GradlInit: Learning to Initialize Neural Networks for
Stable and Efficient Training

Chen Zhu Renkun Ni Zheng Xu
University of Maryland University of Maryland Google Research
chenzhu@cs.umd.edu rn9zm@cs.umd. edu xuzheng@google.com

Kezhi Kong W. Ronny Huang Tom Goldstein

University of Maryland Google Research University of Maryland
kong@cs.umd.edu wrh@google.com tomg@cs.umd. edu
Abstract

Innovations in neural architectures have fostered significant breakthroughs in lan-
guage modeling and computer vision. Unfortunately, novel architectures often
result in challenging hyper-parameter choices and training instability if the network
parameters are not properly initialized. A number of architecture-specific initial-
ization schemes have been proposed, but these schemes are not always portable
to new architectures. This paper presents Gradlnit, an automated and architecture
agnostic method for initializing neural networks. Gradlnit is based on a simple
heuristic; the norm of each network layer is adjusted so that a single step of SGD or
Adam with prescribed hyperparameters results in the smallest possible loss value.
This adjustment is done by introducing a scalar multiplier variable in front of each
parameter block, and then optimizing these variables using a simple numerical
scheme. Gradlnit accelerates the convergence and test performance of many con-
volutional architectures, both with or without skip connections, and even without
normalization layers. It also improves the stability of the original Transformer archi-
tecture for machine translation, enabling training it without learning rate warmup
using either Adam or SGD under a wide range of learning rates and momentum
coefficients. Code is available at https://github.com/zhuchen03/gradinit.

1 Introduction

The initialization of network parameters has a strong impact on the training stability and performance
of deep neural networks. Initializations that prevent gradient explosion/vanishing in back propagation
played a key role in early successes with feed-forward networks [1} 2]]. Even with cleverly designed
initialization rules, complex models with many layers or multiple branches can still suffer from
instability. For example, the original Transformer model [3]] does not converge without learning
rate warmup using the default initialization [4-6]; RoBERTa [7]] and GPT-3 [8] have to tune the (5,
parameter of Adam for stability when the batch size is large. Recent innovations have shown that
architecture-specific initializations, which are carefully derived to maintain stability, can promote
convergence without needing normalization layers [, 9H12]]. Unfortunately, the reliance on analyti-
cally derived initializations makes it difficult to realize the benefits of these methods when performing
architecture search, training networks with branched or heterogeneous components, or proposing
altogether new architectures.

In this work, we propose a simple method for learning the initialization of a network with any
architecture. Typically, initialization schemes draw parameters independently from a zero-mean
distribution, with the variance of each distribution set to pre-determined values depending on the

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/zhuchen03/gradinit

dimensions of the layers [1}2]]. Rather than deriving a closed-form expression for the these distribution
parameters, our method re-scales each random weight tensor (e.g. convolution kernels) directly by
a learned scalar coefficient. This small set of coefficients is optimized to make the first step of a
stochastic optimizer (e.g. SGD or Adam) as effective as possible at minimizing the training loss,
while preventing the initial gradient norm from exploding. In addition, this process is designed
to take into account the direction, step size, and stochasticity of the optimizer. Finally, after the
variance has been learned for each parameter tensor, the random network parameters are re-scaled and
optimization proceeds as normal. We empirically find that our methods can make the initialization
fall into a smooth loss region, reduce the inter-sample gradient variance, and accelerates training.

Our proposed method, Gradlnit, is architecture agnostic, and works with both Adam and SGD
optimizers. In the vision domain, we show it accelerates the convergence and test performance of
a variety of deep architectures, from the vanilla feed-forward VGG net to ResNet, with or without
Batch Normalization. It is efficient and scalable, finding good initializations using less than 1%
of the total training time in our experiments, and it improves the initialization of ResNet-50 on
ImageNet to obtain better final test accuracy. In the language domain, Gradlnit enables training the
original Transformer model [3]] using either Adam or SGD without learning rate warmup for machine
translation, which is commonly acknowledged to be difficult [4,[13]]. As an extreme example of the
capabilities of GradInit, we use it to initialize and train a 1202-layer ResNet that achieves significantly
higher test accuracy than ResNet-110, which other initialization methods have failed to achieve.

Finally, by visualizing the initial norms and gradient variances of the weights before and after GradInit
is applied, we show that GradlInit is a useful tool for identifying potential causes for instability at
initialization, such as those imposed by normalization layers, and we summarize interesting scale
patterns learned by Gradlnit that can be helpful for designing better initialization rules.

2 Related Work

Controlling the norms of network parameters at initialization has proven to be an effective approach
for speeding up and stabilizing training. Glorot and Bengio [1]] studied how the variance of features
evolves with depth in feed-forward linear neural networks by assuming both activations and weight
tensors are independent and identical random variables. They developed a technique in which the
variance of each filter scales with its fan-in (the number of input neurons). This style of analysis
was later generalized to the case of ReLU networks [2]. These two analyses are most effective for
feed-forward networks without skip connections or normalization layers. Based on the orthogonal
initialization scheme [14], Mishkin and Matas [15] proposed an iterative procedure to rescale the
orthogonally initialized weights of each layer in feedforward networks so that the activations of that
layer have unit variance. However, this method fails to prevent the blowup of activations with depth
for ResNets [[16]. Recently, Gurbuzbalaban and Hu [17] proposed initialization schemes such that
the network can provably preserve any given moment of order s € (0, 2] for the output of each layer.
The motivation is that the stochastic gradient updates can result in heavy-tailedness in the distribution
of the network weights with a potentially infinite variance, but finite s-order moment [18]]. Again,
these initialization schemes can only be applied for feed-forward neural networks.

