
Cross-Lingual Adversarial Domain Adaptation for Novice Programming

Ye Mao,1 Farzaneh Khoshnevisan, 2 Thomas Price, 1 Tiffany Barnes, 1 Min Chi 1

1 North Carolina State University, {ymao4, twprice, tmbarnes, mchi}@ncsu.edu
2 Intuit Inc., farzaneh khoshnevisan@intuit.com

Abstract

Student modeling sits at the epicenter of adaptive learning
technology. In contrast to the voluminous work on student
modeling for well-defined domains such as algebra, there
has been little research on student modeling in programming
(SMP) due to data scarcity caused by the unbounded solution
spaces of open-ended programming exercises. In this work,
we focus on two essential SMP tasks: program classifica-
tion and early prediction of student success and propose a
Cross-Lingual Adversarial Domain Adaptation (CrossLing)
framework that can leverage a large programming dataset to
learn features that can improve SMP’s build using a much
smaller dataset in a different programming language. Our
framework maintains one globally invariant latent representa-
tion across both datasets via an adversarial learning process,
as well as allocating domain-specific models for each dataset
to extract local latent representations that cannot and should
not be united. By separating globally-shared representations
from domain-specific representations, our framework outper-
forms existing state-of-the-art methods for both SMP tasks.

1 Introduction
Student modeling is a task of measuring students’ perfor-
mance in a learning environment and predicting their future
performance based on their previous interactions with the
environment. While student modeling has been extensively
studied in well-defined domains like algebra and physics
(Lin, Shen, and Chi 2016; Pardos and Heffernan 2010),
student modeling for programming (SMP) remains an ex-
tremely challenging machine learning problem through the
combination of Knowledge Tracing and Code Representa-
tion. Much of prior work has explored code representation
(Mou et al. 2014; Allamanis, Peng, and Sutton 2016; Bui,
Yu, and Jiang 2021), which is primarily concerned with
identifying the functions the corresponding code belongs to.
In SMP, however, it’s vital to have the ability to measure
students’ performances in a learning environment and pre-
dict their future performance based on historical data (Geden
et al. 2020). This former task is referred to as program clas-
sification: the task of determining whether a student’s code
is correct or not, while the latter is the task of predicting a

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

student’s success at an early stage. The latter task is par-
ticularly important for determining whether to provide addi-
tional learning interventions.

Programs are complex and contain both structural/syn-
tactic and semantic information (Allamanis, Brockschmidt,
and Khademi 2018). Traditionally, expert-designed features
are used for SMP (Marwan et al. 2020) to represent student
code heavily rely on expert knowledge of each task and are
therefore labor-intensive and task-specific. Recently, deep
learning-based models such as Code2vec (Alon et al. 2019)
and ASTNN (Zhang et al. 2019) have demonstrated extraor-
dinary results on public datasets by analyzing Abstract Syn-
tax Trees (ASTs) of programs. These models, however, gen-
erally need a lot of data to perform well. For example, when
it comes to program classification, ASTNN achieved 0.95
of AUC in CodeWorkout (D2) dataset with 795 submissions
compared with 0.81 in iSnap (D1) dataset gathered from
171 students over four semesters. In real classroom settings,
collecting programming sequences during small, in-person
classes can be prohibitively expensive as most teachers don’t
teach using the same assignments in different semesters and
it is rare to have a large dataset to cover all the possible solu-
tion space (Piech et al. 2015b). Domain Adaptation (DA),
on the other hand, has emerged as a promising research
direction for reducing human effort in data collection by
learning sufficient information from relevant domains (Shen
et al. 2018; Wang et al. 2019; Jiang et al. 2019). DA has
been shown to enhance performance in a range of fields
by sharing feature representations across different domains,
wherein training data are obtained from multiple domains
(Nam and Han 2016).

In this work, we propose a Cross-lingual Adversarial
Domain Adaptation framework named CrossLing leverag-
ing data from other programming systems to improve SMP
in small classroom settings. Our proposed framework is
based on a novel AST-based Neural Network (ASTNN)
(see (Zhang et al. 2019) for more details), which has been
shown to be very successful in student code analysis (Shi
et al. 2021). CrossLing uses an adversarial learning pro-
cess to separate global latent representations across all do-
mains from domain-specific representations. In this con-
text, domains refer to programming systems using differ-
ent programming languages. We leverage student program-
ming data from iSnap (domain D1) and CodeWorkout (do-

main D2). The effectiveness of CrossLing is evaluated on
two tasks: student program classification and student suc-
cess early predictions for D1. For the former, our results
show that CrossLing indeed outperforms the state-of-the-art
methods such as ASTNN and Code2Vec and other baselines.
For the more challenging task of student success early pre-
diction, we further combine CrossLing with temporal deep
learning models such as Long Short Term Memory (LSTM)
(Hochreiter and Schmidhuber 1997) and Time-aware LSTM
(T-LSTM) (Baytas et al. 2017), referred to as L-CrossLing
and TL-CrossLing respectively. LSTM is designed to han-
dle sequences of events with discrete time steps while T-
LSTM can model the dynamics of student knowledge state
in continuous time by taking the time elapsed between suc-
cessive elements (Time-Aware) in a student’s trajectory into
consideration. As far back as the mid-1950s, student re-
sponse time has been considered an indicator of student pro-
ficiency (Schnipke and Scrams 2002) as it demonstrates how
active and accessible student knowledge is (Thomas et al.
1986). Our results show that TL-CrossLing performs signif-
icantly better than other student modeling methods, includ-
ing those using the gold standard: expert-designed features.

Our main contributions can be summarized as follows:

• To the best of our knowledge, our proposed CrossLing
framework is the first attempt to utilize adversarial do-
main adaptation in programming domains, especially
across different programming languages.

• We extend CrossLing by integrating LSTM and T-LSTM
to deal with the temporal nature in student programming
sequences with/without time-irregularities.

