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Abstract

Protecting the privacy of user data is crucial for text generation models, which can
leak sensitive information during generation. Differentially private (DP) learning
methods provide guarantees against identifying the existence of a training sample
from model outputs. PATE is a recent DP learning algorithm that achieves high
utility with strong privacy protection on training samples. However, text genera-
tion models output tokens sequentially in a large output space; the classic PATE
algorithm is not customized for this setting. Furthermore, PATE works well to
protect sample-level privacy, but is not designed to protect phrases in samples. In
this paper, we propose SeqPATE, an extension of PATE to text generation that
protects the privacy of individual training samples and sensitive phrases in training
data. To adapt PATE to text generation, we generate pseudo-contexts and reduce
the sequence generation problem to a next-word prediction problem. To handle
the large output space, we propose a candidate filtering strategy to dynamically
reduce the output space, and refine the teacher aggregation of PATE to avoid low
agreement due to voting for a large number of candidates. To further reduce privacy
losses, we use knowledge distillation to reduce the number of teacher queries.
The experiments verify the effectiveness of SeqPATE in protecting both training
samples and sensitive phrases.

1 Introduction

Recent work has shown that sensitive user information in training corpora, such as addresses and
names, can be extracted from text generation models [6]. Providing privacy guarantees to the
training corpora of text generation models has become a critical problem. Differential privacy (DP)
provides provable guarantees against detecting individuals in datasets. Deep learning models with
DP guarantees ensure that the existence of a specific training sample cannot be detected.

NoisySGD [42, 3, 1] is a popular DP algorithm for deep learning that adds noise to the gradients.
PATE [31] is another type of DP learning algorithm that transfers knowledge from teachers trained
on private data to a student model, where noises are added to teacher predictions to satisfy DP. PATE
is model-agnostic, and its privacy cost derives from the knowledge distillation process instead of the
model gradients in NoisySGD [42, 24]. Therefore, the noises required by PATE do not scale with
model size. Given this benefit, PATE has great potential for text generation, since large language
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models (e.g., GPT-2 [35]) have become the backbone of most text generation models. However,
NoisySGD and PATE are used to protect sample-level privacy [51, 24] and not customized to protect
sensitive phrases in the data with a low privacy cost [22, 39, 50]. Additionally, PATE, originally
designed for classification tasks, is not customized for sequential generation on a large output space
(i.e., the natural language vocabulary), which is very common in text generation.

In this paper, we propose SeqPATE, a DP learning algorithm for text generation to protect the privacy
of training corpora. By satisfying DP, SeqPATE has the guarantee of preventing the existence of
training samples and sensitive phrases in the training corpora from being detected. Similarly to PATE,
SeqPATE employs a teacher-student framework: (i) a student model learns to generate text from non-
sensitive samples; and (ii) a number of teacher models, trained on sensitive text, supervise the student
through noised outputs of aggregated teachers. The calibrated noise added to the output ensures that
SeqPATE satisfies the DP requirements. This framework still faces some challenges in text generation.
First, it suffers from the high costs of GPU memory and time. To obtain sentence-level supervision
for text generation, the model needs to roll out all teachers to produce a sentence (i.e. all teachers
vote to generate a word, which is then used as the input for the next word prediction). It results in a
high inference cost with a large number of teachers (e.g. 2k teachers which are common in PATE).
Second, the large output space (i.e., the vocabulary) in text generation leads to (i) low agreement
rates among teachers and (ii) large noises required by DP, both of which significantly hurt the task
performance.

To address the challenges, we generate pseudo-data using a pre-trained language model so that
teachers only need to provide token-level supervision given the pseudo inputs. To handle the large
output space and reduce the noise, we propose to dynamically filter the candidate words and select
only words with high probabilities. Also, we aggregate teachers’ outputs by interpolating their
output distributions instead of voting with argmax predictions. DP learning methods provide privacy
protection by adding noise, which also reduces the utility of the model. To reduce utility loss, we
avoid unnecessary knowledge distillation by selectively applying knowledge distillation to generation
steps where the student struggles. Most DP learning methods, including SeqPATE, prevent samples
from being extracted. SeqPATE has further advantages in protecting users’ secret phrases that
occur multiple times in the corpora. We evaluate SeqPATE on a sentence completion task, which
demonstrates its advantage in protecting samples and phrases compared to the baselines.