For more complex architectures, normalization layers [19,|20]] and skip connections [21]] stabilized
training dynamics and improved the state-of-the-art. Similarly, learning rate warmup is a common
trick for training large Transformers [3]]. These methods make training tractable for some models,
but do not eliminate the high initial gradient variance that destabilizes training when the network is
deep [9H11]] or when the normalization layers are not carefully positioned [4].

Several authors have proposed better initializations for networks with skip connections. This is often
achieved by replacing the normalization layers with simpler scaling or bias operations, and scaling
the weight matrices in each layer so that the variance of activations does not increase with depth [9-
12]. Similar analysis has been applied to self attention in Transformers [S]]. Without removing the
normalization layers, it is possbile to stabilize the initial parameter updates by introducing carefully
initialized learnable scale factors to the skip connections [[6] or the residual branches [22]. However,
such techniques are often restricted to one specific architecture such as ResNets.

Recently, Dauphin and Schoenholz [[16] proposed a task-agnostic and automatic initialization method,
Metalnit, for any neural network achitecture. Metalnit optimized the norms of weight tensors to
minimize the “gradient quotient”, which measures the effect of curvature near the initial parameters,

on minibatches of random Gaussian samples. However, as training data is usually accessible for most
tasks of interest, it is simpler and potentially more efficient to use the training data for initialization.
Metalnit also involves the gradient of a Hessian-vector product that requires computing a “gradient of
the gradient” multiple times in tandem, which is very computationally intensive. Our proposed method
distinguishes itself from Metalnit in the following ways: (i) Our method is more computationally
efficient. Metalnit involves computing third-order derivatives, results in long computing times and
high memory usage. The memory overhead of Metalnit is more of an issue for networks with
normalization layers. For the relatively small-scale CIFAR-10 problem with batch size 64, Metalnit
requires three GPUs (RTX 2080Ti), while the proposed GradInit needs just one. (ii) Our method
takes the stochasticity of minibatches into consideration. Metalnit uses the local curvature evaluated
on a single minibatch, which fails to capture the variance of the loss/gradient between two different
stochastic minibatches. (iii) Our method considers the training dynamics of different optimization
algorithms including the learning rate and the direction of the gradient step, and effectively handles
different optimizers including SGD and Adam.

3 Method

We aim to develop an initialization scheme applicable to arbitrary network architectures. Since
previous works [, 12,19, |16} 10} [12] have shown that the initial weight norms effectively control the
initial gradient norm on average, our method rescales the randomly initialized weight matrices using
learnable scale factors|']

Using a small number of gradient descent steps on these scale factors, the proposed GradInit method
chooses the initialization scalars so that the loss after the first gradient step taken by a stochastic
optimizer (SGD or Adam) is as low as possible. The process of learning initialization coefficients
accounts for the chosen learning rate, optimizer, and other parameters. To prevent gradient explosion,
our method enforces a constraint that the gradient norm is no larger than a constant ~.

Note that for scale-invariant weights, e.g., convolution kernels before BN layers, rescaling still
changes their learning dynamics by changing their effective learning rate [23| [24]. Empirically,
GradInit goes beyond simply preventing exploding or vanishing gradients; it also reduces the gradient
variance, making the initialization fall into a smooth loss region with small gradient variance so that
training is fast, see discussion about Figure [[|and comparisons in Figure

3.1 Efficient Learning-based Initialization via Constrained Optimization

We begin by filling all the weight matrices { W7, ..., Wy, } of the network with values drawn from
independent zero-mean Gaussian distributions, except for the scales and biases of the normalization
layers (if any), which are initialized to 1 and O respectively. During the initialization process, we keep
{W1y,..., Wy} constant, but we multiply each W; with a learnable non-negative scale factor «;
(initialized to 1). After initialization, we rescale the weights by the learned scale factors, and start
training without the learnable scale factors just as normal. We use m = {«;, ...,y } to denote the
set of scale factors, and 0,,, = {a1W7,...,an Wy} is the set of rescaled weight matrices.

Let L(S;0) = I—}g‘ > wes L(x; @) be the average loss of the model parameterized by € on a minibatch

of samples .S, where | S| is the number of samples in the minibatch. We use gs ¢ = VoL(S;0) as a
shorthand for the gradient of 8. During standard training, this gradient is preprocessed/preconditioned
by the optimization algorithm .4, and then used to update the network parameters. GradlInit solves
the following constrained optimization problem:

minimize L(S; 0., — 1A [gs.0,.]),
m (1
subject 0 [|gs,0,, lpa <7

where S and S are two different minibatches, 7 is a prescribed learning rate for the optimization
algorithm A, p 4 is the ¢,-norm associated with A, and ~ is the upper bound for the norm. For
the first gradient step, Adam uses A[gs.g,,,] = sign(gs.e,,) [23], while SGD uses A[g(S; O] =

"For convenience, we refer to weight vectors/matrices/tensors as “weight matrices", which includes the scale
vectors of the normalization layers, the bias vectors, the weight matrices of the fully connected layers, and the
convolution kernels.

v9(S;0:m)/]19(S; 0.m)||2. We show how to choose v and p4 without tuning in Section We
discuss the formulation of this problem and how to solve it below.

