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Abstract

The increasing reliance on ML models in high-stakes tasks has raised a major
concern about fairness violations. Although there has been a surge of work that
improves algorithmic fairness, most are under the assumption of an identical
training and test distribution. In many real-world applications, however, such an
assumption is often violated as previously trained fair models are often deployed
in a different environment, and the fairness of such models has been observed to
collapse. In this paper, we study how to transfer model fairness under distribution
shifts, a widespread issue in practice. We conduct a fine-grained analysis of how
the fair model is affected under different types of distribution shifts and find that
domain shifts are more challenging than subpopulation shifts. Inspired by the
success of self-training in transferring accuracy under domain shifts, we derive
a sufficient condition for transferring group fairness. Guided by it, we propose
a practical algorithm with fair consistency regularization as the key component.
A synthetic dataset benchmark, which covers diverse types of distribution shifts,
is deployed for experimental verification of the theoretical findings. Experiments
on synthetic and real datasets, including image and tabular data, demonstrate that
our approach effectively transfers fairness and accuracy under various types of
distribution shifts1.

1 Introduction

Machine learning’s social impact has broadened as it is widely used to aid decision-making in
real-world applications, such as hiring, loan approval, facial recognition, and criminal justice. To
avoid discrimination against a subset of the population (e.g., w.r.t race or gender), many efforts on
algorithmic fairness have been carried out [12, 21, 65, 44, 46, 15, 7]. Although existing work has
achieved remarkable success in ensuring fairness, most of them assume the distribution of data at
test time is identical to that in the training set. However, recent studies show that the fairness of a
model is likely to collapse when encountering a distribution shift. For example, [19] observes that a
fair income predictor trained with data from one state might not be fair when used in other states.
[50] tries to maintain fairness in healthcare settings, but a model that performs fairly according to the
metric evaluated in “Hospital A” shows unfairness when applied to “Hospital B”. Such observations

1Code is available at https://github.com/umd-huang-lab/transfer-fairness.
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Figure 1: Illustration of intra-group expansion assumption in the input space. An example of
gender classification task with the sensitive attribute being race. Intra-group expansion assumes that
different groups are separated but every group is self-connected under certain transformations. If a
model has consistent predictions under those transformations, we can propagate labels within each
group. Under this assumption, we propose to obtain fairness and accuracy in both domains by a
self-training algorithm with fair consistency regularization.

motivate us to find the reason behind the collapse of fairness and investigate how to transfer fairness
under distribution shifts. Specifically, when we have labeled data in the source domain and unlabeled
data in the target domain, we investigate how to adapt the fair source model to a target domain with
the goal of achieving both accuracy and fairness in both domains.

Intuitively, the fairness of a model in the target domain strongly depends on the nature of distribution
shifts. In this paper, we only consider cases where the oracle model is the same in two domains. We
characterize distribution shifts by assuming two domains share the same underlying data generation
process where data is generated from a set of latent factors with a fixed generative model, and the shift
is caused by the shift of the marginal distribution of some factors. We categorize distribution shifts
into three types [32]: 1) Domain shift where source and target distributions comprise data from related
but distinct domains (e.g., train a model in hospital A but test it in hospital B). 2) Subpopulation shift
where two domains overlap, but relative proportions of subpopulations differ (e.g., the proportion of
female candidates increases at test time). 3) Hybrid shift where domain shift and subpopulation shift
happen at the same time. We find domain shift more challenging for transferring fairness since the
model’s performance is unpredictable in unseen domains. Such a finding is supported empirically on
a synthetic dataset that is developed to simulate diverse types of distribution shifts. While recent work
explores methods to transfer fairness [54, 48, 23], most considered settings fall into subpopulation
shifts. In this paper, we consider all three types of distribution shifts. Our analysis suggests we
encourage consistent fairness under different factor values.

We draw inspiration from recent progress on self-training in transferring accuracy under domain
shifts [61, 5, 70, 3, 49, 55]. The success of self-training is due to an expansion assumption and a
consistency regularization algorithm. The expansion assumption also assumes two domains share
one underlying generative model and the support of the distribution on each class is a connected
compact set under data transformations (i.e., has a good continuity). Under the expansion assumption,
[61] and [5] prove that self-training, which enforces consistent predictions for the same input under
different transformations (i.e., under shifts of nuisance factors), can propagate labels from the source
to the target domain. This approach exhibits superior performance in transferring accuracy [70, 49],
but does not consider fairness.

Taking demography into consideration, we relax the expansion assumption to a more realistic intra-
group expansion assumption, as shown in Figure 1, which only requires continuity of the underlying
distribution within every group (i.e., data points with the same class and sensitive attribute) rather
than the entire class. Based on the intra-group expansion assumption, we derive a sufficient condition
that guarantees fairness in both source and target domains. This sufficient condition suggests that
ensuring the trained model gains the same consistency across groups under a fair teacher classifier
guarantees fairness in both domains. However, such a teacher classifier is not available in practice,
and we need a practical treatment.

Guided by the theoretical algorithm, we propose a practical self-training algorithm to minimize
and balance consistency loss across groups. Our algorithm builds upon Laftr [42], an adversarial
learning method for fairness, and FixMatch [55], a self-training framework. To encourage similar
consistency in different groups, we propose a novel fair consistency regularization. By reweighting
the consistency loss of each group dynamically according to the model’s performance, the algorithm
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encourages the model to pay more attention to the high-error group while training. Our method
results in a model that is fair in source and has similar consistency across groups. As indicated by
our theory, it would have similar accuracy across groups in the target domain so that we can transfer
fairness. We evaluate our method under different types of distribution shifts with the synthetic and
real datasets. Experiments show that our approach achieves high accuracy and fairness in the target
domain without sacrificing performance in the source domain. To the best of our knowledge, this is
the first work using self-training to transfer fairness under distribution shifts.

Summary of contributions: (1) We provide a fine-grained analysis of fairness under distribution
shifts and develop a synthetic dataset to study model fairness under different types of distribution
shifts. (2) Theoretically, we derive a sufficient condition for transferring fairness under distribution
shifts. (3) Algorithmically, we propose a theory-guided algorithm for transferring fairness with a
fair consistency regularization as the key component. (4) Experimentally, we evaluate our method
on synthetic data, real image data, and real tabular data. All results show the effectiveness of our
approach in transferring fairness.

2 Preliminaries and Notations

Transfer Fairness. Let X,A, Y and X ,A,Y denote random variables and sample space of input
features, sensitive attribute, and label. For simplicity, we assume binary sensitive attribute and binary
classification, while our method can easily extend to multi-sensitive attributes and multi-class cases
(see Appendix E). We aim to learn a classifier g : X → Y and are interested in its fairness under
distribution shifts. Specifically, with S and T denoting source and target domains, we study how
to transfer fairness and accuracy when PS(X,A, Y ) 6= PT (X,A, Y ), with the access to X,A, Y in
the source domain, but only X,A in the target domain. In the self-training algorithm, we use gtc to
denote a teacher classifier, and g∗ to denote the oracle classifier. We use the word “group” to denote
the set of data that has the same label and sensitive attribute.

Fairness Metric. Since we consider classification problems in this paper, we expect the fairness
metrics could encourage models to achieve similar classification performance across groups. We use
two metrics in this paper, equalized odds and variance of group accuracy. Equalized odds [27] is a
widely used unfairness metric in classification problems that requires the true positive rate and the true
negative rate to be the same among groups. It is defined as ∆odds = 1

2

∑1
y=0

∣∣P(Ŷ = y|A = 0, Y =

y)− P(Ŷ = y|A = 1, Y = y)
∣∣, where Ŷ = g(X) is the prediction. Additionally, we also evaluate

the variance of group accuracy which is defined as Vacc = V ar({P(Ŷ = y|A = a, Y = y), ∀a, y}).
Smaller Vacc indicates the model is fairer since it performs similarly across groups. Note that the
variance of group accuracy can help avoid trivial fairness where a model with constant output has
∆odds = 0, but such fairness is meaningless.

3 Fairness under Distribution Shifts

In this section, we provide a fine-grained analysis of fairness under various types of distribution shifts
based on a unified framework of distribution shift characterization.

A Unified Framework to Characterize Distribution Shifts. Following [62], we characterize distri-
bution shifts by assuming a unified latent variable model for the underlying data generation process.
We denote the underlying factors as Y 1, Y 2, ..., Y K , and data point as X . Two of the factors are
label Y l (i.e. Y ) and sensitive attribute Y a (i.e. A). We call other factors nuisance factors since they
are irrelevant to the classification task.