• We explore the robustness and the effectiveness of our
CrossLing framework and proposed the temporal models
on two student modeling tasks.

2 Methods
Problem Description: Let’s assume that we have 2 do-
mains: D1 and D2. A domain Di contains ni student code
snapshots represented as Di = {xk

Di
, yk

Di
}ni

k=1 where yk ∈
{0, 1} is the outcome label and each student code snapshot
xk in Di consists of a single submitted code snapshot xk or
a sequence of code snapshots: xk = {xk

1 , ..., x
k
Tk
}, where xk

t

represents the student’s code at time step t in xk and TK is
the total number of steps taken by student k. In this work,
for example, D1 is iSnap, which consists of time series of
code snapshots from a relatively small group of students in a
classroom setting, while D2 is CodeWorkout collected from
795 students, one submission per student. In our problem
setting, we assume that n1 << n2 and our objective is to
learn common knowledge from both domains to enhance
predictions for domain D1. To do so, we apply adversarial
learning to optimize the global representation for both do-
mains as well as locally domain-specific knowledge.

For the task of program classification, the goal is to de-
termine whether a code submission xk

Tk
by student k in D1

is correct or not. For the early prediction task, we aim to
predict a student’s future success based on partial sequence
{xk

1 , ..., x
k
t }where t < Tk in the small domainD1. To do so,

we leverage data from domain D2, with a much larger num-
ber of n2 students working on similar tasks. In the following
sections, we omit index k hereafter when it does not cause
ambiguity for simplicity.

2.1 CrossLing
CrossLing is an ASTNN-based adversarial domain adapta-
tion framework that learns both globally-shared latent repre-
sentations and locally domain-specific information. Our key
insight is that there are shared “global” features across pro-
gramming languages and courses, which can be learned in
one domain (with more data available) and applied in an-
other. However, the challenge is isolating these “global” fea-
tures from the “local” ones, which cannot and should not
be applied across domains. Fig. 1 shows the architecture
of the proposed CrossLing framework. Specifically, a local
ASTNN is used to capture domain-specific skills/features.
And the global ASTNN learns to address the cross-lingual
knowledge shared among different programming languages.
The proposed CrossLing framework exploits both local and
global feature spaces of the domain representations. To ac-
complish this goal, we set different loss objectives. A source
domain lossLsrc is used to optimize the local classifier based
on both local and global representations. A classifier loss
Lclf is employed to optimize the global classifier based only
on global representations. A difference loss Ldiff is intro-
duced to better splits global and local feature spaces. An
adversarial loss Ladv prevents the algorithm from identify-
ing the features’ original domains in the shared space. The
whole framework is trained and optimized by minimizing
the following loss:

L = Lsrc + αLclf + βLdiff + γLadv (1)
where α, β, and γ are hyper-parameters used to weigh the
importance of each loss term.

Figure 1: CrossLing model structure

CrossLing pre-trains local ASTNNs to generate local
latent representations and ensures that the global latent rep-
resentations are different from the local ones by maximizing
a dissimilarity measure. A discriminator and a classifier
based on global representations are employed to ensure
domain-invariant and class-discriminative projection. In
the following, we describe the two steps for training the
CrossLing framework.

Step 1: Pre-train Local ASTNNs
The pre-training phase is comprised of two parts. In the
first part, we pre-train the embedding matrix for both
programming domains. In this work, we applied word2vec
with skip gram to learn the embedding matrix for both
block-based D1 and text-based D2 programming languages
(Bui, Jiang, and Yu 2018). In the second part, we transform
the raw code to appropriate input for ASTNN using the
embedding matrix learned from the first part, and then train
a standard ASTNN classifier for each domain separately
(without global ASTNN part). The pre-trained ASTNNs
will be loaded to initialize the local ASTNNs of CrossLing.

Step 2: Discriminative Adversarial Learning
As shown in Fig. 1, our framework is composed of two pre-
trained local ASTNNs, one for each domain from step 1, and
one global ASTNN that will generate global latent represen-
tations. The discriminator aligns the global representations
from two domains, and the classifier learns to predict the
learning outcome. Below we describe the loss functions for
all components in the CrossLing framework, including the
global and local ASTNNs, discriminator, and classifiers.
1. Global and Local ASTNNs: The network parameters

of two local ASTNNs are initialized based on the pre-
trained ASTNNs to generate local representations. In the
global ASTNN, input data from both domains is utilized
to generate their global representations. Therefore, the
training dataset for the global ASTNN is the union of
the two domains, with size n1 + n2. In our framework,
the global classifier only consumes the global latent rep-
resentations from the global ASTNN. By contrast, we
join the cross-domain (global) and domain-specific (lo-
cal) representations to build local classification models
for each source domain.
A simple fully connected neural network is used for clas-
sification, for all local and global classifiers. The network
is optimized based on the binary cross-entropy loss in Eq.
2, where y is the label linked to each input program and
ŷ is the output from each classifier, and Θ represents the
relevant network parameters.

L(ŷ, y; Θ) = −(y log(ŷ) + (1− y) log(1− ŷ)) (2)

Therefore, we have:
Lsrc = w1L(ŷD1 , yD1 ; ΘD1) + w2L(ŷD2 , yD2 ; ΘD2)
Lclf = L(ŷg, yg; Θg)

(3)
wherew1 andw2 are the weights for each source domain.
Stochastic gradient descent is used to update all the pa-
rameters based on back-propagation calculation.

