


ICRA 2023

and we add these samples to the planning graph for training

in the next iteration.

In section V, we perform experiments in narrow passage

scenes to evaluate the algorithm and an easy planning problem

scene to identify possible overhead. While a small overhead

is introduced in the easy problem, SDCL produces one

order of magnitude speedup in some of the narrow passage

scenes when compared with previous planners. Besides this

comparison, we note that SDCL may be applicable to other

planners beyond PRMs. Learning and sampling the manifold

could be used to guide sampling for other bi-directional or

multi-directional motion planners to improve planning in

narrow passages.

II. RELATED WORK

A. Guided Sampling

Sampling-based motion planning methods [2], [16] rapidly

cover the search space, typically using uniform random

sampling. For planning in narrow passages, however, uniform

random sampling usually requires a large number of samples

to discover the small free spaces in the configuration space,

especially in high dimensions [16]. Since sampling is key to

finding plans, one approach is to employ guided sampling

rather than uniform sampling. One of the generally applicable

sampling methods is Gaussian sampling [18], which produces

samples close to the obstacle region and is thus more likely

to cover narrow passages. Another sampling method, a bridge

test based sampling [19], is designed to increase the sampling

density in narrow passages based on local geometrical features

of narrow passages.

Previous work has also used topological tools in motion

planning to guide sampling. Some variations of RRT [8],

[9] control the exploring domain of the samples dynamically

using previous samples’ modified Voronoi regions. In recent

work [20], the authors use discrete Morse theory to identify

critical points near the obstacle region and build a topology

map for improved planning time and path cost, though this

method requires pre-processing to build the topology map.

The work in [21] represents fixed rotation sub-configuration

space explicitly with Minkowski sums, then uses it to create

collision-free samples in PRM. This method works for robots

with ellipsoid parts and translation-dominated motions.

There are also other strategic ways to guide sampling. The

KPIECE algorithm [22] uses multi-level grids in the search

space to guide sampling in less explored areas. Bi-directional

search [5] and lazy collision checking [23] combined with

KPIECE are effective in many scenarios. Motion planning

in quotient-spaces [24], [25] projects the configuration space

onto a series of lower dimensional spaces such that the lower-

dimensional paths serve as heuristics to guild sampling in

higher dimensions to improve the planning time, and the

authors also proposed a method for efficient exploration

around narrow passages [26]. The algorithm works best when

the configuration space is more decoupled (e.g., a mobile

base and robot manipulator on the base; the position and

orientation of single object).

Some approaches use information from previous samples

to guide current sampling. The tree expansion in [10] is

guided by calculating the useful directions and distances of

nearby spaces from previous sampling information. Learning

methods have been employed to guide sampling. In [27],

the authors learn a model of the configuration space, which

is improved online and used to determine sample validity,

reducing overall collision checking time in PRM. In [28],

the authors employ principal component analysis (PCA) to

detect narrow passage areas and improve sampling along the

passages. The work in [29] takes a multi-tree RRT approach

based on bridge tests and clustering, where a reinforcement

learning approach guides the selection of trees. In [30], the

algorithm biases sampling towards optimal path using a model

trained with previous planning/demonstration data.

Our work develops a novel guided sampling strategy that

learns from previous samples and interprets the learning re-

sults geometrically to sample in narrow passages. Experiments

show improved runtime when compared with previous works.

This algorithm is also applicable to bi-directional and multi-

directional planners if we consider it as a general sampler

like Gaussian sampling [18] and bridge-test sampling [19],

since it requires minimal change to the base planner.

B. Connection with Infeasibility Proofs

This work is inspired by the construction of infeasibility

proofs in [15], [31]. An infeasibility proof ensures that there

is no valid path between a start and a goal in a given motion

planning problem. In [15], infeasibility proof construction

uses the learned manifold as a strong heuristic to form a

polytope in Cobs that completely separates the start and the

goal. While this current work also uses configuration samples

to learn a manifold, the emphasis is now on using the manifold

to identify samples in narrow passages and returning these

samples for planning purposes. The two pieces naturally

follow one another. When constructing infeasibility proofs,

there is a negligible cost for the additional step to return the

samples for planning. On the other side, close integration of

SDCL and the base planner may also accelerate the learning

process to construct infeasibility proofs.

III. PROBLEM DEFINITION

We consider a motion planning problem [32] consisting of

a configuration space C of dimension n, start configuration

qstart, and goal configuration qgoal. The configuration space

C is the union of the closed set obstacle region Cobs and

the open set free space Cfree. Both qstart and qgoal are in

Cfree. Cobs and Cfree are implicitly defined through a validity

checker which provides a binary response indicating whether

a configuration q is valid (q ∈ Cfree) or not (q ∈ Cobs). A

feasible plan is defined as a path σ such that σ[0, 1] ∈ Cfree,

σ[0] = qstart, and σ[1] = qgoal. The goal is to efficiently

find such a path when there exist narrow passages.

