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2 Robustness for Space-Bounded Statistical Zero Knowledge

1 Introduction26

The complexity class SZK (Statistical Zero Knowledge) and its “non-interactive” subclass27

NISZK have been studied intensively by the research communities in cryptography and28

computational complexity theory. In [10], a space-bounded version of SZK, denoted SZKL29

was introduced, primarily as a tool for understanding the complexity of estimating the30

entropy of distributions represented by very simple computational models (such as low-degree31

polynomials, and NC0 circuits). There, it was shown that SZKL contains many important32

problems previously known to lie in SZK, such as Graph Isomorphism, Discrete Log, and33

Decisional Diffie-Hellman. The corresponding “non-interactive” subclass of SZKL, denoted34

NISZKL, was subsequently introduced in [1], primarily as a tool for clarifying the complexity35

of computing time-bounded Kolmogorov complexity under very restrictive reducibilities (such36

as projections). Just as every problem in SZK ≤AC0

tt reduces to problems in NISZK [12], so37

also every problem in SZKL≤AC0

tt reduces to problems in NISZKL, and thus NISZKL contains38

intractable problems if and only if SZKL does.39

Very recently, all of these classes were given surprising new characterizations, in terms40

of efficient reducibility to the Kolmogorov random strings. Let R̃K be the (undecidable)41

promise problem (Y
R̃K

, N
R̃K

) where Y
R̃K

contains all strings y such that K(y) ≥ |y|/2 and42

the NO instances N
R̃K

consists of those strings y where K(y) ≤ |y|/2 − e(|y|) for some43

approximation error term e(n), where e(n) = ω(log n) and e(n) = no(1).44

▶ Theorem 1. [2] Let A be a decidable promise problem. Then45

A ∈ NISZK if and only if A is reducible to R̃K by randomized polynomial time reductions.46

A ∈ NISZKL if and only if A is reducible to R̃K by randomized AC0 or logspace reductions.47

A ∈ SZK if and only if A is reducible to R̃K by randomized polynomial time “Boolean48

formula” reductions.49

A ∈ SZKL if and only if A is reducible to R̃K by randomized logspace “Boolean formula”50

reductions.51

In all cases, the randomized reductions are restricted to be “honest”, so that on inputs of52

length n all queries are of length ≥ nϵ.53

There are very few natural examples of computational problems A where the class of54

problems reducible to A via polynomial-time reductions differs (or is conjectured to differ)55

from the class or problems reducible to A via AC0 reductions. For example the natural56

complete problems for NISZK under ≤P
m reductions remain complete under AC0 reductions.57

Thus Theorem 1 gives rise to speculation that NISZK and NISZKL might be equal. (This58

would also imply that SZK = SZKL.)59

This motivates a closer examination of SZKL and NISZKL, to answer questions that have60

not been addressed by earlier work on these classes.61

Our main results are:62

1. The verifier and simulator may be very weak. NISZKL and SZKL are defined in63

terms of three algorithms: (1) A logspace-bounded verifier, who interacts with (2) a64

computationally-unbounded prover, following the usual rules of an interactive proof, and65

(3) a logspace-bounded simulator, who ensures the zero-knowledge aspects of the protocol.66

(More formal definitions are to be found in Section 2.) We show that the verifier and67

simulator can be restricted to lie in AC0. Let us explain why this is surprising.68

The proof presented in [1], showing that EANC0 is complete for NISZKL, makes it clear69

that the verifier and simulator can be restricted to lie in AC0[⊕] (as was observed in [22]).70
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But the proof in [1] (and a similar argument in [12]) relies heavily on hashing, and it is71

known that, although there are families of universal hash functions in AC0[⊕], no such72

families lie in AC0 [17]. We provide an alternative construction, which avoids hashing,73

and allows the verifier and simulator to be very weak indeed.74

2. The verifier and simulator may be somewhat stronger. The proof presented in75

[1], showing that EANC0 is complete for NISZKL, also makes it clear that the verifier and76

simulator can be as powerful as ⊕L, without leaving NISZKL. This is because the proof77

relies on the fact that logspace computation lies in the complexity class PREN of functions78

that have perfect randomized encodings [5], and ⊕L also lies in PREN. Applebaum,79

Ishai, and Kushilevitz defined PREN and the somewhat larger class SREN (for statistical80

randomized encodings), in proving that there are one-way functions in SREN if and only81

if there are one-way functions in NC0. They also showed that other important classes82

of functions, such as NL and GapL, are contained in SREN.1 We initially suspected that83

NISZKL could be characterized using verifiers and simulators computable in GapL (or84

even in the slightly larger class DET, consisting of problems that are ≤NC1

T reducible to85

GapL), since DET is known to be contained in NISZKL [1]. However, we were unable to86

reach that goal.87

We were, however, able to show that the simulator and verifier can be as powerful as NL,88

without making use of the properties of SREN. In fact, we go further in that direction.89

We define the class PM, consisting of those problems that are ≤L
T-reducible to the Perfect90

Matching problem. PM contains NL [16], and is not known to lie in (uniform) NC (and it91

is not known to be contained in SREN). We show that statistical zero knowledge protocols92

defined using simulators and verifiers that are computable in PM yield only problems in93

NISZKL.94

3. The complexity of the simulator is key. As part of our attempt to characterize95

NISZKL using simulators and verifiers computable in DET, we considered varying the96

complexity of the simulator and the verifier separately. Among other things, we show97

that the verifier can be as complex as DET if the simulator is logspace-computable.98

In most cases of interest, the NISZK class defined with verifier and simulator lying in99

some complexity class remains unchanged if the rules are changed so that the verifier is100

significantly stronger or weaker.101

We also establish some additional closure properties of NISZKL and SZKL, some of which are102

required for the characterizations given in [2].103

The rest of the paper is organized as follows: Section 3 will show how NISZKL can be104

defined equivalently using an AC0 verifier and simulator. Section 4 will show that increasing105

the power of the verifier and simulator to lie in PM does not increase the size of NISZKL106

(where PM is the class of problems (containing NL) that are logspace Turing reducible to107

Perfect Matching). Section 5 expands the list of problems known to lie in NISZKL. McKenzie108

and Cook [18] studied different formulations of the problem of solving linear congruences.109

These problems are not known to lie in DET, which is the largest well-studied subclass of P110

known to be contained in NISZKL. However, these problems are randomly logspace-reducible111

to DET [6]. We show that NISZKL is closed under randomized logspace reductions, and112

hence show that these problems also reside in NISZKL. Section 6 shows that the complexity113

of the simulator is more important than the complexity of the verifier, in non-interactive114

zero-knowledge protocols. In particular, the verifier can be as powerful as DET, while still115

1 This is not stated explicitly for GapL, but it follows from [15, Theorem 1]. See also [9, Section 4.2].
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defining only problems in NISZKL. Finally Section 7 will show that SZKL is closed under116

logspace Boolean formula truth-table reductions.117

2 Preliminaries118

We assume familiarity with basic complexity classes L,NL,⊕L and P, and circuit complexity119

classes NC0 and AC0. We assume knowledge of m-reducibility (many-one-reducibility) and120

Turing-reducibility. #L is the class of functions that count the number of accepting paths121

of NL machines, and GapL = {f − g : f, g ∈ #L}. The determinant is complete for GapL,122

and the complexity class DET is the class of languages NC1-Turing reducible to functions in123

GapL.124

Many of the problems we consider deal with entropy (also known as Shannon entropy).125

The entropy of a distribution X (denoted H(X)) is the expected value of log(1/Pr[X = x]).126

Given two distributions X and Y , the statistical difference between the two is denoted127

∆(X,Y ) and is equal to
∑

α

∣∣ Pr[X = α]− Pr[Y = α]
∣∣/2. Equivalently, for finite domains D,128

∆(X,Y ) = maxS⊆D{
∣∣ PrX [S]− PrY [S]

∣∣} This quantity is also known as the total variation129

distance between X and Y . The support of X, denoted supp(X), is {x : Pr[X = x] > 0}.130

▶ Definition 2. Promise Problem: a promise problem Π is a pair of disjoint sets (ΠY ,ΠN )131

(the "YES" and "NO" instances, respectively). A solution for Π is any set S such that132

ΠY ⊆ S, and S ∩Πn = Ø.133

▶ Definition 3. A branching program is a directed acyclic graph with a single source and134

two sinks labeled 1 and 0, respectively. Each non-sink node in the graph is labeled with a135

variable in {x1, . . . , xn} and has two edges leading out of it: one labeled 1 and one labeled 0.136

