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Abstract

The “Propose-Test-Release” (PTR) framework
[4] is a classic recipe for designing differentially
private (DP) algorithms that are data-adaptive, i.e.
those that add less noise when the input dataset
is “nice”. We extend PTR to a more general set-
ting by privately testing data-dependent privacy
losses rather than local sensitivity, hence making
it applicable beyond the standard noise-adding
mechanisms, e.g. to queries with unbounded or
undefined sensitivity. We demonstrate the ver-
satility of generalized PTR using private linear
regression as a case study. Additionally, we apply
our algorithm to solve an open problem from “Pri-
vate Aggregation of Teacher Ensembles (PATE)”
[18, 19] — privately releasing the entire model
with a delicate data-dependent analysis.

1 Introduction

The guarantees of differential privacy (DP) [5] are based
on worst-case outcomes across all possible datasets. A
common paradigm is therefore to add noise scaled by the
global sensitivity of a query f, i.e. the maximum change in
f between any pair of neighboring datasets.

A given dataset X might have a local sensitivity Aps(X)
that is much smaller than the global sensitivity Agg, in
which case we can hope to add a smaller amount of noise
(calibrated to the local rather than global sensitivity) while
achieving the same privacy guarantee. However, this must
not be undertaken naively — the local sensitivity is a dataset-
dependent function and so calibrating noise to the local
sensitivity could leak information about the dataset [16].

The “Propose-Test-Release” (PTR) framework [4] resolves
this issue by introducing a test to privately check whether a
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proposed bound on the local sensitivity is valid. Only if the
test “passes” is the output released with noise calibrated to
the proposed bound on the local sensitivity.

PTR is a powerful and flexible tool for designing data-
adaptive DP algorithms, but it has several limitations. First,
it applies only to noise-adding mechanisms which calibrate
noise according to the sensitivity of a query. Second, the test
in “Propose-Test-Release” is computationally expensive for
all but a few simple queries such as privately releasing the
median or mode. Third, while some existing works [3, 9, 12]
follow the approach of testing “nice” properties of a dataset
before exploiting these properties in a private release to
PTR !, there has not been a systematic recipe for discover-
ing which properties should be tested.

In this paper, we propose a generalization of PTR which
addresses these limitations. The centerpiece of our frame-
work is a differentially private test on the data-dependent
privacy loss. This test does not directly consider the local
sensitivity of a query and is therefore not limited to additive
noise mechanisms. Moreover, in many cases, the test can
be efficiently implemented by privately releasing a high-
probability upper bound, thus avoiding the need to search
an exponentially large space of datasets. Furthermore, the
derivation of the test itself often spells out exactly what
properties of the input dataset need to be checked, which
streamlines the design of data-adaptive DP algorithms.

Our contributions are summarized as follows:

1. We propose a generalization of PTR which can handle
algorithms beyond noise-adding mechanisms. Gener-
alized PTR allows us to plug in any data-dependent
DP analysis to construct a high-probability DP test
that adapts to favorable properties of the input dataset —
without painstakingly designing each test from scratch.

2. We demonstrate that many existing examples of PTR
and PTR-like algorithms can be unified under the gener-
alized PTR framework, sometimes resulting in a tighter
analysis (see an example of report-noisy-max in Sec-
tion 9.1).

"'We refer to these as PTR-like methods.
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3. We show that one can publish a DP model through
privately upper-bounding a one-dimensional statistic —
no matter how complex the output space of the mecha-
nism is. We apply this result to solve an open problem
from PATE [18, 19].

4. Our results broaden the applicability of private hyper-
parameter tuning [11, 17] in enabling joint-parameter
selection of DP-specific parameters (e.g., noise level)
and native parameters of the algorithm (e.g., learning
rate, regularization weight), which may jointly affect
the data-dependent DP losses.