The current work applies to kinematic motion planning

problems without differential constraints. We assume that

invalid configurations are only caused by the obstacle region

2 of 7





ICRA 2023

Starting from a given seed configuration q
s
, we solve the

following optimization problem to project this configuration

onto the manifold,

min
q
m

abs (F (q
m
))

s.t. q
m
∈ C ,

(1)

where q
m

is the sample on the manifold we want to find,

q
m
∈ C means the sample needs to follow the requirements

of the configuration space, e.g. joint limits. The optimization

problem minimizes the absolute value of the manifold

function, which could potentially be any learned manifold

function, as long as the value and gradient of the function can

be calculated. We solve equation (1) using sequential least-

squares quadratic programming (SLSQP) [34], [35], [36],

though other optimization methods may also be applicable.

We use samples found in the PRM’s construction step as

seeds to solve (1). All samples, including the samples in Cobs,

are potentially useful for sampling the manifold, which is why

we modify the PRM’s construction step to save the samples

in Cobs. However, there are trade-offs in the set or subset of

PRM samples to use as seeds. Using fewer seeds requires less

time for the projection calculations. On the other hand, more

seeds generate more samples on the manifold, increasing the

likelihood that the samples will lie in the narrow passage

Cfree regions. This selection of which PRM samples to use as

seeds could be a user-specified option to SDCL. We evaluate

and discuss the impacts of seed selection further in section V.

While sampling on the manifold, we add all Cfree points on

the manifold to G. Adding these Cfree points to G is similar

to adding new samples in the PRM construction step. We

first add the Cfree point to G as a separate component by

itself, then try to connect the point to its nearest neighbors

in G, which is described in more detail in [16]. Figure 3

shows the result of adding the Cfree manifold points in two

consecutive iterations.

The process of learning and sampling the manifold con-

tinues until a valid path is found or the time limit is reached

(see algorithm 1). First, we acquire the input data from the

planning graph G (line 2) and use it to train the manifold

(line 3). Then, we sample the manifold by solving (1) (line 5)

for each given configuration. If we successfully solve the

optimization and the resulting manifold point is in Cfree, we

add the point to G. Sampling the manifold for each seed

configuration is embarrassingly parallel, enabling efficient

use of modern multi-core CPUs.

C. Discussion

SDCL retains the probabilistic completeness of the under-

lying planner because it only adds additional samples to the

planning graph. The planning graph is still generated by an

underlying planner (e.g., a PRM). In the worst case, samples

added by SDCL are useless (and might make planning

slower), but the PRM still has its own sampling process

and is probabilistically complete.

SDCL is broadly applicable to geometric motion planning

problems. The learning and sampling process does not require

Algorithm 1: SDCL

Input: G; // Planning Graph

Input: Q; // Set of configurations

Output: G; // Planning Graph

1 repeat

2 Prest, Pgoal ← Acquire-Input-Data(G);
3 f ← train-SVM(Prest, Pgoal);

#pragma parallel for

4 foreach q ∈ Q do

5 qm ← sample-manifold(q, f);
6 if qm ∈ Cfree then

7 add-sample(G,qm);

8 until Timeout or Found path;

any additional functions other than the validity checker,

which is common to all sampling-based motion planners.

Additionally, the user can specify whether to use Gaussian

sampling, and possibly subsets of configurations as seeds for

sampling the manifold.

Although we use a PRM as the base planner for this

section’s description and our experimental evaluation, SDCL

is not limited to PRMs. SDCL could be applied to other

bi-directional or multi-directional planners, as long as we

know which samples of the planning graph or tree are in

the goal and non-goal components to learn the manifold. For

example, with RRT-connect [5], we can use the start tree

nodes as one class and the goal tree nodes as the other class.

In general, SDCL can serve as an additional sampler that

produces constructive samples for difficult-to-reach areas. One

topic for future work is to evaluate which base algorithms

benefit from SDCL and provide the fastest planning results.

V. EXPERIMENTS

We run experiments in four scenes with narrow passages:

one 3D rigid body scene, two serial manipulator scenes,

and one multi-robot navigation scene. We implement SDCL

with PRM (SDCL-PRM), and compare with earlier planners

to demonstrate its effectiveness in reducing total runtime.

We profile the different procedures in SDCL to identify and

discuss future improvements. To demonstrate the potential

overheads introduced while using SDCL, we also do experi-

ments in simple planning scenes. All code is available1.