Our contribution is twofold: (i) We propose SeqPATE that provides privacy at both the sample level
and the phrase level with theoretical analyses. (ii)) We propose several strategies for SeqPATE to
handle autoregressive text generation models with a large vocabulary.

2 Problem Setup

Our goal is to achieve the privacy protection quantified by DP in text generation to prevent attackers
from inferring whether a sample or an n-gram appears in the training set. Our setting contains two
types of textual datasets: (1) a private set DP" from a corpus with sensitive information, (2) a public
set DPU that contains no sensitive information or comes from data contributors (e.g., volunteers) who
have no objection to publishing their data. We aim to protect the privacy on the private set and can
ignore the privacy protection on the public set.

Our application, sentence completion, aims to complete the whole sentence given the prefix. We train
a language model to accomplish the task. The public set DP*® consists of prefixes, which can hardly
contain sensitive information. The private set DP" consists of whole sentences. Such a setting fits
some real-world text generation applications: in dialog systems, the training samples from online
services consist of questions and responses. The questions from customer service staff or service
robots can be public, and the response from users carrying individual information should be private.

3 Background on DP and PATE

Definition 3.1. [Differential privacy (DP) [13, 14]] For any two neighboring datasets D, D’ (differ in
only one individual), a randomized algorithm M : X™ — Y is (¢, §)-differentially private if,

PrIM(D) € S] < e - PrIM(D’) € S]+46, VS CY, where £ >0, § > 0. (1)
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Figure 1: Overview of SeqPATE. SeqPATE trains teachers on private data. Student models are trained
on pseudo-sentences generated by a pre-trained language model given the public prefixes. The student
is supervised by aggregated teacher output distributions. SeqPATE benefits from candidate filtering
(white block in the top right corner) and efficient knowledge distillation that determines whether
teacher supervision is needed (pink block).

By definition, DP is a quantifiable definition of privacy that provides guarantees on identifications of
individual data (preventing an adversary from inferring whether the input is D or D). ML models
with DP ensure that each training sample has a degree of plausible deniability, i.e., the trained model
is just as likely as to be trained on an alternative dataset without that sample. In SeqPATE, M is the
entire training and inference process, .S is the vocabulary, and Pr|-] denotes the output distribution
of generating a word. Attackers cannot tell whether a sample is in the training set or not, since the
output distributions of the datasets with or without that sample are very similar (bounded by Eq. 1).

PATE [31], designed for classification tasks, takes advantage of an unlabeled public dataset DP'® and
also trains on a labeled private set DP" in a semi-supervised scenario. PATE achieves DP through a
teacher-student framework with M teacher models and a student model, where the student learns
from the private set via knowledge distillation through teachers. PATE has three parts: (i) The
teacher models are trained on the private set DP", which is shuffled and divided into M disjoint
subsets. Each teacher is trained on one subset. (ii) Teacher aggregation merges the teachers’ outputs.
Each of the trained teachers then provides supervision to the student’s unlabeled public set DP"*. We
use noised majority votes from teachers as labels to supervise the student. (iii) A student model is
trained on the public set DP'® with the supervision of the aggregated teachers.

4 Approach

Fig. 1 shows an overview of SeqPATE. Given the public prefix (e.g., “Cats sit”), we first obtain the
pseudo-inputs by completing the sentence (e.g., “Cats sit on the mats”) using a pre-trained language
model (Sec. 4.1). At each word, we then aggregate the teachers’ prediction of the next word as
supervision for training the student model (Sec. 4.2). To reduce the noise required by DP for a
large output space of the size of the vocabulary, we reduce the output space by dynamically filtering
unimportant words. To reduce the number of teacher queries that incur privacy losses, we propose
an efficient knowledge distillation strategy that only queries teacher labels on uncertain examples
(Sec. 4.3). We show the training algorithm in App. B and a running example in App. K.

4.1 Pseudo Input Generation

Conventional text generation models generate words sequentially from left to right. Thus, naively
applying PATE to text generation requires rolling out all teachers word by word, i.e., iteratively
sampling the next word from the aggregated teacher prediction. This is costly in both computation
(running inference for hundreds of teacher models) and privacy costs (querying teachers at every step).



To tackle this challenge, we use a pre-trained language model to complete the public prefixes into
pseudo sentences; thus, we only need to query teachers on the next word given a (pseudo) context.