3.2 Solving the Constrained Problem

The problem is solved using a stochastic gradient descent method in which we sample new
mini-batches on each iteration. Since the proposed method uses gradient updates to compute the
initialization, we dub it GradInit. We propose a simple solver to optimize objective (I)) in Algorithm [I]
A key feature of our method is that is makes a simple approximation: after gs g,,, is computed on
the forward pass of an iteration, we treat A[gs g,,] as a constant and do not back-propagate through
Algs.e,,] on the backward pass. We make this choice to keep computing costs low, and because it is
not possible to back-propagate through the non-differentiable sign function for Adam.

Algorithm 1 Gradlnit for learning the initialization of neural networks.

1: Input: Target optimization algorithm A and learning rate 7 for model training, initial model parameters 6o,
learning rate 7 of the Gradlnit scales m, total iterations 7', upper bound of the gradient v, lower bound for
the initialization scalars o = 0.01.

2:mq <1

3: fort =1to T do

4: Sample S; from training set.

5: Ly +— ﬁszGSt K(l‘k;emt), gt < Vel
6: if [|g¢||p, > v then

7 M1 = Mt — TVm,||Gtllpa

8: else ~

9: Sample S; from training set.

10 Leyr < ﬁ 2 e s, Uk Om, — nA[ge])
11: M1 < MMy —Tvtht+1

12: Clamp m¢41 using

To enforce the constraint in (1)), we test whether the constraint is satisfied after computing g(S; 6,y,).
If not, we take a gradient descent step to minimize ||g(.S; 0y)|| ., Which involves computing second
order derivatives. If the constraint is satisfied, then we instead compute a gradient descent step for
the loss. In addition, we set a lower bound o = 0.01 for all ;. We find that this prevents scalars
from landing on small values during minimization and keeps the GradInit optimizer stable. In our
experiments, we find the only layer that ever hit this lower bound is the final FC layer on some
networks (see the figures in Section .T). We find this procedure converges reliably within 2000
iterations for ImageNet, and fewer than 400 iterations for CIFAR-10, taking less than 1% of the total
training time on both problems. We also find it works well to set the step size 7 to values within the
range between 1073 and 10~. During initialization, the gradient norm constraint is satisfied for the
majority of iterations. The choice of 7, p4 will be discussed in Section

Stochasticity of mini-batching. The objective in (1)) uses
two different mini-batches; S is used to compute the gra-
dient, and S is used to compute the loss. Ideally, S and S
should be independently sampled from the training set to
capture the randomness of the stochastic optimizer. How- -
ever, when the network has large initial gradient variance, Model ‘S\gfl Acey Accpest
the gradients on .S and S usually differ a lot, and for S, VGG-19 0 21.9+44 945+0.1
the gradient update step 0,,, — 7.4 [gs.0,,,] becomes more (;VO/ ‘(’);311\\14) Of gg'g i (1)'(6) 9944751%012
similar to adding random perturbations to the parameters. : — —
We find our objective less effective at accelerating conver-
gence in this case, as shown by the first-epoch accuracy (Accq) in Table [I. On the other hand,
the randomness is not captured if S = S, and we find empirically that 6,,, can exploit the loss by
increasing the gradient norm and destabilize training in this case (see Table[8). Without excessive
tuning, we find that we get more reliable behavior for different architectures when S is a mixture
of 50% samples from S and 50% re-sampled training data, and use this setting by default unless
otherwise stated.

Table 1: Accuracies on CIFAR-10 using
different overlapping ratios of S and S for
Gradlnit.

3.3 Setting and Enforcing the Constraint

The constraint in (1)) is included to prevent the network from minimizing the loss in a trivial way
by blowing up the initial gradient. In other words, we want the optimizer to achieve small loss by
choosing an effective search direction rather than by taking an extremely large step in a sub-optimal
direction.

Setting p 4 and ~ through first-order approximation. We show that p 4 and y can be set easily
with a rule of thumb and without a parameter search. From the first-order approximation, we expect
the first gradient step to result in a change in the loss on S' as following:

—1nllgs.e., |3, if Ais SGD,

2
—nllgs.o.. |1, if Ais Adam.)

L(S: m—nAlgsa.])— L(S: 0m) ~ —nAlgss,] gs,. = {

To eftectively bound the approximated change in Eq.[2| we choose ¢, , to be the ¢3 and ¢; norm for
SGD and Adam respectively, so when the constraint is satisifed, the maximum change in the loss,
according to our local approximation, is 772 for SGD and 7y for Adam. We recommend setting y
such that 7772 = 0.1 for SGD and 7y = 0.1 for Adam. According to the linear approximations, this
limits the gradient magnitude so that the first step of SGD can decrease the loss by at most 0.1. This
simple rule was used across all vision and language experiments.

Why a constraint and not a penalty? Instead of formulating Gradlnit as a constrained

optimization, one can alternatively formulate it as minimizing the objective with a gradient

penalty: minimize L(S;0,, — nA[gs.e,.]) + Allgs.e,. ||p.. Where X > 0 is the penalty strength.
m

The penalized objective has two drawbacks com-

pared to the constrained one in Eqm First, every Table 2: Time cost and accuracy (average of 4 runs) for
gradient descent step on the penalized objective running one epoch of regularization/constrained form of
involves second-order gradients due to the gra- SradInit.
dient regularization, while the constrained form Model
does not need second-order gradients when the
constraint is satisfied. Second, it is difficult to
choose a good A that works well for all archi-
tectures. By contrast, we set v by analyzing the
first-order approximation mentioned above, and
find the same « works well for different archi-
tectures. The results supporting these two points
are given in Table[2]

