G must connect with each other to form a path. Since the
manifold as the classifier decision boundary separates the two
classes, any valid path must cross the manifold, and more
precisely, a Cpee configuration on the manifold. To locate
Ciree configurations that could possibly form a valid path,
we sample points on the manifold and then use the validity
checker to test whether the point is in Cgree-

Sampling the manifold is similar in concept to the sampling
process in constrained motion planning [33]. Here, the
“constraint function” is the function of the manifold F(q).
We use the projection method to sample on the manifold.
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Starting from a given seed configuration g,, we solve the
following optimization problem to project this configuration
onto the manifold,

min abs (F(q,,))
am (1)
st. q,, €C,

where g, is the sample on the manifold we want to find,
q,, € C means the sample needs to follow the requirements
of the configuration space, e.g. joint limits. The optimization
problem minimizes the absolute value of the manifold
function, which could potentially be any learned manifold
function, as long as the value and gradient of the function can
be calculated. We solve equation (1) using sequential least-
squares quadratic programming (SLSQP) [34], [35], [36],
though other optimization methods may also be applicable.

We use samples found in the PRM’s construction step as
seeds to solve (1). All samples, including the samples in Cops,
are potentially useful for sampling the manifold, which is why
we modify the PRM’s construction step to save the samples
in Cons. However, there are trade-offs in the set or subset of
PRM samples to use as seeds. Using fewer seeds requires less
time for the projection calculations. On the other hand, more
seeds generate more samples on the manifold, increasing the
likelihood that the samples will lie in the narrow passage
Ciree regions. This selection of which PRM samples to use as
seeds could be a user-specified option to SDCL. We evaluate
and discuss the impacts of seed selection further in section V.

While sampling on the manifold, we add all Cc. points on
the manifold to G. Adding these Cgee points to G is similar
to adding new samples in the PRM construction step. We
first add the Cgee point to G as a separate component by
itself, then try to connect the point to its nearest neighbors
in G, which is described in more detail in [16]. Figure 3
shows the result of adding the Cg manifold points in two
consecutive iterations.

The process of learning and sampling the manifold con-
tinues until a valid path is found or the time limit is reached
(see algorithm 1). First, we acquire the input data from the
planning graph G (line 2) and use it to train the manifold
(line 3). Then, we sample the manifold by solving (1) (line 5)
for each given configuration. If we successfully solve the
optimization and the resulting manifold point is in Cgee, We
add the point to G. Sampling the manifold for each seed
configuration is embarrassingly parallel, enabling efficient
use of modern multi-core CPUs.

C. Discussion

SDCL retains the probabilistic completeness of the under-
lying planner because it only adds additional samples to the
planning graph. The planning graph is still generated by an
underlying planner (e.g., a PRM). In the worst case, samples
added by SDCL are useless (and might make planning
slower), but the PRM still has its own sampling process
and is probabilistically complete.

SDCL is broadly applicable to geometric motion planning
problems. The learning and sampling process does not require

Algorithm 1: SDCL

Input: G; // Planning Graph
Input: QQ; // Set of configurations
Output: G; // Planning Graph
1 repeat
2 Prest, Pgoal < Acquire-Input-Data(G);
3 f  train-SVM(Prest; Psoal);
#pragma parallel for
foreach q € Q do
dm ¢ sample-manifold(q, f);
if g € Ciree then
L add-sample(G, an);

B - U

8 until Timeout or Found path;

any additional functions other than the validity checker,
which is common to all sampling-based motion planners.
Additionally, the user can specify whether to use Gaussian
sampling, and possibly subsets of configurations as seeds for
sampling the manifold.

Although we use a PRM as the base planner for this
section’s description and our experimental evaluation, SDCL
is not limited to PRMs. SDCL could be applied to other
bi-directional or multi-directional planners, as long as we
know which samples of the planning graph or tree are in
the goal and non-goal components to learn the manifold. For
example, with RRT-connect [5], we can use the start tree
nodes as one class and the goal tree nodes as the other class.
In general, SDCL can serve as an additional sampler that
produces constructive samples for difficult-to-reach areas. One
topic for future work is to evaluate which base algorithms
benefit from SDCL and provide the fastest planning results.