2. Difference Loss: To encourage the separation of local
and global feature representations, we add a dissimilarity
measure defined by a Frobenius norm (Khoshnevisan and
Chi 2020), which measures the orthogonality between
global and local representations, and zero indicates or-
thogonal vectors. Let us denote matrices Zg

D1
and Zg

D2

as hidden global matrices. Similarly, Zl
D1

and Zl
D2

in-
dicate hidden local representations. Therefore, the differ-
ence loss is defined as:

Ldiff =
∥∥∥Zg

D1

>
Zl

D1

∥∥∥2

F
+
∥∥∥Zg

D2

>
Zl

D2

∥∥∥2

F
(4)

where ‖·‖2F refers to the squared Frobenius norm.
3. Discriminator: The shared feature space of the global

ASTNN stores the common knowledge learned from
both source domains, which is used to improve the clas-
sification performance. Thus, the shared feature space
contains global features, and not domain-related infor-
mation. That is, its predictions should be made based on
global features that cannot discriminate between differ-
ent source domains. We use a Gradient Reversal Layer
(GRL) (Ganin et al. 2016) to achieve minimax optimiza-
tion, and a domain classifier trained to predict the domain
producing the hidden representations.
During adversarial training, given a code snippet, the dis-
criminator θd is optimized to determine the code’s source
domain, while the global ASTNN θg is trained to confuse
it by learning features that represent common knowledge
across the two domains. In this paper, the adversarial loss
Ladv is defined as:

Ladv = min
θd

max
θg

(
∑

j∈[D1,D2]

∑
i∈nj

dji log(d̂ji)

+(1− dji) log(1− d̂ji))
(5)

where nj is the size of input data in domain j. During
training, we maximize cross entropy for domain classifi-
cation with respect to the discriminator θd , meanwhile
minimizing it with respect to the global ASTNN θg.

2.2 Temporal and Time-aware Frameworks
We combine CrossLing with temporal models to handle se-
quences of student programming data (code). In prior re-
search (Mao et al. 2020), T-LSTM was shown to deliver
better performance by modeling the dynamics of student
knowledge in continuous time, than standard LSTM using
discrete timesteps. To investigate the relative performance of
LSTM and T-LSTM on our task, we implement both models
within the CrossLing framework, denoted as L-CrossLing
and TL-CrossLing respectively. We contrast these models
with another proposed model, TL-ASTNN. The following
sections will provide detailed descriptions of these models.

Figure 2: L-CrossLing and TL-CrossLing model structure:
L-CrossLing uses LSTM for temporal modeling and TL-
CrossLing utilizes T-LSTM

Figure 3: TL-ASTNN model structure

L-CrossLing and TL-CrossLing The architecture of L-
CrossLing and TL-CrossLing is shown in Fig. 2. The
main difference between the two is that L-CrossLing
uses LSTM to learn the temporal information while TL-
CrossLing applies T-LSTM. To be specific, the temporal
CrossLing framework contains two main parts: 1) local and
global ASTNNs for code representation pre-trained from
CrossLing; and 2) LSTM/T-LSTM to handle the tempo-
ral information. More specifically, in Step 1: Pre-train
CrossLing, we first pre-train the original CrossLing frame-
work as described earlier in Sec. 2.1. Then we load the
weights of local (D1) and global ASTNNs into our temporal
CrossLing framework (L-CrossLing or TL-CrossLing). And
then in Step 2: Optimize Training, input data are fed into
both local and global ASTNNs to generate corresponding
representations and then passed to the connected LSTM or
T-LSTM layer for evaluation. And we utilize the last-time
output from LSTM/T-LSTM to make the final predictions.
The whole model will be optimized by minimizing the cross
entropy loss given in Eq. 2.

l1, ..., lT = Local ASTNN(x1, ..., xT)
g1, ..., gT = Global ASTNN(x1, ..., xT)
hT = LSTM / T-LSTM([l1, g1], ..., [lT , gT])
ŷ = sigmoid(WhT + b)

(6)

TL-ASTNN As shown in Fig. 3, TL-ASTNN can be in-
terpreted as an extension of Temporal-ASTNN (Mao et al.
2021) (denoted as L-ASTNN (L for LSTM), to handle the
time irregularity in student data. More specifically, the only
difference is that in L-ASTNN, the output of ASTNN Zt,
is used as an input for the connected LSTM cell; while in
TL-ASTNN, we pass both Zt and the corresponding time
interval ∆t to the T-LSTM cell to model the temporal dy-
namics of student programming skills. With time as an in-
put, TL-ASTNN is more time-aware so we expect it to make
better predictions than L-ASTNN. The training process for
TL-ASTNN can be summarized as follows:

z1, ..., zT = ASTNN(x1, ..., xT)
hT = T-LSTM(z1, ..., zT)
ŷ = sigmoid(WlhT + bl)

(7)

where Wl is the weight matrix and bl is the bias term for
the connected linear layer. Still, the whole framework will
be optimized by minimizing the cross entropy loss (Eq. 2).

3 Datasets1

3.1 iSnap
iSnap (D1), is an extension to Snap! (Garcia, Harvey, and
Barnes 2015), a block-based programming environment,
used in an introductory computing course for non-majors in
North Carolina State University (Price, Dong, and Lipovac
2017). iSnap maintains a code trace log which records all
student programming actions/steps (e.g. adding or deleting
a block), a snapshot of the resulting code, and the time taken
for each step. In prior research, an expert feature detector has
been proposed to automatically detect 7 expert features of a
student snapshot (Zhi et al. 2018). Those expert-designed
features are binary and indicate whether the corresponding
feature presents in student code or not. In this work, we fo-
cus on one homework exercise named Squiral, derived from
the BJC curriculum (Garcia, Harvey, and Barnes 2015). In
Squiral, students are asked to write a procedure that draws
a square-like spiral; correct solutions use at least 7 lines of
code with procedures, loops, and variables. In general, stu-
dents spend about 20 minutes and use 10 to 2000 steps to
complete it. We collected Squiral data from 4 semesters in
years 2016 and 2017, with 65, 38, 29, and 39 student code
traces respectively (see Appendix for detail).