VGG-19 VGG-19 ResNet-110 ResNet-110
w/o BN w/BN w/o BN w/ BN

Time (s) 82 vs. 56 100 vs. 62 169 vs. 103 269 vs. 195

1074 32.3,94.6 10.6,93.1 33.7,93.9 32.4,952
1072 30.4,94.5 10.4,93.0 36.7,94.1 32.6,95.3
1
1

18.2,74.7 38.5,95.1 30.7,942 36.5,95.3
29.3,94.7 47.8,95.1 36.2,94.6 38.2,954

2> > >
e

4 Experiments

We evaluate Gradlnit on benchmark datasets for image classification and machine translation tasks.
For image classification, five different architectures are evaluated for CIFAR10 [26]], and ResNet-50
is evaluated for ImageNet [27]]. For machine translation, we use Gradlnit to find good initializations
for a Post-LN Transformer without any change to its original architecture on IWSLT-14 De-En [28].
We observe that the method can remove the necessity of any form of learning rate warmup for both
Adam and SGD.

We conduct our experiments in PyTorch. We use the fairseq library for machine translation [29]. All
the experiments on CIFAR-10 and IWSLT-14 DE-EN can run with one single NVIDIA RTX 2080 Ti
GPU with 11GB of RAM.

Gradlnit first initializes the weights using Kaiming initialization [2]] for all the Conv and FC layers
for image classification. For machine translation, we use the default Xavier initialization [[L]. We
optimize the scale factors {a; } with Adam [30] using the default momentum parameters.

4.1 Image Datasets with Various Architectures

The introduction of Batch Normalization (BN) [19]] and skip connections makes it relatively easy to
train common CNNs for image classification to achieve high accuracy. Despite this, we show that

when the network is very deep, the network is unstable even when both BN and skip connections
are used, and GradlInit can significantly improve the stability. The results on CIFAR-10 are given in
Table [3|and results on ImageNet are given in Table|[6]

4.1.1 Settings

Architectures. On CIFAR-10, we focus on the feedforward VGG net and the prevalent and powerful
ResNet, with and without BN layers. For networks without BN, we use learnable biases in all
layers. For ResNet, we additionally evaluate a deep 1202-layer version. We give results for other
architectures (Wide ResNet, DenseNet) in Appendix [E due to space limits. We compare with four
different methods/settings: 1) Kaiming Initialization [2[]; 2) First train the network for one epoch
with a constant learning rate equal to the starting learning rate, labelled as “+1 epoch (Const. LR)" in
Table |3} 3) First train the network for one epoch with a linear warmup learning rate, labbeled as “+1
epoch (Warmup)" in Table |3} 4) Metalnit [16].

On ImageNet, we use the ResNet-50 model [21]. We compare with Kaiming Initialization, FixUp
initialization [9] and Metalnit. For the ResNet-50 without BN, we follow the architecture of FixUp for
fair comparisons, but we still use the original Kaiming initialization as the starting point of Gradlnit.

Hyperparameters. We set A to SGD and 7 = 0.1 (the same as the base learning rate) for GradInit in
all image classification experiments. On CIFAR-10, we train networks with a batch size of 128. We
find Metalnit often takes 2 to 3 times as much memory as GradlInit. We run GradlInit or Metalnit for
one epoch on the data, which takes less than 1% of the total training time. For Gradlnit, according
to our analysis in Section [3.3] we fix the gradient norm constraint y = 1 in all these experiments.
Therefore, as in Metalnit, the only hyperparameter that needs to be tuned is the learning rate 7 of the
scale factors. We do a grid search on 7 in the range [10~3,107!], and report the results with the best
average final test accuracy on 4 runs. After Gradlnit initialization, we use a learning rate of 0.1 and
the cosine annealing learning rate schedule without restart [31] to train the model for 200 epochs,
where the learning rate decays after each iteration and decays to 0 in the last iteration. Due to their
high initial gradient variance (see Figure[6), we have applied gradient clipping (maximum norm is 1)
to all non-BN networks so that they converge without GradInit under the same schedule.

On ImageNet, we train the ResNet-50 model for 90 epochs with a total batch size of 256 on 4 GPUs.
Due to the difference in the library for training and the number of GPUs used, which affects the BN
statistics, our baseline top-1 accuracy of ResNet-50 (w/ BN) on ImageNet is 0.79% lower than [32].
We use SGD with a starting learning rate of 0.1 and decay the learning rate by 10 after the 30th and
60th epoch. We provide additional details in Appendix [A.

4.1.2 Results and Analysis

Table 3: First epoch (Accy) and best test accuracy over all epochs (Accpest) for models on CIFAR-10. We
report the mean and standard error of the test accuracies in 4 experiments with different random seeds. Best
results in each group are in bold.

