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Abstract

Data augmentation is a critical contributing factor to the success of deep learning
but heavily relies on prior domain knowledge which is not always available. Recent
works on automatic data augmentation learn a policy to form a sequence of aug-
mentation operations, which are still pre-defined and restricted to limited options.
In this paper, we show that a prior-free autonomous data augmentation’s objective
can be derived from a representation learning principle that aims to preserve the
minimum sufficient information of the labels. Given an example, the objective
aims at creating a distant “hard positive example” as the augmentation, while still
preserving the original label. We then propose a practical surrogate to the objective
that can be optimized efficiently and integrated seamlessly into existing methods
for a broad class of machine learning tasks, e.g., supervised, semi-supervised, and
noisy-label learning. Unlike previous works, our method does not require training
an extra generative model but instead leverages the intermediate layer represen-
tations of the end-task model for generating data augmentations. In experiments,
we show that our method consistently brings non-trivial improvements to the three
aforementioned learning tasks from both efficiency and final performance, either
or not combined with strong pre-defined augmentations, e.g., on medical images
when domain knowledge is unavailable and the existing augmentation techniques
perform poorly. Code is available at: https://github.com/kai-wen-yang/L.PA3.

1 Introduction

Data augmentation has emerged as an effective data pre-processing or data transformation step to
mitigate overfitting [31], to encourage local smoothness [57], and to improve generalization [6] in
machine learning pipelines such as deep neural networks. Notably, effective data augmentation,
which incorporates class-related data invariance and enriches the in-class sample, is one of the key
contributing factors for representation learning with weak or self supervision [9, 23].

Given a task, we aim to generate “good” augmentations efficiently. As part of the machine learning
model pipeline, an autonomous domain-agnostic but task-informed data augmentation mechanism is
desirable. However, a number of challenges exist. (1) Existing augmentation operators are usually
hand-crafted based on domain expert knowledge, which is not always available in some domain [49].
For example, widely used augmentations for natural images are not effective on medical images.
Moreover, the performance of those machine learning pipelines drastically varies with different
choices of data augmentations. (2) Existing few autonomous augmentation approaches developed
lately are neither fully autonomous nor universally applicable to varying domains. Although a
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few autonomous data augmentation approaches have been developed in recent years [14, 12], they
train policies to produce a sequence of pre-defined augmentation operations and thus are not fully
automated and are limited to a few domains. (3) Existing augmentations usually do not fully utilize the
task feedback (i.e., task-agnostic) and may be sub-optimal for the targeted task. A class of automated
data augmentation methods train an extra data generative model to generate new augmentations from
scratch given a real-world example [2]. However, they require training a generative model, which is a
non-trivial task in practice that may either relies on strong prior knowledge or a substantial increased
number of training examples.

In this paper, we first investigate the conditions required to generate domain-agnostic but task-
informed data augmentations. Consider a representation learning pipeline, we started from a proba-
bilistic graphical model that describes the relations among the label Y, the nuisance N, the example
X, its augmentation X', and the latent representations Z. We argue that a minimum-sufficient repre-
sentation for the task preserves the label information but excludes other distractive information from
the nuisance. We then investigate the conditions for an augmentation X' that results in learning such
preferred representations. These conditions motivate an optimization objective that can be used to
produce automated domain-agnostic but task-informed data augmentations for each example, without
replying on pre-defined augmentation operators or specific domain knowledge. Consequently, our
proposed optimization objective addresses all aforementioned challenges.

For practicality, we further propose a surrogate of the derived objective that can be efficiently
computed from the intermediate-layer representations of the model-in-training. The surrogate is built
upon the data likelihood estimation through perceptual distance [24] defined on the intermediate
layers’ representations. Specifically, our proposed surrogate objective maximizes the perceptual
distance between X and X', under a label preserving constraint on the model prediction of X’. This
problem can be efficiently solved by optimizing its Lagaragian relaxation. Thereby, given X and its
label Y, the solution to our surrogate objective generates “hard positive examples” for X without
loosing its label information. Once generated, X’ is used to train the model towards producing the
minimum-sufficient representation Z for the targeted task. Our proposed method, named Label-
Preserving Adversarial Auto-Augment (LP-A3), does not require any extra generative models such
as Generative Adversarial Networks, unlike previous automated augmentation methods [40]. We
further propose a sharpness-aware criterion selecting only the most informative examples to apply
our auto-augmentation on so it does not cause expensive extra computation.

Our proposed LP-A3 is a general and autonomous data augmentation technique applicable to a variety
of machine learning tasks, such as supervised, semi-supervised and noisy-label learning. Moreover,
we demonstrate that it can be seamlessly integrated with existing algorithms for these tasks and
consistently improve their performance. In experiments on the three learning tasks, we equip LP-A3
with existing methods and obtain significant improvement on both the learning efficiency and the final
performance. The generated augmentations are optimized for the model-in-training in a target-task-
aware manner and thus notably accelerate the slow convergence in computationally intensive tasks
such as semi-supervised learning. It is worth noting that our augmentation can consistently bring
improvement to tasks without domain knowledge or strong pre-defined augmentations such as medical
image classification, on which previous image augmentations lead to performance degeneration.

2 Related work

Hand-crafted vs. Autonomous Data Augmentations. Most of the existing widely used data aug-
mentations are hand-crafted based on domain expert knowledge [30, 39, 29, 9, 13]. For example,
MoCo [16] and InstDis [47] create augmentations by applying a stochastic but pre-defined data aug-
mentation function to the input. CMC [39] splits images across color channels. PIRL [29] generates
data augmentations through random JigSaw Shuffling. CPC [30] renders strong data augmentations
by utilizing RandAugment [12], which learns a policy producing a sequence of pre-defined augmen-
tation operations selected from a pool [14]. AdvAA [60] designs a adversarial objective to learn the
augmentation policy. [12, 14, 60] are all based on pre-defined operations which is not available in
certain domains, and their objective cannot guarantee the label-preserving of the generated data which
may lead to suboptimal performance. “InfoMin” principle of data augmentation is proposed [40] to
minimize the mutual information between different views (equivalent to min I (X, X")). However,
their theory depends on access to a minimal sufficient encoder which may be difficult to obtain. In
contrast, we not only consider how to generate optimal views or augmentations, but also consider



generating the minimal sufficient representation. The algorithm [40] deploys a generator to render
augmentation (which may be costly to train especially on non-natural image domains), while we
directly learn the augmentation through gradient descent w.r.t. the input.