3.2 CodeWorkout
CodeWorkout (D2) 2, is an open online system for program-
ming in Java. It provides a web-based platform on which
students from various backgrounds can practice program-
ming and instructors can offer courses (Edwards and Murali
2017). When students “submit” code, the system provides
detailed pass/fail feedback on its expert-designed test cases.
In this work, we focus on one programming exercise named
isEverywhere, where the knowledge of loops and arrays are
evaluated. As in prior research (Shi et al. 2021), we use the
first submission from each student. This resulted in 795 stu-
dent code submissions, which represent code snapshots as in
iSnap, but only at the time when students first submit their
code for feedback. Different from iSnap, CodeWorkout does
not log student code traces during programming, but only
their submissions. As a result, only submissions from stu-
dents are recorded and sequences of student edits are not
available.

4 Task 1: Student Program Classification
In the task of student program classification, we aim to pre-
dict the correctness of students’ submissions (i.e. correct or
incorrect) in iSnap (D1). The effectiveness of CrossLing is
compared against standard ASTNN and other baselines.

1All iSnap data were obtained anonymously through an exempt
IRB-approved protocol, and we scored them using binary rubrics.
All Code Workout data were shared under Creative Commons li-
cense, and were de-indentified and automatically scored against
test cases. No demographic data or grades were collected. This re-
search seeks to remove societal harms that come from lower en-
gagement and retention of students who need more personalized
interventions during programming.

2https://codeworkout.cs.vt.edu/

4.1 Experiments
We evaluate the effectiveness of our proposed CrossLing in
terms of its ability to accurately classify student code in iS-
nap (D1); and more importantly, if it improves the perfor-
mance of original ASTNN. Thus, we train CrossLing with
data from both iSnap and CodeWorkout, but only test it
on iSnap. In contrast, the training and testing sets for other
baselines contain only iSnap data.

Single Domain Baselines We explore two types of base-
line models, including three token-based classic machine
learning (ML) models and two AST-based deep learning
(DL) models. The classic ML models include K-Nearest
Neighbors (KNN), Logistic Regression (LR), and Support-
Vector Machine (SVM). Following prior token-based ap-
proaches, we applied TF-IDF to extract textual features
(Zhang et al. 2019) via pre-order traversal of the origi-
nal ASTs. The DL group contains Code2Vec and ASTNN,
both of which have been shown to be very successful in
source code analysis by using the structural information
from ASTs. To be specific, Code2Vec takes a set of leaf-
to-leaf AST paths as input, and the inputs for ASTNN are
a set of statement-level subtrees. For all five models in this
group, only iSnap data was used for training and testing.

CrossLing For the domain adaptation group, our proposed
CrossLing framework is explored. During training, we take
the hyperparameters that achieve the best performance on
the development set via a small grid search over combina-
tions of the batch size ∈ {16, 32, 64}, learning rate ∈ [0.001,
0.1], α, β, γ ∈ [0.01, 1].

It is important to emphasize that all models are evaluated
using semester-based temporal cross-validation (3-fold) in
this task, which only applied data from previous semesters
for training and is a much stricter approach than the standard
cross-validation (Mao et al. 2020). We report Accuracy, Pre-
cision, Recall, F1 Score, and AUC (Area Under ROC curve).
Accuracy and AUC are considered the most important met-
rics in the educational technology domain; and AUC is be-
lieved to be generally more robust.

4.2 Results

Table 1: Student Program Classification Results in iSnap

Model Accuracy Precision Recall F1 AUC
Majority Baseline 0.6321 - - - 0.5000

KNN 0.6132 0.7321 0.6119 0.6667 0.6137
LR 0.6604 0.8298 0.5821 0.6842 0.6885

SVM 0.6604 0.7460 0.7015 0.7231 0.6456
Code2Vec 0.6810 0.8038 0.6786 0.7239 0.7017
ASTNN 0.8113 0.8730** 0.8209 0.8462 0.8079

CrossLing 0.8491** 0.8592 0.9104** 0.8841** 0.8271**
Note: best model in bold and **

Table 1 compares the performance of the seven models for
domain D1, iSnap. Overall, our results show that CrossLing
is the best among all the models for the task of student pro-
gram classification. Specifically, CrossLing achieves around
4% and 2% improvement on Accuracy and AUC over stan-
dard ASTNN, respectively. These results suggest that by

learning the common knowledge from different domains,
our proposed domain adaptation approach can help to im-
prove the performance of ASTNN and also address the lack
of sufficient labeled data. Given its effectiveness, we further
explore the temporal CrossLing models on the task of stu-
dent success early prediction.

5 Task 2: Student Success Early Prediction
In the second task, we are given the first up to n minutes of
a student’s sequence data and our goal is to predict whether
the student will successfully complete the programming as-
signment within one hour (Mao et al. 2020). It is worth not-
ing that student success early prediction is a much more
challenging task compared to program classification: 1) it
involves temporal information; and 2) the observation win-
dows are very early (up to first 10 minutes) and thus stu-
dents’ final submissions are not available for training or test-
ing (Mao et al. 2021).

5.1 Experiments
To further explore the power of our CrossLing framework,
we compare it with two other code representation groups:
expert-designed features (Expert) and standard ASTNN on
the early prediction task. For each group (Expert, ASTNN,
CrossLing), we explore three different models: the “last
value”-based (Batal et al. 2012) Logistic Regression (LR)
models, the temporal LSTM models, and the time-aware
LSTM (T-LSTM) models. Here, last-value models cannot
handle sequential data, temporal models are able to do it but
don’t consider time-irregularity, while time-aware models
take the elapsed time between consecutive steps into consid-
eration and are therefore aware of time. For example, when
our observation window is the first 2 minutes, we apply the
last value before 2 minutes for each sequence and treat them
as inputs for the last-value model, while all the sequences
that occur within first 2 minutes will be used for LSTM and
T-LSTM; meanwhile, T-LSTM takes another sequences of
time intervals as input.

Three Expert Models The three models in the Expert
group are trained on expert-designed features for the iSnap
dataset (D1). Specifically, Expert applies last-value LR; L-
Expert is based on LSTM and TL-Expert utilizes T-LSTM.