4.2 Teacher Aggregation

PATE aggregates teacher predictions by majority vote. While it works for classification problems
with a relatively small number of classes, the output space of text generation models contains all
words in the vocabulary. As a result, the number of votes for each candidate word may be very low
without a clear winner. For example, multiple candidates may tie for the top-1 prediction.

Inspired by Chen et al. [9, 17], we aggregate teacher results by averaging their output distributions.
We first train M teacher models on disjoint subsets of the private data. To produce the aggregated
next word distribution given a context ¢, we average the teachers’ output distributions, add calibrated
noises, and then renormalize the results into a proper distribution. Following Papernot et al. [32], we
apply the Gaussian mechanism. Formally, let pg’( | ¢) be the prediction of the m-th teacher. The

aggregated distribution is page (- | €) o¢ 17 Z%Zl (Vg (- | ¢) +N(0,0?)), 2 where the Gaussian noise
is added to the aggregated output distribution. The way of SeqPATE satisfies DP guarantee (Eq. 1) is
to add that calibrated noise to the teachers’ output as mentioned above (detailed analyses in Sec. 5).

4.3 Training of the Student Model

The student model is trained on public pseudo-data and also supervised by the aggregated teachers.

Training objectives. The student model is a language model that predicts the next word given prior
contexts. Given contexts from the (public) pseudo-data autocompleted by a pre-trained language
model (GPT-2), the student is supervised by both the aggregated teacher predictions and the next
word in the pseudo-data (i.e. pseudo label). The pseudo-data acts as a prior for the student given that
the number of teacher queries is limited due to privacy concerns. The student’s loss function has two
parts:

* Lieacher denotes the loss with respect to teacher supervision. Note that the aggregated teacher output
is a distribution over words. Therefore, we minimize the forward KL divergence between the
aggregated teacher distribution p,g, and the student output distribution py:

Eteacher(ca pagg) =KL (pagg(' | C) Hp9( ‘ C)) . 2)

* Lpseudo denotes the loss with respect to the pseudo-labels w from DP (j.e. next words generated by a
generic language model). Similar to standard language modeling, we use the negative log-likelihood:

Epseudo(@ w) = - 10gp«9 (’U} I C). 3)
Eq. 4 shows the complete loss. (A balances the two terms and we discuss the noise scale o in Sec. 5.)

,C(pagg, @PUb) = Z ‘Cpseudo(ca w) + )\Acteacher(capagg)a €]
(c,w)€Dpub

Reducing the output space via candidate filtering. The high-dimensionality of the output of text
generation models results in large noise (which is added to each coordinate). To reduce the output
dimension (hence the amount of noise), we filter words on the tail of the distribution of the student
model (i.e. set their probability to zero), and renormalize the teacher’s aggregated distribution and the
student output distribution over the rest words.

Note that the candidate filtering is based on the student’s outputs on public or already released inputs,
thus it does not affect the privacy guarantee. This choice improves the privacy-utility tradeoff by
adaptively allocating the privacy budget to release the information most helpful to the task.

We experiment with two filtering strategies: top-k and top-p. In top-k filtering, we retain only the
top-k most likely candidates and filter the rest according to the student model. In top-p filtering [18],

*Mathematically, the aggregated distribution with noises may be negative. If so, we renormalize the negative
value to 0. Practically, we observed that being negative is an extremely rare event, since the M is usually very
large (e.g., 2k) and the first term dominates the above equation.



k is chosen dynamically such that the top-k words are the minimum set whose cumulative probability
is at least p. The strategy seldom loses good candidates because the student usually does well on
top-k predictions since the beginning of the training. 3

Reducing the number of teacher queries via efficient knowledge distillation. While the aggre-
gated teacher model satisfies DP, each query from the student incurs some privacy loss. Therefore, we
obtain teacher supervision only on “hard” examples when training the student. Note that the student
is trained on both the pseudo-data and local supervision from the teachers. We consider an example
to be hard if the student cannot imitate the pseudo-label, in which case distilling knowledge from the
teachers that are trained on large private data is helpful.