Assumption 1. (Underlying data generation process) We assume the data is generated from a latent
generative model as y1:K ∼ P(Y 1:K) and x ∼ P(X|Y 1:K = y1:K). The generative model is fixed
PS(X|Y 1:K = y1:K) = PT (X|Y 1:K = y1:K) but the marginal distribution of factors varies in two
domains PS(Y 1:K) 6= PT (Y 1:K), causing the distribution shift PS(Y 1:K , X) 6= PT (Y 1:K , X).

It is realistic to assume two domains share the same data generation process. For example, the
underlying physical process of cell imaging is fixed, while the distribution of underlying factors (e.g.
gender, age or equipment) may vary in two hospitals (i.e. two domains), resulting in the distribution
shift of the observed tissue images. Based on the unified framework, we consider two major types
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of distribution shifts, namely subpopulation shift and domain shift, which are widely considered in
many practical applications [32].

Definition 3.1. (Subpopulation shift) We say it is a subpopulation shift, if for any factor Y i, the
sample space of it remains the same in two domains (i.e., Yi

S = Yi
T ), but the marginal distribution

of at least one factor changes (e.g., PS(Y j) 6= PT (Y j)), resulting in PS(Y 1:K) 6= PT (Y 1:K) and
PS(Y 1:K , X) 6= PT (Y 1:K , X).

Definition 3.2. (Domain shift) We say it is a domain shift, if at least one nuisance factor Y i, i 6=
l, i 6= a, has different sample space in two domains, ∃yi ∈ Yi

T , but yi /∈ Yi
S , resulting in PS(Y 1:K) 6=

PT (Y 1:K) and PS(Y 1:K , X) 6= PT (Y 1:K , X).

Intuitively, under subpopulation shift, the sample space overlaps, and only the marginal distributions
of factors vary in the two domains. For example, the proportion of females versus males in training
and deployment time differs. In contrast, under domain shift, the source model has never seen the
data with factor values that only exist in the target domain. For instance, the source model is unaware
of the equipment used for cell imaging at deployment time.

Why do distribution shifts cause unfairness? Suppose the marginal distributions of a binary
nuisance factor Y i differ in two domains with PS(Y i) 6= PT (Y i). The unfairness in two domains are

∆S
odds = PS(Y i = 0)×∆S

odds|Y i=0 + PS(Y i = 1)×∆S
odds|Y i=1 (1)

∆T
odds = PT (Y i = 0)×∆T

odds|Y i=0 + PT (Y i = 1)×∆T
odds|Y i=1.

Due to the same generation process where PS(X|Y i = yi) = PT (X|Y i = yi), we have
∆S

odds|Y i=yi = ∆T
odds|Y i=yi , ∀yi ∈ {0, 1}. Under subpopulation shift, Y i has the same sample space

in two domains but with different proportions (e.g., PS(Y i = 0) = 0.9,PS(Y i = 1) = 0.1,PT (Y i =
0) = 0.1,PT (Y i = 1) =0.9), while under domain shift the sample space differs (e.g. PS(Y i = 0) =
1,PT (Y i = 1) = 1). It is easy to see from (1) that if a model is perfectly fair on data with Y i = 0
but unfair on data with Y i = 1, then the model is highly fair in the source domain but highly unfair
in the target domain under both cases. Therefore, if the model has inconsistent performance on data
generated from different nuisance factor values, then the shifted marginal distribution of those factors
may cause fairness collapse.

How to transfer fairness under distribution shifts? Based on the above analysis, one way is to
train the model to be fair under any values of factors. It is possible under subpopulation shift as stated
in the following proposition (see proof and discussion in Appendix B).

Proposition 3.1. (Transfer fairness under subpopulation shift) Consider the subpopulation shift that
is caused by the shifted marginal distribution of nuisance factor Y i (i.e., PS(Y i) 6= PT (Y i)), while
Yi
S = Yi

T = Yi. If model f is strictly fair in source domain under any value of factor Y i satisfying
PS(g(X) = yl|Y a = 0, Y l = yl, Y i = yi) = PS(g(X) = yl|Y a = 1, Y l = yl, Y i = yi), ∀yi ∈
Yi, yl ∈ {0, 1}, then model g is also fair in target domain with ∆odds = 0.

Our empirical results (Figure 3) also support this finding. However, domain shift is more challenging.
The source model’s performance on target data is unpredictable due to the distinct sample space. One
promising way to tackle domain shift is to enforce the model’s invariance to nuisance factors so that
the source model would have the same behavior on target data. Note that this solution also works for
subpopulation shift since it leads to the case in Proposition 3.1 directly. The above analysis motivates
us to transfer fairness by encouraging consistent fairness under different nuisance factor values.

4 Transfer Fairness via Fair Consistency Regularization

4.1 Theoretical Analysis: A Sufficient Condition for Transferring Fairness

In reality, distribution shifts are usually hybrid, and we may not know all the underlying factor values.
In this section, we consider a general case where we only have access to input X , label Y , and
sensitive attribute A. We use data transformations to simulate the shift of nuisance factors. Our
theory is based on [61] and [5] which prove that encouraging consistency under transformations can
propagate labels so that to transfer accuracy. In this section, we find that in order to transfer fairness,
we need a fair label propagation process that requires the model to have similar consistency across
groups. We introduce assumptions and our findings as follows.
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Assumption 2 (Separability of the input). Let Sy
a and T y

a denote the sample space of X|A=a,Y=y

in source and target domains. The ground truth class and sensitive attribute for x ∈ Sy
a ∪ T y

a are
consistent, which are y ∈ {0, 1} and a ∈ {0, 1}. We assume the sample spaces of X in two domains
are S = ∪y ∪a Sy

a and T = ∪y ∪a T y
a , where groups are separated with 1) Sy

a ∩ S
y
a′ = T y

a ∩ T
y
a′ =

Sy
a ∩ T

y
a′ = ∅, ∀y, a 6= a′, and 2) Sy

a ∩ S
y′

a′ = T y
a ∩ T

y′

a′ = Sy
a ∩ T

y′

a′ = ∅, ∀a, a′, y 6= y′.

This is a realistic assumption as illustrated in Figure 1 where the data from two domains are from
the same underlying conditional distribution X|Y,A, and groups are separated by label and sensitive
attribute. We define Uy

a = 1
2 (Sy

a +T y
a ) as the group distribution, and U as the population distribution

on the entire data. Next, we characterize the good continuity of group distributions with the definition
of neighbor and intra-group expansion assumption.
Definition 4.1 (Neighbor). Let T denote a set of input transformations and define the transformation
set of x as B(x) , {x′|∃t ∈ T , s.t. ‖x′− t(x)‖ ≤ r}. For any x ∈ Sy

a ∪T y
a , we define the neighbor

of x as N (x) := (Sy
a ∪ T y

a ) ∩ {x′|B(x) ∩ B(x′) 6= ∅} and define the neighbor of a set V ∈ X as
N (V ) := ∪x∈V ∩(∪y∪aS

y
a∪Ty

a )N (x).

Intuitively, two examples are neighbors if they are near each other after applying some transformations.
Note that we only consider neighbors that have the same class and sensitive attribute (i.e., from the
same group). Based on this definition, we characterize the continuity of group distribution with
intra-group expansion assumption where any small set has a large neighbor in its group.
Assumption 3 (Intra-group expansion). We say that Uy

a satisfies (α, c)-multiplicative expansion for
some constant α ∈ (0, 1) and c > 1, if for all V ⊂ Uy

a with PUy
a

(V ) ≤ α, the following holds:
PUy

a
(N (V )) ≥ min{cPUy

a
(V ), 1}.

Different from the expansion assumption proposed in [61] which considers the class continuity, intra-
group expansion assumes group continuity. As shown in Figure 1, this is more realistic since groups
are separated by both label and sensitive attribute. We can also interpret it as the transformations that
change the value of nuisance factors will generate neighbors within the same group.

This assumption allows us to propagate labels within the group from one domain to another by
encouraging consistency under transformations. We use RUy

a
(g) , PUy

a
[∃x′ ∈ B(x), s.t. g(x) 6=

g(x′)] to denote the consistency loss of classifier g on the group distribution Uy
a , which is the fraction

of examples where g is not robust to input transformations. Since we only have partial supervision
(i.e., no labels in the target domain), we use a self-training framework to obtain a model that is
accurate and fair in both domains (i.e., on Uy

a ). Based on the theory of self-training in [61], we
derive a sufficient condition in Theorem 4.1 that bounds the unfairness and error on the population
distribution. We use 0-1 loss to evaluate the error of g as εUy

a
(g) , PUy

a
[g(x) 6= g∗(x′)], and the

disagreement between g and a teacher classifier gtc as LUy
a

(g, gtc) , PUy
a

[g(x) 6= gtc(x
′)].