Three ASTNN Models There are three ASTNN-based
models including last-value ASTNN, temporal L-ASTNN
and our proposed TL-ASTNN, all of them use raw student
iSnap code from D1 as input.

Three CrossLing Models We have CrossLing, L-
CrossLing, and TL-CrossLing in this group. Different from
the former two groups, these models are trained on data from
both iSnap (D1) and CodeWorkout (D2).

Excepting that LR is implemented using the sklearn3 li-
brary in python, all the other models are implemented in
Pytorch4 using a mini-batch stochastic optimizer with grid
search of batch sizes in {16, 32, 64}. The same experimental

3https://scikit-learn.org/
4https://pytorch.org/

setup is used for all models with 100 epochs and early stop-
ping. The embedding size for all ASTNNs/CrossLings is
128 and LSTM/T-LSTM hidden size is set to 64. All the se-
quences are zero-padded to have the same length. More im-
portantly, all experimental results are reported for semester-
based cross-validation and we consider Accuracy and AUC
as the most important metrics as in the first task (Sec. 4).

5.2 Results
We present our results of student success early prediction in
the following two parts: 1) we first compare the effective-
ness of all nine models on first-2-minute early prediction;
and 2) we explore their average performance across differ-
ent observation windows varying from 2 to 10 minutes with
every 2-minute interval (2, 4, 6, 8, 10).

Table 2: Student Success Early Predictions at First-2-minute

Model Accuracy Precision Recall F1 AUC
Majority Baseline 0.6604 - - - 0.5000

Expert Group
Expert 0.6509 0.7260 0.7571 0.7413 0.6008

L-Expert 0.6698 0.6699 0.9857** 0.7977 0.5206
TL-Expert 0.6886 0.6869 0.9714‡ 0.8047 0.5552

ASTNN Group
ASTNN 0.6604 0.7024 0.8429 0.7662 0.5742

L-ASTNN 0.7170 0.7381 0.8857 0.8052 0.6373
TL-ASTNN 0.7358 0.7561 0.8857 0.8158 0.6651

CrossLing Group
CrossLing 0.7075 0.7079 0.9429 0.8098 0.5964

L-CrossLing 0.7736‡ 0.7875 ‡ 0.9000 0.8400 0.7139 ‡

TL-CrossLing 0.7830** 0.8310** 0.8429 0.8396‡ 0.7548**
Note: best models in each group are in bold

the overall best and second best are labeled with ** and ‡, respectively.

Results at First-2-minute Table 2 shows different perfor-
mance measures of all the nine models at first-2-minute, to-
gether with the majority baseline. In terms of Accuracy, nei-
ther the Expert nor the ASTNN model beat the simple ma-
jority baseline (0.6604). This is not surprising, as relying
only on the last snapshot in the first-2-minute is too early
for these models to make effective early predictions. The
fact that across the three last-value based models (Expert,
ASTNN, CrossLing), the best performance comes from our
proposed CrossLing model suggests that learning common
knowledge from domain adaptation does help us to under-
stand student code better. Also, all temporal models achieve
better performance than their corresponding last-value mod-
els. This is reasonable since temporal models are able to cap-
ture the temporal information related to student success from
the sequences, but such information is not available to last-
value models. Between the two temporal models (LSTM
and T-LSTM), we can see that T-LSTM models consistently
outperform LSTM models within the same group. In other
words, incorporating time-awareness might assist us in un-
derstanding student learning progression.

Overall, TL-CrossLing achieves the best performance in
the first 2-minute observation window, especially with a
9% improvement on AUC over TL-ASTNN and a 15% im-
provement over using Expert alone. This suggests that by

integrating domain adaptation and time-awareness into TL-
CrossLing, it can gain both structural and temporal knowl-
edge from student code.

Results in First-10-minute Overall The comparison of
all models for the early prediction of student success in first
10 minutes is reported in Table 3. Here we report the mean
value and corresponding standard deviation (in parenthesis)
for each evaluation metric. Following prior research (Kurmi,
Kumar, and Namboodiri 2019), we also report the Criti-
cal Difference (CD) diagram for Nemenyi test (Wilcoxon
Signed Ranks Tests showed the same results) in Fig. 4.

Table 3: Average Performance of Student Success Early Pre-
dictions in first 10 minutes

Model Accuracy Precision Recall F-measure AUC
Majority Baseline 0.6604 - - - 0.5000

Expert Group
Expert 0.6566 (±0.05) 0.8209 ‡ (±0.05) 0.6229 (±0.06) 0.7017 (±0.06) 0.6725 (±0.05)

L-Expert 0.7170 (±0.03) 0.7299 (±0.04) 0.9314** (±0.03) 0.8168 (±0.02) 0.6240 (±0.06)
TL-Expert 0.7453 (±0.04) 0.7927 (±0.06) 0.8457 (±0.07) 0.8135 (±0.03) 0.6979 (±0.06)

ASTNN Group
ASTNN 0.6698 (±0.02) 0.7463 (±0.03) 0.7686 (±0.01) 0.7517 (±0.03) 0.6232 (±0.03)

L-ASTNN 0.7396 (±0.02) 0.7597 (±0.03) 0.8914‡ (±0.04) 0.8190 (±0.01) 0.6679 (±0.04)
TL-ASTNN 0.7698 (±0.03) 0.7961 (±0.02) 0.8771 (±0.04) 0.8341 (±0.02) 0.7191 (±0.03)

CrossLing Group
CrossLing 0.7151 (±0.02) 0.7459 (±0.03) 0.8686 (±0.05) 0.8008 (±0.01) 0.6426 (±0.04)

L-CrossLing 0.7793‡ (±0.01) 0.7987 (±0.02) 0.8914‡ (±0.02) 0.8421‡ (±0.01) 0.7263‡ (±0.02)
TL-CrossLing 0.7899** (±0.01) 0.8471** (±0.02) 0.8657 (±0.04) 0.8556** (±0.01) 0.7856** (±0.02)

Note: best models in each group are in bold
the overall best and second best are labeled with ** and ‡, respectively.