Concretely, we query teachers only when the rank of the pseudo-label is below a certain threshold
among words ordered by descending probabilities under the student model. If we query the teachers,

the student is trained via complete loss E(pagg, @pub) (Eq. 4); otherwise, the student is trained via the
Lopseudo (Eq. 3). We note that the selection of tokens relies only on the student and is independent of
the teachers; thus, the selection does not cause any additional privacy loss.

5 Privacy Analyses

5.1 Preliminary of Differential Privacy

Lemma 5.1 (Analytical Gaussian mechanism [2]). For a numeric query f : X" — R? over a
dataset D, the randomized algorithm that outputs f(D) + Z where Z ~ N(0,021;) satisfies

(e,0(€))-DP for all e > 0 and §(c) = ®(5 — Z) — EQ(— & — £2). where A := A(Qf) =

maxp~p' || f(D) — f(D')||2 is the global L2 sensitivity of f and ® is the CDF function of N'(0, 1).

We can use the same result for an adaptive composition of a sequence of Gaussian mechanisms.

Lemma 5.2 (Composition of Gaussian mechanisms [11]). The adaptive composition of a sequence
of Gaussian mechanisms with a noise level 1,05, ... and global L2 sensitivity A1, Ao, ... satisfies
(€,6(¢))-DP for all ¢ > 0 and 6(¢) < () where M is a Gaussian mechanism with noise

multiplier o/ A = (Zi(Ai/Ui)Q) o

Specifically, the adaptive composition of a k identical Gaussian mechanism with a noise multiplier o

satisfies the same privacy guarantee of a single Gaussian mechanism with a noise multiplier o /+/k.
By fixing k and €, we can calibrate the noise by choosing an appropriate ¢ in Sec. 4.2.

5.2 Differential Privacy for Language Models at the Sample Level

Recall that we partition the private dataset into M disjoint subsets, and train each teacher model
on one of the subsets. Let vector 2; € RIV! denote the probability distribution predicted by the
i-th teacher model given some context, where |V| is the vocabulary size. The aggregation function

f(D) = Zﬁl x; is the sum of the probability distributions predicted by all teachers. Since the
datasets are disjoint, changing one sample affects only one teacher model. For neighboring datasets
D, D', let j denote the index of each teacher model; the probability distributions x 5 and x} (derived
from D and D’ respectively) are different. Then, the sensitivity A in Lemma 5.1 & 5.2 is (See
detailed deductions in App. C),

A=A = | f(D) - f(D)]a < ||z — alll2 < V2.

Adding the noises given by Lemma 5.2 to each coordinate (each candidate at each generation step
of SeqPATE) preserves (¢, 6(¢))-DP for f(D). Finally, when we extract top-k coordinates by top-k
candidate filtering (Sec. 4.3), the privacy guarantee also holds due to the post-processing property [14].
Therefore, the fact about whether a sample is in SeqPATE’s private sets is protected (satisfying (e,
d())-DP).

3In the first 10 training batches, the top-50 predictions of the student cover 94% “true” labels of pseudo
samples.



5.3 Differential Privacy of Users’ Secret Phrases

The above analyses show that we can protect the privacy of each sample (i.e., one occurrence of
a sentence). However, in practice, we may want to protect all occurrences of some secret phrases
specific to a user (e.g., names and addresses).* Consider a secret phrase s that occurs n, times
(ns > 1) in the private set. According to group privacy [14], the protection on phrase s satisfies
(ne, e:__ll 0)-DP [22], where the privacy loss scales linearly with the number of occurrences of s
(We discuss and analyze a better strategy to reduce the privacy loss of baselines in App. M).

Naively applying a DP algorithm requires larger noise to protect phrases that may occur multiple
times. SeqPATE enjoys a stronger guarantee by assigning all data of a single user to one or a few
teachers, such that any user-specific phrase occurs in the training data of only one or a few teachers.
We denote 5 as the number of teachers whose data contain the phrase s. Since adding or removing
the phrase s affects only ng teachers (n, is usually 1 or 2) and thus results in a sensitivity of V27
(See App. D for details). In this way, the strength of protection on secret phrases is roughly equal to
that we have derived for sample-level DP. The exact (&, d(, 75 ))-DP for the phrase s can be obtained

according to Lemma 5.1 & 5.2, where (¢, 7i5) = (7 — ) — eatb(—\;‘f‘a v ). Unlike

other generic DP algorithms such as NoisySGD, SeqPATE avoids a linear increase in privacy loss
(i.e., a linear increase in €) on user phrases by careful partitioning of the private data.