V. EXPERIMENTS

We run experiments in four scenes with narrow passages:
one 3D rigid body scene, two serial manipulator scenes,
and one multi-robot navigation scene. We implement SDCL
with PRM (SDCL-PRM), and compare with earlier planners
to demonstrate its effectiveness in reducing total runtime.
We profile the different procedures in SDCL to identify and
discuss future improvements. To demonstrate the potential
overheads introduced while using SDCL, we also do experi-
ments in simple planning scenes. All code is available'.

We train the RBF-kernel SVM using ThunderSVM [17],
which accelerates learning using GPUs. GPU acceleration
is crucial because we train online while the planner is
running. With GPU SVM training, the learning step only
takes a couple of seconds. To evaluate the increase in speed
from GPUs and to parallelize manifold sampling, we run
our experiments on a server machine with NVIDIA TU102
GPU and a dual CPU AMD EPYC 7402 with 24 cores
per CPU. We adapt PRM [16] in OMPL [6] to run in
parallel with SDCL. We solve the nonlinear optimization

Iht "p://sdcl.dyalab.org
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Fig. 4: Experiment setup.

problem for sampling the manifold using sequential least-
squares quadratic programming (SLSQP) [34], [35], [36].
We check collisions and penetration depth using the Flexible
Collision Library [37], and we model robot kinematics using
Amino [38]. All robots use primitive shape collision geometry
models for faster collision checking.

We run 30 trials for each experiment scene using our plan-
ner and baseline planners in OMPL. There are many planners
in OMPL, and not all focus on quickly finding feasible plans,
e.g., some focus instead on asymptotic optimally [4], [39] at
the cost of typically slower runtime. For a more interpretable
and even evaluation, we compare against feasible planners that
are either (1) widely used or (2) offer competitive runtimes
with our approach. We include SDCL results with the base
PRM using Gaussian sampling and uniform sampling, and
we use samples in both Cqps and Cee as seeds to sample the
manifold. We set timeout limits for the scenes. When planners
timeout, they usually report a runtime that is slightly over
the timeout limit. We use the reported runtime to calculate
the mean and standard deviation, even in timeout cases.

A. Experiment Scenes and Results

1) Single rigid body: We use a classic free body narrow
passage problem, the “Twistycool” problem [6], [40]. As
shown in Figure 4a, the goal is to move a twisty 3D object
from one side to the other through a small open window. The
object must rotate in accordance with its shape to prevent
colliding with the window because it is less in size than its
bounding box. We use a 300 seconds timeout limit in all
the trials. SDCL-PRM with uniform sampling solves all 30
trials and is the fastest among all planners. The second fastest
planner is TRRT [41], which solves 28 out of 30 trials.

2) 6-DOF serial manipulator: In this scene, we use a
manipulator structure similar to the Universal URS robot [42].
The goal is to reach the blue spot on the table, which is
covered by a shelf that makes tight spaces. Figure 4b shows

the start and goal configurations. The timeout is 200 seconds.
Table I shows the experimental results. SDCL with Gaussian
sampling solves all trials, with an average runtime of 4.53
seconds. The closest baseline planner is BiTRRT [43], which
solves 27 of 30 trials with 10 times higher average runtime.

3) 7-DOF serial manipulator: We use a manipulator that
is similar in structure to the Schunk LWA4D [44] in these
experiments. The goal in the scene is to reach in between
the two red obstacles on the shelf from outside of the shelf.
Figure 4c shows the start and goal configurations. The timeout
is 300 seconds. Table I shows the results. SDCL solves all
the trials and is about 8 times faster than the closest baseline.

4) Communication-constrained Multi-Robot Navigation:
In this experiment, we consider a multi-robot scene where the
line of sight (i.e., for communication [45]) must be maintained
between pairs of robots while exploring a narrow passage. In
Figure 4d, the goal is to traverse and cover an “L” shape tunnel
with three point robots while maintaining line of sight (the
figure is modified for clarity; actual setup has a much narrower
“L” passage). SDCL with Gaussian sampling is slightly slower
than the best baseline planner by a few seconds.