A branching program computes a Boolean function f on input x = x1 . . . xn by first placing137

a pebble on the source node. At any time when the pebble is on a node v labeled xi, the138

pebble is moved to the (unique) vertex u that is reached by the edge labeled 1 if xi = 1 (or139

by the edge labeled 0 if xi = 0). If the pebble eventually reaches the sink labeled b, then140

f(x) = b. Branching programs can also be used to compute functions f : {0, 1}m → {0, 1}n,141

by concatenating n branching programs p1, . . . , pn, where pi computes the function fi(x) =142

the i-th bit of f(x). For more information on the definitions, backgrounds, and nuances of143

these complexity classes, circuits, and branching programs, see the text by Vollmer [24].144

▶ Definition 4. Non-interactive zero-knowledge proof (NISZK) [Adapted from [1, 12]]: A145

non-interactive statistical zero-knowledge proof system for a promise problem Π is defined146

by a pair of deterministic polynomial time machines2 (V, S) (the verifier and simulator,147

respectively) and a probabilistic routine P (the prover) that is computationally unbounded,148

together with a polynomial r(n) (which will give the size of the random reference string σ),149

such that:150

1. (Completeness): For all x ∈ ΠY , the probability (over random σ, and over the random151

choices of P ) that V (x, σ, P (x, σ)) accepts is at least 1− 2−O(|x|).152

2. (Soundness): For all x ∈ ΠN , and for every possible prover P ′, the probability that153

V (x, σ, P ′(x, σ)) accepts is at least 2−O(|x|). (Note P ′ here can be malicious, meaning it154

can try to fool the verifier)155

2 In prior work on NISZK [12, 1], the verifier and simulator were said to be probabilistic machines. We
prefer to be explicit about the random input sequences provided to each machine, and thus the machines
can be viewed as deterministic machines taking a sequence of random bits as input.
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3. (Zero Knowledge): For all x ∈ ΠY , the statistical distance between the following two156

distributions is bounded by 2−|x|:157

a. Choose σ ← {0, 1}r(|x|) uniformly random, p← P (x, σ), and output (p, σ).158

b. S(x, r) (where the coins r for S are chosen uniformly at random).159

It is known that changing the definition, to have the error probability in the soundness and160

completeness conditions and in the simulator’s deviation be 1
nω(1) results in an equivalent161

definition [1, 12]. (See the comments after [1, Claim 39].) We will occasionally make use of162

this equivalent formulation, when it is convenient.163

NISZK is the class of promise problems for which there is a non-interactive statistical164

zero knowledge proof system.165

NISZKC denotes the class of problems in NISZK where the verifier V and simulator S lie166

in complexity class C.167

▶ Definition 5. [1, 12] (EA and EANC0). Consider Boolean circuits CX : {0, 1}m → {0, 1}n
168

representing distribution X. The promise problem EA is given by:169

EAY es := {(CX , k) : H(X) > k + 1}170

171

EANo := {(CX , k) : H(X) < k − 1}172

EANC0 is the variant of EA where the distribution Cx is an NC0 circuit with each output bit173

depending on at most 4 input bits.174

▶ Definition 6 (SDU and SDUNC0). Consider Boolean circuits CX : {0, 1}m → {0, 1}n

representing distributions X. The promise problem

SDU = (SDUYES, SDUNO)

is given by175

SDUYES
def= {CX : ∆(X,Un) < 1/n}176

SDUNO
def= {CX : ∆(X,Un) > 1− 1/n}.177

SDUNC0 is the analogous problem, where the distributions X are represented by NC0
178

circuits where no output bit depends on more than four input bits.179

▶ Theorem 7. [1, 2]: EANC0 and SDUNC0 are complete for NISZKL. EANC0 remains complete,180

even if k is fixed to k = n− 3.181

▶ Definition 8. [10, 23] (SD and SDBP). Consider a pair of Boolean circuits C1, C2 :182

{0, 1}m → {0, 1}n representing distributions X1, X2. The promise problem SD is given by:183

SDY es := {(C1, C2) : ∆(X1, X2) > 2/3}184

185

SDNo := {(C1, C2) : ∆(X1, X2) < 1/3}.186

SDBP is the variant of SD where the distributions X1, X2 are represented by branching187

programs.188
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2.1 Perfect Randomized Encodings189

We will make use of the machinery of perfect randomized encodings [5].190

▶ Definition 9. Let f : {0, 1}n → {0, 1}ℓ be a function. We say that f̂ : {0, 1}n × {0, 1}m →191

{0, 1}s is a perfect randomized encoding of f with blowup b if it is:192

Input independent: for every x, x′ ∈ {0, 1}n such that f(x) = f(x′), the random193

variables f̂(x, Um) and f̂(x′, Um) are identically distributed.194

Output Disjoint: for every x, x′ ∈ {0, 1}n such that f(x) ̸= f(x′), supp(f̂(x, Um)) ∩195

supp(f̂(x′, Um)) = Ø.196

Uniform: for every x ∈ {0, 1}n the random variable f̂(x, Um) is uniform over the set197

supp(f̂(x, Um)).198

Balanced: for every x, x′ ∈ {0, 1}n |supp(f̂(x, Um))| = |supp(f̂(x′, Um))| = b199

The following property of perfect randomized encodings is established in [10].200

▶ Lemma 10 (entropy). Let f : {0, 1}n → {0, 1}ℓ be a function and let f̂ : {0, 1}n ×201

{0, 1}m → {0, 1}s be a perfect randomized encoding of f with blowup b. Then H(f̂(Un, Um)) =202

H(f(Un)) + log b203

3 Simulators and Verifiers in AC0
204

In this section, we show that NISZKL can be defined equivalently using verifiers and simulators205

that are computable in AC0. The standard complete problems for NISZK and NISZKL take a206

circuit C as input, where the circuit is viewed as representing a probability distribution X;207

the goal is to approximate the entropy of X, or to estimate how far X is from the uniform208

distribution. Earlier work [13, 1, 22] that had presented non-interactive zero-knowledge209

protocols for these problems had made use of the fact that the verifier could compute hash210

functions, and thereby convert low-entropy distributions to distributions with small support.211

But an AC0 verifier cannot compute hash functions [17].212

Our approach is to “delegate” the problem of computing hash functions to a logspace213

verifier, and then to make use of the uniform encoding of this verifier to obtain the desired214

distributions via an AC0 reduction. To this end, we begin by defining a suitably restricted215

version of SDUNC0 and show that this restricted version remains complete for NISZKL under216

AC0 reductions (and even under projections).217

With this new complete problem in hand, we provide a NISZKAC0 protocol for the complete218

problem, to conclude NISZKL = NISZKAC0 .219

▶ Definition 11. Consider an NC0 circuit C : {0, 1}m → {0, 1}n and the probability distri-220

bution X on {0, 1}n defined as C(Um) - where Um denotes m uniformly random bits. For221

some fixed ϵ > 0 (chosen later in Remark 16), we define:222

SDU’NC0,Y = {X : ∆(C,Un) < 1
2nϵ }223

224

SDU’NC0,N = {X : | supp(X)| ≤ 2n−nϵ

}225

We will show that SDU’NC0 is complete for NISZKL under uniform ≤proj
m reductions. In226

order to do so, we first show that SDU’NC0 is in NISZKL by providing a reduction to SDUNC0 .227

▷ Claim 12. SDU’NC0≤proj
m SDUNC0 , and thus SDU’NC0 ∈ NISZKL.228
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Proof. On a given probability distribution X defined on {0, 1}n for SDU’NC0 , we claim that229

the identity function f(X) = X is a reduction of SDU’NC0 to SDUNC0 . If X is a YES instance230

for SDU’NC0 , then ∆(X,Un) < 1
2nϵ , which clearly is a YES instance of SDUNC0 . If X is a231

NO instance for SDU’NC0 , then | supp(X)| ≤ 2n−nϵ . Thus, if we let T be the complement of232

supp(X), we have that, under the uniform distribution, a string α is in T with probability233

≥ 1− 1
2nϵ , whereas this event has probability zero under X. Thus ∆(X,Un) ≥ 1− 1

2nϵ , easily234

making it a NO instance of SDUNC0 . ◀235

3.1 Hardness for SDU’NC0236

▶ Theorem 13. SDU’NC0 is hard for NISZKL under ≤proj
m reductions.237

Proof. In order to show that SDU’NC0 is hard for NISZKL, we will show that the reduction238

given in [1] proving the hardness of SDUNC0 for NISZKL actually produces an instance of239

SDU’NC0 .240

Let Π be an arbitrary promise problem in NISZKL with proof system (P, V ) and simulator241