Theorem 4.1 (Guarantee fairness). Suppose we have a teacher classifier gtc with bounded unfairness
such that |εUy

a
(gtc)− εUy′

a′
(gtc)| ≤ γ, ∀a, a′ ∈ A and y, y′ ∈ Y . We assume intra-group expansion

where Uy
a satisfies (ᾱ, c̄)-multiplicative expansion and εUy

a
(gtc) ≤ ᾱ < 1/3 and c̄ > 3, ∀a, y. We

define c , min{1/ᾱ, c̄}, and set µ ≤ εUy
a

(gtc), ∀a, y. If we train our classifier with the algorithm
min
g∈G

max
a,y

RUy
a

(g), s.t. LUy
a

(g, gtc) ≤ µ ∀a, y

then the error and unfairness of the optimal solution ĝ on the distribution U are bounded with

ε(ĝ) ≤ 2

c− 1
εU (gtc) +

2c

c− 1
RU (ĝ), (2)

∆odds(ĝ) ≤ 2

c− 1
(γ + µ+ cmax

a,y
RUy

a
(ĝ)) (3)

Remark. This sufficient condition suggests we fit a teacher classifier which is fair on the population
distribution and minimize the consistency loss in every group. The unfairness of the resulting model is
bounded by the quality (unfairness and error) of the teacher classifier and the worst-group consistency
loss. Intuitively, we can understand the consistency loss as the model invariance to the nuisance
factors. With a group-balanced consistency loss, the model would have similar invariance to the
nuisance factors resulting in similar group performance on the unseen data so that to transfer accuracy
and fairness. We also bound the variance of group accuracy with the variance of consistency loss
(Appendix C). Both bounds suggest we balance and minimize the consistency loss across groups.
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4.2 Practical Algorithm: Fair Consistency Regularization

There are two challenges in realizing the theoretical algorithm in Theorem 4.1. First, we need a
high-quality teacher model, but the model trained with labeled source data is only fair and accurate
in the source domain. Second, existing consistency regularization methods do not consider fairness.
We tackle the first problem by leveraging the iterative self-training paradigm that updates the teacher
model with the student model while training, thus making it fairer and fairer. We tackle the second
problem by proposing a novel fair consistency regularization.

Encoder𝒙

𝒙′ Encoder

Classifier

Classifier

Adversary

𝒛

𝒛′

𝑎% 𝐿!"#$ (source only)

𝐿%&' (source only)

prediction pseudo-label

prediction
𝐿!%()'#'

shared shared

gradient
reversal layer

stop 
gradient

𝑇(#)

Figure 2: Training diagram.

Algorithm. Figure 2 shows the overall
training diagram. There are three ma-
jor components:
(1) In every training epoch, we use
the student model obtained in the last
epoch as the teacher model and auto-
matically fit the teacher model by ini-
tializing the student model to be the
same as the teacher model. In other
words, only one model is training itself
iteratively.
(2) To ensure the accuracy and fairness
in the source domain, we adopt Laftr
[42], an adversarial learning method consisting of a classification loss Lcls and a fairness loss Lfair.
(3) To transfer fairness and accuracy, we do consistency training on all unlabeled data (including
source and target data). Following FixMatch [55], we use the pseudo-labels generated by the teacher
model as supervision for consistency training where the model should have consistent predictions
under transformations. Different from FixMatch, we propose a fair consistency regularization with a
balanced group consistency loss Lfconsis.
We train the model with the weighted summation of these three losses as shown in Figure 2. We defer
the detailed loss functions of Lcls and Lfair with a detailed algorithm description to Appendix D.

Fair Consistency Regularization. To tighten the upper bound of the unfairness in Theorem 4.1, we
need to minimize and balance consistency loss across groups. However, the consistency regularization
in FixMatch [55] does not distinguish groups and might amplify the bias as observed in [76] and
our experiments. Instead, we propose to use a fair consistency regularization that evaluates the
consistency loss per group and minimizes the balanced consistency loss Lfconsis defined as below.

Lfconsis(g) =

1∑
y=0

1∑
a=0

λyaL
y
a(g) (4)

where Ly
a(g) =

1∑
xy

a
1

∑
xy

a

1(max(gtc(x
y
a)) ≥ τ)H(argmax(gtc(x

y
a)), g(t(xy

a))) (5)

where xy
a denotes an input with sensitive attribute A = a and class Y = y. Ly

a(g) is model g’s
consistency in the group of {xy

a}, and λya is the corresponding weight of the group consistency
loss. Here, we abuse the usage of g(x) to denote the output logits of model g on input x and thus,
argmax(gtc(x

i
a)) is the pseudolabel generated by teacher classifier. t(xy

a) is the transformed input
as defined in Definition 4.1. We use a cross-entropy loss H(·) to encourage the consistency under
transformation t(·) and only consider examples that the teacher model has high confidence in with a
confidence threshold τ . Note that data is classified into groups according to the true sensitive attribute
and pseudolabels. To balance the group consistency loss, we propose to weigh each group inversely
with the number of confident pseudolabels, and set λya as

λ̂ya =
1∑

xy
a
1(max(gtc(x

y
a)) ≥ τ)

, λya = λ̂ya/
∑
a,y

λ̂ya. (6)

The weights will dynamically change while training. Heuristically, if the teacher model is only
confident in a few examples in a group, the model’s consistency in this group is more likely to be low.
With the proposed weights, a larger penalty will be applied to such groups. Therefore, the proposed
fair consistency regularization will enforce the model to pay more attention to high-error groups. By
doing so, the trained model would enjoy similar consistency loss across groups. Together with the
self-training algorithm, it would have similar accuracy across groups in the target domain.
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Figure 3: Accuracy and unfairness (error bar denotes the standard deviation) in two domains under
subpopulation shifts (Sshift 1, Sshift 2), domain shift (Dshift), and hybrid shift (Hshif). (S) and (T)
denotes the evaluation in the source and target domains respectively. Results show that domain shift
is more challenging than subpopulation shift, and our method can effectively transfer accuracy and
fairness under all the distribution shifts considered.

5 Related Work

This section features related work for transferring fairness. Another discussion of related work in fair
machine learning, domain adaptation, and self-training is deferred to Appendix A. Out-of-distribution
fairness remains an under-explored area. We categorize prior works into five classes. 1) Group-wise
distribution matching. [51] derives an upper bound for fairness in the target domain which suggests
training a fair model in the source domain and matching the distributions of relevant groups from
two domains in feature space at the same time. [64] also applies group-wise distribution matching
but with Wasserstein distance. Such methods are hard to achieve if we do not have supervision in
the target domain and it also shares the drawback of distribution matching methods. 2) Reweighting.
When the proportions of groups differ in two domains, reweighting the examples in the source domain
can approximate the target distribution. [16] uses reweighting to deal with fairness problems under
covariate shift and [23] uses reweighting together with a fairness test to guarantee fairness under
demographic shift. Reweighting methods strongly rely on the support cover assumption which is
not satisfied under domain shift. 3) Distributionally robust optimization (DRO). This line of work
considers unknown target data that can be any arbitrary weighted combinations of the source dataset
and train a fair model that is robust to the worst-case shift [48, 43]. These methods also assume
subpopulation shift instead of domain shift. 4) Causal inference. [54] conducts causal domain
adaptation and DRO based on a well-characterized causal graph that describes the data construction
and distribution shift. Causal methods highly rely on the correct causal graph which is hard to obtain
in reality. For example, [50] finds that the causal graph in real applications (e.g. predicting the
skin condition in dermatology) is far more complicated which violates normal assumptions, thus
making those approaches inapplicable. 5) Others. [10] derives bound for fairness violation under
distribution shifts. There are also studies that aim to maintain fairness under distribution shifts
through online learning [69], and loss curvature matching [59]. To the best of our knowledge, this
is the first work that uses self-training to transfer fairness. Some work also studies self-supervised
learning and fairness, yet they use unlabeled data and self-training to improve the in-distribution
fairness [14, 68, 9] which is different from our goal.

6 Experiments

6.1 Evaluation under Different Types of Distribution Shifts with a Synthetic Dataset

In order to study the fairness under distribution shifts and verify our theoretical findings, we develop
a synthetic dataset to simulate different types of distribution shifts.

Synthetic dataset. The synthetic dataset is adapted from the 3dshapes dataset [31] which contains im-
ages of 3D objects generated from six independent latent factors (shape, object hue, scale, orientation,
floor hue, wall hue). This dataset satisfies our assumption on the shared underlying data generation
process. We simulate different types of distribution shifts by varying the marginal distributions of the
latent factors and sample the data accordingly (see Appendix D.1 for details).
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Distribution shifts. We set the image as input X , and select three latent factors to be class (Y =
shape), sensitive attribute (A = object hue), and a nuisance factor that might shift (D = scale). We
consider four widely observed distribution shifts in reality ( PS(X,Y,A,D) 6= PT (X,Y,A,D)):
(1) Sshift 1: Subpopulation shift where only the nuisance factor shift (i.e. more small objects in
source but more large objects in target), PS(Y,A) = PT (Y,A), PS(D) 6= PT (D).
(2) Sshift 2: Subpopulation shift where A and Y have different correlations in two domains (i.e. most
red objects are cubes in source but are capsules in target), PS(Y,A) 6= PT (Y,A), PS(D) = PT (D).
(3) Dshift: Domain shift where the nuisance factor has different sample spaces (i.e. only small objects
in source but only large objects in target), PS(Y,A) = PT (Y,A), PS(D) 6= PT (D), Yd

S 6= Yd
T .