This effect is complimentary to other generic, but more intrusive, techniques such as redaction and
deduplication [50] for addressing the same issue. Finally, a user-specific partitioning with SeqPATE
also protects multiple secret phrases of the same user (e.g., a combination of SSN, credit card numbers,
address, day of birth) jointly without incurring a larger privacy loss — a benefit that deduplication
does not provide.

5.4 How does DP prevent memorization in SeqPATE?

In practice, the privacy of the language model is usually interpreted as not generating a secret phrase
in the training data as-is during inference. Thus, one may wonder how DP prevents such unintended
memorization of the training data. We remark that the protection against memorization follows the
definition of DP. Consider the attack by Carlini et al. [6], which uses a language model to predict a
secret phrase s given a prefix. By the closure to post-processing [14], the prediction also satisfies
DP. We denote VV as the undesirable event where SeqPATE generates the phrase s verbatim. The DP
definition implies that the probability of V¥ to happen when s is in the SeqPATE’s private sets is at
most e® larger than the probability of an alternative SeqPATE model trained without s in those sets.
The chances for the latter model to generate text with s are astronomically small. Hence, DP implies
that the probability of ¥V under the former model (i.e. any SeqPATE model in general) is small.

6 Experiments

6.1 Experimental Settings

Datasets. We evaluate our model on two datasets. AirDialog [47] consists of 1M utterances from
customer service dialog on flight booking; Europarl_v6 consists of 2M English sentences collected
from European Parliament.’ (See details about datasets in App. E.)

Baselines. We compare SeqPATE with two DP baselines: (1) standard NoisySGD trained on the
private data with calibrated noise on clipped gradients [1, 22] and further trained on public set DP*
without protection; (2) based on NoisySGD, NoisySGD+GC [24] applies a ghost clipping which
enables large batch size with memory saving techniques.

Additionally, we use two non-DP methods as reference: (1) Pri-GPT trained on the private set
without any privacy protection; (2) the public pre-trained GPT-2 model Pub-GPT without access to
private data. For all methods, we can optionally fine-tune on the generated pseudo-data as a warm-up,
and the operation is denoted as +DP.

4 A formal definition of this is called personalized differential privacy, first seen in [16].
>www.statmt.org/europarl



Implementation details. All models are fine-tuned from the (public) pre-trained GPT-2 model [35].
The batch size is 32 for all comparing methods except the GC [24] (GC [24] requires 2048). We use
Adam [23] and adjust the initial learning rate with a range of 1072 to 10~ for all methods. The &
mentioned in Sec. 5 for all DP methods is 1076,

For SeqPATE, before training the student model with teacher supervision, we first fine-tune it on the
public pseudo-data DP a5 9 warm-up. The coefficient A that balances supervision for the teacher
and the pseudo-data (Eq. 4) is set to 20, where we have tuned it on the validation set of the public
pseudo-data. The default number of teacher models is 2k, where our model works well according to
the experiments in App. H. We designed some strategies ° to reduce memory and disk usage (See
strategies and the computational cost in App. I). We run SeqPATE with 2k teachers on a single GPU
in 3 days. Our code is publicly accessible. /. (See details about hyperparameters in App. G.)

Evaluation Metrics. We evaluate the generated text by perplexity (PPL) and Bleu (Bleu-n) [33].

6.2 Overall Performance

Table 1: The performance on the two datasets with sample-level protections (mentioned in Sec. 5.2).
All SeqPATE results are statistically significant compared to the strongest baseline under paired
sample t-test (p < 0.05).

AirDialog Europarl_v6
PPL | [ Bleu-37 [ Bleu-4 T | PPL | | Bleu-3 T | Bleu-4
Pri-GPT 3.88 21.51 17.16 23.25 1.77 0.86
Non-DP Pub-GPT 63.16 0.31 0.10 57.40 1.02 0.35
Pub-GPT+DP 19.39 0.71 0.25 45.40 1.38 0.52
NoisySGD 17.49 1.97 0.96 37.31 1.28 0.46
DP (sample) NoisySGD+Dpub 16.78 2.21 1.09 37.69 1.31 0.42
e=3 NoisySGD+GC+DP*® | 11.17 3.15 1.54 35.77 1.56 0.57
SeqPATE 8.00 5.09 3.24 33.92 1.60 0.61