S. Let x be an instance of Π. Let Mx(r) denote a machine that simulates S(x) with242

randomness r to obtain a transcript (σ, p) - if V (x, σ, p) accepts then Mx(r) outputs σ; else243

it outputs 0|σ|. We will assume without loss of generality that |σ| = nk for some constant k.244

245

It was shown in [13, Lemma 3.1] that for the promise problem EA, there is an NISZK246

protocol with completeness error, soundness error and simulator deviation all bounded from247

above by 2−m for inputs of length m. Furthermore, as noted in the paragraph before Claim248

38 in [1], the proof carries over to show that EABP has an NISZKL protocol with the same249

parameters. Thus, any problem in NISZKL can be recognized with exponentially small250

error parameters by reducing the problem to EABP and then running the above protocol for251

EABP on that instance. In particular, this holds for EANC0 . In what follows, let Mx be the252

distribution described in the preceding paragraph, assuming that the simulator S and verifier253

V yield a protocol with these exponentially small error parameters.254

▷ Claim 14. If x ∈ ΠY ES then ∆(Mx(r), Unk ) ≤ 1/2n−1. and if x ∈ ΠNO then255

| supp(Mx(r))| ≤ 2nk−nϵk .256

Proof. For x ∈ ΠY ES , claim 38 of [1] shows that ∆(Mx(r), Unk ) ≤ 1/2n−1, establishing the257

first part of the claim.258

For x ∈ ΠNO, from the soundness guarantee of the NISZKL protocol for EANC0 , we know259

that, for at least a 1− 1
2n fraction of the shared reference strings σ ∈ {0, 1}nk , there is no260

message p that the prover can send that will cause V to accept. Thus there are at most261

2nk−n outputs of Mx(r) other than 0nk . For ϵ < 1
k , we have | supp(Mx(r))| ≤ 2nk−nϵk . ◀262

The above claim talks about the distribution Mx(r) where M is a logspace machine. We263

will instead consider an NC0 distribution with similar properties that can be constructed264

using projections. This distribution (denoted by Cx) is a perfect randomized encoding of265

Mx(r). We make use of the following construction:266

▶ Lemma 15. [1, Lemma 35]. There is a function computable in AC0 (in fact, it can be267

a projection) that takes as input a branching program Q of size l computing a function f268

and produces as output a list pi of NC0 circuits, where pi computes the i-th bit of a function269

f̂ that is a perfect randomized encoding of f that has blowup 2((l
2)−1)2((l−1)2−1). Each pi270

depends on at most four input bits from (x, r) (where r is the sequence of random bits in the271

randomized encoding).272



8 Robustness for Space-Bounded Statistical Zero Knowledge

Since the simulator S runs in logspace, each bit of Mx(r) can be simulated with a273

branching program Qx. Furthermore, it is straightforward to see that there is an AC0-274

computable function that takes x as input and produces an encoding of Qx as output, and it275

can even be seen that this function can be a projection. Let the list of NC0 circuits produced276

from Qx by the construction of Lemma 15 be denoted Cx.277

We show that this distribution Cx is an instance of SDU’NC0 if x ∈ Π. For x ∈ ΠY ES , we278

have ∆(Mx(r), Unk ) ≤ 1/2n−1, and we want to show ∆(Cx(r), Ulog b+nk ) ≤ 1/2n−1. Thus it279

will suffice to observe that ∆(Mx(r), Unk ) = ∆(Cx(r), Ulog b+nk ) ≤ 1/2n−1.280

To see this, note that

∆(Cx(r), Ulog b+nk ) =
∑
αβ

∣∣ Pr[Cx = αβ]− 1
2nk+b

∣∣/2 =
∑

β

∑
α

∣∣ Pr[Mx = α] 1
2b
− 1

2b

1
2nk

∣∣/2
=

∑
α

∣∣ Pr[Mx = α]− 1
2nk

∣∣/2 = ∆(Mx(r),Unk ).

Thus, for x ∈ ΠY ES , Cx is a YES instance for SDU’NC0 .281

For x ∈ ΠNO, Claim 14 shows that | supp(Mx(r))| ≤ 2nk−n. Since the NC0 circuit Cx is282

a perfect randomized encoding of Mx(r), we have that the support of Cx for x ∈ ΠNO is283

bounded from above by b× 2nk−n Note that log b is polynomial in n; let q(n) = log b. Let284

r(n) denote the length of the output of C; r(n) = q(n) + nk. Thus the size of supp(Cx) ≤285

2nk−n+q(n) = 2r(n)−n < 2r(n)−r(n)ϵ (if 1/ϵ is chosen to be greater than the degree of r), and286

hence Cx is a NO instance for SDU’NC0 . ◀287

▶ Remark 16. Here is how we pick ϵ in the definition of SDU’NC0 . SDUNC0 is in NISZKL via288

some simulator and verifier, where the error parameters are exponentially small, and the289

shared reference strings σ have length nk on inputs of length n. Now we pick ϵ > 0 so that290

ϵ < 1/k (as in Claim 14) and also 1/ϵ is greater than the degree of r (as in the last sentence291

of the proof of Theorem 13).292

3.2 NISZKAC0 protocol for SDU’NC0 on input X represented by circuit C293

3.2.1 Non Interactive proof system294

1. Let C take inputs of length m and produce outputs of length n, and let σ be the reference295

string of length n.296

2. If there is no r such that C(r) = σ, then the prover sends ⊥. Otherwise, the prover picks297

an element r uniformly at random from p ∼ {r|C(r) = σ} and sends it to the verifier.298

3. V accepts iff C(r) = σ.299

3.2.2 Simulator for SDU’NC0 proof system, on input X represented by300

circuit C301

1. Pick a random s of length m and compute γ = C(s).302

2. Output (s, γ).303

3.3 Proofs of Zero Knowledge, Completeness and Soundness304

3.3.1 Completeness305

▷ Claim 17. If X ∈ SDU’NC0,Y , then the verifier accepts with probability ≥ 1− 1
2nϵ .306
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Proof. If X is a YES instance, then ∆(X,Un) < 1
2nϵ . This implies | supp(X)| > 2n(1− 1

2nϵ ),307

which immediately implies the stated lower bound on the verifier’s probability of acceptance.308

◀309

3.3.2 Soundness310

▷ Claim 18. If X ∈ SDU’NC0,N , then for every prover, the probability that the verifier311

accepts is at most 1
2nϵ .312

Proof. For every σ ̸∈ supp(X), no prover can make the verifier accept. If X ∈ SDU’NC0,N ,313

the probability that σ ̸∈ supp(X) is greater than 1− 1
2nϵ . ◀314

3.3.3 Zero Knowledge315

▷ Claim 19. For X ∈ SDU’NC0,Y , ∆((p, σ), (s, γ)) = O( 1
2nϵ ).316

Proof. Recall that σ ∼ {0, 1}n, s ∼ {0, 1}m, p ∼ {r : C(r) = σ} and γ = C(s). In order317

to provide an upper bound on ∆((p, σ), (s, γ)), we consider the element wise probability of318

each distribution and show that for X ∈ SDU’NC0,Y the claim holds. For a ∈ {0, 1}m and319

b ∈ {0, 1}n we have :320

∆((p, σ), (s, γ)) =
∑
(a,b)

1
2 |Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|321

Let us consider an element b ∈ {0, 1}n. Let Ab = {a1, a2, .., akb
} be the pre-images of b under322

C i.e. for 1 ≤ i ≤ kb it holds that C(ai) = b. Let βb = Pr
y∼Um

[C(y) = b]. Then kb2−m = βb323

(since exactly kb elements of {0, 1}m are mapped to b under C). Let B = {b|¬∃y : C(y) = b}.324

Since ∆(C(Um), Un) ≤ 1
2nϵ , it follows that |B|2m ≤ 1

2nϵ . We have :325

∆((p, σ), (s, γ)) =
∑
(a,b)

1
2(|Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|)326

= 1
2

∑
(a,b):b∈B

|Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|327

+ 1
2

∑
(a,b):b̸∈B

|Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|328

329

For (a, b) satisfying b ∈ B, we have Pr[(s, γ) = (a, b)] = Pr[(p, σ) = (a, b)] = 0. For b ̸∈ B330

and a satisfying C(a) ̸= b we again have Pr[(s, γ) = (a, b)] = Pr[(p, σ) = (a, b)] = 0. For331