(4) Hshift: Hybrid shift of (2) and (3).

Baselines. We do shape classification task with an MLP model and compare our method with
four baselines: Base (standard ERM); Laftr; Laftr+DANN (a combination of Laftr and a domain
adaptation method [22]); Laftr+FixMatch. In our method, we also use Laftr and FixMatch but with
the proposed fair consistency regularization. Since the shifted nuisance factor is scale, we use random
padding and cropping as transformations in our method and Laftr+FixMatch. We train Base and Laftr
with labeled source data and train others with unlabeled target data as well.

Domain shift is more challenging than subpopulation shift. Figure 3 shows that under subpopula-
tion shifts, the fair source model trained with Laftr also has high accuracy and fairness in the target do-
main although it has not seen any target date. This is because the sample space is shared (e.g. small and
large objects both exist in the source data), and the model has similar performance under all factor val-
ues. Thus, good performance remains even if the proportion of data changes, verified Proposition 3.1.
In contrast, under domain shift and hybrid shift, the fair source model performs poorly in the target
domain where data is sampled from a different sample space, suggesting the difficulty of domain shift.

Our method can transfer fairness and accuracy under various types of distribution shifts. Un-
der domain shift, the domain adaptation method DANN does not help in transferring fairness or
accuracy. Consistency regularization forces the model to behave consistently under cropping and
padding, resulting in a model that has similar predictions regardless of the object’s scale and thus
transfers accuracy. However, it may cause bias as shown in the results of Laftr+FixMatch. With the
proposed fair consistency regularization, the model gains similar consistency across groups, resulting
in a similar accuracy in all groups in the target domain and thus transfers fairness. Therefore, our
method achieves high accuracy and fairness in two domains under all the considered distribution
shifts.

Source Target
Acc Unfairness Acc Unfairness

Method Vacc ∆odds Vacc ∆odds

Base 92.85±0.49 2.30±0.97 4.81±0.69 74.49±0.83 5.79±3.49 9.90±1.27
Laftr 93.24±0.41 1.19±0.46 2.44±0.51 74.35±1.46 6.92±0.72 9.79±1.54
CFair 92.51±0.22 1.76±0.53 4.75±0.85 73.53±0.89 7.51±0.73 7.26±1.95

Laftr+DANN 91.33±0.08 2.12±1.72 2.70±0.67 74.28±1.63 6.25±2.59 8.27±2.11
CFair+DANN 90.89±0.76 2.01±0.70 4.43±1.36 74.62±1.06 6.23±0.90 5.26±2.07
Laftr+FixMatch 96.62±0.06 0.77±0.21 2.23±0.44 83.87±0.48 8.21±0.67 9.32±1.01
CFair+FixMatch 96.13±0.53 1.28±0.53 2.78±0.74 83.11±0.49 7.87±1.86 7.89±0.40
Ours (w/ Laftr) 96.08±0.07 0.96±0.39 2.59±0.35 85.52±0.40 2.82±0.87 5.70±0.52
Ours (w/ CFair) 95.65±0.22 1.56±0.37 3.85±0.97 84.48±0.42 2.88±0.99 5.43±0.65

Table 1: Transfer fairness and accuracy from UTKFace to FairFace

6.2 Evaluation on Real Datasets

Evaluation on images. We use UTKFace [71] as the source data and FairFace [30] as the target
data. Although both are facial images, there is a distribution shift between them due to different
image sources. We consider a gender classification task with race as the sensitive attribute. We use
VGG16 [53] as the model and RandAugment [18] (excluding transformations that may change the
group) as the transformation function. Additional to previous baselines, we also use CFair [73] as
the method for in-distribution fairness. As shown in Table 1, there is indeed a distribution shift as
the source model trained with Laftr or CFair is no longer accurate or fair in the target domain. The
domain adaptation method has a limited effect on transferring accuracy and fairness. As expected,
self-training (Laftr+Fixmatch and CFair+Fixmatch) significantly improves the accuracy in the target
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(a) Pareto frontiers of ours (w/ Laftr) and baselines in the target domain.

(b) Pareto frontiers of ours (w/ Cfair) and baselines in the target domain.

Figure 4: Comparison of Pareto frontiers. Upper left is preferred. Our method outperforms baseline methods in
achieving accuracy and fairness at the same time.

(a) Laftr (b) Ours (c) Decrease of unfairness

Figure 5: Unfairness and accuracy tested on NewAdult. CA as the source domain (red star) and other states as
the target domain (blue dots). Red lines indicate the average of unfairness. The relative decrease is calculated by
comparing with Laftr.

domain, but the unfairness is high. With the proposed fair consistency regularization, our method
outperforms it remarkably on fairness with a 70% decrease in the variance of group accuracy and a
30% decrease in the equalized odds. We further sweep the weights of losses and draw Pareto frontiers.
As shown in Figure 4, our method significantly outperforms others in achieving accuracy and fairness
at the same time.

Evaluation on tabular data. We further evaluate our method on the NewAdult dataset [19] which
contains census data from all states of the United States. We consider gender as the sensitive attribute
and do income classification with an MLP as the model. We set CA as the source domain and all
the other states as the target domain. We use random perturbation on tabular data (see details in
Appendix D) as the transformations. Results are shown in Figure 5. When applied to other states,
the fair model trained on CA becomes unfair (Figure 5a). Our method improves the fairness in
most states with a slight improvement in accuracy (Figure 5b). Compared with the one without fair
consistency regularization, our method achieves better fairness with a decrease in unfairness in most
states (Figure 5c).

6.3 Ablation Study
The role of transformation. We design transformation functions based on our domain knowledge
of latent factors. To investigate the importance of transformations, we test a weaker set of trans-
formations, which includes only cropping and flipping, on the UTKFace-FairFace experiment and
report the performance in Table 2. Compared with RandAugment in Table 1, consistency under
weak transformations leads to a less effective transfer of accuracy since the neighbor generated
transformations is much smaller. The limited transformations also restrict the performance of our
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Source Target
Acc Unfairness Acc Unfairness

Method Vacc ∆odds Vacc ∆odds

Laftr+FixMatch 94.08±0.70 1.64±0.46 3.51±1.46 77.05±0.26 12.23±3.83 6.55±1.54
CFair+FixMatch 94.09±0.33 0.97±0.36 2.16±0.97 77.25±0.21 12.93±2.66 9.77±0.95
Ours (w/ Laftr) 94.25±0.22 1.06±0.46 2.09±0.55 77.32±0.21 2.35±1.67 4.27±1.41
Ours (w/ CFair) 94.24±0.26 1.67±0.38 4.43±0.63 77.96±0.38 3.34±1.08 5.70±1.14

Table 2: Transfer fairness and accuracy from UTKFace to FairFace with weak transformations

method on tabular data (see Appendix E). Though the ability to transfer accuracy is limited by weak
transformations, our method can still make the transfer process fair as there’s a significant decrease in
unfairness, as shown in Table 2.

Figure 6: Per-group accuracy and consis-
tency. Compared with the standard consis-
tency regularization (SCR), the model trained
with fair consistency regularization (FCR)
has more balanced consistency and accuracy.

Fair consistency is essential in transferring fairness.
To see whether enhanced consistency improves accuracy
and whether unbalanced consistency leads to unfairness
as suggested by Theorem 4.1, we evaluate the accuracy
and consistency of each group in the UTKFace-FairFace
experiment on the target data. The consistency is mea-
sured by testing the model’s agreement on the outputs
under two random transformations. As shown in Figure 6,
groups that obtain higher consistency have higher accuracy,
which validates the ability of consistency regularization
for transferring accuracy. The training methods that use
standard consistency regularization (e.g. Laftr+FixMatch)
have been observed to be unfair in the target domain. Fig-
ure 6 shows that it is because the model has imbalanced
consistency across groups. With our fair consistency reg-
ularization, the model gains similar consistency for all
groups, resulting in similar group accuracy.