We train the RBF-kernel SVM using ThunderSVM [17],

which accelerates learning using GPUs. GPU acceleration

is crucial because we train online while the planner is

running. With GPU SVM training, the learning step only

takes a couple of seconds. To evaluate the increase in speed

from GPUs and to parallelize manifold sampling, we run

our experiments on a server machine with NVIDIA TU102

GPU and a dual CPU AMD EPYC 7402 with 24 cores

per CPU. We adapt PRM [16] in OMPL [6] to run in

parallel with SDCL. We solve the nonlinear optimization

1http://sdcl.dyalab.org

4 of 7







ICRA 2023

REFERENCES

[1] L. E. Kavraki, M. N. Kolountzakis, and J.-C. Latombe, “Analysis
of probabilistic roadmaps for path planning,” IEEE Transactions on

Robotics, vol. 14, no. 1, pp. 166–171, 1998.

[2] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp.
378–400, 2001.

[3] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Computer Science Deptartment, Iowa State University, Tech.
Rep. TR-98-11, October 1998.

[4] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[5] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in 2000 IEEE International Conference

on Robotics and Automation (ICRA), vol. 2, 2000, pp. 995–1001.

[6] I. A. Şucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012.

[7] A. Shkolnik and R. Tedrake, “Sample-based planning with volumes in
configuration space,” arXiv preprint arXiv:1109.3145, 2011.

[8] A. Yershova, L. Jaillet, T. Siméon, and S. M. LaValle, “Dynamic-
domain RRTs: Efficient exploration by controlling the sampling
domain,” in 2005 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2005, pp. 3856–3861.

[9] L. Jaillet, A. Yershova, S. M. La Valle, and T. Siméon, “Adaptive
tuning of the sampling domain for dynamic-domain RRTs,” in 2005

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE, 2005, pp. 2851–2856.

[10] B. Burns and O. Brock, “Single-query motion planning with utility-
guided random trees,” in 2007 IEEE International Conference on

Robotics and Automation (ICRA). IEEE, 2007, pp. 3307–3312.

[11] J. Ichnowski, Y. Avigal, V. Satish, and K. Goldberg, “Deep learning
can accelerate grasp-optimized motion planning,” Science Robotics,
vol. 5, no. 48, p. eabd7710, 2020.

[12] D. Driess, O. Oguz, J.-S. Ha, and M. Toussaint, “Deep visual heuristics:
Learning feasibility of mixed-integer programs for manipulation
planning,” in 2020 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2020, pp. 9563–9569.

[13] M. Pándy, D. Lenton, and R. Clark, “Unsupervised path regression
networks,” in 2021 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE, 2021, pp. 1413–1420.

[14] A. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, “Learning
feasibility for task and motion planning in tabletop environments,”
IEEE Robotics & Automation Magazine, vol. 4, no. 2, pp. 1255–1262,
2019.

[15] S. Li and N. T. Dantam, “Learning proofs of motion planning
infeasibility,” in Proceedings of Robotics: Science and Systems, 2021.

[16] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics, vol. 12, no. 4, pp. 566–580,
1996.

[17] Z. Wen, J. Shi, Q. Li, B. He, and J. Chen, “ThunderSVM: A fast SVM
library on GPUs and CPUs,” Journal of Machine Learning Research,
vol. 19, pp. 797–801, 2018.

[18] V. Boor, M. H. Overmars, and A. F. Van Der Stappen, “The Gaussian
sampling strategy for probabilistic roadmap planners,” in 1999 IEEE

International Conference on Robotics and Automation (ICRA), vol. 2.
IEEE, 1999, pp. 1018–1023.

[19] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling
narrow passages with probabilistic roadmap planners,” in 2003 IEEE

International Conference on Robotics and Automation (ICRA), vol. 3.
IEEE, 2003, pp. 4420–4426.

[20] A. Upadhyay, B. Goldfarb, W. Wang, and C. Ekenna, “A new
application of discrete morse theory to optimizing safe motion planning
paths,” in Workshop on the Algorithmic Foundations of Robotics

(WAFR), 2022.

[21] S. Ruan, K. L. Poblete, H. Wu, Q. Ma, and G. S. Chirikjian,
“Efficient path planning in narrow passages for robots with ellipsoidal
components,” IEEE Transactions on Robotics, 2022.

[22] I. A. Şucan and L. E. Kavraki, “Kinodynamic motion planning by
interior-exterior cell exploration,” in Algorithmic Foundation of Robotics

VIII. Springer, 2009, pp. 449–464.

[23] R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in 2000

IEEE International Conference on Robotics and Automation (ICRA),
vol. 1. IEEE, 2000, pp. 521–528.