(a, b) : C(a) = b we have Pr[(s, γ) = (a, b)] = 2−m since s ∼ Um and picking s fixes b. We332

also have Pr[(p, σ) = (a, b)] = 2−n

kb
since σ ∼ Un and then the prover picks p uniformly from333

Ab. This gives us334

∆((p, σ), (s, γ)) = 1
2

∑
(a,b):C(a)=b

∣∣2−m − 2−n

kb

∣∣335

= 1
2

∑
(a,b):C(a)=b

∣∣∣∣2−m − 2−m−n

βb

∣∣∣∣336

= 1
2

∑
(a,b):C(a)=b

2−m

βb

∣∣βb − 2−n
∣∣337

≤ 1
2

∑
(a,b):C(a)=b

∣∣βb − 2−n
∣∣ = ∆(C(Um), Un) ≤ 1

2nϵ338

339
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where the first inequality holds since βb ≥ 2−m whenever βb ̸= 0. Thus we have :340

∆((p, σ), (s, γ)) = O( 1
2nϵ ).341

◀342

4 Simulator and Verifier in PM343

In this section, we show that NISZKL can be defined equivalently using verifiers and simulators344

that lie in the class PM of problems that logspace-Turing reduce to Perfect Matching. (PM345

is not known to lie in (uniform) NC.) That is, we can increase the computational power of346

the simulator and the verifier from L to PM without affecting the power of noninteractive347

statistical zero knowledge protocols.348

The Perfect Matching problem is the well-known problem of deciding, given an undirected349

graph G with 2n vertices, if there is a set of n edges covering all of the vertices. We define a350

corresponding complexity class PM as follows:351

PM := {A : A ≤L
T Perfect Matching}352

It is known that NL ⊆ PM [16].353

Our argument proceeds by first observing3 that NISZKL = NISZK⊕L, and then making354

use of the details of the argument that Perfect Matching is in ⊕L/poly [4].355

▶ Proposition 20. NISZK⊕L = NISZKL356

Proof. It suffices to show NISZK⊕L ⊆ NISZKL. We do this by showing that the problem357

EANC0 is hard for NISZK⊕L; this suffices since EANC0 is complete for NISZKL. The proof358

of [1, Theorem 26] (showing that EANC0 is complete for NISZKL involves (a) building a359

branching program to simulate a logspace computation called Mx that is constructed from a360

logspace-computable simulator and verifier, and (b) constructing an NC0-computable perfect361

randomized encoding of Mx, using the fact that L ⊂ PREN , where PREN is the class362

defined in [5], consisting of all problems with perfect randomized encodings. But Theorem363

4.18 in [5] shows the stronger result that ⊕L lies in PREN , and hence the argument of364

[1, Theorem 26] carries over immediately, to reduce any problem in NISZK⊕L to EANC0 (by365

modifying step (a), to build a parity branching program for Mx that is constructed from a366

⊕L simulator and verifier). ◀367

We also rely on the following lemma:368

▶ Lemma 21. Adapted from [4, Section 3] and [19, Section 4]: Let W = (w1, w2, · · · , wnk+3)369

be a sequence of nk+3 weight functions, where each wi : [
(

n
2
)
] → [4n2] is a distinct weight370

assignment to edges in n-vertex graphs. Let (G,wi) denote the result of weighting the edges371

of G using weight assignment wi. Then there is a function f in GapL, such that, if (G,wi)372

has a unique perfect matching of weight j, then f(G,W, i, j) ∈ {1,−1}, and if G has no373

perfect matching, then for every (W, i, j), it holds that f(G,W, i, j) = 0. Furthermore, if W374

is chosen uniformly at random, then with probability ≥ 1− 2−nk , for each n-vertex graph G:375

If G has no perfect matching then ∀i∀j f(G,W, i, j) = 0.376

3 This equality was previously observed in [22].
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If G has a perfect matching then ∃i such that (G,wi) has a unique minimum-weight377

matching, and hence ∃i∃j f(G,W, i, j) ∈ {1,−1}.378

Thus if we define g(G,W ) to be 1− Πi,j(1− f(G,W, i, j)2), we have that g ∈ GapL and with379

probability ≥ 1− 2−nk (for randomly-chosen W ), g(G,W ) = 1 if G has a perfect matching,380

and g(G,W ) = 0 otherwise.381

Note that this lemma is saying that most W constitute a good “advice string”, in the sense382

that g(G,W ) provides the correct answer to the question “Does G have a perfect matching?”383

for every graph G with n vertices.384

▶ Corollary 22. For every language A ∈ PM there is a language B ∈ ⊕L such that, if x ∈ A,385

then PrW←[4n2]n5 [(x,W ) ∈ B] ≥ 1 − 2−n2 , and if x ̸∈ A, then PrW←[4n2]n5 [(x,W ) ∈ B] ≤386

2−n2 .387

Proof. Let A be in PM, where there is a logspace oracle machine M accepting A with an388

oracle P for Perfect Matching. We may assume without loss of generality that all queries389

made by M on inputs of length n have the same number of vertices p(n). This is because G390

has a perfect matching iff G∪ {x1 − y1, x2 − y2, ..., xk − yk} has a perfect matching. (I.e., we391

can “pad” the queries, to make them all the same length.)392

Let C = {(G,W ) : g(G,W ) ≡ 1 mod 2}, where g is the function from Lemma 21. Clearly,393

C ∈ ⊕L. Now, a logspace oracle machine with input (x,W ) and oracle C can simulate394

the computation of MP on x; each time M poses the query “Is G ∈ P”, instead we ask if395

(G,W ) ∈ C. Then with high probability (over the random choice of W ) all of the queries396

will be answered correctly and hence this routine will accept if and only if x ∈ A, by397

Lemma 21. Let B be the language accepted by this logspace oracle machine. We see that398

B ∈ LC ⊆ L⊕L = ⊕L, where the last equality is from [14]. ◀399

▶ Theorem 23. NISZKL = NISZKPM400

Proof. We show that NISZKPM ⊆ NISZK⊕L, and then appeal to Proposition 20.401

Let Π be an arbitrary problem in NISZKPM, and let (S, P, V ) be the PM simulator, prover,402

and verifier for Π, respectively. Let S′ and V ′ be the ⊕L languages that are probabilistic403

realizations of S, V , respectively, guaranteed by Corollary 22. We now define a NISZKL404

protocol (S′′, P ′′, V ′′) for Π.405

On input x with shared randomness σW , the prover P ′′ sends the same message p =406

P (x, σ) as the original prover sends. The verifier V ′′, returns the value of V ′((x, σ, p),W ),407

which with high probability is equal to V (x, σ, p). The simulator S′′, given as input x and408

random sequence rW , executes S′((x, r, i),W ) for each bit position i to obtain a bit that409

(with high probability) is equal to the ith bit of S(x, r), which is a string of the form (σ, p),410

and outputs (σW, p).411

Now we will analyze the properties of (S′′, P ′′, V ′′):412

Completeness: Suppose x ∈ ΠY , then Prσ[V (x, σ, P (x, σ)) = 1] ≥ 1 − 2−O(n). Since413

∀y ∈ {0, 1}n : PrW [V (y) = V ′(y,W )] ≥ 1− 2−nk we have:414

Pr
σW

[V ′((x, σ, P ′′(x, σ)),W ) = 1] ≥ [1− 2−O(n)][1− 2−nk

] = 1− 2−O(n)
415

Soundness: Suppose x ∈ ΠN , then Prσ[∀p : V (x, σ, p) = 0] ≥ 1 − 2−O(n). Since416

∀y ∈ {0, 1}n : PrW [V (y) = V ′(y,W )] ≥ 1− 2−nk , we have:417

Pr
σW

[∀p : V ′((x, σ, p),W ) = 0] ≥ [1− 2−O(n)][1− 2−nk

] = 1− 2−O(n)
418
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Statistical Zero-Knowledge: Suppose x ∈ ΠY . Let S∗ denote the distribution on strings419

of the form (σ, p) that S(x, r) produces, where r is uniformly generated, and let P ∗ denote420

the distribution on strings given by (σ, P (x, σ)) where σ is chosen uniformly at random.421

Similarly, let S′′∗ denote the distribution on strings of the form (σW, p) that S′′(x, rW )422

produces, where r and W are chosen uniformly, and let P ′′∗ be the distribution given by423

(σW,P ′′(x, σW )). Let A = {(σW, p) : ∃i∃r S(x, r)i ̸= S′((x, r, i),W )}.424

Since PrW [∀i∀r : S(x, r)i = S′((x, r, i),W )] ≥ 1− 2−O(n) we have:425

∆(S′′∗, P ′′∗) = 1
2

∑
(σW,p)