Acc Unfairness
Method Vacc ∆odds

Ours 85.52±0.40 2.82±0.87 5.70±0.52
w/o consistency in target 82.43±1.05 6.80±1.30 5.85±0.40
w/o consistency in source 82.5±1.58 6.63±0.71 8.18±1.27
w/o dynamic weights 84.34±0.19 6.86±0.50 7.68±0.81
w/o updating gtc 79.13±0.52 3.49±0.63 6.65±1.31

Table 3: Ablation study on UTKFace-FairFace task

The role of components in fair consistency regu-
larization. Table 3 shows the ablation study. We
can see that the consistency in both domains matters.
Giving every group the same weight instead of using
dynamic weights leads to increased unfairness. Fix-
ing the teacher classifier to be the fair source model,
we observe a significant decrease in the accuracy, sug-
gesting the important role of iterative self-training in
our algorithm.

7 Conclusion

In this paper, we explore how to transfer fairness under distribution shifts. We derive a sufficient
condition and present a theory-guided self-training algorithm based on an intra-group expansion
assumption. The key component of our algorithm is fair consistency regularization. We simulate
different types of distribution shifts with a synthetic dataset and examine our theoretical findings with
it. Abundant experiments with synthetic data and real data have shown that our method has superior
performance in transferring fairness and accuracy. Like other self-training methods, one limitation
of our method is the reliance on a well-defined data transformation set. Future work will relax this
limitation for application to more real-world problems.
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Supplementary Material

A More on Related Work

Fair machine learning. Generally, fair machine learning methods fall into three categories: pre-
processing, in-processing, and post-processing [44, 7]. In this paper, we focus on in-processing
methods that modify learning algorithms to remove discrimination during the training process. As
for fair classification, several approaches have been proposed including fair representation learning
[66, 41, 4, 67, 42, 56, 17, 73], fairness-constrained optimization [20, 1], causal methods [34, 24, 45],
and many other approaches with different techniques [8, 13, 25]. All of those works are for in-
distribution fairness, and we investigate out-of-distribution fairness in this paper. We use LAFTR
[42], an adversarial learning method that shows advanced performance on fairness [47], to learn a
fair model in the source domain and adapt it to the target domain. We also test CFair[72] in our
experiments. Many metrics of fairness have been proposed [15] including demographic parity [6],
equalized opportunity, and equalized odds [27] which are most widely adopted. In this paper, we use
equalized odds to measure unfairness in both domains.

Distribution shifts. In many real-world applications, distribution shifts are unavoidable. The goal of
existing work addressing distribution shifts is simply to transfer accuracy. [32] propose a benchmark
of in-the-wild datasets to study the real distribution shifts. We follow their category of distribution
shifts, including subpopulation shifts and domain shifts. Their empirical results on many state-of-the-
art methods show that self-training outperforms others on image datasets significantly while having
limited performance due to the limited data augmentation on non-image modalities [49]. This finding
aligns with our experimental results. [62] conduct a fine-grained analysis of various distribution shifts
based on an underlying data generation assumption similar to ours. They also use 3dshapes dataset to
simulate different types of distribution shifts. Additional to accuracy, we aim to transfer fairness at
the same time in this paper.

Domain adaptation and self-training. Inspired by the theoretical work [2], numerous distribution
matching approaches have emerged for domain adaption over the past decade. Domain-adversarial
training [22] and many of its variants [58, 40, 28, 57] that aim at matching the distribution of two
domains in the feature space have shown encouraging results in many applications. However, recent
studies [63, 74, 36] show that such methods may fail in many cases since they only optimize part of
the theoretical bound. We test DANN [22], and MMD [39], two distribution matching methods in
our experiments, and also find them less effective in transferring accuracy and fairness. Recently,
another line of work that uses self-training draws increasing attention [70, 3]. Those methods enjoy
guarantees [61, 5] and demonstrate superior empirical results with desirable properties such as
robustness to spurious features [33, 11, 38] and robustness to dataset imbalance [37]. However, all of
those work on domain adaptation only aims at transferring accuracy. Although there is work that
studies fairness issues in current domain adaptation methods [35] and proposes to alleviate it by
balancing the data [29, 60, 76], fair domain adaptation is still under-explored. Based on the findings
that the model’s consistency to input transformations is important to generalization [75] and is a core
component of self-training [52, 55, 26], we improve the consistency regularization in [55] to achieve
fair transferring.

B Proof and More Discussion of Fairness under Distribution Shifts

Lemma B.1. Under Assumption 1, for a subpopulation shift that is caused by the shift of the marginal
distribution of factor Y i, we have PS(X|Y i = yi) = PT (X|Y i = yi), ∀yi ∈ Yi.

Proof. Under Assumption 1, PS(X|Y 1:K = y1:K) = PT (X|Y 1:K = y1:K). Since the shift only
happens on the factor Y i, the marginal distribution of other factors remains the same in the two
domains, PS(Y {1:K}\i) = PT (Y {1:K}\i) where we use {1 : K} \ i to denote 1, .., i− 1, i+ 1, ...,K .
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Then
PS(X|Y i = yi) =

∑
y{1:K}\i

PS(X,Y {1:K}\i = y{1:K}\i|Y i = yi)

=
∑

y{1:K}\i

PS(Y {1:K}\i = y{1:K}\i)PS(X|Y i = yi, Y {1:K}\i = y{1:K}\i)

=
∑

y{1:K}\i

PT (Y {1:K}\i = y{1:K}\i)PT (X|Y i = yi, Y {1:K}\i = y{1:K}\i)

= PT (X|Y i = yi)

where the second line holds because of the independence of the latent factors Y 1, ..., Y K .

Now, we restate Proposition 3.1 and provide the proof.

Proposition B.1 (Transfer of fairness under subpopulation shift). Consider the subpopulation shift
that is caused by the shifted marginal distribution of a nuisance factor Y i (i.e., PS(Y i) 6= PT (Y i)),
while Yi

S = Yi
T = Yi. If model f is strictly fair in the source domain under any value of factor Y i

satisfying PS(f(X) = yl|Y a = 0, Y l = yl, Y i = yi) = PS(f(X) = yl|Y a = 1, Y l = yl, Y i =
yi), ∀yi ∈ Yi, yl ∈ {0, 1}, then f is also fair in target domain with ∆odds = 0.

Proof. In the target domain, the equalized odds (unfairness) is defined as

∆odds =
1

2

1∑
yl=0

∣∣PT (f(X) = yl|Y a = 0, Y l = yl)− PT (f(X) = yl|Y a = 1, Y l = yl)
∣∣.

Since all latent factors are independent, we have

PT

(
f(X) = yl|Y a = 0, Y l = yl

)
=
∑

yi∈Yi

PT (Y i = yi)PT

(
f(X) = yl|Y a = 0, Y l = yl, Y i = yi

)
and
PT

(
f(X) = yl|Y a = 1, Y l = yl

)
=
∑

yi∈Yi

PT (Y i = yi)PT

(
f(X) = yl|Y a = 1, Y l = yl, Y i = yi

)
.

Therefore, the ∆odds in the target domain can be decomposed into

∆odds =
1

2

1∑
yl=0

∣∣ ∑
yi∈Yi

PT (Y i = yi)
(
PT

(
f(X) = yl|Y a = 0, Y l = yl, Y i = yi

)
− PT

(
f(X) = yl|Y a = 1, Y l = yl, Y i = yi

) )∣∣.
Since two domains share the same underlying data generative model, and the distribution shift is
caused by the shift of the marginal distribution of factor Y i, from Lemma B.1, we have

PT

(
X|Y a = 0, Y l = yl, Y i = yi

)
= PS

(
X|Y a = 0, Y l = yl, Y i = yi

)
and

PT

(
X|Y a = 1, Y l = yl, Y i = yi

)
= PS

(
X|Y a = 1, Y l = yl, Y i = yi

)
.

Thus the conditional distribution of the model’s prediction also remains, as
PT

(
f(X)|Y a = 0, Y l = yl, Y i = yi

)
= PS

(
f(X)|Y a = 0, Y l = yl, Y i = yi

)
and

PT

(
f(X)|Y a = 1, Y l = yl, Y i = yi

)
= PS

(
f(X)|Y a = 1, Y l = yl, Y i = yi

)
.

In this case, if the source model is strictly fair that ∀yi ∈ Yi, yl ∈ {0, 1} the following holds
PS(f(X) = yl|Y a = 0, Y l = yl, Y i = yi) = PS(f(X) = yl|Y a = 1, Y l = yl, Y i = yi),

then it is also fair in the target domain with

∆odds =
1

2

1∑
yl=0

∣∣ ∑
yi∈Yi

PT (Y i = yi)
(
PS

(
f(X) = yl|Y a = 0, Y l = yl, Y i = yi

)
− PS

(
f(X) = yl|Y a = 1, Y l = yl, Y i = yi

) )∣∣ = 0.
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This proposition explains why the fair source model is also fair in the target domain under Sshift 1 in
our experiments (see Section 6.1). In addition to shifts of nuisance factors, the subpopulation shifts
can also be caused by the marginal distribution shift of the label and sensitive attribute. The following
proposition argues that the fair model is also in the target domain under such distribution shifts.