Model VGG-19 VGG-19 ResNet-110 ResNet-110 ResNet-1202
w/o BN w/ BN w/o BN w/ BN w/ BN
(# Params) (20.03M) (20.04M) (1.72M) (1.73M) (19.42M)
Kaimin Acey 29.1+15 126+0.6 16.1 +2.1 232409 129 +2.8
g Accpest | 945+£0.1 944+0.1 942+0.1 95.0+0.2 944+ 0.6

372+11 196+40 21.0+38 325438 126 £2.8
944+£01 945+0.1 939+04 947403 940+ 0.4

374+12 5354+29 198+05 487+1.1 28.1 £1.3
944+01 9474+01 941+01 951+0.1 954 +£0.2

+1epoch | Accy
(Const. LR) | Accpest
+1lepoch | Accy
(Warmup) | AcCpest

Metalnit Accy 305+£09 3514+06 146+22 290+15 11.7+ 1.6
Accpest | 946 £0.1 946+0.1 942+0.1 948+0.1 95.0£0.5
Gradlnit Accy 203+06 478+18 362+08 382409 290+ 1.1
Accpest | 947 +0.1 951+£0.1 946+0.1 954+0.1 96.2 £0.1

Gradlnit further stabilizes feedforward nets with BN. BN does stabilize VGG-19 and allows
training without gradient clipping, but with an average first-epoch test accuracy of only 12.57 and
an average final test accuracy lower than the version without BN (see Table [3), it does not seem to

(g:)/|Elgi]| of ResNet-110 BN weights (g:)/|Elgi]| of ResNet-110 Linear weights [[Wi[| of ResNet-110 BN weights [[W;]] of ResNet-110 Linear weights
10%

' ..._.._....J“"—"J_—_
102 |
= =10 k
= = o
S0 = =z
S <
10"
10 3% 10 10
2% 10"
0 15 3 45 60 75 9 105 0 15 3 45 6 75 9% 105 0 15 30 45 60 75 9 105 0 30 45 60 75 90 105
Layer Layer Layer Layer
(g:)/|Elg]| of ResNet50 BN weights (g)/|Elgi] of ResNet50 Linear weights [[Wil] of ResNet50 BN weights |[Wi]| of ResNet50 Linear weights
10° 10
AN A
M - 1 /\ A /\ J\ J\ [\j\‘/\ o4 L\
10" /\ /\ [\ﬂ/\“ -
= = w 10! /\4 /\ 10"
=) 5 = g
= 10 = 0 £ E
5 ®
107! 107! 10
— 10" —
10 s
10- t

06 12 18 4 30 36 42 48 0 6 12 18 14 036 42 48 06 12 18 24 036 42 48 06 12 18 4 3036 42 48

Figure 1: Top row: results of ResNet- 110 on CIFAR 10. Bottom row: results of ResNet-50 on ImageNet Left
two columns: compare the relative cross-batch gradient variance on the training set for the BN and Conv/FC
layers before and after GradInit. Right two columns: weight norms before and after Gradlnit. Ratio between
points in the same layer reflects the scale factor. Note each of the residual blocks has 2 and 3 Conv and BN
layers for the ResNet-110 and ResNet-50, respectively. The initial relative gradient variance are reduced for all
layers except the final linear layer in both settings. The strategies are similar on two different datasets. Within
each residual block, the last BN layer has the smallest scaling factors, and the scales of all Conv layers are
surprisingly increased. Best viewed in color.

VGG-19 (w/ BN) ResNet-110 (w/ BN) ResNet1202 (w/ BN) ResNet-110 (w/ BN, Adam)

B B g 00 B
5 H 3 590 —
< < < < P
580 5 80 5 80 5 80 o
& & & &
g 60 8 § 60 §7°
1] 260 H 360
2 3 2 z
> > > >
a0 N g w0 gso {
5 5 5 5
3] 3 3
. —— Kaiming | & — kaiming | £ 5o —— Kaiming | 40 ’ —— Kaiming
g Gradinit | Gradinit | % Gradinit | % 30 Gradinit
= = © [

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Enoch Epoch Enoch Epoch

Figure 2: Comparing the convergence of Kaiming Initialization and Gradlnit on CIFAR-10, for models trained
with SGD (left three) and Adam (right).

eliminate the instability of Kaiming initialization. As shown in Figure 4] its initial gradient variance
is still relatively high compared with Gradlnit. BN could magnify the gradient variance when the
variance of its input features (in the forward pass) is smaller than 1 (see Appendix [C). GradInit
reduces the gradient variance by 4 orders of magnitude compared to Kaiming initialization , resulting
in significantly higher test accuracy after the first epoch (47.79% vs. 12.57%), which also has an
impact on the final test accuracy (95.13% vs. 94.41%). The reduction in gradient variance is achieved
mainly by scaling down the weights of the final FC layer and the last 2 BN layers, so that the variance
of the activations is reduced in the forward pass. This learned behavior is consistent with the strategy
of FixUp, where the final FC layer is initialized to 0. Another source of gradient variance reduction is
achieved by increasing the weight norms of the remaining Conv and BN layers, so that the variance
of the inputs to the BN layers is increased and the gradient magnifying effect of BN is alleviated in
the backward pass. This reduced the ratio o(g1)/0(g16) from 204.9 to 164.8 for the Conv layers
in Figure . By contrast, FixUp only reduces the weight norms, which may not always be the best
solution for networks with normalization layers.

Deep residual networks still need better initializations. We also gain significant improvements
from Gradlnit for ResNet-110 and ResNet-1202. In ResNets, the skip connections cause the variance
of activations to accumulate as the ResNet goes deeper, even for the version with BN [[10]. This issue
is more significant when the ResNet scales to 1202 layers, from which we can see that with Kaiming
initialization, the first-epoch accuracy of ResNet-1202 is quite low, and the final test accuracy is even
worse than the shallower ResNet-110, matching the observations of He et al. [21]. Warmup is even
more effective than Metalnit at accelerating the convergence and improving the final test accuracy
of ResNet-1202, but Gradlnit still outperforms its final test accuracy by 0.8%, and the resulting
ResNet-1202 finally achieved higher accuracy than ResNet-110.