∣∣ Pr[S′′∗ = (σW, p)]− Pr[P ′′∗ = (σW, p)]
∣∣426

≤ 1
2(2−O(n) +

∑
(σW,p)∈A

∣∣ Pr[S′′∗ = (σW, p)]− Pr[P ′′∗ = (σW, p)])
∣∣427

= 1
2(2−O(n) +

∑
(σW,p)∈A

∣∣ Pr[S∗ = (σ, p)]− Pr[P ∗ = (σ, p)]
∣∣ Pr[W ])428

≤ 2−O(n) +
∑
W

Pr[W ] 12
∑
(σ,p)

∣∣ Pr[S∗ = (σ, p)]− Pr[P ∗ = (σ, p)]
∣∣429

= 2−O(n) + ∆(S∗, P ∗) = 2−O(n)
430
431

Therefore (S′′, P ′′, V ′′) is a NISZK⊕L protocol deciding Π. ◀432

5 Additional problems in NISZKL433

In this section, we give additional examples of problems in P that lie in NISZKL. These434

problems are not known to lie in (uniform) NC. Our main tool is to show that NISZKL is435

closed under a class of randomized reductions.436

The following definition is from [2]:437

▶ Definition 24. A promise problem A = (Y,N) is ≤BPL
m -reducible to B = (Y ′, N ′) with438

threshold θ if there is a logspace-computable function f and there is a polynomial p such that439

x ∈ Y implies Prr∈{0,1}p(|x|) [f(x, r) ∈ Y ′] ≥ θ.440

x ∈ N implies Prr∈{0,1}p(|x|) [f(x, r) ∈ N ′] ≥ θ.441

Note, in particular, that the logspace machine computing the reduction has two-way access442

to the random bits r; this is consistent with the model of probabilistic logspace that is used443

in defining NISZKL.444

▶ Theorem 25. NISZKL is closed under ≤BPL
m reductions with threshold 1− 1

nω(1) .445

Proof. Let Π≤BPL
m EANC0 , via logspace-computable function f . Let (S1, V1, P1) be the NISZKL446

proof system for EANC0 .447

Algorithm 1 Simulator S(x, rσ′)

(σ, p)← S1(f(x, σ′), r);
return ((σ, σ′), p);

448

Algorithm 2 Prover P (x, (σ, σ′))

return P1((f(x, σ′), σ);
449

Algorithm 3 Verifier V (x, (σ, σ′), p)

return V1((f(x, σ′), σ, p)
450
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We now claim that (S, P, V ) is a NISZKL protocol for Π.451

It is apparent that S and V are computable in logspace. We just need to go through452

completeness, soundness, and statistical zero-knowledge of this protocol.453

Completeness: Suppose x is YES instance of Π. Then with probability 1− 1
nω(1) (over454

randomness of σ′): f(x, σ′) is a YES instance of EANC0 . Thus for a randomly chosen σ:455

Pr[V1(f(x, σ′), σ, P1(f(x, σ′), σ)) = 1] ≥ 1− 1
nω(1)456

Soundness: Suppose x is NO instance of Π. Then with probability 1 − 1
nω(1) (over457

randomness of σ′): f(x, σ′) is a NO instance of EANC0 . Thus for a randomly chosen σ:458

Pr[V1(f(x, σ′), σ, P1(f(x, σ′), σ)) = 0] ≥ 1− 1
nω(1)459

Statistical Zero-Knowledge: If x is a YES instance, f(x, σ′) is a YES instance of EANC0460

with probability close to 1. For any YES instance y of EANC0 , the distribution given by461

S1 on input y is exponentially close the the distribution on transcripts (σ, p) induced by462

(V1, P1) on input y. Thus the distribution on (σσ′, p) induced by (V, P ) has distance at463

most 1
nω(1) from the distribution produced by S on input x. The claim now follows by464

the comments regarding error probabilities in Definition 4.465

◀466

McKenzie and Cook [18] defined and studied the problems LCON, LCONX and LCONNULL.467

LCON is the problem of determining if a system of linear congruences over the integers mod468

q has a solution. LCONX is the problem of finding a solution, if one exists, and LCONNULL469

is the problem of computing a spanning set for the null space of the system.470

These problems are known to lie in uniform NC3 [18], but are not known to lie in uniform471

NC2, although Arvind and Vijayaraghavan showed that there is a set B in LGapL ⊆ DET ⊆ NC2
472

such that x ∈ LCON if and only if (x,W ) ∈ B, where B is a randomly-chosen weight function473

[6]. (The probability of error is exponentially small.) The mapping x 7→ (x,W ) is clearly a474

≤BPL
m reduction. Since DET ⊆ NISZKL [1], it follows that475

LCON ∈ NISZKL476

The arguments in [6] carry over to LCONX and LCONNULL as well.477

▶ Corollary 26. LCON ∈ NISZKL. LCONX ∈ NISZKL. LCONNULL ∈ NISZKL.478

6 Varying the Power of the Verifier479

In this section, we show that the computational complexity of the simulator is more important480

than the computational complexity of the verifier, in non-interactive protocols. The results in481

this section were motivated by our attempts to show that NISZKL = NISZKDET. Although we482

were unable to reach this goal, we were able to show that the verifier could be as powerful as483

DET, if the simulator was restricted to be no more powerful than NL. The general approach484

here is to replace a powerful verifier with a weaker verifier, by requiring the prover to provide485

a proof to convince a weak verifier that the more powerful verifier would accept.486

We define NISZKA,B as the class of problems with a NISZK protocol where the simulator487

is in A and the verifier is in B (and hence NISZKA = NISZKA,A). We will consider the488

case where A ⊆ B ⊆ NISZKA and A,B are both classes of functions that are closed under489

composition.490
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▶ Theorem 27. NISZKA,B = NISZKA491

Proof. Let Π be an arbitrary promise problem in NISZKA,B with (S1, V1, P1) being the A492

simulator, B verifier, and prover for Π’s proof system, where the reference string has length493

p1(|x|) and the prover’s messages have length q1(|x|). Since V1 ∈ B ⊆ NISZKA, L(V1) has494

a proof system (S2, V2, P2), where the reference string has length p2(|x|) and the prover’s495

messages have length q2(|x|).496

▶ Lemma 28. We may assume without loss of generality that p1(n) > p2(n) + q2(n).497

Proof. If it is not the case that p1(n) > p2(n) + q2(n), then let r(n) = p2(n) + q2(n)− p1(n).498

Consider a new proof system (S′1, V ′1 , P ′1) that is identical to (S1, V1, P1), except that the499

reference string now has length p1(n) + r(n) (where P ′1 and V ′1 ignore the additional r(n)500

random bits). The simulator S′1 uses an additional r(n) random bits and simply appends501

those bits to the output of S1. The language L(V ′1) is still in NISZKA, with a proof system502

(S′2, V ′2 , P ′2) where the reference string still has length p2(n), since membership in L(V ′1) does503

not depend on the “new” r(n) random bits, and hence S′2, V ′2 and P ′2, given input (x, σr, p)504

behave exactly as S2, V2 and P2 behave when given input (x, σ, p). ◀505

Then Π has the following NISZKA proof system:506

Algorithm 4 Simulator S(x, r1, r2)

Data: x ∈ ΠY es ∪ΠNo

(σ, p)← S1(x, r1);
(σ′, p′)← S2((x, σ, p), r2);
return ((σ, σ′), (p, p′));

507

Algorithm 5 Prover P (x, σσ′)

Data: x ∈ ΠY es ∪ΠNo, σ ∈ {0, 1}p1(|x|), σ′ ∈ {0, 1}p2(|x|)

if x ∈ ΠY es then
p← P1(x, σ);
p′ ← P2((x, σ, p), σ′);
return (p, p′);

else
return ⊥,⊥;

end

508

Algorithm 6 Verifier V (x, (σ, σ′), (p, p′))

return V2((x, σ, p), σ′, p′)
509

Correctness: Suppose x ∈ ΠY es, then given random σ, with probability (1 − 1
2O(|x|) ):510

(x, σ, P1(x, σ)) ∈ L(V1) which means with probability (1− 1
2O(|x|+p1(|x|)+|p|) ) it holds that511

((x, σ, p), σ′, P2(x, σ, P1(x, σ)) ∈ L(V2). So the probability that V accepts is at least:512

(1− 1
2O(|x|) )(1− 1

2O(|x|+p1(|x|)+q1(|x|)) ) = 1− 1
2O(|x|)513

Soundness: Suppose x ∈ ΠN . When given a random σ, we have that with probability less514

than 1
2O(|x|) : ∃p such that (x, σ, p) ∈ L(V1). For (x, σ, p) ̸∈ L(V1), the probability that515

there is a p such that ((x, σ, p), σ′, p′) ∈ L(V2) is at most 1
2O(|x|+p1(|x|)+|p|) (given random516