Proposition B.2 (Transfer of fairness under subpopulation shift of sensitive attribute). Consider the
subpopulation shift that is caused by the shifted marginal distribution of sensitive attribute Y a (i.e.,
PS(Y a) 6= PT (Y a)), while Ya

S = Ya
T = Ya = {0, 1}. If model f is fair in the source domain with

∆S
odds = 0, then it is also fair in the target domain with ∆T

odds = 0.

Proof. The proof is similar to the previous one. Since

∆S
odds =

1

2

1∑
yl=0

∣∣PS(f(X) = yl|Y a = 0, Y l = yl)− PS(f(X) = yl|Y a = 1, Y l = yl)
∣∣,

and from Lemma B.1 we know that
PS(X|Y a = 0, Y l = yl) = PT (X|Y a = 0, Y l = yl)

PS(X|Y a = 1, Y l = yl) = PT (X|Y a = 1, Y l = yl),

thus,

∆T
odds =

1

2

1∑
yl=0

∣∣PT (f(X) = yl|Y a = 0, Y l = yl)− PT (f(X) = yl|Y a = 1, Y l = yl)
∣∣

=
1

2

1∑
yl=0

∣∣PS(f(X) = yl|Y a = 0, Y l = yl)− PS(f(X) = yl|Y a = 1, Y l = yl)
∣∣

= ∆S
odds = 0.

Such a result also holds for subpopulation shifts caused by the shift of label Y l. This proposition
explains why the fair source model is also fair in the target domain under Sshift 2 in our experiments
(see Section 6.1). It suggests that encouraging fairness is able to alleviate spurious correlation. We
leave more studies on this interesting finding to future work.

Remark. All the above analyses are based on the population distribution where
PS(f(X) = yl|Y a = 0, Y l = yl) = EPS(X,Y 1:K)(f(X) = yl|Y a = 0, Y l = yl). In practice, it is
estimated by finite samples. Insufficient samples would cause estimation errors in fairness and bring
another challenge for transferring fairness. In this paper, we only consider the fairness measured by
population distribution. Future work will investigate the impact of estimation error on transferring
fairness and the way to resolve it.

C Proof of the Sufficient Condition for Transferring Fairness

Our proof is based on the theory in [61].

Theorem C.1. (Restatement of Lemma A.8 in [61]) We assume that Uy
a satisfies (ᾱ, c̄)-multiplicative

expansion for εUy
a

(gtc) ≤ ᾱ < 1/3 and c̄ > 3. We define c , min{1/ᾱ, c̄}. Then for any classifier
g : X → Y , the error of it on the group Uy

a is upper bounded as:

εUy
a

(g) ≤ c+ 1

c− 1
LUy

a
(g, gtc) +

2c

c− 1
RUy

a
(g)− εUy

a
(gtc)

Theorem C.2. (A restricted version of the above theorem) We assume that Uy
a satisfies (ᾱ, c̄)-

multiplicative expansion for εUy
a

(gtc) ≤ ᾱ < 1/3 and c̄ > 3. We define c , min{1/ᾱ, c̄}. Then for
any classifier g : X → Y satisfies LUy

a
(g, gtc) ≤ εUy

a
(gtc), the error of it on the group Uy

a is upper
bounded as:

εUy
a

(g) ≤ 2

c− 1
εUy

a
(gtc) +

2c

c− 1
RUy

a
(g)
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Proof.

εUy
a

(g) ≤ c+ 1

c− 1
LUy

a
(g, gtc) +

2c

c− 1
RUy

a
(g)− εUy

a
(gtc)

εUy
a

(g) ≤ 2

c− 1
εUy

a
(gtc) +

2c

c− 1
RUy

a
(g) (because LUy

a
(g, gtc) ≤ εUy

a
(gtc))

Theorem C.3. If LUy
a

(g, gtc) ≤ εUy
a

(gtc), we have
εUy

a
(g) ≥ εUy

a
(gtc)− LUy

a
(g, gtc)

Proof. By triangle inequality.

Now, we restate Theorem 4.1 and provide the proof.

Theorem C.4. Suppose we have a teacher classifier gtc with bounded unfairness such that
|εUy

a
(gtc) − εUy′

a′
(gtc)| ≤ γ, ∀a, a′ ∈ A and y, y′ ∈ Y . We assume intra-group expansion where

Uy
a satisfies (ᾱ, c̄)-multiplicative expansion and εUy

a
(gtc) ≤ ᾱ < 1/3 and c̄ > 3, ∀a, y. We define

c , min{1/ᾱ, c̄}, and set µ ≤ εUy
a

(gtc), ∀a, y. If we train our classifier with the algorithm
min
g∈G

max
a,y

RUy
a

(g) (7)

s.t. LUy
a

(g, gtc) ≤ µ ∀a, y
then the error and unfairness of the optimal solution ĝ on the distribution U are bounded with

ε(ĝ) ≤ 2

c− 1
εU (gtc) +

2c

c− 1
RU (ĝ),

∆odds(ĝ) ≤ 2

c− 1
(γ + µ+ cmax

a,y
RUy

a
(ĝ)).

Proof. The upper bound of error is derived from Theorem C.2. For the unfairness, by definition

∆odds(ĝ) =
1

2

(∣∣∣εU0
0
(ĝ)− εU0

1
(ĝ)
∣∣∣+
∣∣∣εU1

0
(ĝ)− εU1

1
(ĝ)
∣∣∣) .

Based on the upper bound of group error from Theorem C.2, and the lower bound of it from
Theorem C.3, we have∣∣∣εU0

0
(ĝ)− εU0

1
(ĝ)
∣∣∣

≤ max
{ 2

c− 1
γ +

2

c− 1
LU0

1
(ĝ, gtc) +

2c

c− 1
RU0

0
(ĝ),

2

c− 1
γ +

2

c− 1
LU0

0
(ĝ, gtc) +

2c

c− 1
RU0

1
(ĝ)
}

(because c > 3)

=
2

c− 1
γ +

2

c− 1
max

{
LU0

1
(ĝ, gtc) + cRU0

0
(ĝ), LU0

0
(ĝ, gtc) + cRU0

1
(ĝ)
}

≤ 2

c− 1
(γ + µ+ cmax

a
RU0

a
(ĝ)).

Therefore,

∆odds(ĝ) ≤ 2

c− 1

(
γ + µ+

c

2

(
max

a
RU0

a
(ĝ) + max

a
RU1

a
(ĝ)
))

≤ 2

c− 1
(γ + µ+ cmax

a,y
RUy

a
(ĝ)).

Upper bound of Vacc. From Theorem C.2 we know that the group accuracy is upper bounded by
εUy

a
(ĝ) ≤ 2

c−1εUy
a

(gtc) + 2c
c−1RUy

a
(ĝ). The variance of group accuracy is defined as

Vacc(ĝ) = V ar({P(Ŷ = y|A = a, Y = y), ∀a, y})
= V ar({εUy

a
(ĝ), ∀a, y})

20



If we assume the same estimation error for all the groups when we use the upper bound to estimate
the group accuracy with εUy

a
(ĝ) = 2

c−1εUy
a

(gtc) + 2c
c−1RUy

a
(ĝ), then

Vacc(ĝ) = V ar

({
2

c− 1
εUy

a
(gtc) +

2c

c− 1
RUy

a
(ĝ), ∀a, y

})

When the teacher classifier has bounded unfairness with |εUy
a

(gtc) − εUy′
a′

(gtc)| ≤ γ, ∀a, a′, y, y′,
the variance of group accuracy would be mainly affected by the variance of group consistency loss
V ar({RUy

a
(ĝ), ∀a, y}). Therefore, this upper bound also suggests us to balance the consistency loss

while minimizing it.

Multi-sensitive attribute and multi-class cases. It is obvious that the Theorem 4.1 still holds for
the binary-sensitive attribute and multi-class case where Y = {1, 2, ..,M}. For the multi-sensitive
attribute case, the key problem is how to define the unfairness. If we define the equalized odds in
general cases to be the following one, then it is easy to see that Theorem 4.1 still holds.

∆odds(ĝ) =
1

|Y|
∑
y∈Y

max
a,a′∈A

∣∣∣εUy
a

(ĝ)− εUy

a′
(ĝ)
∣∣∣

D Details of Experiments

D.1 Synthetic Dataset

The 3dshapes dataset 2 [31] contains 480000 RGB images (the size is 64× 64× 3) of 3D objects.
Every image is generated by six latent factors (shape, object hue, scale, orientation, floor hue, wall
hue) which are annotated along with images. The sample spaces of these factors are shown in Table 4.