Table 3 shows a similar pattern as we observed earlier
in Table 2. In each group (Expert, ASTNN, CrossLing), T-
LSTM models outperform LSTMs and LRs. Furthermore,
when implementing the same temporal (or last-value) mod-
els, CrossLing is generally shown to be the best one. Overall,
TL-CrossLing is the best model and it achieves the best Ac-
curacy, Precision, F1 and AUC (a 7% improvement over TL-
ASTNN) in first 10 minutes, followed by L-CrossLing with
the second-best Accuracy, Recall, F1 and AUC. Therefore,
our temporal CrossLing models are the best two models for
student success early predictions in first 10 minutes.

Figure 4: CD diagram: unconnected models mean pairwise
significance (e.g. proposed TL-CrossLing is significantly
different from all other models), confidence level is 0.05.

Feature Visualization To illustrate the difference in per-
formance between ASTNN and CrossLing models, we visu-
alize the location of three student code snapshots: S1 and S2
are two unsuccessful code snapshots while S3 is a successful
one. Fig. 5 shows the t-SNE visualization (Van der Maaten
and Hinton 2008) of the learned feature representations for
both models on the student success prediction task. In the
figure, blue and orange markers represent successful and un-
successful iSnap (D1) samples in the first 2 minutes, respec-

(a) Standard ASTNN (b) CrossLing

Figure 5: Visualization for student code in iSnap (D1)

tively. • and × in Fig. 5(b) are local and global representa-
tions, respectively. As we can see in Fig. 5(a), S1 is far from
S2 in the ASTNN model’s feature space, while S3 is very
close to S2. It seems that the ASTNN model fails to differ-
entiate S3 from S2, and misses the similarities between S1
and S2 that make them unsuccessful (e.g. failing to update a
key variable). In contrast, Fig. 5(b) shows that the CrossLing
feature representations for S1 and S2 are similar, and both
of them are well-separated from S3 across both local and
global feature spaces. Moreover, the successful and unsuc-
cessful groups are better clustered in the CrossLing model’s
local representations when the domain-invariant knowledge
is isolated and learnt by the global feature space. That is,
our proposed CrossLing model picks up the information lost
by standard ASTNN through learning the cross-domain and
domain-specific knowledge together.

6 Related Work
Student Modeling Student modeling has been widely
and extensively explored by utilizing student sequences.
Prior research has proposed a series of approaches mostly
for well-defined domains, such as Item Response Theory
(IRT) (Tatsuoka 1983), Performance Factor Analysis (PFA)
(Pavlik, Cen, and Koedinger 2009), Bayesian Knowledge
Tracing (BKT) (Corbett and Anderson 1994). Recently,
deep learning models, especially Recurrent Neural Network
(RNN) or RNN-based models such as LSTM have also been
explored in student modeling and have shown superior per-
formance (Piech et al. 2015a; Tang, Peterson, and Pardos
2016; Khajah, Lindsey, and Mozer 2016; Xiong et al. 2016).

Programming, by contrast, has been relatively under-
explored for student modeling. Wang et al. (2017) applied
a recursive neural network similar to (Piech et al. 2015b)
as the embedding for student submission sequence, then fed
them into a 3-layer LSTM to predict the student’s future per-
formance. On the other hand, Emerson et al. (2019) have
utilized four categories of features: prior performance, hint
usage, activity progress, and interface interaction to evalu-
ate the accuracy of Logistic Regression models for multiple
block-based programming activities. More recently, Dong
et al. (2021) proposes a data-driven method that uses stu-
dent trace logs to identify struggling moments during a pro-
gramming assignment and determine the appropriate time
for an intervention. As far as we know, our proposed tempo-
ral CrossLing framework is the first attempt to address stu-
dent modeling for novice programming through adversarial
domain adaptation across different programming languages.

Domain Adaptation Numerous approaches have previ-
ously been proposed to address adaptation needs that arise
in different application scenarios, such as image recogni-
tion, multi-language text classification, sentiment classifi-
cation, human activity classification, etc. (Ling et al. 2008;
Zhuang et al. 2019; Khoshnevisan and Chi 2020). The main
challenge of cross-domain learning is how to reduce the dis-
crepancies in data distributions across domains. One line of
research is focusing on adversarial learning, which is de-
signed to minimise the approximate discrepancy distance
between different domains. For example, domain adversarial
neural network (DANN) employs a gradient reversal layer
(GRL) and learns domain-invariant features by a minimax
game between the domain classifier and the feature extrac-
tor (Ganin and Lempitsky 2014). Adversarial discriminative
domain adaptation (ADDA) uses GAN (Goodfellow et al.
2014) with general loss in a non-shared weight architecture
(Tzeng et al. 2017). Our proposed CrossLing framework is
also an adversarial adaptation method as it learns and evalu-
ates global representations in an adversarial manner.

Within the field of NLP, deep learning methods form an-
other line of work to automatically produce superior fea-
ture representations for cross-domain scenarios (Ganin et al.
2016; Liu, Qiu, and Huang 2017; Joty et al. 2017). These
deep networks explore effective domain discrepancy mea-
surement and matching methods to boost performance (Glo-
rot, Bordes, and Bengio 2011; LeCun, Bengio, and Hinton
2015). For example, the multi-domain adaption adversarial
network (MDANet) is proposed to alleviate the domain dis-
crepancy based on explicitly learning a shared feature space
across different domains (Ding et al. 2019). This architecture
is similar to ours, while we are focusing on a more challeng-
ing programming scenario involving different programming
systems with different programming languages.