σ′). So the probability that V rejects is at least:517

(1− 1
2O(|x|) )(1− 1

2O(|x|+p(|x|)+|p|) ) = 1− 1
2O(|x|)518
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Statistical Zero-Knowledge: Let P ∗1 denote the distribution that samples σ and outputs519

(σ, P1(x, σ)). Similarly, let P ∗2 (σ, p) denote the distribution that samples σ′ and outputs520

(σσ′, P2((x, σ, p), σ′). P ∗ will be defined as the distribution ((σσ′), P (x, σ, σ′))) where σ521

and σ′ are chosen uniformly at random. In the same way, let S∗ refer to the distribution522

produced by S on input x, let S∗1 refer to the distribution produced by S1(x), and let523

S∗2 (σ, p) be the distribution induced by S2 on input (x, σ, p). Now we can partition the524

set of possible outcomes ((σ, σ′), (p, p′)) of S∗ and P ∗ into 3 blocks:525

1. ((σ, σ′), (p, p′)) such that V1(x, σ, p) accepts and V2((x, σ, p), σ′, p′) accepts.526

2. ((σ, σ′), (p, p′)) such that V1(x, σ, p) accepts and V2((x, σ, p), σ′, p′) rejects.527

3. ((σ, σ′), (p, p′)) such that V1(x, σ, p) rejects.528

We will call these blocks A1, A2, and A3 respectively. Then by definition:529

∆(S∗, P ∗) = 1
2

∑
j∈{1,2,3}

∑
y∈Aj

∣∣ Pr
S∗

[y]− Pr
P ∗

[y]
∣∣530

= 1
2

∑
y∈A1

∣∣ Pr
S∗

[y]− Pr
P ∗

[y]
∣∣ + 1

2
∑

j∈{2,3}

∑
y∈Aj

[
Pr
S∗

[y] + Pr
P ∗

[y]
]

531

532

We concentrate first on A1.533 ∑
y∈A1

∣∣ Pr
S∗

[y]− Pr
P ∗

[y]
∣∣534

535

=
∑

(σ′,p′)

( ∑
{(σ,p):y=((σ,σ′),(p,p′))∈A1}

∣∣ Pr
S∗

[y|σ′, p′] Pr
S∗

[(σ′, p′)]−Pr
P ∗

[y|σ′, p′] Pr
P ∗

[(σ′, p′)]
∣∣) (∗)536

Here537

Pr
S∗

[(σ′, p′)] =
∑
(σ,p)

Pr
S∗

[((σ, σ′), (p, p′))]538

and539

Pr
P ∗

[(σ′, p′)] =
∑
(σ,p)

Pr
P∗

[((σ, σ′), (p, p′))].540

We define δ(σ′, p′) :=
∣∣ PrS∗ [(σ′, p′)]−PrP ∗ [(σ′, p′)]

∣∣. Let us examine a single term of the541

sum (∗), for y = ((σ, σ′), (p, p′)):542

∣∣ Pr
S∗

[y|σ′, p′] Pr
S∗

[(σ′, p′)]− Pr
P ∗

[y|σ′, p′] Pr
P ∗

[(σ′, p′)]
∣∣543

=
∣∣(Pr

S∗
[y|σ′, p′] Pr

S∗
[(σ′, p′)]− Pr

P ∗
[y|σ′, p′] Pr

S∗
[(σ′, p′)])+544

(Pr
P ∗

[y|σ′, p′] Pr
S∗

[(σ′, p′)]− Pr
P ∗

[y|σ′, p′] Pr
P ∗

[(σ′, p′)])
∣∣545

=
∣∣(Pr

S∗
1

[(σ, p)]− Pr
P ∗

1

[(σ, p)) Pr
S∗

[(σ′, p′)] + Pr
P ∗

1

[(σ, p)](Pr
S∗

[(σ′, p′)]− Pr
P ∗

[(σ′, p′)])
∣∣546

≤
∣∣ Pr

S∗
1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣ Pr

S∗
[(σ′, p′)] + Pr

P ∗
1

[(σ, p)]
∣∣ Pr

S∗
[(σ′, p′)]− Pr

P ∗
[(σ′, p′)]

∣∣547

=
∣∣ Pr

S∗
1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣ Pr

S∗
[(σ′, p′)] + Pr

P ∗
1

[(σ, p)]δ(σ′, p′)548

549
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Thus (*) is no more than550

∑
(σ′,p′)

∑
(σ,p)

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣ Pr

S∗
[(σ′, p′)]551

+
∑

(σ′,p′)

∑
{(σ,p):y=((σ,σ′),(p,p′))∈A1}

Pr
P ∗

1

[(σ, p)]δ(σ′, p′)552

≤
∑
(σ,p)

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣ +

∑
{(σ′,p′):∃(σ,p) ((σ,σ′),(p,p′))∈A1}

δ(σ′, p′)553

= 2∆(S∗1 (x), P ∗1 (x)) +
∑

{(σ′,p′):∃(σ,p) ((σ,σ′),(p,p′))∈A1}

δ(σ′, p′)554

≤ 2
2|x|

+
∑

{(σ′,p′):∃(σ,p) ((σ,σ′),(p,p′))∈A1}

δ(σ′, p′) (∗∗)555

556

Let us consider a single term δ(σ′, p′) in the summation in (∗∗). Recalling that the557

probability that S(x) = ((σ, σ′), (p, p′)) is equal to the probability that S1(x) = (σ, p)558

and S2(x, σ, p) = (σ′, p′), we have559

Pr
S∗

[(σ′, p′)] =
∑
(σ,p)

Pr
S∗

[((σ, σ′), (p, p′))]560

=
∑
(σ,p)

Pr
S∗

[((σ, σ′), (p, p′))|(σ, p)] Pr
S∗

[(σ, p)]561

=
∑
(σ,p)

Pr
S∗

2 (σ,p)
[(σ′p′)] Pr

S∗
1

[(σ, p)]562

563

and similarly PrP ∗ [(σ′, p′)] =
∑

(σ,p) PrP ∗
2 (σ,p)[(σ′p′)] PrP ∗

1
[(σ, p)]. Thus564
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δ(σ′, p′) =
∣∣ Pr

S∗
[σ′, p′]− Pr

P ∗
[σ′, p′]

∣∣565

=
∣∣ ∑

(σ,p)

Pr
S∗

2 (σ,p)
[(σ′, p′)] Pr

S∗
1

[(σ, p)]−
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)] Pr

P ∗
1

[σ, p]
∣∣566

=
∣∣ ∑

(σ,p)

Pr
S∗

2 (σ,p)
[(σ′, p′)] Pr

S∗
1

[(σ, p)]−
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)] Pr

S∗
1

[(σ, p)]567

+
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)] Pr

S∗
1

[(σ, p)]−
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)] Pr

P ∗
1

[(σ, p)]
∣∣568

=
∣∣ ∑

(σ,p)

( Pr
S∗

2 (σ,p)
[(σ′, p′)]− Pr

P ∗
2 (σ,p)

[(σ′, p′)]) Pr
S∗

1

[(σ, p)]569

+
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)](Pr

S∗
1

[(σ, p)]− Pr
P ∗

1

[(σ, p)])
∣∣570

≤
∑
(σ,p)

∣∣ Pr
S∗

2 (σ,p)
[(σ′, p′)]− Pr

P ∗
2 (σ,p)

[(σ′, p′)]
∣∣ Pr

S∗
1

[(σ, p)]571

+
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣572

=
∑
(σ,p)

2∆(S∗2 (σ, p), P ∗2 (σ, p)) Pr
S∗

1

[(σ, p)]573

+
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣574

≤
∑
(σ,p)

2
2|(x,σ,p)| Pr

S∗
1

[(σ, p)] +
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣575

= 2
2|x|+p1(|x|)+q1(|x|) +

∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣576

577

where the last inequality holds, since the summation in (∗∗) is taken over tuples, such578

that each (x, σ, p) is a YES instance of L(V1).579

Replacing each term in (∗∗) with this upper bound, thus yields the following upper bound580

on (∗):581

2
2|x|

+
∑

(σ′,p′)

(
2

2|x|+p1(|x|)+q1(|x|) +
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣)582

583

= 2
2|x|

+ 2 · 2p2(|x|)+q2(|x|)

2|x|+p1(|x|)+q1(|x|) +
∑

(σ′,p′)

∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣)584

585

= 2
2|x|

+ 2 · 2p2(|x|)+q2(|x|)