Protection at the sample level. Tab. 1 show the performance on the two datasets. Among the
non-DP baselines, Pri-GPT acts as an upper bound on the performance, since it can fully utilize the
private set by discarding privacy protection. Pub-GPT+DP"™ outperforms Pub-GPT on both datasets,
showing that the pseudo data is helpful (additional ablation study on the pseudo data in App. J
also verifies this). NoisySGD+GC+15pub surpasses the above two methods, since it uses a much
larger batch size (2048 vs 32) than NoisySGD. Our method, SeqPATE, significantly outperforms
NoisySGD+GC+DP™ (+59% in Bleud on AirDialog and +7.0% in Bleu4 on Europarl_v6) while
ensuring the same level of privacy protection in terms of €.

Protection on the user’s secret phrases. We evaluate our method for privacy protection of secret
phrases mentioned in Sec 5.3. The key step is to partition the data such that each phrase only occurs
in the training data of very few teachers, which is straightforward given the user ID associated with
the private data. In general, SeqPATE works with any set of secret phrases. In our experiments, we
consider a user’s full name as their secret phrase since it can be easily recognized from the data. We
partition AirDialog’s private data according to the accompanying user IDs. As a result, there are
96.6% users whose data are assigned to a single teacher (details about the data partition in App. F).

As described in Sec. 5.3, standard DP methods incur larger privacy loss on secret phrases. In Tab. 2,
we see that NoisySGD+GC+1~)pub needs large noise to achieve a satisfactory level of protection on
phrases, because ¢ increases linearly with the frequency of the phrase (group privacy [14]). “Batching
users” indicates partitioning data into batches according to users, which helps NoisySGD protect
users’ phrases (more analyses in App. M). For SeqPATE, the number of teachers trained on data
containing the phrase 7 is close to 1 on average after our partition. Thus, SeqPATE provides the same
level of protection on users’ secret phrases with a smaller noise and thus achieves better performance
(+70% and +36% in Bleu4) (see more about the protection level on users’ secret phrases in App. F).

We train and conduct the inference on the teachers one-by-one and cache the teachers’ outputs.
https://github.com/tianzhiliang/SeqPATE



Table 2: The performance on AirDialog with the protections of users’ secret phrases (mentioned in
Sec. 5.3). €ayg is the average ¢ over all secret phrases, as ¢ of each phrase varies with the frequency
of the phrase and the number of teachers (see App. F for detailed analyses about €,,5). All results of
SeqPATE are statistically significant compared to the strongest baseline under paired sample t-test
(p < 0.05).

[ PPL | | Bleu-3 T [ Bleu-4 T

p oo NoisySGD+GC+DP® 1675 | 171 0.57
P (Phrase) | NoisySGD+GC+DM™ (batching users) | 1342 | 3.25 145
we =3 I ~SeqPATE 10.10 | 420 2.46
oo NoisySGD+GC+DP® 1649 | 1.89 0.69
P (Phrase) | NoisySGD+GC+DM™ (batching users) | 1056 | 4.60 287
we =5 ["SeqPATE 806 | 6.10 3.90
NoisySGD  —— NoisySGD+DP» ~ —— NoisySGD+GC+DPU»  —— SeqPATE
(a) (b) - (c) o (d)
% < 1 % -35- < 0.6
E)’ 03 5740 05
- 0 0.5 ;. 50 50t [} 0.5 2 50 500 - 0 0.5 g 50 50t ) 0.5 2 50 500

Figure 2: The private-utility tradeoff in Bleu-4 and PPL on a different €. All the results are under
sample level protections. Subfigure a & b show the results on AirDialog; ¢ & d show the results on
Europarl_v6. The grey lines show the “lower bound” since the method does not access the private set.

Privacy-utility tradeoff. In Fig. 2, we show the private-utility tradeoff curve of all DP algorithms.
8 Typically, DP with ¢ € [0.1,10] is considered to provide a meaningful protection [45]. We observe
that SeqPATE outperforms NoisySGD and NoisySGD+GC+DP*™ in this range. However, SeqPATE
does not work better than the two methods when £ > 10. The reason is that NoisySGD+GC+DP!
approaches Pri-GPT as ¢ approaches infinity (i.e. the noise approaches 0). However, SeqPATE
with an infinite ¢ is still weaker than Pri-GPT because distillation still incurs performance loss: the
teachers cannot completely transfer knowledge from the private data to the student. Therefore, we
suggest using SeqPATE if strong privacy protection is desirable.