Information Theory for Representation Learning. Information theory is introduced in deep learn-
ing to measure the quality of representations [42, 1]. The key idea is to use information bottleneck
methods [41, 42] to encourage the learned representation being minimal sufficient. Mutual informa-
tion objectives are commonly used in self-supervised learning. For example, InfoMax principle [27]
used by many works aims to maximize the mutual information between the representation and the
input [39, 4, 46]. But simply maximizing the mutual information does not always lead to a better
representation in practice [43]. In contrast, InfoMin principle [40] minimizes the mutual information
between different views. Both InfoMax and the InfoMin principles can be associated with our
proposed representation learning criteria in Section 4, as they lead to sufficiency and minimality of
the learned representation, respectively.

Augmentation in Self-supervised Contrastive Learning. Self-supervised Contrastive Representa-
tion Learning [30, 18, 47, 39, 35, 9] learn representation through optimization of a contrastive loss
which pulls similar pairs of examples closer while pushing dissimilar example pairs apart. Creating
multiple views of each example is crucial for the success of self-supervised contrastive learning. How-
ever, most of the data augmentation methods used in generating views, although sophisticated, are
hand-crafted or not learning-based. Some use luminance and chrominance decomposition [39], while
others use random augmentation from a pool of augmentation operators [47, 9, 4, 16, 53, 37, 62, 65].
Recently, adversarial perturbation based augmentation has been proposed to generate more challeng-
ing positives/negatives for contrastive learning [51, 19].

Augmentation in Semi-supervised Learning. Data augmentation plays an important role in semi-
supervised learning, e.g., (1) consistency regularization [33, 34] enforces the model to produce similar
outputs for a sample and its augmentations; (2) pseudo labeling [25] trains a model using confident
predictions produced by itself [38] for unlabeled data. Data augmentations are critical [23, 7] because
they determine both the output targets and input signals: (1) accurate pseudo labels are achieved by
averaging the predictions over multiple augmentations; (2) weak augmentations (e.g., flip-and-shift)
are important to produce confident pseudo labels, while strong augmentations [14, 12]) are used to
train the model and expand the confidence regions (so more confident pseudo labels can be collected
later). Data selection [55, 63] for high-quality pseudo labels is also critical and its criterion is
estimated on augmentations, e.g., the confidence [8] or time-consistency [63] of each sample.

Augmentation in Noisy-label Learning Two primary challenges in noisy-label learning is clean
label detection [28, 15, 20] and noisy label correction by pseudo labels [32, 3, 26]. Both significantly
depend on the choices of data augmentations since the former usually relies on confidence threshold-
ing and augmentations help rule out the overconfident samples, while the latter relies on the quality
of semi-supervised learning. Moreover, as shown in previous works [26, 64], removing strong aug-
mentations such as RandAugment can considerably degenerate the noisy label learning performance.

3 Preliminaries

Basics of Information Theory Our analyses make frequent use of information theoretical quan-
tities [11]. Given a joint distribution Px y and its marginal distributions Px, Py, we define
their entropy as H(X,Y) = Ex vy[—log P(z,y)], H(X) = Ex[—log P(x)], and H(Y) =
Ev|[—log P(y)]. Furthermore, we define the conditional entropy of X given Y as H(X|Y) =
Ey[-log H(X|y)] = H(X,Y) — H(Y). Finally, we define the mutual information between X and
Yas I(XAY)=H(X)-HX|Y)=H(X)+ HY)- HZX,Y).

Notations and Problem Setup. In this paper, we use bold capital letters (e.g., X,Y) to denote
random variables, lowercase letters (e.g., x, y) to denote their realizations, and curly capital letters
(e.g., X, ) to denote the corresponding sample spaces.

Since we mainly consider supervised and semi-supervised problems, we define Let Px y be the joint
distribution of data observation X and label Y, where X is a random vector taking values on a finite
observation space X’ (e.g., images) and Y is a discrete random variable taking values on the label
space ) (e.g., classes). Our goal is to learn a classifier to predict y € ) from an observation x € X.
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Figure 1: Probabilistic graphical models of representation learning.

Task-nuisance Decomposition. To advance the analysis, we decouple the randomness in X into two
parts, one pertaining to the label and another independent to the label. Concretely, we define a random
variable nuisance N such that 1) the nuisance N is independent to the label Y, i.e., N 1L Y; and 2)
the observation X is a deterministic function of the nuisance N and the label Y, i.e., X = ¢g(Y,N)
for some g. Lemma 3.1 demonstrates that such a random variable always exists.

Lemma 3.1 (Task-nuisance Decomposition [1]). Given a joint distribution Px v, where Y is a
discrete random variable, we can always find a random variable N independent of Y such that
X = d(Y,N), for some deterministic function d.

Remarks. We can rewrite the conditions of task-nuisance decomposition in terms of information
theory. 1) Since the nuisance N is independent to the label Y, we have I(Y A IN) = 0; and 2) Since
the nuisance N and the label Y determines the observation X, we have H(X|Y,IN) = 0.

4 Principles of Representation Learning: Theoretical Interpretation

4.1 What Is A Good Representation?

In real-world applications, the observation X is usually complex in a high-dimensional space X,
making it hard to directly learn a good classifier for Y. To remedy this curse of dimensionality,
it is important to learn a good representation of X, i.e., learn an encoder E(-) that maps the high-
dimensional observation X into a low-dimensional representation Z. We illustrate the process of data
generation and representation learning by a probabilistic graphical model as shown in Figure 1a.

An ideal encoder should keep the important information from X (e.g. label-relevant information) and
maximally discard the noise or nuisance of X, such that it is much easier to learn a classifier from Z
than from X. Based on the above intuition, we define an e-optimal representation of X, which has
sufficient information for classifying w.r.t. Y, while remaining little information of the nuisance.

Definition 4.0.1 (e-Minimal Sufficient Representation (e-Optimal Representation)). For a Markov
chainY — X — Z, we say thata representation Z of X is sufficient for Y if [[ZNY) = (X ANY),

and Z is e-minimal sufficient for Y if Z is sufficient and I(ZNX) < I(Z N X) + € for all Z satisfying
HZAY)=I(XAY).