Factor Sample space

shape 4 values in [0, 1, 2, 3]
object hue 10 values linearly spaced in [0, 1]
scale 8 values linearly spaced in [0, 1]
orientation 15 values linearly spaced in [-30, 30]
floor hue 10 values linearly spaced in [0, 1]
wall hue 10 values linearly spaced in [0, 1]

Table 4: Latent factors in 3dshapes dataset.

How to simulate different types of distribution shift? By varying the marginal distribution of
latent factors and then sample images according to the distribution of latent factors, we can simulate
different distribution shifts. In this paper, we set the image as input X , and set class Y = shape,
sensitive attribute A = object hue, and a nuisance factor that might shift to be D = scale. We
consider a binary case, and restrict the shape to be in {0, 1} (i.e. {cube, cylinder}) and object hue
to be in {0, 1} (i.e. {red, yellow}). In our experiments, we simulate four types of distribution shift.
Their specific settings are shown in Table 5. We show examples from two domains under different
shifts in Figure 7.

D.2 Real Datasets

UTKFace3 [71] is a face dataset with images annotated with age, gender, and race. The data is
collected from MORPH, CACD and Web. In our experiments, we use the aligned and cropped face
images with ages larger than 10. We do gender classification which is a binary classification task, and
set sensitive attribute to be the race. We consider binary-sensitive attribute case in our experiment by
setting race to be white or non-white. The statistics of this dataset are shown in Table 6.

2https://github.com/deepmind/3d-shapes
3https://susanqq.github.io/UTKFace/
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Figure 7: Randomly sampled examples from two domains under different distribution shifts.

Factor Source Target

Sshift 1 P(Y,A) [0.1, 0.4, 0.4, 0.1] same

P(D) [ 4
16
, 4
16
, 3
16
, 1
16
, 1
16
, 1
16
, 1
16
, 1
16

] [ 1
16
, 1
16
, 1
16
, 1
16
, 1
16
, 3
16
, 4
16
, 4
16

]

Sshift 2 P(Y,A) [0.1, 0.4, 0.4, 0.1] [0.4, 0.1, 0.1, 0.4]

P(D) [ 1
8
, 1
8
, 1
8
, 1
8
, 1
8
, 1
8
, 1
8
, 1
8
] same

Dshift P(Y,A) [0.1, 0.4, 0.4, 0.1] same

P(D) [ 1
2
, 1
2
, 0, 0, 0, 0, 0, 0] [ 1

8
, 1
8
, 1
8
, 1
8
, 1
8
, 1
8
, 1
8
, 1
8
]

Hshift P(Y,A) [0.1, 0.4, 0.4, 0.1] [0.4, 0.1, 0.1, 0.4]

P(D) [ 1
2
, 1
2
, 0, 0, 0, 0, 0, 0] [ 1

8
, 1
8
, 1
8
, 1
8
, 1
8
, 1
8
, 1
8
, 1
8
]

Table 5: Simulate different distribution shifts. P(Y,A) is represented by the proportions of four
groups as [P(Y = 0, A = 0),P(Y = 0, A = 1),P(Y = 1, A = 0),P(Y = 1, A = 1)]. P(D) is
represented by the proportions of eight possible values of scale. Other factors have uniform marginal
distributions. Images in two domains are sampled according to the marginal distributions of six latent
factors.

FairFace4 [30] is another large-scale face dataset with images annotated with age, gender, and race
as well. Different from UTKFace, the data in FairFace is collected from Flickr, Twitter, Newspapers,

4https://github.com/joojs/fairface
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(Y,A) (Male, White) (Male, Black) (Female, White) (Female, Black)

UTK (S) train 3127 1508 2480 1450

test 1377 651 1027 617

FairFace (T) train 7796 4650 6946 5160

test 984 620 839 635

Table 6: Statistics of UTKFace and FairFace datasets.

and the Web. We also use images with ages larger than 10 in our experiments. We set the label to be
the gender and the sensitive attribute to be the race. See statistics in Table 6. All face images in UTK
and FairFace are resized to 96× 96× 3 in our experiments.

NewAdult5 [19] is a suite of datasets derived from US Census surveys. The data spans multiple
years and all states of the United States which is a good fit for studying distribution shifts. In our
experiments, we use 2018 data that span all states and do income classification with a threshold of
50,000 dollars. We set gender to be the sensitive attribute. We consider a problem that we train a fair
classifier in California (source domain) and deploy it in other states (target domain). The statistics are
shown in Table 7. The input contains 10 features (see Appendix B.1 in [19]) which are preprocessed
to one-hot embeddings in our experiments.

(Y,A) (High, Male) (High, Female) (Low, Male) (Low, Female)

CA (S) train 33258 22314 39224 42169

test 14839 9924 15990 17947

Other states (T) train 232162 140876 296826 351970

test 101934 57798 127654 150544

Table 7: Statistics of NewAdult dataset.

D.3 Experimental Settings

D.3.1 Experiments on 3dshapes

Model. We use a two-layer MLP with 512 hidden units as the encoder and one linear layer as the
classifier. The adversaries used in Laftr, CFair, and DANN are also two-layer MLP with 512 hidden
units. ReLU is used as the activation function.

Transformations. We use random center cropping and padding as the transformation functions in
consistency regularization. Such transformations can perfectly change the scale of the objects to
propagate labels from the source domain to the target domain.

Setup. We use SGD as the optimizer. We train every model with 200 epochs and select the best
model according to the model’s performance on the validation set. Base and Laftr only have access to
the source data, and the model selection is based on the source validation set. For other methods that
can access the unlabeled target data, the model selection is based on the labeled target validation set.
Since accuracy and fairness are both important metrics, we select the best model according to the
value of accuracy minus unfairness which is Acc−∆odds. The coefficients of the fairness loss and
consistency loss are both set to be 1. We run every method five times and report the mean and the
standard deviation.

5https://github.com/zykls/folktables
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D.3.2 Experiments on UTK-FairFace

Model. We use VGG16 and ResNet18 as the model in our experiments. The last linear layer is the
classifier, and all the previous layers construct the encoder. When we use VGG16 as the model, we
set every adversary used in Laftr, CFair, and DANN to be a two-layer MLP with 1024 hidden neurons.
When ResNet18 is the model, the adversary has 512 hidden neurons.

Transformations. We use RandAugment [18] as the transformation function which contains data
augmentations that are the best for the CIFAR-10 dataset. To restrict the transformations to be
group-preserving, we exclude augmentations that may change the color (so to change the race). The
transformation function used in our experiments contains AutoContrast, Brightness, Equalize, Identity,
Posterize, Rotate, Sharpness, ShearX, ShearY, TranslateX, and TranslateY. In this experiment, we use
a weak augmented (with random cropping and flipping) image as the original input x and a strong
augmented (with RandAugment) image as the transformed input t(x).

Setup. We use SGD as the optimizer. We train every model with 200 epochs and use the way
introduced in the 3dshapes experiment to select the best model. The coefficients of the fairness loss
and consistency loss are both set to be 1. We run every method five times and report the mean and the
standard deviation.

D.3.3 Experiments on NewAdult

Model. We use a 3-layer MLP with hidden sizes of (256, 512, 256) as the encoder and a 2-layer
MLP with a hidden size of 128 as the classifier. Every adversary is a two-layer MLP with 128 hidden
neurons.

Transformations. Studies on data augmentations for tabular data are very limited. In this paper, we
use random corruptions on the input features as the transformation function. There are ten features in
the input, and every time we only corrupt half of them. Additionally, for important factors that are
highly correlated with the label, including the OCCP (occupation), COW (class of worker), we do
not do any corruption. For factor SEX (gender), we do not do any corruption to preserve the group.
For continuous factors including AGEP (age), SCHL (educational attainment), and WKHP (work
hours), we do perturbations within a range. For other factors, we do uniformly sampling from their
value spaces as corruptions. We do such transformations based on our assumption that they do not
change the label. For example, two individuals that have five years of age gap but have the same
other features should have similar income, and two individuals that only differ in the place of birth
should have similar income. We admit that such transformations may not be the best ones. We need
better domain knowledge on income prediction to design more powerful transformations. We leave
the improvement of transformations for tabular data to future work.

Setup. We use SGD as the optimizer. We train every model with 200 epochs and use the metric
introduced in the 3dshapes experiment to select the best model. The coefficients of the fairness loss
and consistency loss are both set to be 1. We run every method five times and report the mean and the
standard deviation.