2|x|+p1(|x|)+q1(|x|) + 2∆(S∗1 , P ∗1 )586

587

≤ 2
2|x|

+ 2 · 2p2(|x|)+q2(|x|)

2|x|+p1(|x|)+q1(|x|) + 2
2|x|

588

589

≤ 2
2|x|

+ 2
2|x|

+ 2
2|x|

590

where the last inequality follows from Lemma 28. Thus, A1 contributes only a negligible591

quantity to ∆(S∗, P ∗).592
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We now move on to consider A2 and A3.593

Pr
P ∗

[y ∈ A2] =
∑

{(σ,p):(x,σ,p)∈L(V1)}

Pr[V2(x, σ, p) rejects] ≤
∑
(σ,p)

1
2|x|+|σ|+|p|

≤ 1
2|x|

.594

Pr
S∗

[y ∈ A2] =
∑

{(σ,p):(x,σ,p)∈L(V1)}

(Pr[V2(x, σ, p) rejects] + ∆(S∗2 (σ, p), P ∗2 (σ, p))) ≤ 2
2|x|

.595

A similar and simpler calculation shows that PrP ∗ [y ∈ A3] ≤ 1
2|x| and PrS∗ [y ∈ A3] ≤ 2

2|x| ,596

to complete the proof.597

◀598

▶ Corollary 29. NISZKL = NISZKAC0 = NISZKAC0,DET = NISZKNL,DET599

The proof of Theorem 27 did not make use of the condition that the verifier is at least as600

powerful as the simulator. Thus, maintaining the condition that A ⊆ B ⊆ NISZKA, we also601

have the following corollary:602

▶ Corollary 30. NISZKB = NISZKB,A603

▶ Corollary 31. NISZKA,B ⊆ NISZKB,A604

▶ Corollary 32. NISZKDET = NISZKDET,AC0605

7 SZKL closure under ≤L
bf−tt reductions606

Although our focus in this paper has been on NISZKL, in this section we report on a closure607

property of the closely-related class SZKL.608

The authors of [10], after defining the class SZKL, wrote:609

We also mention that all the known closure and equivalence properties of SZK (e.g.610

closure under complement [20], equivalence between honest and dishonest verifiers611

[13], and equivalence between public and private coins [20]) also hold for the class612

SZKL.613

In this section, we consider a variant of a closure property of SZK (closure under ≤P
bf−tt614

[23]), and show that it also holds4 for SZKL. Although our proof follows the general approach615

of the proof of [23, Theorem 4.9], there are some technicalities with showing that certain616

computations can be accomplished in logspace (and for dealing with distributions represented617

by branching programs instead of circuits) that require proof. (The characterization of SZKL618

in terms of reducibility to the Kolmogorov-random strings presented in [2] relies on this619

closure property.)620

4 We observe that open questions about closure properties of NISZK also translate to open questions
about NISZKL. NISZK is not known to be closed under union [21], and neither is NISZKL. Neither is
known to be closed under complementation. Both are closed under conjunctive logspace-truth-table
reductions.
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▶ Definition 33. (From [23, Definition 4.7]) For a promise problem Π, the characteristic621

function of Π is the map XΠ : {0, 1}∗ → {0, 1, ∗} given by622

XΠ(x) =


1 if x ∈ ΠY es,

0 if x ∈ ΠNo,

∗ otherwise.
623

▶ Definition 34. Logspace Boolean formula truth-table reduction (≤L
bf−tt reduction): We624

say a promise problem Π logspace Boolean formula truth-table reduces to Γ if there625

exists a logspace-computable function f , which on input x produces a tuple (y1, . . . , ym) and626

a Boolean formula ϕ (with m input gates) such that:627

x ∈ ΠY es =⇒ ϕ(XΓ(y1), . . . ,XΓ(ym)) = 1628

629

x ∈ ΠNo =⇒ ϕ(XΓ(y1), . . . ,XΓ(ym)) = 0630

We begin by proving a logspace analogue of a result from [23], used to make statistically631

close pairs of distributions closer and statistically far pairs of distributions farther.632

▶ Lemma 35. (Polarization Lemma, adapted from [23, Lemma 3.3]) There is a logspace-633

computable function that takes a triple (P1, P2, 1k), where P1 and P2 are branching programs,634

and outputs a pair of branching programs (Q1, Q2) such that:635

∆(P1, P2) < 1
3 =⇒ ∆(Q1, Q2) < 2−k

636

637

∆(P1, P2) > 2
3 =⇒ ∆(Q1, Q2) > 1− 2−k

638

To prove this, we adapt the same method as in [23] and alternate two different procedures,639

one to drive pairs with large statistical distance closer to 1, and one to drive distributions640

with small statistical distance closer to 0. The following lemma will do the former:641

▶ Lemma 36. (Direct Product Lemma, from [23, Lemma 3.4]) Let X and Y be distributions642

such that ∆(X,Y ) = ϵ. Then for all k,643

kϵ ≥ ∆(⊗kX,⊗kY ) ≥ 1− 2 exp(−kϵ2/2)644

The proof of this statement follows from [23]. To use this for Lemma 35, we note that a645

branching program for ⊗kP can easily be created in logspace from a branching program P646

by simply copying and concatenating k independent copies of P together.647

We now introduce a lemma to push close distributions closer:648

▶ Lemma 37. (XOR Lemma, adapted from [23, Lemma 3.5]) There is a logspace-computable649

function that maps a triple (P0, P1, 1k), where P0 and P1 are branching programs, to a pair650

of branching programs (Q0, Q1) such that ∆(Q0, Q1) = ∆(P0, P1)k. Specifically, Q0 and Q1651

are defined as follows:652

Q0 =
⊗
i∈[k]

Pyi
: y ←R {y ∈ {0, 1}k : ⊕i∈[k]yi = 0}653

654

Q1 =
⊗
i∈[k]

Pyi
: y ←R {y ∈ {0, 1}k : ⊕i∈[k]yi = 1}655
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Proof. The proof that ∆(Q0, Q1) = ∆(P0, P1)k follows from [23, Proposition 3.6]. To finish656

proving this lemma, we show a logspace-computable mapping between (P0, P1, 1k) and657

(Q0, Q1).658

Let ℓ and w be the max length and width between P0 and P1. We describe the structure659

of Q0, with Q1 differing in a small step: to begin with, Q0 reads the k − 1 random bits660

y1, . . . , yk−1. For each of the random bits, it can pick the correct of two different branches,661

one having P0 built in at the end and the other having P1. We will read y1, branch to P0662

or P1 (and output the distribution accordingly), then unconditionally branch to reading y2663

and repeat until we reach yk−1 and branch to P0 or P1. We then unconditionally branch to664

y1 and start computing the parity, and at the end we will be able to decide the value of yk665

which will allow us to branch to the final copy of P0 or P1.666

y1

P0

P1

y2

. . .

. . .

yk−1

P0

P1

y1

y2

y2

. . .

. . .

yk−1

yk−1

P0

P1

0/1 1 0

Figure 1 Branching program for Q0 of Lemma 37

Creating (Q0, Q1) can be done in logspace, requiring logspace to create the section to667

compute yk and logspace to copy the independent copies of P0 and P1.668

◀669

We now have the tools to prove Lemma 35.670

Proof. From [23, Section 3.2], we know that we can polarize (P0, P1, 1k) by:671

Letting l = ⌈log4/3 6k⌉, j = 3l−1
672

Applying Lemma 37 to (P0, P1, 1l) to get (P ′0, P ′1)673

Applying Lemma 36: P ′′0 = ⊗jP ′0, P ′′1 = ⊗jP ′1674

Applying Lemma 37 to (P ′′0 , P ′′1 , 1k) to get (Q0, Q1)675

Each step is computable in logspace, and since logspace is closed under composition, this676

completes our proof. ◀677

We also mention the following lemma, which will be useful in evaluating the Boolean678

formula given by the ≤L
bf−tt reduction.679

▶ Lemma 38. There is a function in NC1 that takes as input a Boolean formula ϕ (with m680

input bits) and produces as output an equivalent formula ψ with the following properties:681

1. The depth of ψ is O(logm).682

2. ψ is a tree with alternating levels of AND and OR gates.683

3. The tree’s non-leaf structure is always the same for a fixed input length.684

4. All NOT gates are located just before the leaves.685

Proof. Although this lemma does not seem to have appeared explicitly in the literature,686

it is known to researchers, and is closely related to results in [11] (see Theorems 5.6 and687