Remark. Due to the property of mutual information, we have 0 < ¢ < H(X). The lower ¢ is, the
more “minimal” the representation is. When € = 0, the representation is minimal sufficient, which is
a desirable property as characterized by many prior works [42, 1].

Definition 4.0.1 characterizes how good a sufficient representation is, based on how much redundant
information is remained. Recall that X comes from a deterministic function of label Y and nuisance
N. The redundancy of Z can also be measured by the mutual information between Z and N.
Achille et al. [1] prove that if a representation Z is sufficient and is invariant to nuisance N, i.e.,
I(Z ANN) = 0, then Z is also minimal. However, since N is not known, it is hard to directly
encourage the representation to be invariant to IN.

Can we learn an e-minimal sufficient representation in a principled way? Inspired by the recent
success of data augmentation techniques in self-supervised learning and semi-supervised learning, we
find that data augmentation can implicitly encourage the representation to be invariant to the nuisance
N. However, most augmentation methods are driven by pre-defined transformations, which do not
necessarily render a minimal sufficient representation. In the next section, we will analyze the effects
of data augmentation in representation learning in details.



4.2 Proper Data Augmentation Leads to (Near-)Optimal Representation

In this section, we investigate the role of data augmentation for learning good representations. We
first make the following mild assumption on the underlying relationship between X and Y.

Assumption 4.1. There exists a deterministic function 7 : X — ), i.e., H(Y|X) = 0.

Assumption 4.1 requires that there exists a “perfect classifier” that identifies the label y of the
observation z with no error, which is common in practice. Note that for data with ambiguity, a tie
breaker can be used to map each observation to a unique label. Therefore, Assumption 4.1 is realistic.

Let g be a deterministic augmentation function such that X’ := ¢g(X, A) is the augmented data,
where A is a random variable denoting the augmentation selection. For example, if X = x is an
image sample, A = a is the augmentation “rotate by 90 degree”, then X’ = 2’ is the corresponding
rotated image sample. We learn an encoder E(-) that maps the augmented data X’ to a representation
Z’. With this augmentation processes, the graphical model in Figure 1a is updated to Figure 1b.

We show in the theorem below that if the augmentation process preserves the information of Y, Z’
can be sufficient for Y. Furthermore, if the augmented data X’ contains no information of the original
nuisance N, Z’ will be invariant to N and thus will become a minimal sufficient representation.

Theorem 4.2. Consider label variable Y, observation variable X and nuisance variable N satisfying
Assumption 4.1. Let A be the augmentation variable, X' be the augmented data, and Z* be the
solution to
argmaxy [(Z'ANX')or I(Z' NY)
subjectto  I(Z' N A) = 0.
Then, Z* is a e-minimal sufficient representation of X for label Y if the following conditions hold:
Condition (a): (X' NY) = (X AY) (X' is an in-class augmentation) and
Condition (b): I(X' AN) < € (X’ does not remain much information about N).

(D

Remarks. (1) The objective of learning Z* can be either task-independent (maximizing I(Z’ A X')),
or task-dependent (maximizing I(Z’ A Y)). The former matches the “InfoMax” principle commonly
used in self-supervised learning works [27, 18], while the latter can be achieved by supervised training
(e.g., learning a classifier of Z for Y with cross-entropy loss).

(2) When Condition (b) holds for ¢ = 0, representation Z’ is optimal (minimal sufficient).

Theorem 4.2, proved in Appendix B.1, shows that if we have a good augmentation that maximally
perturbs the label-irrelevant information while keeps the label-relevant information, then the repre-
sentation learned on the augmented data can be minimal sufficient. Theorem 4.2 serves as a principle
of constructing augmentation. Based on this principle, we propose an auto-augment algorithm in
Section 5, and verify the algorithm in a wide range tasks in Section 6.

5 Proposed Methods

the augmentation using the representation learning network F'(-). ¥— F

Then we show how to plug our augmentation into the representation

learning procedure of F(-). L Y J
F(-;6)

5.1 Label-Preserving Adversarial Auto-Augment (LP-A3) Figure 2: Network architecture.

In this section, we introduce our data augmentation and how to obtain
ﬂ@ y

As illustrated in the previous section, an ideal data augmentation X' for representation learning should
contain as little information about nuisance N as possible while still keeping all the information about
class Y. Since N is not observed, we transfer the objective minx: I(X’ A N) into minx: I (X’ A X)
since I(X' AX) = I(X' AN) 4+ I(X’ AY) and I(X’ AY) is a constant under the constraint
I(X'ANY) =I(XAY). Thus the optimization problem is:

rr)l(ipI(X’/\X) st. (X'AY)=IXAY). 2)
Implementation of Mutual Information. To solve Equation (2), computing the mutual information

terms I (X' A X), I(X’ AY) and I(X AY) is required. Next, we will show how to compute these
terms using a neural net classifier F'(-;6), parameterized by 0, that consists of two components:



a representation encoder E(-) and a predictor M (-). Specifically, F(-;0) = M(E(-)), where the
representation encoder E(-) maps input X into representation Z, and the predictor M (-) predicts the
class of Z. This is demonstrated in Figure 2.

Constraint implementation. Since I(X' AY) = H(Y) — H(Y|X') and IX AN Y) =
H(Y) — H(Y|X), we can remove the H(Y) term in both sides and turn the constraint into
H(Y|X) = H(Y|X’). Thus we only need to compute the conditional entropy of Y given X or X’,
which can be approximated through the neural net classifier: H(Y|X) = Ex v [-logP(y|z)] =
Ex . v [-log(F(z;0)[y])], where we use softmax class probability F(z;8)[y] to approximate the
likelihood P(y|x). And H(Y|X’) can be computed similarly.