5) Easy scenario to evaluate overhead: We setup an easy
tabletop planning problem with the same 6-DOF manipulator
in subsubsection V-A.2 to evaluate potential overheads of
SDCL. The scene is similar to Figure 4b, but using an empty
table. The result is in Table I. SDCL introduces overhead
when compared with PRM. This overhead mainly comes from
starting the training process. Note the unit in this column is
milliseconds, so the average overhead introduced is a fraction
of a second.

B. Experiments with Varying Difficulty

Besides the above experiments, we also test the change
in runtime for varying levels of difficulty in the 7-DOF
scene. We make the scene easier or harder by changing the
distance between the two red cylinder obstacles, producing
a corresponding change in the configuration space narrow
passage. The easy case has an obstacle distance (surface to
surface) of 1.66 times the end-effector size (a square box).
The medium case is the original scene in Figure 4c. The hard
case has an obstacle distance of 1.16 times the end-effector
size. In this comparison, we only include the three other
better performing planners, that is, BiITRRT [43], LBKPiece
(Lazy Bi-directional KPIECE) [22] and SBL [46].

Figure 5 shows the increase in runtime from the easy case
to the hard case. SDCL-PRM uses Gaussian sampling. As we
can see, SDCL-PRM, BiTRRT, and LBKpiece have about the
same average runtime in the easy case, and SBL is worse than
these three. In the medium case, BiTRRT and LBKpiece’s
average runtime both increase by about 10 times, while
SDCL-PRM increases by only a few seconds. In the hard
case, the three baseline planners timeout in more than half of
the trials, while SDCL-PRM runs all trials successfully with
an average runtime of 23 seconds. These varying difficulty
experiments indicate that sampling with SDCL is robust in
revealing narrow passages in the configuration space even
when the problem becomes more difficult.
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3D free body 6-DOF manipulator 7-DOF manipulator Multi-Robot Easy Scene

Mean (s) =STD | Solved | Mean (s) =STD | Solved | Mean (s) =STD | Solved | Mean (s) =STD | Solved | Mean (ms) +=STD

SDCL-PRM-U | 78.99 +51.03 30/30 4.94 +2.37 30/30 12.324+5.90 30/30 | 77.08 £38.29 | 30/30 | 164.33 £153.62

SDCL-PRM-G | 109.32 £69.38 | 30/30 4.53 +2.38 30/30 12.36 £13.67 | 30/30 | 41.64 +14.86 | 30/30 | 164.05 £154.16
KPIECE1 301.04 £0.17 0/30 200.06 +0.03 0/30 300.05 £+0.03 0/30 99.03 +98.01 19/30 8.92 +£7.53
LBKPIECEI 300.97 £0.19 0/30 180.36 £55.07 | 4/30 95.18 +114.05 | 25/30 | 119.12 £87.09 | 16/30 19.68 £9.88
BKPIECEI 300.81 +0.14 0/30 179.69 +42.59 | 7/30 | 216.01 +£109.31 | 14/30 37.02 £20.22 30/30 12.75 +£5.72
BFMT 290.10 +36.66 | 4/30 172.44 £54.37 | 7/30 271.94 £73.40 | 4/30 195.15 £18.92 | 2/30 194.18 £8.01
RRT 282.51 +49.53 | 5/30 200.07 +0.03 0/30 300.06 +0.03 0/30 200.05 +0.03 0/30 5.07 £3.41
RRTConnect 299.85 +1.74 1/30 200.06 +0.03 0/30 298.53 £8.17 1/30 200.06 +0.03 0/30 2.72 +£0.27
LazyRRT 301.18 £1.70 0/30 252.95 +£93.73 | 0/30 325.86 +43.07 | 0/30 201.64 +5.34 0/30 1.69 £0.04
TRRT 106.55 +82.15 | 28/30 200.06 +0.03 0/30 300.05 £0.03 0/30 111.06 +87.55 | 16/30 4.73 +£2.32
BiTRRT 131.44 £112.04 | 27/30 49.07 £60.11 27/30 97.50 +£62.80 | 30/30 55.63 £63.47 | 27/30 1.75 £0.06
EST 300.07 £0.03 0/30 200.06 +0.03 0/30 300.06 +0.02 0/30 200.05 +0.03 0/30 2.02 +0.84
SBL 301.34 £0.66 0/30 19577 £17.27 | 2/30 | 211.71 £100.50 | 16/30 | 168.37 £53.52 | 9/30 12.01 +6.33
PRM 189.06 £97.45 | 23/30 200.23 +0.03 0/30 300.24 +0.04 0/30 202.04 +0.03 0/30 5.76 £9.52
LazyPRM 300.11 £0.07 0/30 200.07 +0.05 0/30 300.06 +0.03 0/30 201.31 £6.50 0/30 1.73 £0.04