[24] A. Orthey and M. Toussaint, “Rapidly-exploring quotient-space trees:
Motion planning using sequential simplifications,” in International

Symposium on Robotics Research. Springer, 2019, pp. 52–68.
[25] A. Orthey, A. Escande, and E. Yoshida, “Quotient-space motion

planning,” in 2018 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE, 2018, pp. 8089–8096.
[26] A. Orthey and M. Toussaint, “Section patterns: Efficiently solving

narrow passage problems in multilevel motion planning,” IEEE

Transactions on Robotics, vol. 37, no. 6, pp. 1891–1905, 2021.
[27] B. Burns and O. Brock, “Sampling-based motion planning using

predictive models,” in Proceedings of the 2005 IEEE international

conference on robotics and automation. IEEE, 2005, pp. 3120–3125.
[28] S. Dalibard and J.-P. Laumond, “Linear dimensionality reduction

in random motion planning,” The International Journal of Robotics

Research, vol. 30, no. 12, pp. 1461–1476, 2011.
[29] W. Wang, L. Zuo, and X. Xu, “A learning-based multi-RRT approach

for robot path planning in narrow passages,” Journal of Intelligent &

Robotic Systems, vol. 90, no. 1, pp. 81–100, 2018.
[30] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions

for robot motion planning,” in 2018 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 2018, pp. 7087–7094.
[31] S. Li and N. T. Dantam, “Exponential convergence of infeasibility

proofs for kinematic motion planning,” in Workshop on the Algorithmic

Foundations of Robotics (WAFR), 2022.
[32] S. M. LaValle, Planning algorithms. Cambridge university press,

2006.
[33] Z. Kingston, M. Moll, and L. E. Kavraki, “Sampling-based methods for

motion planning with constraints,” Annual review of control, robotics,

and autonomous systems, vol. 1, no. 1, pp. 159–185, 2018.
[34] D. Kraft, “A software package for sequential quadratic programming,”

Institut für Dynamik der Flugsysteme, Oberpfaffenhofen, Tech. Rep.
DFVLR-FB 88-28, July 1988.

[35] ——, “Algorithm 733: TOMP–fortran modules for optimal control
calculations,” Transactions on Mathematical Software (TOMS), vol. 20,
no. 3, pp. 262–281, 1994.

[36] S. G. Johnson, “The NLopt nonlinear-optimization package,” 2022,
http://github.com/stevengj/nlopt.

[37] J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library
for collision and proximity queries,” in 2012 IEEE International

Conference on Robotics and Automation (ICRA), 2012, pp. 3859–
3866.

[38] N. T. Dantam, “Robust and efficient forward, differential, and inverse
kinematics using dual quaternions,” The International Journal of

Robotics Research, 2020.
[39] J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, “Batch informed

trees (bit*): Informed asymptotically optimal anytime search,” The

International Journal of Robotics Research, vol. 39, no. 5, pp. 543–
567, 2020.

[40] M. Moll, I. A. Şucan, and L. E. Kavraki, “Benchmarking motion
planning algorithms: An extensible infrastructure for analysis and
visualization,” IEEE Robotics & Automation Magazine, vol. 22, no. 3,
pp. 96–102, September 2015.

[41] L. Jaillet, J. Cortés, and T. Siméon, “Transition-based RRT for path
planning in continuous cost spaces,” in 2008 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2008,
pp. 2145–2150.

[42] UniversalRobots, “UR5 collaborative robot arm: Flexible and
lightweight cobot.” [Online]. Available: https://www.universal-robots.
com/products/ur5-robot/

[43] D. Devaurs, T. Siméon, and J. Cortés, “Enhancing the transition-based
RRT to deal with complex cost spaces,” in 2013 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2013, pp.
4120–4125.

[44] “Industrial robots,” Oct 2021. [Online]. Available: https://schunk.com/
us en/solutions/industry-solutions/list/industrial-robots/

[45] M. A. Schack, J. G. Rogers, Q. Han, and N. T. Dantam, “Optimizing
non-Markovian information gain under physics-based communication
constraints,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp.
4813–4819, 2021.

[46] G. Sánchez and J.-C. Latombe, “A single-query bi-directional prob-
abilistic roadmap planner with lazy collision checking,” in Robotics

research. Springer, 2003, pp. 403–417.

7 of 7


	I Introduction
	II Related Work
	II-A Guided Sampling
	II-B Connection with Infeasibility Proofs

	III Problem Definition
	IV Algorithm
	IV-A Learning the Manifold
	IV-B Sampling the manifold
	IV-C Discussion

	V Experiments
	V-A Experiment Scenes and Results
	V-A.1 Single rigid body
	V-A.2 6-DOF serial manipulator
	V-A.3 7-DOF serial manipulator
	V-A.4 Communication-constrained Multi-Robot Navigation
	V-A.5 Easy scenario to evaluate overhead

	V-B Experiments with Varying Difficulty
	V-C Discussion of Experiments and Future Work

	VI Conclusion
	References