Table 3: Ablation studies. “—" means not using that strategy.
AirDialog Europarl_v6
PPL | | Bleu-371 | Bleu-41 | PPL | | Bleu-3 T | Bleu-4 1
SeqPATE 8.00 5.09 3.24 33.92 1.60 0.61
—Merge_P | 11.96 3.14 1.85 39.19 1.40 0.47
—KL 12.08 3.26 1.81 39.81 1.41 0.52
—Lpseudo 8.11 4.74 3.17 33.81 1.58 0.60
—Effi KD 9.37 4.45 3.02 34.10 1.57 0.57
—Gaussian | 9.54 433 2.78 35.31 1.54 0.55
—All 13.21 2.95 1.69 42.74 1.32 0.44

8For the models without protections, we consider ¢ to be zero for baselines using the public data and € to be
infinity for baselines using the private data.



6.3 Ablation Studies

There are several design choices in SeqPATE and we study the importance of each of them. In
Tab. 3, we consider the following variants of SeqPATE: (1) —Merge_P: aggregating the teachers
by voting instead of averaging their output distributions; (2) —KL: training the student using the
cross-entropy loss with respect to teachers’ top-1 prediction instead of KL divergence; (3) —Lpscudo:
not learning from the pseudo label (Eq. 3); (4) —Effi KD: querying teachers on all samples without
selection; (5) —Gaussian: using the Laplace mechanism as the original PATE algorithm instead of the
Gaussian mechanism; and (6) —All: using none of the above strategies, which is similar (although not
equivalent) to the original PATE (the difference is that PATE needs to roll out all teachers (Sec. 4.1)).

Aggregating the teachers by voting and training with KL loss are the most important strategies for
SeqPATE. The poor performance on —Merge_P shows that voting is not suitable for text generation.
The reason is that voting over a large output space leads to low agreement rates. The results show
that the Lpseudo 10ss makes little contribution to SeqPATE. The reason is that we have pre-trained on
the student’s training set via Lpseuqo before the student’s training. The promotion caused by efficient
knowledge distillation (Effi KD) on AirDialog is larger than that on Europarl_v6, which shows that
the “clever” student (e.g., models on AirDialog with low PPL and high Bleu) benefits more from this
strategy. This is because the “clever” student can dramatically save the privacy cost and transfer it
to where it would benefit the student most. The poor performance of —All verifies that the original
PATE is not suitable for text generation.

Table 4: Analyses about the candidate filtering strategies.

AirDialog Europarl_v6
PPL | | Bleu-31 | Bleu-4 1 | PPL | | Bleu-3 1 | Bleu-4 1
top-p 8.00 5.09 3.24 33.92 1.60 0.61
top-k=1 18.23 0.89 0.38 45.15 1.40 0.53
top-k=10 12.47 347 1.95 35.94 1.55 0.54
top-k=50 7.89 4.96 3.35 33.74 1.59 0.59
top-k=100 | 8.78 4.64 3.17 34.48 1.60 0.62
top-k=200 | 9.24 3.77 2.94 34.63 1.57 0.55

6.4 Analyses on Candidate Filtering and Teacher Numbers

To analyze candidate filtering with different filtering strategies, we conduct experiments on top-p
and top-k filtering. As shown in Tab. 4, our full model employs the top-p filtering (the threshold
p is 0.95) surpasses most variants with manually chosen k. Top-k filtering (K =50 or 100) also
works well. Filtering with a too small k (k = 1 or £ = 10) implies discarding too much useful
information from the supervision (k = 1 is different from — KL in Tab. 3, which uses the Top-1 of
teachers’ results). Filtering with oversize k results in unnecessarily large noises. Candidates with
very small probabilities should be filtered during generation; however, random noises may increase
their probabilities, so models may generate those words that are misled by the noise.

The results in App. H show that more teachers lead to better results when the number of teachers
is in the range of 1 ~ 2k. This is because the noise assigned to each teacher drops linearly as the
number of teachers increases. Note that SeqPATE cannot always benefit from increasing the teacher
numbers, because the scale of each teacher’s data is linearly decreased as the teacher numbers go up.
We choose € = 3 on the sample level protection for all results in Tabs. 3, 4, and App. H.