TABLE I: Runtime comparison of all the scenes, 30 trials for each planner, SDCL-PRM-G is SDCL with PRM and Gaussian
sampling, SDCL-PRM-U is SDCL with PRM and uniform sampling.

3D free body 6-DOF manipulator 7-DOF manipulator Multi-Robot
Uniform Gaussian Uniform Gaussian Uniform Gaussian Uniform Gaussian
Total (s) 78.76 £50.92 | 108.99 +69.24 | 4.94 +2.37 4.53 +2.38 12.32 £5.90 12.36 £13.67 | 77.08 £38.29 | 41.64 +14.86
Training itr. | 11.83 £1.09 8.97 +0.81 81.00 +16.56 | 46.17 £14.35 | 195.97 £53.90 | 73.37 4+ 20.50 | 31.73 £7.69 | 44.63 +9.78
Training (s) | 14.09 +6.75 13.43 +7.60 1.62 +0.81 1.51 +0.75 3.65 +1.52 2.25 +0.97 7.46 +3.95 5.68 +£1.99
Sampling (s) | 64.50 +44.45 | 95.45 +61.95 298 +1.49 2.83 £1.56 7.70 £4.08 9.75 £13.41 | 67.24 £34.36 | 33.55 +12.00

TABLE II: Runtime statistics (mean -=STD) for SDCL-PRM in all the scenes.
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Fig. 5: Compare 7-DOF scenes with different hardness levels.
Table is showing “average runtime (s) | solved cases”. 30
trials for each planner and each difficulty level.

C. Discussion of Experiments and Future Work

Table II shows the runtime statistics. SDCL with Gaussian
sampling usually takes fewer learning and sampling iterations
than Uniform sampling because Gaussian sampling samples
close to Cops, Which forces the manifold into Cops and narrow
passages faster [31]. In the multi-robot scene, using Gaussian
sampling has significant advantages. However, Gaussian
sampling does not always provide the best sample distribution
for learning (the free body scene). Future investigation is
required to decide the base planners’ sampling strategies.

In all scenes, the sampling time is longer than the training
time, especially in the multi-robot scene and the free body
scene, where the average runtime is also much higher because
of the long sampling time. Reducing sampling time is
one direction of future work. Relating to the discussion in
section IV on how the number of seeds influences sampling

time and overall results, we can apply more filters to the seeds
to reduce the number of unnecessary projection calculations
that would produce C,ps samples.

SDCL is especially effective in the manipulator scenes,
producing one order of magnitude improvement, and it is
competitive in the free body scene and the multi-robot
scene. However, there are limitations. Currently, SDCL
cannot handle kinodynamic motion planning problems, which
planners like KPIECE [22] support, because the learned
manifold needs to exist in a Euclidean space. Additionally,
scaling SDCL to very high dimensions, as handled by planners
like QRRT [25], may pose challenges because learning and
sampling the manifold would be more time-consuming. In
general, SDCL excels in tightly coupled configuration spaces
with extremely narrow passages connecting two parts of Ceree.
For example, we could apply SDCL to the quotient spaces if
the full configuration space is more decoupled.

Another direction of future work is to generalize SDCL
as a sampler to support other planners, i.e., planners with a
data structure suitable for learning a classifier, and compare
the effect of SDCL in RRT-type and PRM-type algorithms.

VI. CONCLUSION

We presented a configuration space learning algorithm,
coupled with a PRM, to improve kinematic motion planning
in narrow passages and evaluated performance on a free 3D
body, serial manipulators, and multi-robot navigation to show
the efficiency of our algorithm. The algorithm is effective
for solving the manipulator narrow passage problems with
an order of magnitude speedup, despite the small overhead.
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