7 Conclusions

Developing a robust, generalizable model for the early pre-
diction of student learning progression is a crucial yet chal-
lenging task. With jobs in computing projected to grow 13%
from 2020 to 2030, the need for automated support for
learning programming is growing. Research shows that stu-
dent modeling can improve learning by 1-2 standard devi-
ations when done well by adapting difficulty and interven-
tions to students’ needs (Arroyo et al. 2007). Educational
environments, with SMP, stand to benefit tens of millions
of students learning programming in K-12 and CS classes.
In this work, we demonstrate the effectiveness of CrossLing
on both student program classification and student success
early predictions. Empirically, we show that CrossLing-
based models outperform state-of-the-art methods because
of their ability to separate local information from global rep-
resentations and leverage the common knowledge from dif-
ferent domains. In future work, we plan to investigate our
framework on other tasks or different domains to explore
whether it consistently supports improvement for program-
ming environments.

8 Acknowledgements
This research was supported by the NSF Grants: Inte-
grated Data-driven Technologies for Individualized Instruc-
tion in STEM Learning Environments (1726550), EXP:
Data-Driven Support for Novice Programmers (1623470),
CAREER: Improving Adaptive Decision Making in Inter-
active Learning Environments (1651909), and Generalizing
Data-Driven Technologies to Improve Individualized STEM
Instruction by Intelligent Tutors (2013502).

References
Allamanis, M.; Brockschmidt, M.; and Khademi, M. 2018.
Learning to Represent Programs with Graphs. In Interna-
tional Conference on Learning Representations.
Allamanis, M.; Peng, H.; and Sutton, C. 2016. A con-
volutional attention network for extreme summarization of
source code. In International conference on machine learn-
ing, 2091–2100. PMLR.
Alon, U.; Zilberstein, M.; Levy, O.; and Yahav, E. 2019.
code2vec: Learning distributed representations of code.
Proceedings of the ACM on Programming Languages,
3(POPL): 1–29.
Arroyo, I.; Ferguson, K.; Johns, J.; Dragon, T.; Meheranian,
H.; Fisher, D.; Barto, A.; Mahadevan, S.; and Woolf, B. P.
2007. Repairing disengagement with non-invasive interven-
tions. In AIED, volume 2007, 195–202.
Batal, I.; Fradkin, D.; Harrison, J.; Moerchen, F.; and
Hauskrecht, M. 2012. Mining recent temporal patterns for
event detection in multivariate time series data. In SIGKDD,
280–288. ACM.
Baytas, I. M.; Xiao, C.; Zhang, X.; Wang, F.; Jain, A. K.;
and Zhou, J. 2017. Paient subtyping via time-aware LSTM
networks. In SIGKDD. ACM.
Bui, N. D.; Jiang, L.; and Yu, Y. 2018. Cross-language
learning for program classification using bilateral tree-based
convolutional neural networks. In Workshops at the Thirty-
Second AAAI Conference on Artificial Intelligence.
Bui, N. D.; Yu, Y.; and Jiang, L. 2021. TreeCaps: Tree-Based
Capsule Networks for Source Code Processing. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 35, 30–38.
Corbett, A. T.; and Anderson, J. R. 1994. Knowledge
tracing: Modeling the acquisition of procedural knowledge.
UMUAI, 4(4): 253–278.
Ding, X.; Shi, Q.; Cai, B.; Liu, T.; Zhao, Y.; and Ye, Q. 2019.
Learning multi-domain adversarial neural networks for text
classification. IEEE Access, 7: 40323–40332.
Dong, Y.; Marwan, S.; Shabrina, P.; Price, T.; and Barnes, T.
2021. Using Student Trace Logs To Determine Meaningful
Progress and Struggle During Programming Problem Solv-
ing. In Proceedings of the 14th International Conference on
Educational Data Mining.
Edwards, S. H.; and Murali, K. P. 2017. CodeWorkout: short
programming exercises with built-in data collection. In Pro-
ceedings of the 2017 ACM Conference on Innovation and
Technology in Computer Science Education, 188–193.

Emerson, A.; Rodrı́guez, F. J.; Mott, B.; Smith, A.; Min,
W.; Boyer, K. E.; Smith, C.; Wiebe, E.; and Lester, J. 2019.
Predicting Early and Often: Predictive Student Modeling
for Block-Based Programming Environments. International
Educational Data Mining Society.
Ganin, Y.; and Lempitsky, V. 2014. Unsupervised do-
main adaptation by backpropagation. arXiv preprint
arXiv:1409.7495.
Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle,
H.; Laviolette, F.; Marchand, M.; and Lempitsky, V. 2016.
Domain-adversarial training of neural networks. The journal
of machine learning research, 17(1): 2096–2030.
Garcia, D.; Harvey, B.; and Barnes, T. 2015. The Beauty and
Joy of Computing. ACM Inroads, 6(4): 71–79.
Geden, M.; Emerson, A.; Rowe, J.; Azevedo, R.; and Lester,
J. 2020. Predictive student modeling in educational games
with multi-task learning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, 654–661.
Glorot, X.; Bordes, A.; and Bengio, Y. 2011. Domain adap-
tation for large-scale sentiment classification: A deep learn-
ing approach. In ICML.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. Advances in neural in-
formation processing systems, 27.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation, 9(8): 1735–1780.
Jiang, H.; Wang, H.; Hu, W.; Kakde, D.; and Chaudhuri, A.
2019. Fast incremental SVDD learning algorithm with the
Gaussian kernel. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, 3991–3998.
Joty, S.; Nakov, P.; Màrquez, L.; and Jaradat, I. 2017. Cross-
language learning with adversarial neural networks: Appli-
cation to community question answering. arXiv preprint
arXiv:1706.06749.
Khajah, M.; Lindsey, R. V.; and Mozer, M. C. 2016.
How deep is knowledge tracing? arXiv preprint
arXiv:1604.02416.
Khoshnevisan, F.; and Chi, M. 2020. An adversarial do-
main separation framework for septic shock early prediction
across ehr systems. In 2020 IEEE International Conference
on Big Data (Big Data), 64–73. IEEE.
Kurmi, V. K.; Kumar, S.; and Namboodiri, V. P. 2019. At-
tending to discriminative certainty for domain adaptation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 491–500.
LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning.
nature, 521(7553): 436–444.
Lin, C.; Shen, S.; and Chi, M. 2016. Incorporating Stu-
dent Response Time and Tutor Instructional Interventions
into Student Modeling. In UMAP, 157–161. ACM.
Ling, X.; Xue, G.-R.; Dai, W.; Jiang, Y.; Yang, Q.; and Yu, Y.
2008. Can chinese web pages be classified with english data
source? In Proceedings of the 17th international conference
on World Wide Web, 969–978.