The learned layer-wise rescaling patterns of GradInit are even more interesting for ResNets with BN.
For ResNets with BN, recall that we have two Conv layers and two BN layers in each residual block.
As shown in Figure 1] GradlInit learns to increase the weight norms of all the linear layers except for

the final FC layer, instead of decreasing as for the case without BN (see Figure[6). A more unique
pattern is the collaborative behavior of the BN weights, where the second BN in each residual block is
usually scaled down while the first BN is always scaled up. In deeper layers, the joint effect of these
two BN weights is to downscale the activations and reduce their variance in the forward pass, with a
more significant reducing effect as the layers get deeper. Intuitively, the marginal utility of adding a
new layer decreases with depth. Therefore, for deeper layers, Gradlnit learns to further downscale the
residual branch, and prevents the variance from increasing too much in the forward pass. Inside each
residual block, increasing the scale factors of the first BN helps to reduce the magnification effect
of the second BN on the gradient; forcing the input activations to the second convolution to have
variance larger than 1 ensures its variance after the following convolution layer does not go below 1,
avoiding the magnification effect that the second BN has on the gradient variance. See Appendix
for more discussions about the magnifying effect.

Table 4: Comparing the results of GradInit with fixed BN scale parameters (Fix BN) and only rescale the BN
parameters (Only BN).

Kaiming GradInit GradlInit (Fix BN) GradInit (Only BN)
Model Accy AcCpest Accy AcCpest Accy AcCpest Accy AcCpest

VGG-19 (w/ BN) 126 £ 0.6 944 £0.1 478 £ 1.8 951 +£0.1 13.1 £0.9 94.6 £0.1 144 +2.1 944 £0.1
ResNet-110 (w/ BN) 232 +£0.9 95.0 £0.2 382+0.9 954 +£0.1 247 £3.1 947+ 0.3 254 +£3.1 946 £0.3

Table 5: Comparing the results with multiplying each weight matrix with a learnable scaler (Learning Scalars)
on CIFAR10. The VGG-19 model is not able to converge unless we reduce the initial learning rate to 0.01,
which obtained worse final accuracy. The ResNet-110 model’s Acco was 10% for 2 of the 4 runs.

Model Learning Scalars GradlInit
Accy AcCpest Accy AcCpest

VGG-19 (w/ BN, Ir=0.1) 10.0 +£0.0 10.0£0.0 47.8 £ 1.8 95.1 £0.1
VGG-19 (w/ BN, Ir=0.01) 50.6 £ 0.8 93.4 £ 0.1 - -
ResNet-110 (w/ BN) 21.5+£6.9 94.7£0.1 38.2+0.9 954 £ 0.1

Generalizing to Adam. Models in previous experiments are trained with SGD. We also consider the
case when A is Adam and use AdamW [33]] to train the ResNet-110 (w/ BN) model on CIFAR-10.
Following [34]], we use a cosine annealing learning rate schedule with initial learning rate 3 x 10~3
and weight decay 0.2. For Gradlnit, we set v = 25. The Accy and Accpes; of Kaiming initialization
and GradlInit are (36.6 = 4.7,94.9 £ 0.1) and (40.2 & 0.2, 95.3 & 0.1), respectively. We also show
the per-epoch test accuracy in Figure

The importance of rescaling BN layers. The scale parameters of BN layers usually controls the
variance of activations and gradients in the forward and backward passes, while the linear layers right
before the BN layers are scale-invariant. Although changing the magnitudes of the scale-invariant
layers affect their learning dynamics [23} 124], we find it important for GradlInit to rescale both BN
and other linear layers, as shown in Table

The importance of Gradlnit’s objective. Gradlnit is designed to rescale the layers to solve the
constrained optimization problem in Eq.[I. Simply letting the model to learn to rescale the layers
cannot improve the results, and sometimes further causes instability, as shown in Table E We
hypothesize that the bad results with VGG are due to a mismatch between the scales/norms of the
gradients of the scalars and the weights. To make this alternative work, we may need to set different
learning rates for the scalars and the weights, which adds to the difficulty of hyperparameter tuning.
Note we do not learn the scalars when training networks initialized by GradInit.

Table 6: Acci/Accpest of ResNet-50 models on ImageNet. Result of Metalnit comes from Dauphin and
Schoenholz [[16] and we reimplemented the rest.

Kaiming FixUp Metalnit Gradlnit

w/BN 14.6/75.9 - - 19.2/76.2
w/o BN - 18.0/75.7 -/15.4 19.2/75.8

Gradlnit scales to ImageNet. As shown in Table |6, Gradlnit also accelerates convergence and
improves test accuracy of ResNet-50 on ImageNet, with or without BN layers, despite having to

use a smaller batch size for Gradlnit than training due to our GPU memory limit. The acceleration
achieved by GradInit is even more significant than FixUp, even on the network with the architecture
designed for the initialization.

4.2 Training the Original Transformer Model without Warmup

For a Transformer model to converge, either an explicit or implicit learning rate warmup stage
is needed, especially for the original Transformer architecture. It is observed that this Post-LN
architecture tends to outperform the Pre-LN model [6] while having higher gradient variance at
initialization [4]. Is it believed that this high variance makes a warmup stage inevitable. Previous
works that removes the warmup stage often involves architectural changes, e.g., removing Layer
Normalizations, since it can surprisingly cause instability [4]. Here, we show that with a proper
initialization, we can do away with the warmup stage for the original Post-LN Transformer without
any modification to the architecture. Table [/|summarizes the architectural changes and best results of
methods for improving the initialization of Post-LN Transformers. We compare the stability of the
GradInit and Admin initialization methods without warmup in Figure 3]

Table 7: A comparison of GradlInit with with the results from the papers (top 4 rows), and our reimplementation
of Admin for training the Post-LN Transformer model on the IWSLT-14 De-EN dataset. “Standard" refers to
training with standard initialization and warmup.