Objective implementation. Then we show how to compute the objective I(X’' A X). Since I(X’ A
X) = H(X) — H(X|X’) where H(X) is not related to X’ and thus can be neglected, we only
need to compute H(X|X') = Ex x/ [-logP(x|z’)]. We use the Learned Perceptual Image Patch
Similarity (LPIPS) [59] between z and 2’ to compute the data likelihood P(z|x’) since LPIPS
distance is a widely used metric to measure the data similarity in data generative model field [21, 58]
and many previous work has shown that LPIPS distance is the best surrogate for human comparisons
of similarity [59, 24], compared with any other distance including ¢, and ¢/, distance. Although such
surrogate may have error, it worth noting that Theorem 4.2 allows the surrogate to have e error. The
LPIPS distance is defined by the ¢ distance of stacked feature maps from a neural network. Here
we use F'(-; 6) to compute the LPIPS distance. Let F'(-; 0) has L layers and F;(-; #) denotes these

channel-normalized activations at the [-th layer of the network. Next, the activations are normalized

again by layer size and flattened into a single vector ¢(x) £ (Flu()xfl) s sz(f;i) )
1

are the width and height of the activations in layer /, respectively. The LPIPS distance between input

2 and the augmentation z’ is then defined as:

LPIPS(z, ) £ ||¢(x) — p(a") 2. 3)

, where w; and h;

Constraint Relaxation for Efficiency. Now, given an input z, its data augmentation z’ can be
computed by solving the following optimization problem using the neural network F'(-; 8) in practice:

min —[|¢(z) — ¢(2')]l2 st logF(2';0)[y] = logF'(x; 0)[y]. (4)

The equality constraint in Equation (4) is too strict to solve since it may be inefficient to search for an
2’ that exactly satisfies logF'(z'; 0)[y] = logF'(z;0)[y]. Thus we relax the constraint with a small
o and change the constaint into: logF'(z'; 0)[y] > logF(x;0)[y] — o. It’s worth noting that if o is
sufficiently small, the label is still well preserved. There is a trade-off to the value of o, we search o
to find a sweet spot where the problem is practical to solve and meanwhile the label is well preserved.

There are many off-the-shelf methods that solve Equation (4), and here we apply the Fast Lagrangian
Attack Method [24] as a demonstration. We initialize =’ by x plus a uniform noise. And we find the
optimal z’ by solving the following the Lagrangian multiplier function and gradually scheduling the
value of the multiplier \:

min —[|6(z) — 8(2") [ + Amax(0, logF (x; 6) y] — logF (a'; )[y] — o) 5)

The detailed procedure of the algorithm can be found in Appendix 2. The algorithm has a similar
form as adversarial attack [61, 52] in that they both find an optimal augmentation z’ by adding
perturbations to the original image x. However, the difference is that we aim to generate hard
augmentation that preserves the label, while adversarial attack aims to change the class label.

5.2 Plugging LP-A3 into a Representation Learning Task

One primary advantage of LP-A3 is that it only requires a neural net F'(-; ) to produce the aug-
mentation and F'(; #) can be the current representation learning model, so we can plug LP-A3 into
any representation learning procedure requiring no additional parameters, which is plug-and-play
and parameter-free. At each step, we first fix F'(-; 6) to generate the augmentation 2’ by solving
Equation (5) using Algorithm 2. And then we train F'(-; #) by running the original representation
learning algorithm using our augmentation z’.

Data selection. It is not necessary to find hard positives for every sample. To save more compu-
tation, we can apply a sharpness-aware criterion, i.e., time-consistency (TCS) [63], to select the most



informative data (7% data with the lowest TCS in Algorithm 1) that have sharp loss landscapes, which
indicate the existence of nearby hard positives, and we only apply LP-A3 to them. It reduces the
computational cost without degrading the performance because (1) the improvement brought by aug-
mentations is limited for examples whose loss already reaches a flat minimum, while the model does
not generalize well near examples with a sharp loss landscapes; and (2) the hard positives for examples
with flat loss landscape are distant from the original ones and might introduce extra bias to the training.

LP-A3 is compatible with any representation learning task minimizing aloss L : X x Y x W — R,
which takes in a data batch and a model to output a loss value. ) here denotes the groundtruth label
for labeled data and pseudo label for unlabeled data. The pseudo-code of plugging LP-AS into the
representation learning procedure with TCS-based data selection is provided in Algorithm 1.

Algorithm 1 Plug LP-A3 into any representation learning procedure

Input: Loss for the targeted task L : X x Y x W — R ; training data (X, )); neural network
F(+;0); class preserving margin ¢; data selection ratio 7; learning rate 7;

Output: Model parameter 6 trained with LP-A3

1: while not converged do

2 Samplebatcth {(Ilvyl)w"a(xb)yb)} ~ (X,y),

3:  Data selection: S < 7% data with the lowest TCS in B;

4:  LP-AS3: Freeze 6 and solve Equation (5) using Algorithm 2 for every sample in S, resulting in

an augmented set A = {(z],y1), ..., (z,,, Ym )} of size m = |S];
5:  Learning with LP-A3 augmented data and original data: 0 <— 6 —n[VoL(B;0) + Vo L(A;0)];
6: end while

6 Experiments

In this section, we apply LP-A3 as a data augmentation method to several popular methods for
three different learning tasks, i.e., (1) semi-supervised classification; (2) noisy-label learning and
(3) medical image classification. In all the experiments, LP-A3 can (1) consistently improve the
convergence and test accuracy of existing methods and (2) autonomously produce augmentations
that bring non-trivial improvement even without any domain knowledge available. A walk-clock time
comparison is given in the Appendix, showing LP-A3 effectively reduces the computational cost. In
addition, we conduct a thorough sensitivity study of LP-A3 by changing (1) label-preserving margin
and (2) data selection ratio on the three tasks. More experimental details can be found in the Appendix.

RandAugment ScoreCAM

Original Image  ScoreCAM LP-A3 ScoreCAM

Sample 1

Sample 2

Sample 3

031 0.27 0.14
Figure 3: Visualization of medical image augmentations on the test set of DermaMnist. Blue (red) bounding
box marks the correct (wrong) prediction of a ResNet18 classifier and its confidence on the groundtruth class is
reported beneath the box. ScoreCAM [44] produces a heatmap highlighting important areas (by yellow color) of
an image that a neural net mainly relies on to make the prediction.
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Figure 4: Convergence Curve when applying LP-A3 to different tasks and baselines.

6.1 Medical Image Augmentations produced by LP-A3 vs. RandAugment

We visualize data augmentations generated by LP-A3 and RandAugment [12] on the testset of
DermaMnist [50] with a ResNet-18 classifier and its confidence on the groundtruth class in Fig. 3.
We also use ScoreCAM [44] as an interpretation method to highlight the area in each image that
the classifier relies on to make the prediction. we find that LP-A3 preserves relevant derma areas
highlighted by ScoreCAM and they are consistent with those in the original image. On the con-
trary, RandAugment changes the color or occludes those derma areas, resulting in highly different
ScoreCAM heatmaps and hence wrong predictions (red bounding box in Fig. 3). Instead, LP-A3 can
preserve the class information and mainly perturb the class-unrelated area in the original image.