Liu, P.; Qiu, X.; and Huang, X. 2017. Adversarial
multi-task learning for text classification. arXiv preprint
arXiv:1704.05742.
Mao, Y.; Marwan, S.; Price, T. W.; Barnes, T.; and Chi, M.
2020. What Time is It? Student Modeling Needs to Know.
In Proceedings of The 13th International Conference on Ed-
ucational Data Mining (EDM 2020), 171–182.
Mao, Y.; Shi, Y.; Marwan, S.; Price, T. W.; Barnes, T.;
and Chi, M. 2021. Knowing When and Where: Temporal-
ASTNN for Student Learning Progression in Novice Pro-
gramming Tasks. In Proceedings of The 14th International
Conference on Educational Data Mining (EDM 2021).
Marwan, S.; Gao, G.; Fisk, S.; Price, T. W.; and Barnes, T.
2020. Adaptive immediate feedback can improve novice
programming engagement and intention to persist in com-
puter science. In Proceedings of the 2020 ACM Conference
on International Computing Education Research, 194–203.
Mou, L.; Li, G.; Jin, Z.; Zhang, L.; and Wang, T.
2014. TBCNN: A tree-based convolutional neural net-
work for programming language processing. arXiv preprint
arXiv:1409.5718.
Nam, H.; and Han, B. 2016. Learning multi-domain con-
volutional neural networks for visual tracking. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 4293–4302.
Pardos, Z. A.; and Heffernan, N. T. 2010. Modeling individ-
ualization in a bayesian networks implementation of knowl-
edge tracing. In UMAP, 255–266. Springer.
Pavlik, P. I.; Cen, H.; and Koedinger, K. R. 2009. Perfor-
mance Factors Analysis –A New Alternative to Knowledge
Tracing. In AIED, 531–538. ISBN 978-1-60750-028-5.
Piech, C.; Bassen, J.; Huang, J.; Ganguli, S.; Sahami, M.;
Guibas, L. J.; and Sohl-Dickstein, J. 2015a. Deep knowledge
tracing. In NIPS, 505–513.
Piech, C.; Huang, J.; Nguyen, A.; Phulsuksombati, M.; Sa-
hami, M.; and Guibas, L. 2015b. Learning program em-
beddings to propagate feedback on student code. In Interna-
tional conference on machine Learning, 1093–1102. PMLR.
Price, T. W.; Dong, Y.; and Lipovac, D. 2017. iSnap: To-
wards Intelligent Tutoring in Novice Programming Envi-
ronments. In Proceedings of the ACM Technical Sympo-
sium on Computer Science Education, 483–488. ISBN
9781450346986.
Schnipke, D. L.; and Scrams, D. J. 2002. Exploring issues
of examinee behavior: Insights gained from response-time
analyses. Computer-based testing: Building the foundation
for future assessments, 237–266.
Shen, J.; Qu, Y.; Zhang, W.; and Yu, Y. 2018. Wasserstein
distance guided representation learning for domain adapta-
tion. In Thirty-Second AAAI Conference on Artificial Intel-
ligence.
Shi, Y.; Mao, T.; Barnes, T.; Chi, M.; and Price, T. 2021.
More with less: Exploring how to use deep learning effec-
tively through semi-supervised learning for automatic bug
detection in student code. In In Proceedings of the 14th In-
ternational Conference on Educational Data Mining (EDM)
2021.

Tang, S.; Peterson, J. C.; and Pardos, Z. A. 2016. Deep
neural networks and how they apply to sequential education
data. In L@S, 321–324. ACM.
Tatsuoka, K. 1983. Rule space: An approach for dealing
with misconceptions based on item response theory. JEM,
20(4): 345–354.
Thomas, R. D. L. V. S.; et al. 1986. Response Times: Their
Role in Inferring Elementary Mental Organization: Their
Role in Inferring Elementary Mental Organization. Oxford
University Press, USA.
Tzeng, E.; Hoffman, J.; Saenko, K.; and Darrell, T. 2017.
Adversarial discriminative domain adaptation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 7167–7176.
Van der Maaten, L.; and Hinton, G. 2008. Visualizing data
using t-SNE. Journal of machine learning research, 9(11).
Wang, L.; Sy, A.; Liu, L.; and Piech, C. 2017. Learning to
Represent Student Knowledge on Programming Exercises
Using Deep Learning. International Educational Data Min-
ing Society.
Wang, X.; Li, L.; Ye, W.; Long, M.; and Wang, J. 2019.
Transferable attention for domain adaptation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 33, 5345–5352.
Xiong, X.; Zhao, S.; Van Inwegen, E.; and Beck, J. 2016.
Going Deeper with Deep Knowledge Tracing. In EDM,
545–550.
Zhang, J.; Wang, X.; Zhang, H.; Sun, H.; Wang, K.; and Liu,
X. 2019. A novel neural source code representation based
on abstract syntax tree. In 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering (ICSE), 783–
794. IEEE.
Zhi, R.; Price, T. W.; Lytle, N.; Dong, Y.; and Barnes, T.
2018. Reducing the State Space of Programming Problems
through Data-Driven Feature Detection. In EDM (Work-
shops).
Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.;
Xiong, H.; and He, Q. 2019. A Comprehensive Survey on
Transfer Learning. arXiv preprint arXiv:1911.02685.