Additionally, we conduct empirical comparisons and analyses of SeqPATE versus the original PATE
in App. N. We show the effects of protections on users’ secret phrases in App. O. We compare
SeqPATE with another non-DP based baseline (i.e. blacklist based filtering) in App. P. We also
conduct a case study in App. Q.

7 Related Work

Text generation models may leak user information through the generated texts [19, 7]. One direction
of privacy protection is to protect author-level (user-level) information. The methods prevent attackers
from inferring the author attributes (e.g., gender, age) [25] and the relationship between information



and authors [29]. Some researchers [40, 41] infer the membership (whether samples from a given
author are used to train the model) given a black-box model. Some papers protect user privacy of
training data against untrusted servers via federated learning [27, 10]. Another direction is to prevent
attackers from extracting sensitive information in training sets by analyzing the outputs [30, 22],
which is urgently needed [7]. Our SeqPATE focuses on this direction. In this direction, regularization
methods [6, 43, 20] restrict the model capacity and prevent the model from memorizing exact training
samples. Anonymization methods [26, 44] detect sensitive text and replace it with non-sensitive
text. Unlike DP [14] methods, the above methods do not provide a quantifiable guarantee for privacy
protection. Some researchers focus on protecting user privacy against untrusted servers via federated
learning [27, 10].

Some researchers apply DP to text generation. For user-level privacy, ER-AE [4] augments the
semantic information in the generated text to hide authors’ writing styles from attackers. McMahan
et al. [28] propose a recurrent language model with a DP guarantee against the identification of users.
Note that the user-level privacy (relationships between users and their information) is different from
the privacy of users’ secret phrases in our model: Our model prevents individual user phrases from
being detected. Some researchers apply NoisySGD to text generation to prevent sensitive training
samples from being extracted: some of them [37, 39, 50] employ DP to protect a part of selected
tokens; others [22, 49, 24] apply DP to protect both samples and all tokens, but the privacy cost on
tokens is very high (Sec. 5.3). Our model falls into the latter category and reduces the privacy cost
of tokens. Kerrigan et al. [22] apply NoisySGD [1] to text generation. Yu et al. [49] investigate
fine-tuning strategies on pre-trained language models with NoisySGD. Li et al. [24] apply ghost
clipping to pre-trained language models with NoisySGD and reduce memory usage. Shi et al. [38]
apply DP to particular generation steps instead of training samples or n-grams. Brown et al. [5]
analyze DP based method versus data sanitization of text generation models. Brown et al. [12]
propose a efficient NoisySGD to speed up model training.

Differential privacy (DP) [13, 14] formally defines and quantifies privacy. ML models with DP
guarantee [46, 15, 52] prevent the existence of individual training examples from being detected
[6]. Some researchers protect the privacy of empirical risk minimization classifiers [8] and SVM
[36] with DP. Following Song et al. [42], NoisySGD [1] achieves DP on deep learning models by
adding noises to gradients. Pichapati et al. [34] adaptively clip the gradient in NoisySGD. PATE
[31, 32] transfers the knowledge from teacher models trained on private sets with noises to a student
model. KNN-PATE [51] refines PATE by accessing only the k-nearest neighbors from the private set.
Jordon et al. [21] adversarially learn to generate synthetic data with discriminators trained by PATE.
These methods are not customized for text generation models. Xie et al. [48] propose DPGAN to
adversarially learn with a generator and a discriminator.

8 Conclusion

In this paper, we propose a novel framework, SeqPATE, to protect the privacy of the training data for
text generation models with DP guarantees. SeqPATE achieves a good privacy-utility trade-off by
leveraging both private and public data. As an extension of PATE, SeqPATE can handle the sequential
generation paradigm with large output space at each step and is therefore adaptive to text generation
models. We avoid rolling out teachers by providing pseudo-inputs for the teacher’s inference and the
student’s training. We further reduce the output space by candidate filtering and limit privacy losses
via efficient knowledge distillation. SeqPATE achieves a better performance with the sample-level
protection and further provides much stronger protection on users’ secret phrases. The limitations,
ethical considerations, and social impacts of this paper are in App. A and L.
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