6.2 Applying LP-A3 to Three Different Representation Learning Tasks

Here we apply LP-A3 to three different tasks by pluging LP-A3 to existing baselines of each task.
Fig. 4 shows that LP-A3 greatly speeds up the convergence of each baseline.

Semi-supervised learning  To evaluate how LP-A3 improves the learning without sufficient labeled
data, we conduct experiments on semi-supervised classification on standard benchmarks including CI-
FAR [22] and STL-10 [10] where only a very small amount of labels are revealed. We apply LP-A3 in
FixMatch [36] and compare it with the original FixMatch and InfoMin [40], a learnable augmentation
method for semi-supervised learning. Their results are reported in Table 1, where LP-A3 consistently
improves FixMatch and the improvement becomes more significant if reducing the labeled data.
It’s worth noting that the original FixMatch already employs a carefully designed set of pre-defined
augmentations [13] that have been tuned to achieve the best performance, indicating that LP-AS is
complementary to existing data augmentations. Moreover, LP-A3 also outperforms InfoMin by a
large margin (> 5%), which indicates that LP-A3 is also superior to existing learnable augmentations.

Table 1: Semi-supervised Learning performance on CIFAR with different amounts of labeled data. ¥ denotes
results reproduced using the official code. FixMatch and LP-A3 are trained for 2'® SGD steps. InfoMin’s
results on CIFAR are missing since their paper only reports the result on STL-10. Error bars (mean and std) are
computed over three random trails.

Dataset CIFAR10 CIFAR100 STL-10

# Label 40 250 4000 400 2500 10000 1000
InfoMin (RGB) [40] - - - - - - 86.0
InfoMin (YDbDr) [40] - - - - - - 87.0
FixMatch [36]® 89.514+3.14  93.814+0.29  94.6640.13  49.304+2.45  67.21+094  74314+035  91.5940.16

FixMatch [36] + LP-A3  92.39+1.21  94.03+£0.31  95.11+0.17 56.16+£1.82  72.23+£0.57 77.11+£0.16  92.63+0.14

Noisy-label Learning Data augmentation is critical to noisy-label learning by providing different
views of data to prevent neural nets from overfitting to noisy labels. We apply LP-A3 to two state-of-
the-art methods DivideMix [26] and PES [5] on CIFAR with different ratios of noise labels. LP-A3
can consistently improve the performance of these two SoTA methods and the improvement is more
significant in more challenging cases with higher noise ratios, e.g., on CIFAR100 with 90% of labels
to be noisy, LP-A3 improves PES by > 15% (Table 2).

Medical Image Classification To evaluate the performance in specific areas without domain
knowledge, we compare LP-A3 with existing data augmentations on medical image classification
tasks from MedMNIST [50], which is composed of several sub-dataset with various styles of medical
images. We compare our LP-A3 with RandAugment [13] on training ResNet-18 and ResNet-50 [17].
We report the results in Table 3, where RandAugment designed for natural images fails to improve



Table 2: Noisy-label learning performance on CIFAR with different ratios of symmetric label noises.
§ denotes the results reproduced by the official code. Error bars (mean and std) are computed over
three random trails.

Dataset CIFAR10 CIFAR100

Noise Ratio 50% 80% 90% 50% 80% 90%
Mixup [56] 87.1 71.6 52.2 57.3 30.8 14.6
P-correction [54] 88.7 76.5 58.2 56.4 20.7 8.8
M-correlation [3] 88.8 76.1 58.3 58.0 40.1 14.3
DivideMix [26] 94.4 92.9 75.4 74.2 59.6 31.0
DivideMix+LP-A3 94.89+0.05 93.70+0.19 79.35+1.33 74.12+0.23 61.004+0.34 32.55+0.25
PES? [5] 94.89+0.12 92.15+0.23 84.984+0.36 74.19+0.23 61.47+0.38 21.1543.15
PES+LP-A3 95.10+0.14 93.26+0.21 87.71+0.36 74.57+0.25 62.98+0.49 40.61+1.10

Table 3: Medical Image Classification on MedMNIST [50]. All the models are trained for 100 epochs. Error
bars (mean and std) are computed over three random trails.

Method PathMNIST  DermaMNIST TissueMNIST BloodMNIST
ResNet-18 94.34+0.18 76.14£0.09 68.28+0.17 96.81+0.19
ResNet-18+RandAugment  93.524+0.09 73.71+0.33 62.031+0.14 95.00+0.21
ResNet-18+LP-A3 94.42+0.24 76.221+0.27 68.63+0.14 96.97+0.06
ResNet-50 94.47+0.38 75.244+0.27 69.69+0.23 96.91£0.06
ResNet-50+RandAugment  94.02+0.37 71.65+0.30 65.13£0.33 95.14£0.06
ResNet-50+LP-A3 94.57+0.07 75.71+0.22 69.89+0.08 97.01+0.32
OctMNIST  OrganAMNIST OrganCMNIST  OrganSMNIST
ResNet-18 78.67£0.26 94.21+0.09 91.81£0.12 81.57+0.07
ResNet-18+RandAugment  76.00+0.24 94.18+0.20 91.384+0.14 80.524+0.32
ResNet-18+LP-A3 80.27+0.54 94.73+0.21 92.41+0.22 82.28+0.38
ResNet-50 78.37£0.52 94.31+0.14 91.80£0.14 81.11+0.21
ResNet-50+RandAugment  76.63+0.58 94.59+0.17 91.10£0.12 80.47+0.37
ResNet-50+LP-A3 79.40+0.36 94.95+0.19 92.16+£0.23 82.15+0.08

the performance in this scenario. In contrast, LP-A3 does not rely on any domain knowledge brings
improvement to all the datasets, especially for OctMNIST where the improvement is over 1%. The
results indicate that hand-crafted strong data augmentations do not generalize to all domains but
LP-AS3 can autonomously produce augmentations guided by our representation learning principle
without relying on any domain knowledge.

.
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Figure 5: Sensitivity Analysis of label preserving margin ¢ and data selection ratio.

6.3 Sensitivity Analysis of Hyperparameters

Label preserving margin o: We evaluate how LP-A3 performs with different label preserving
margin o on the three tasks. The results are presented in Fig. 5, where a reverse U-shape is observed.
And LP-AS3 using all the evaluated o outperforms baselines, which indicates LP-A3 is robust to o.