D.4 Baselines

Laftr is an adversarial learning method for algorithmic fairness. The adversary aims at accurately
predicting the sensitive attribute based on the representation, while the encoder aims at making it
hard. By adversarial learning, the representation will not contain information on sensitive attributes,
so the prediction based on it will be fair. We denote the data in each group to be Dy

a = {x ∈ D|A =
a, Y = y}. The fairness loss is designed to be

Lfair =
∑

(a,y)∈{0,1}2

1

|Dy
a|
∑
x∈Dy

a

|h(f(x))− a|.

where f is the encoder, h is the adversary. [42] prove that this loss is an upper bound of the equalized
odds. The adversary minimizes this loss, while the encoder maximizes this loss with a gradient
reversal layer.

CFair is similar to Laftr but uses two adversaries h′, and h′′ for two classes with a balanced error
rate (BER) defined as follows. We denote the data from one class to be Dy = {x ∈ D|Y = y}.

Lfair = BERD0(h′(f(x)) ‖ A) + BERD1(h′′(f(x)) ‖ A)
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where BERD0(h′(f(x)) ‖ A) = 1
2PD0(h′(f(x)) 6= A|A = 0) + 1

2PD0(h′(f(x)) 6= A|A = 1). In
practice, the balanced error rate is estimated by the following cost-sensitive cross-entropy loss.

PD0(h′(f(x)) 6= A|A = 0) ≤
CED0

0
(h′(f(x)) ‖ A)

PD0(A = 0)

Laftr+FixMatch uses the same framework as our method but with a standard consistency regulariza-
tion that does not care about group performance. The consistency loss is defined as

Lconsis(g) =
1

|D|
∑
x∈D

1(max(gtc(x)) ≥ τ)H(argmax(gtc(x)), g(t(x)))

where D denotes the entire dataset.

D.5 Time and Space Complexity

Compared with Base, Laftr, and CFair which only uses labeled source data, our method needs more
training time and memory since we use unlabeled target data as well. Compared with other baselines
that also use target data, such as Laftr+DANN, the time complexity of our method is comparable to
theirs. Nevertheless, our method needs much fewer parameters than Laftr+DANN since it requires
an adversary to do domain classification while we do not need it. Our method has the same model
parameters as that in Laftr but with an additional consistency loss.

E More Experimental Results

E.1 Additional Results on UTKFace-FairFace with a Different Data Setting

To evaluate our method in extreme circumstances, we conduct the UTKFace-FairFace experiment
with less labeled source data and more unlabeled target data (see Table 8). We also consider the race
"white" and "non-white". Are shown in Table 9, we get consistent results that our method outperforms
all baselines and can effectively transfer accuracy as well as fairness.

(Y,A) (Male, White) (Male, Non-white) (Female, White) (Female, Non-white)

UTK (S) train 1373 750 1650 1227

test 565 285 614 370

FairFace (T) train 11429 16574 8024 16838

test 1712 2453 1176 2518

Table 8: Statistics of UTK and FairFace datasets used in Table 9.

Source Target
Acc Unfairness Acc Unfairness

Method Vacc ∆odds Vacc ∆odds

Base 89.93±0.43 2.79±0.74 4.65±0.44 73.48±0.56 7.49±3.50 6.09±1.07
Laftr 90.61±0.33 1.28±0.43 3.62±1.17 73.29±0.70 5.42±1.33 7.78±1.77
CFair 90.68±0.35 1.20±0.59 3.61±0.93 73.82±0.81 5.71±1.54 7.37±1.40

Laftr+DANN 90.53±0.98 1.59±0.97 4.62±1.24 74.44±1.38 6.94±1.53 10.26±1.85
CFair+DANN 90.23±0.88 1.82±0.97 4.96±1.15 74.53±1.46 9.27±2.16 9.96±1.49
Laftr+FixMatch 95.01±0.10 1.37±0.44 4.65±1.00 83.77±0.45 11.58±1.16 6.56±1.74
CFair+FixMatch 95.37±0.24 1.13±0.21 3.58±0.90 83.62±0.51 11.96±1.05 5.29±1.76
Ours (w/ Laftr) 94.77±0.33 1.35±0.70 3.28±0.79 84.65±1.13 2.92±0.72 6.99±0.41
Ours (w/ CFair) 94.92±0.43 1.09±0.30 3.00±1.09 84.71±1.10 3.57±0.60 7.34±0.91

Table 9: Transfer fairness and accuracy from UTKFace to FairFace with less source data.
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Source Target
Acc Unfairness Acc Unfairness

Transformation Vacc ∆odds Vacc ∆odds

None 93.24 1.19 2.44 74.35 6.92 9.79
All 96.08 0.96 2.59 85.52 2.82 5.70
AutoContrast 94.82 1.12 2.66 79.69 5.55 7.48
Brightness 95.61 0.95 1.48 82.16 4.89 6.39
Color 95.53 1.07 1.28 81.32 6.66 8.22
Contrast 94.93 1.31 2.29 79.35 6.37 8.39
Equalize 95.15 1.47 2.33 79.17 5.88 6.91
Identity 96.21 1.03 1.31 81.58 3.44 7.29
Posterize 94.92 1.77 3.06 79.63 5.26 6.01
Rotate 96.13 0.72 1.83 84.33 3.80 6.34
Sharpness 95.73 1.03 2.64 81.26 5.33 7.09
ShearX 95.45 1.70 0.99 82.47 3.30 3.72
ShearY 96.25 0.54 1.75 84.26 3.96 6.07
Solarize 95.89 0.98 2.67 80.38 7.37 8.79
TranslateX 96.11 0.89 1.79 83.49 2.31 6.13
TranslateY 95.53 0.97 2.83 83.04 7.16 6.17

Table 10: Results by using different transformations in our method. Average results of three trials.

E.2 Additional Results on UTKFace-FairFace with Different Transformations

To investigate the effect of different transformations in our method, we evaluate 14 transformations
in RandAugment and report the results in Table 9. All the transformations can improve the accuracy
in both domains. The effect on fairness varies. We find that Solarize, Color, and TranslateX increase
the unfairness in the source domain the most, and Contrast, Color and Solarize have the highest
unfairness in the target domain. Note that, it does not mean that these augmentations always lead to
unfairness but that they are not suitable for our method. Recall that our theory and algorithm are built
upon the intra-group expansion assumption. Transformations like Contrast, Color, and Solarize may
change the sensitive attribute "race" and break this assumption. Thus, in our experiments (Table 1)
we use all the transformations excluding Contrast, Color, and Solarize.

E.3 A Byproduct: Alleviate the Disparate Impact of Semi-supervised Learning

[76] find that semi-supervised learning methods may have a disparate impact. The classes that
have high accuracy on labeled data are likely to benefit more from semi-supervised learning on
unlabeled data. We test this argument on CIFAR-10 with FixMatch as the semi-supervised learning
method. We use ResNet18 as the model. We randomly sample 500 images to be labeled data and
treat others as unlabeled data. We use the benefit ratio proposed in [76] as the metric for the benefit
of semi-supervised learning, defined as

BR(D) =
asemi(D)− abaseline(D)

aideal(D)− abaseline(D)
. (8)

whereD denotes the data from one class. asemi(D) is the model’s test accuracy after semi-supervised
learning, abaseline(D) is the test accuracy of the base model that is trained on labeled data, and
aideal(D) is the test accuracy of the ideal model where all data are labeled. We evaluate the benefit

Figure 9: With fair consistency regularization, our method alleviates the disparate impact of FixMatch.

26



ratio of FixMatch on ten classes. As the blue line in Figure 9 shows, the rich gets richer, and the
poor gets poorer after semi-supervised learning. Our method (without using Laftr) can directly apply
to this task. By using the proposed fair consistency regularization (red line in Figure 9), we can
significantly improve the benefit ratio of the poor classes. Therefore, fair consistency regularization is
a byproduct of this paper which is able to alleviate the disparate impact of semi-supervised learning.

F Impact and Limitations

The fairness of machine learning is a critical problem in today’s real-world applications. When
distribution shifts happen, the collapse of fair systems will cause unexpected discrimination, resulting
in severe negative social impacts. The fairness that is robust to distribution shifts is essential but is less
explored. In this paper, the theoretical analysis of how fairness changes under different distribution
shifts sheds light on the deep reasons for the collapse of fairness. The theory-guided self-training
algorithm proposed in this paper explores a promising way to tackle distribution shifts. We hope our
work will inspire more algorithms for this important and practical task.

The major limitation of our method is that it strongly relies on pre-defined transformations as all the
other self-training methods. The transformations are designed to be group-preserving based on our
prior knowledge. Our experiments show that self-training with less powerful transformations has
limited ability in propagating labels from source to target (i.e. transfer accuracy). Valid transformation
functions on image data are thoroughly studied in existing work, while transformations on non-image
data such as tabular data are much less explored. Our method with more powerful transformations on
tabular data is expected to have significant improvement. Future work is encouraged to relax this
limitation, such as by using a generative model as the transformation function.
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