6.3, and Lemma 3.3) and in [3] (see Lemma 5). Alternatively, one can derive this by using688

the fact that the Boolean formula evaluation problem lies in NC1 [7, 8], and thus there is689

an alternating Turing machine M running in O(log n) time that takes as input a Boolean690
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formula ψ and an assignment α to the variables of ψ, and returns ψ(α). We may assume691

without loss of generality that M alternates between existential and universal states at each692

step, and that M runs for exactly c log n steps on each path (for some constant c), and that693

M accesses its input (via the address tape that is part of the alternating Turing machine694

model) only at a halting step, and that M records the sequence of states that it has visited695

along the current path in the current configuration. Thus the configuration graph of M , on696

inputs of length n, corresponds to a formula of O(log n) depth having the desired structure,697

and this formula can be constructed in NC1. Given a formula ϕ, an NC1 machine can thus698

build this formula, and hardwire in the bits that correspond to the description of ϕ, and699

identify the remaining input variables (corresponding to M reading the bits of α) with the700

variables of ϕ. The resulting formula is equivalent to ϕ and satisfies the conditions of the701

lemma. ◀702

▶ Definition 39. (From [23, Definition 4.8]) For a promise problem Π, we define a new703

promise problem Φ(Π) as follows:704

Φ(Π)Y es = {(ϕ, x1, . . . , xm) : ϕ(XΠ(x1), . . . ,XΠ(xm)) = 1}705

706

Φ(Π)No = {(ϕ, x1, . . . , xm) : ϕ(XΠ(x1), . . . ,XΠ(xm)) = 0}707

▶ Theorem 40. SZKL is closed under ≤L
bf−tt reductions.708

To begin the proof of this theorem, we first note that as in the proof of [23, Lemma 4.10],709

given two SDBP pairs, we can create a new pair which is in SDBP,No if both of the original710

two pairs are (which we will use to compute ANDs of queries.) We can also compute in711

logspace the OR query for two queries by creating a pair (P1 ⊗ S1, P2 ⊗ S2). We prove that712

these operations produce an output with the correct statistical difference with the following713

two claims:714

▷ Claim 41. {(y1, y2)|XSDBP(y1) ∨ XSDBP(y2) = 1}≤L
mSDBP.715

Proof. Let y1 = (A1, B1) and y2 = (A2, B2). Let p > 0 be a parameter, where we are716

guaranteed that:717

(Ai, Bi) ∈ SDBP,Y =⇒ ∆(Ai, Bi) > 1− p718

719

(Ai, Bi) ∈ SDBP,N =⇒ ∆(Ai, Bi) < p720

Then consider:721

y = (A1 ⊗A2, B1 ⊗B2)722

Let us analyze the Yes and No instance of XSDBP(y1) ∨ XSDBP(y2):723

YES: ∆(A1 ⊗ A2, B1 ⊗ B2) ≥ max{∆(A1 ⊗ B2, B1 ⊗ B2),∆(B1 ⊗ A2, B1 ⊗ B2)} =724

max{∆(A1, B1),∆(A2, B2)} > 1− p.725

NO: ∆(A1 ⊗A2, B1 ⊗B2) ≤ ∆(A1, B1) + ∆(A2, B2) < 2p.726

The second equality is from [23, Fact 2.3]. ◀727

In our Boolean formula, we will have only d = O(logm) depth, so we have this OR operation728

for at most d+1
2 levels (and the soundness gap doubles at every level). Since p = 1

2m at the729

beginning, the gap (for NO instance) will be upper bounded at the end by:730

< 2
d+1

2
1

2m
= mO(1)

2m
< 1/3.731
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▷ Claim 42. {(y1, y2)|XSDBP(y1) ∧ XSDBP(y2) = 1} ≤L
m SDBP.732

Proof. Let y1 = (A1, B1) and y2 = (A2, B2). Let p > 0 be a parameter, where we are733

guaranteed that:734

(Ai, Bi) ∈ SDBP,Y =⇒ ∆(Ai, Bi) > 1− p735

736

(Ai, Bi) ∈ SDBP,N =⇒ ∆(Ai, Bi) < p737

We can construct a pair of BPs y = (A,B) whose statistical difference is exactly738

∆(A1, B1) ·∆(A2, B2)739

The pair (A,B) we construct is analogous to (Q0, Q1) in Lemma 37, and can be created740

in logspace with 2 random bits b0, b1. We have A = (A1, A2) if b0 = 0 and A = (B1, B2) if741

b0 = 1, while B = (A1, B2) if b2 is 0 and (A2, B1) if b1 = 1.742

Let us analyze the Yes and No instance of XSDBP(y1) ∧ XSDBP(y2):743

YES: ∆(A1, B1) ·∆(A2, B2) > (1− p)2.744

NO: ∆(A1, B1) ·∆(A2, B2) ≤ max{∆(A1, B1),∆(A2, B2)} < p.745

◀746

In our Boolean formula we will have only d = O(logm) depth, so we have this AND operation747

for at most d+1
2 levels (and the completeness gap squares itself at every level). Since p = 1

2m748

at the beginning, the gap (for YES instance) will be lower bounded at the end by:749

> (1− 1
2m

)2
d+1

2 = (1− 1
2m

)mO(1)
> (1− 1

2m
)2m/m ≈ (1

e
)1/m >

2
3 .750

Proof. (of Theorem 40) Now suppose that we are given a promise problem Π such that751

Π ≤L
bf−tt SDBP. We want to show Π ≤L

m SDBP, which by SZKL’s closure under ≤L
m reductions752

implies Π ∈ SZKL.753

We follow the steps below on input x to create an SDBP instance (F0, F1) which is in754

SDBP,Y if x ∈ ΠY :755

1. Run the L machine for the ≤L
bf−tt reduction on x to get queries (q1, . . . , qm) and the756

formula ϕ.757

2. Build ψ from ϕ using Lemma 38. Replace queries ¬qi that would be negated with the758

reduction from SDBP,Y to SDBP,N on qi, and then apply Lemma 35 (the Polarization759

Lemma) with k = n on these queries to get (y1, . . . , yk). Pad the output bits of each760

branching program so each branching program has m output bits.761

3. Build the template tree T . At the leaf level, for each variable in ψ, we will plug in the762

corresponding query yi. By Lemma 38 the tree is full.763

4. Given x and designated output position j of F0 or F1, there is a logspace computation764

which finds the original output bit from y1 . . . ym that bit j was copied from. This machine765

traverses down the template tree from the output bit and records the following:766

The node that the computation is currently at on the template tree, with the path767

taken depending on j.768

The position of the random bits used to decide which path to take when we reach769

nodes corresponding to AND.770

This takes O(logm) space. We can use this algorithm to copy and compute each output771

bit of F0 and F1, creating (F0, F1) in logspace.772
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For step 4, we give an algorithm Eval(x, j, ψ, y1, . . . , ym) to compute the jth output bit of773

F0 or F1 on x, for a formula ψ satisfying the properties of Lemma 38, a list of SDBP queries774

(y1, . . . , ym), and j. Without loss of generality, we lay out the algorithm to compute only775

F0(x).776

Outline of Eval(x, j, ψ, y1, . . . , ym) :777

The idea is to compute the jth output bit of F0 by recursively calculating which query778

output bit it was copied from. To do this, first notice that the AND and OR operations779

produce branching programs where each output bit is copied from exactly one output bit of780

one of the query branching programs, so composing these operations together tells us that781

every output bit in F0 is copied from exactly one output bit from one query. By Lemma 38782

and our AND and OR operations preserving the number of output bits, we also have that783

if every BP has l output bits, F0 will have 2al = |ψ|l output bits, where a is the depth of784

ψ. This can be used to recursively calculate which query the jth bit is from: for an OR785

gate, divide the output bits into fourths, and decide which fourth the jth bit falls into (with786

each fourth corresponding to one BP, or two fourths corresponding to a subtree.) For an787

AND gate, divide the output into fourths, decide which fourth the jth bit falls into, and788

then use the 4 random bits for the XOR operation to compute which fourth corresponds to789

which branching programs (2 fourths will correspond to 1 BP or subtree, and the other 2790

fourths will correspond to the 2 BPs from the other subtree.) If j is updated recursively,791

then at the query level, we can directly return the j′th output bit. This can be done in792

logspace, requiring a logspace path of “lefts” and “rights” to track the current gate, logspace793

to record and update j′, logspace to compute 2al at each level, and logspace to compute794

which subtree/query the output bit comes from at each level.795

The resulting BP will be two distributions that will be in SDBP,Y ⇐⇒ x ∈ ΠY . By this796

process Π ≤L
m SDBP. ◀797
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