Data selection ratio: We evaluate the performance of LP-A3 with different amount of data selected
on the three tasks. As shown in Fig. 5, selecting all the data does not perform the best since some
data’ augmentations are useless to apply data augmentation. Moreover, selecting only 30% data to
apply LP-A3 can outperform all baselines by a large margin, especially on MedMNIST where the
improvement is > 2%, which verifies the effectiveness of LP-A3 and our data selection method.

7 Conclusion

In this paper, we study how to automatically generate domain-agnostic but task-informed data aug-
mentations. We first investigate the conditions required for augmentations leading to representations
that preserves the task (label) information and then derive an optimization objective for the augmen-
tations. For practicality, we further propose a surrogate of the derived objective that can be efficiently
computed from the intermediate-layer representations of the model-in-training. The surrogate is built
upon the data likelihood estimation through perceptual distance. This leads to LP-A3, a general and
autonomous data augmentation technique applicable to a variety of machine learning tasks, such as
supervised, semi-supervised and noisy-label learning. In experiments, we demonstrate that LP-A3 can
consistently bring improvement to SoOTA methods for different tasks even without domain knowledge.
In future work, we will extend LP-A3 to more learning tasks and further improve its efficiency.
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Supplementary Material

A Algorithmic Details

A.1 Data Selection Via Time-Consistency

We use time-consistency (TCS) [63] to select informative sample to apply our augmentation, which
computes the consistency of the output distribution for each sample along the training procedure.
Specifically, TCS metric ¢! (z) for an individual sample is an negative exponential moving average of
a'(x) over training history before ¢:

) = e (~a (@) + (1 — 7)) (@) ®)
F (@) [y (a)
Fi@)ly' ()] @

where D7, (+||-) is Kullback-Leibler divergence, y*~!(z) is pesudo label (for unlabeled data) or real
label (for labeled data) for x at step ¢ and . € [0, 1] is a discount factor. Intuitively, the KL-divergence
between output distributions measures how consistent the output is between two consecutive steps,
and a moving average of a®(x) naturally captures inconsistency of - over time quantify. And larger
c'(x) means better time-consistency. We select top 7% sample with the lowest TCS to apply our data
augmentation because samples with small TCS tend to have sharp loss landscapes. These samples
provide more informative gradients than others and applying our model-adaptive data augmentations
can bring more improvement to their representation invariance and loss smoothness. In Fig. 5, we
conduct a thorough sensistivity analysis on 7% over three tasks and find that sample selection with
TCS can effectively improve the performance. Moreover, in this way, we do not need to apply our
augmentation to every training samples and thus save the training cost.

a'(z) £ Dk (F* ' (2)||F*(z)) + |log

A.2 Fast Lagaragian Attack Method

We use the fast lagaragian perceptual attack method (Algorithm 3 in [24]) to solve the Lagragian
multiplier function in Equation.(5), which finds the optimal z’ through gradient descent over 2,
starting at x with a small amount of noise added. During the T gradient descent steps, A is increased
exponentially form 1 to 10 and the step size is decreased. T’ is set to be 5 for all the experiments.

Algorithm 2 Fast Lagarangian Attack Method

Input:
Training data («,y); The class preserving margin o; Neural Network F'(-)
Output:
I: ' =z +0.01 *x N(0,1)
2: fort=1,...,T do
3 A« 1097
4 A =—Vullp(x) = ¢(z')]l2 — Amax(0,log F'(x; 0)[y] — logF(«'; 0)[y] — o)]
5. A =A/J||A
6: y=-¢€x(0.1)t/T
7 m e (F(e:0)ly] - F(a' +hA;0)[y)) /h
8: ' —zxz+(y/m)A
9: end for

B Additional Theoretical Results and Proofs

B.1 Proof of Theorem 4.2

Proof of Theorem 4.2. Problem (1) contains two versions of objectives for Z':
argmaxy, [(Z' A X') subjectto I(Z' A A) = 0, (8)
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or
argmaxy, [(Z' AY) subject to I(Z' A A) = 0. 9)

Both Problem (8) and Problem (9) lead to the e-minimal sufficient representation Z*. We first prove
the more challenging Problem (8) objective.

I. For Problem (8): argmaxy, I(Z’ A X') subject to [(Z' A A) = 0.

We first prove the sufficiency of Z*, then prove the e-minimality of Z*.

1) Proof of sufficiency

Since I(Z' AN X') = H(X') — H(X'|Z'), and H(X’) does not depend on Z’, we have that the
solution to Problem (8), Z*, minimizes H (X’|Z’) under constraint 7(Z’ A A) = 0.

Then, we show that Z* also minimizes H(X|Z’).

We know that I(X, A A Z'|X') = 0 because of the Markovian property. Since I(X, A AN Z'|X') =
H(X,AX")— HX,A|X',Z), we have

H(X,A|X’) = H(X7A|X',Z’). (10)

Then we can derive
H(X,A|Z’) — H(X,A|X’) = H(X,A\Z’) — H(X,A|X’7 Z) (11)
=I(X,AANX'|Z") (12)
:H(X’\Z')—H(X’\Z',X,A) (13)
= H(X'|Z") (14)

Equality (13) holds because X’ comes from a deterministic function of X and A. Since H (X, A|X)
does not depend on Z’, Z* minimizes H (X, A|Z’) as it minimizes H(X'|Z’).

Also, we known that I(Z* A A) = 0, so we can further obtain

H(X'|Z') = H(X,A|Z) (15)
= H(X|Z')+ H(A|Z') — I(X A A|Z)) (16)
= H(X|Z)+ H(A|Z') — H(A|Z') + H(A|X,Z) (17)
— H(X|Z') + H(A|X, Z') (18)
= H(X|Z), (19)

where Equation (19) holds because H (A |X,Z') < H(A|Z') = 0.
Therefore, Z* minimizes H (X|Z).