Method Remove LN w,;, Warmup Optimizer BLEU

Standard [6] v RAdam 35.6
FixUp [9] v v Adam 34.5
T-FixUp [5] v Adam 35.5
Admin [6] v RAdam 35.7
Admin v Adam 36.1
Admin v SGD 33.7
GradlInit v Adam 36.0
Gradlnit Adam 36.1
Gradlnit SGD 35.6

Dataset, Architecture, & Hyperparameters.

IWSLT’ 14 DE-EN [28] is a German to English translation dataset that has 160k training examples.
Our Transformer model is inherited from [3]], which is a Post-LN Transformer placing its Layer
Normalization after the summation of the skip connection and the residual branch. It has a 512-
dimensional word embedding layer and 1024 dimensions in its hidden FFN layer. We also apply
Gradlnit to the variant from Admin [6], where a learnable vector w,y;,, is element-wise multiplied
with each dimension of the skip connection, but we initialize it to 1 for GradInit. Please refer to [6] for
how Admin initializes these weights. Following [6]], we use a linearly decaying learning rate schedule
that decays from the maximum learning rate 7,,,x to 0 as the model trains for 100K iterations. For
training with SGD, we set the prescribed learning rate 1y, = 0.15, and use n = 0.15,y = 1 for
GradInit. We do a grid search on 7)yax for Admin and report its best result in Table[7. For training
with Adam, we set 7 = 5 x 1074, v = 103 for the objective of Gradlnit, so that 1y is O(10~!) as
discussed in Section @ We train the initialized model 7,,.x and 32 as listed in Figure@} We evaluate
the BLEU score every epoch, and report the best BLEU scores throughout training for each run. For
Gradlnit, we set the maximum number of iterations 7" to 780. By comparison, the warmup stage
usually takes 4000 iterations, and we find that if we use 780 steps for warmup, the model does not
converge with nyax > 3 X 10~4. For Nmax = 2 X 10~* with 780-step warmup, the BLEU score is
35.4, worse than Gradlnit’s 36.0, showing the advantage of Gradlnit against warmup.

Stability after removing warmup for Adam. In Figure 3, the training process becomes more
unstable as J grows larger. From the analysis of RAdam [33]], this is because the variance of the
gradient has a stronger impact on the adaptive learning rate when 35 is closer to 1. Therefore, the
largest B2 < 1 that maintains the performance of the trained model reflects the stability of the initial-
ization. We can see Gradlnit results in more stable models than Admin in general, though their best
performance numbers are almost the same. In addition, we find wy;, can help stabilize training in
extreme hyper parameter settings, €.g., at Jmax = 5% 107% and 35 = 0.995 in Figure GradInit with

W;ip Obtains a good average BLEU score of 36.0, while without w,;, only succeeded in obtaining
a BLEU score > 35 for one out of four experiments, resulting in an average BLEU score of 8.9.
We also find the network is unable to be trained

without learning rate warmup if we just fix Adwin (w/ wey) Gradinit (w/ woy) Gradinit (x/0 woe)
Wskip to its initial value given by Admin and
leave the initialization of other parameters un-
changed. Nevertheless, with Gradlnit, we do sxw0{ s 39 . 7 38 5 8 359
not need to modify the architecture of Post-LN
Transformer to obtain the same good result as
Admin. For a closer look at the stabilization ;. B 559 30 a0 [856 00
mechanism, we show the weight norms and gra-
dient variance at initialization of the original
Post-LN architecture using GradlInit and Xavier
initialization in Figure[D of the Appendix. For Figure 3: BLEU scores for the Post-LN Transformer
Xavier initialization, the gradient variance is rel- without learning rate warmup using Adam on IWSLT-14
atively higher for all encoder layers, so Gra- DE-EN under different learning rates 7max (y axis) and
dInit downscales the encoder layer Weights more (2 (x axis). Each result is averaged over 4 experiments.
in general. For the LN weights, Gradlnit only

downscales the final LN of both the encoder and decoder, which reduces the variance of the encoder
and decoder during the forward pass. Another strategy GradlInit learns is to downscale the weights
of the output projection and the FFN layers, so that the residual branch is relatively down-weighted
compared with the skip connection, similar to Admin.

2x 1071 . 35.5

1x 107 3 . 27 X 36.0 . 5. 36.0

0.98 0.99 0.995 0.98 0.99 0.995 0.98 0.99 0.995

Removing warmup without architectural change. Another widely observed phenomenon is that
adaptive methods such as Adam seem to be much better than SGD for training Transformer-based
language models [[13]]. Table|z shows that, with GradlInit, we can find a good initialization for the
Post-LN Transformer on IWSLT-14 DE-EN that trains using SGD without learning rate warmup nor
gradient clipping, and achieves performance close to Adam trained using the same type of learning
rate schedule. By comparison, Admin also makes the Transformer trainable with SGD, but the BLEU
score is lower than the one initialized with GradInit. By comparing Figures [0]and[I0]in the Appendix,
we find GradInit for Adam and SGD adopts different rescaling patterns, with the Adam version
depending more on downscaling the residual branches through the FFN and output projection layers
than the SGD version, and the SGD version downscaling more in the final FFN block of the decoder.
This highlights the importance of considering the optimization algorithm A in GradInit, and also
indicates the presence of different ways to reduce the initial gradient variance.