Following the similar procedure as above (Equation (10) to Equation (19)), we are able to show that

H(X|Z') = H(Y,N|Z') — H(Y,N|X) (20)

So Z* also minimizes H (Y, IN|Z’), which can be further decomposed into H(Y|Z')+ H(N|Z',Y).
Next we show by contradiction that H (Y|Z*) equals to H(Y|X) and thus I(Y A Z*) = I(Y A X).
Define L(Z') := H(Y|Z') + H(N|Z',Y) Assume that the optimizer Z* minimizes L, but does not
satisfy sufficiency, i.e., H(Y|Z*) > H(Y|X) = 0. We will then show that one can construct another
representation Z such that L(Z) < L(Z*), conflicting with the assumption that Z* minimizes L. The
construction of Z works as follows. Since the augmented data X' satisfies /(X' AY) = I(X AY)
(Condition (a) of Theorem 4.2), we have H(Y|X') = H(Y|X) = 0. Hence, there exists a function

7 such that 7/ (X’) = Y. Define Z := (Z*, 7(X’)), then we have
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L(Z) = H(Y|Z) + H(N|Z,Y) 1)

= H(Y|Z*,7(X')) + H(N|Z*,7(X'),Y) (22)
= H(Y|Z*,Y) + H(N|Z*,Y,Y) (23)
=0+ H(N|Z*,Y) (24)
< H(Y|Z*) + H(N|Z*,Y) (25)
— (") (26)

Therefore, the constructed Z conflicts with the assumption. We can conclude that any optimizer
Z* € argming H(Y|Z') + H(N|Z',Y) has to satisfy H(Y|Z*) = H(Y|X), which is equivalent
to I(Y AZ*) = I(Y A X). The sufficiency of Z* is thus proven.

As a result, the maximizer to Problem (8), Z*, satisfies [(Z* ANY) =I(X'ANY) =I(XAY).

2) Proof of e-Minimality

Since X is a deterministic function of Y and N, we have

IX'AX)=IX"AY,N) (27)
=I(X'AN)+ I(X’AY|N) (28)
<I(X'AY|N) +€ (29)

where the equality in Equation (27) holds because I(X' AX) > I(X' AY,N) and I(X' A X) <
I(X’ AY,N) both hold.

And we can derive
IX'ANY|IN) - I(XAY)=H(Y|N) - H(Y|X',N)—-H(Y) + H(Y|X)

= H(Y|X) - H(Y|X',N) (30)
< H(Y|X)
=0
Moreover, we know that
IXYAN)+IX'AY|N)=I(X"AY)+ I(Y ANIX') (31)
And we have I(Y AN) =0, so
IX'ANYIN) - I(XAY)=I(X'AY|N) - I(X'NY) 32
=I(YAN|X)>0
Combining (30) and (32), we have
IX'ANYIN)=I(XAY) (33)

Note that (33) holds for all sufficient statistics of X w.r.t. Y.
Then we first show that X’ is e-minimal of X w.r.t. Y by contradiction.

Assume there exists a random variable X satisfying I(X A'Y) = I(X A'Y), such that I(X A X) <
I(X'AX) —e

Then we have

IXAY|N)=I(XAX)-I(XAN) (34)
< I(X AX) (35)
<I(X'AX)—¢ (36)

=IX'ANY|N) +e—e¢ 37
=I(XAY) (38)
=I(XAY|N) (39)
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where (34) holds by replacing X’ with X in (28).
Hence, we geEI(X AY|N) < I(X A Y|N) which is impossible. So we have that there does not

exist such an X, and X' is e-minimal representation of X w.r.t. Y.

Then, since we have I(Z' AN) < I(X’ AN) < € (thanks to Data Processing Inequality), Z’ is also
a e-minimal sufficient statistic of X w.r.t. Y.

IL For Problem (9): argmaxy,, [(Z’ AY) subjectto I[(Z' A A) = 0.

Since the objective is to maximize I(Z’ AY), we only need to show that Z* achieves the maximum
mutual information with Y. According to the above proof for Problem (8), we know that there exist
Z’ suchthat I(Z' ANA) =0and I(Z' ANY) = I(X AY). Hence, the optimizer to Problem (9) must
satisfy sufficiency.

The proof of e-minimality is identical to the one under Problem (8).

B.2 Additional Theoretical Results on Augmentation Properties

The two conditions in Theorem 4.2, Condition (a) or Condition (b), requires that the augmentation X’
is (a) sufficient and (b) (¢)-minimal. These two conditions are closely related to some augmentation
rationales in prior papers. For example, Wang et al. [45] propose a symmetric augmentation,
which can result in Condition (a), as formalized in Lemma B.1 below. Furthermore, Tian et al. [40]
propose an “InfoMin” principle of data augmentation, that minimizes the mutual information between
different views (equivalent to min I(X, X')). We show by Lemma B.2 that this InfoMin principle
leads to the above Condition (b). In contrast, our Theorem 4.2 characterizes two key conditions of
augmentation and directly relate them to the optimality of the learned representation.

Lemma B.1 (Sufficiency of Augmentation). Suppose the original and augmented observations X
and X' satisfy the following properties:

PX=u,X'=0Y=y)=PX=0v,X"=ulY =vy), Vu,v,y (40a)
PX=ulY=9y)=PX =ulY =y) (40b)
Then the augmented observation X' is sufficient for the label Y, i.e., (X' NY) = (X AY).

Proof of Lemma B.1.
X)=2,Y =y)
IX'AY) PX' =2z, Y =y)l il 41
M) = P =X = oY =) “
PX' =z|Y =y)
= P =z|Y =y)P(Y =y)lo — — (42)
Z (X' =2|Y =y)P(Y =y) B PX —2]Y = ))P(Y =)
P(X =alY =y)
= PX=z|Y =y)P(Y =y)log - - 43)
2P =alY =n)PY =y)log = o N ey =)
PX)==zY =y)
= PX=zY=y)lo (44)
27 V1% B =) P(Y =)
— I(XAY) (45)
where the third equation utilizes the property of symmetric augmentation. O

Lemma B.2 (Maximal Insensitivity to Nuisance). If Assumption 4.1 holds, i.e., H(Y|X) = 0, the
mutual information I(X' A\ X) can be decomposed as

I(X'AX)=I(X'AN) + I(X'AY) (46)

Since X' is sufficient, i.e., (X' ANX) = I(X ANY) is a constant, minimizing I(X' A X) is equivalent
to minimizing I(X’ A N).

Lemma B.2 can be obtained by a simple adaptation from Proposition 3.1 by Achille and Soatto [1].
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Figure 6: Walk-clock time comparison on CIFAR100 with 2500 labeled data.

C Experiments

C.1 Implementation Details

All codes are implemented with Pytorch'. To train the neural net with LP-A3 augmentation, we apply
seperate batch norm layer (BN), i.e., agumented data and normal data use different BN, which is a
common strategy used by previous adversarial augmentations [19, 48, 51]. The only hyperparameters
for LP-A3 are label preserving margin ¢ and data selection ratio 7, which are tuned for each task
according to the results in Sec.6.3.

Semi-supervised learning We reproduce Fixmatch [36] based on public code? and apply LP-A3
to it. Following [36], we used a Wide-ResNet-28-2 with 1.5M parameters for CIFAR10, WRN-28-8
for CIFAR100, and WRN-37-2 for STL-10. All the models are trained for 28 iterations. o is set to
0.002 for CIFAR10 and STL-10, and 0.02 for CIFAR100 and 7 is set to be 90. Since FixMatch only
apply data augmentation to those unlabeled data, here LP-A3 is also applied to those unlabeled data
as data augmentation. For unlabeled data, label Y used in LP-A3 is the pesudo label generated by
FixMatch algorithm.

Noisy-label learning We reproduce DivideMix [26] and PES [5] based on their official code® and
apply LP-A3 to them as data augmentation. Following [26, 5], we used a ResNet-18 for CIFAR10
and CIFAR100. All the models are trained for 300 epochs. o is set to 0.002 for CIFAR10 and 0.02
for CIFAR100, and 7 is set to be 90. All the noise are symmetric noise. For noisy labeled data, label
Y used in LP-A3 is the pesudo label generated by DivideMix or PES algorithm respectively.

Medical Image Classification Here we follow the original training and evaluation protocol of
MedMNIST # and apply LP-A3 to the training procedure as data augmentation. ResNet-18 and
ResNet-50 are trained for 100 epochs with cross-entropy loss on all the multi-class classfication
subset of MedMNIST. o is set to 0.02 and 7 is tuned from {20,50,90} for each dataset. The
hyperparameters of RandAugment [13] is set to N = 3, M = 5 by following their original paper.

Sensitivity Analysis of Hyperparameters In Figure. 5, the experiments for semi-supervised learn-
ing are conducted on CIFAR100 with 2500 labeled data, the experiments for noisy-label learning are
conducted on CIFAR100 with 80% noisy label, and the experiments for medical image classification
are conducted on DermaMNIST with ResNet50.

"https://pytorch.org/

*https://github.com/kekmodel/FixMatch-pytorch
*https://github.com/LiJunnan1992/DivideMix, https://github.com/tmllab/PES
*https://github.com/MedMNIST/experiments
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Figure 7: Mutual information terms of LP-A3, RandAugment and CLAE during training.

Table 4: Semi-supervised Learning performance on ImageNet. We eualate the performance of
FixMatch and “FixMatch+LP-A3” at different training stages. Iter denotes training iterations.

100,000 Iter 250,000 Iter 400,000 Iter

FixMatch 44.45 58.79 62.87
FixMatch+LP-A3 51.22 60.15 63.67

C.2 Computational Cost

Although Algorithm 2 is a pretty fast algorithm to solve Lagragian multiplier function, it still requires
several gradient descent steps which is computationally expensive. One way to reduce computational
cost is to generate LP-A3 for every few epochs. To be specific, once LP-A3 is generated, it will be
saved and used to train the network for the next K epochs. When K = 1, it degenerates to the original
Algorithm 1. The walk-clock time comparison on CIFAR100 with 2500 labeled data is give in Fig. 6,
where we can see that LP-A3 (K = 10) and LP-A3 (K = 100) achieves much better accuracy than
baseline within the same training time. Moreover, LP-A3 (K = 10) and LP-A3 (K = 100) achieves
comparable accuracy as the original LP-A3 (K = 1) after convergence, indicating that LP-A3 is
quite informative and it takes several epochs for the neural net to learn from it.

C.3 Mutual Information Terms of Different Data Augmentation

In order to further analyze the properties of different data augmentations, here we report the value
of mutual information terms I(X’ A X) and I(X’ A Y) of training data generated by LP-A3,
RandAugment and CLAE [19] (an adversarial augmentation method) during the training procedure.
The results on CIFAR10 are given in Table. 7, where —I (X’ A X) is measured by the LPIPS distance
between z and 2’ and (X’ AY) is measured by the label preserving accuracy, i.e., the classification
accuracy of the current model on z’. We can clearly see that LP-A3 is the most different from
the original data (largest LPIPS distance) and at the same time preserves the label well. Although
RandAugment can also preserve label, as a pre-defined augmentation, it is the closest to the original
data. Another adaptive augmentation CLAE has larger LPIPS ditance than RandAugment but cannot
preserve the label well, achieving the lowest label preserving accuracy.

C.4 ImageNet Experiments

In order to validate the performance of LP-A3 on large-scale datasets, we compare FixMatch and
"FixMatch+LP-A3" on ImageNet the semi-supervised learning. ResNet-50 is used as the backbone
network. We randomly choose 10% data and set them as labeled data, while the remaining 90% are
unlabeled data. The batch size for labeled (unlabeled) data is 64 (320). The results are reported in the
Table 4, in which LP-A3 can improve FixMatch by a large margin, especially during the early stage
(>6% at 100,000 iterations).
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Table 5: Comparison with Mixup and Adversarial AutoAugment on the full dataset of CIFAR10.

CIFAR10 50 epochs 100 epochs 150 epochs
Mixup 87.39 93.74 96.05
Mixup+LPA3 86.82 94.73 96.12
Adversarial autoaugment 89.70 95.05 97.09
Adversarial autoaugment+LPA3 90.45 95.33 97.20

C.5 Comparison with Mixup and Adversarial AutoAugment

In this section, we compare LP-A3 with state-of-the-art data augmentation on the full dataset in a
supervised manner. We select Mixup [56] and Adversarial AutoAugment [60] as the representative
of sample-mixing based augmentaiton and automated data augmentation methods respectively, and
we empirically compare LP-A3 with them by applying LP-A3 on top of them. The backbone model
is WideResNet-28-10 and all the model are trained for 150 epochs. The results are given in Table 5.
It shows that Mixup and Adversarial Autoaugment achieves very high accuracy (>96%) on CIFAR10
as they are designed for this task, but LP-A3 can further improve them, which indicates that LP-A3 is
complementaray to these previous data augmentation using domain knowledge. Note in early stage
the advantage of LP-A3 over Adversarial Autoaugment is especially significant (> 0.7%).
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