5 Conclusion

In this paper, we propose Gradlnit, a gradient-based initialization scheme for any architecture.
GradlInit reinitializes a network by learning a scale factor for each randomly initialized parameter
block of a network, so that the training loss evaluated on a different minibatch after one gradient step
of a specific stochastic optimizer is minimized. Such a design takes the stochasticity, the learning
rate, and the direction of the optimizer into account, allowing us to find better initializations tailored
for the optimizer. The initialization learned by Gradlnit often decreases the gradient variance for
most of the parameter blocks. We show that GradlInit accelerates the convergence and improves the
test performance of a variety of architectures on image classification. It also enables training the
Post-LN Transformer without any form of learning rate warmup, even for SGD. GradlInit can be
a useful tool in the future discovery of better neural architectures that are otherwise discarded due
to poor initializations. By analyzing the learned scaling coefficients and their impact on gradient
variance, it can also serve a guide to design better initialization schemes for complex architectures to
shorten the training schedule and save energy.

6 Acknowledgement

This project was supported by the Office of Naval Research, AFOSR MURI program, the DARPA
Young Faculty Award, and the National Science Foundation Division of Mathematical Sciences.
Additional support was provided by Capital One Bank and JP Morgan Chase.

10

References

[1] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In AISTATS, 2010.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In CVPR, 2015.

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, pages 5998-6008,
2017.

[4] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In ICML, 2020.

[5] Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving transformer
optimization through better initialization. In ICML, 2020.

[6] Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the
difficulty of training transformers. EMNLP, 2020.

[7] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[8] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. NeurIPS, 2020.

[9] Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning
without normalization. In /CLR, 2019.

[10] Soham De and Sam Smith. Batch normalization biases residual blocks towards the identity
function in deep networks. NeurIPS, 2020.

[11] Andrew Brock, Soham De, and Samuel L Smith. Characterizing signal propagation to close the
performance gap in unnormalized resnets. /CLR, 2021.

[12] Andrew Brock, Soham De, Samuel L. Smith, and Karen Simonyan. High-performance large-
scale image recognition without normalization. arXiv preprint arXiv:2102.06171, 2021.

[13] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J Reddi,
Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? NeurIPS,
2020.

[14] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. /ICLR, 2014.

[15] Dmytro Mishkin and Jiri Matas. All you need is a good init. /CLR, 2016.

[16] Yann N Dauphin and Samuel Schoenholz. Metainit: Initializing learning by learning to initialize.
In NeurlPS, pages 1264512657, 2019.

[17] Mert Gurbuzbalaban and Yuanhan Hu. Fractional moment-preserving initialization schemes
for training deep neural networks. In International Conference on Artificial Intelligence and
Statistics, pages 2233-2241. PMLR, 2021.

[18] Charles H Martin and Michael W Mahoney. Traditional and heavy-tailed self regularization in
neural network models. arXiv preprint arXiv:1901.08276, 2019.

[19] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In ICML, pages 448-456, 2015.

[20] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

11

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pages 770-778, 2016.

[22] Thomas Bachlechner, Bodhisattwa Prasad Majumder, Huanru Henry Mao, Garrison W Cottrell,
and Julian McAuley. Rezero is all you need: Fast convergence at large depth. arXiv preprint
arXiv:2003.04887, 2020.

[23] Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical analysis of auto rate-tuning by batch
normalization. In International Conference on Learning Representations, 2019.

[24] Ruosi Wan, Zhanxing Zhu, Xiangyu Zhang, and Jian Sun. Spherical motion dynamics of deep
neural networks with batch normalization and weight decay. arXiv preprint arXiv:2006.08419,
2020.

[25] Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of
stochastic gradients. In ICML, pages 404-413, 2018.

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
20009.

[27] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR, 20009.

[28] Mauro Cettolo, Jan Niehues, Sebastian Stiiker, Luisa Bentivogli, and Marcello Federico. Report
on the 11th iwslt evaluation campaign, iwslt 2014. In IWSLT, volume 57, 2014.

[29] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In NAACL-HLT
(Demonstrations), 2019.

[30] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. /CLR, 2015.

[31] Tlya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

[32] Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[33] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2018.

[34] Chen Zhu, Yu Cheng, Zhe Gan, Furong Huang, Jingjing Liu, and Tom Goldstein. Maxva:
Fast adaptation of step sizes by maximizing observed variance of gradients. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pages 628—643.
Springer, 2021.

[35] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and
Jiawei Han. On the variance of the adaptive learning rate and beyond. ICLR, 2020.

[36] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[37] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[38] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In CVPR, 2017.

[39] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural
networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

[40] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. /CLR, 2018.

[41] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In ICML, 2018.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] One limitation of our current
work is we have not checked whether GradInit can improve the training of models from
other domains such as speech.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A |
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Related Work
	Method
	Efficient Learning-based Initialization via Constrained Optimization
	Solving the Constrained Problem
	Setting and Enforcing the Constraint

	Experiments
	Image Datasets with Various Architectures
	Settings
	Results and Analysis

	Training the Original Transformer Model without Warmup

	Conclusion
	Acknowledgement
	Experimental Details
	On CIFAR-10
	On ImageNet
	On Machine Translation

	Mini-batching, continued: Choice of
	Magnification Effect of BN
	Improved Implementation of MetaInit
	Additional Experimental Results
	Weight norms and gradient variances