2 Related Work

Data-dependent DP algorithms. Privately calibrating
noise to the local sensitivity is a well-studied problem. One
approach is to add noise calibrated to the smooth sensitivity
[16], an upper bound on the local sensitivity which changes
slowly between neighboring datasets. An alternative to
this — and the focus of our work — is Propose-Test-Release
(PTR) [4], which works by calculating the distance Dg(X)
to the nearest dataset to X whose local sensitivity violates
a proposed bound . The PTR algorithm then adds noise
to D(X) before testing whether this privately computed
distance is large enough to permit releasing the output with
noise calibrated to 3.

PTR spin-offs abound. Notable examples include stability-
based methods [22] (stable local sensitivity of O near the
input data) and privately releasing upper bounds of local sen-
sitivity [9, 12, 3]. We refer readers to Chapter 3 of Vadhan
[23] for a concise summary of these classical results. Re-
cent work [24] has provided Rényi DP bounds [14] for PTR
and demonstrated its applications to robust DP-SGD. Our
work (see Section 5.2) also considers applications of PTR
in data-adaptive private deep learning: Instead of testing the
local sensitivity of each gradient step as in Wang et al. [24],
our PTR-based PATE algorithm tests the data-dependent
privacy loss as a whole.

Liu et al. [12] proposed a new variant called High-
dimensional Propose-Test-Release (HPTR). HPTR provides
a systematic way of solving DP statistical estimation prob-
lems by using the exponential mechanism (EM) with care-
fully constructed scores based on certain one-dimensional
robust statistics, which have stable local sensitivity bounds.
HPTR focuses on designing data-adaptive DP mechanisms
from scratch; our method, in contrast, converts existing
randomized algorithms (including EM and even some that
do not satisfy DP) into those with formal DP guarantees.
Interestingly, our proposed method also depends on a one-
dimensional statistic of direct interest: the data-dependent
privacy loss.

Data-dependent DP losses. The flip side of data-dependent
DP algorithms is the study of data-dependent DP losses

[19, 21, 25], which fix the randomized algorithm but pa-
rameterize the resulting privacy loss by the specific input
dataset. For example: In the simple mechanism that adds
Laplace noise with parameter b, data-dependent DP losses
are €(X) = Aps(X)/b. The data-dependent DP losses
€(X) are often much smaller than the DP loss ¢, but they
themselves depend on the data and thus may reveal sensitive
information; algorithms satisfying a data-dependent privacy
guarantee are not formally DP with guarantees any smaller
than that of the worst-case. Existing work has considered
privately publishing these data-dependent privacy losses
[19, 20], but notice that privately publishing these losses
does not improve the DP parameter of the given algorithm.
Part of our contribution is to resolve this conundrum by
showing that a simple post-processing step of the privately
released upper bound of €(X) gives a formal DP algorithm.

Private hyper-parameter tuning. Our work has a nice
connection with private hyper-parameter tuning. Prior
work [11, 17] requires each candidate configuration to be
released with the same DP (or Rényi DP) parameter set.
Another hidden assumption is that the parameters must not
be privacy-correlated (i.e., parameter choice will not change
the privacy guarantee). Otherwise we need to use the largest
DP bound across all candidates. For example, Liu and Tal-
war [11] show that if each mechanism (instantiated with one
group of hyper-parameters) is (¢, 0)-DP, then running a ran-
dom number of mechanisms and reporting the best option
satisfies (3¢, 0)-DP. Our work directly generalizes the above
results by (1) considering a wide range of hyper-parameters,
either privacy-correlated or not; and (2) requiring only that
individual candidates have a testable data-dependent DP.

3 Preliminaries

Datasets X, X’ € X are neighbors if they differ by no more
than one datapoint; we say X ~ X' if d(X, X’) < 1.

We measure the distance d(-) between same-sized datasets
X = {z;}, and X = {%;}, as the number of coordi-
nates that differ between them:

d(X, X) = #{i € [n] : w; # &}
We use || - || to denote the radius of the smallest Euclidean
ball that contains the input set, e.g. || X|| = sup, ¢y ||z]|.

For mechanisms with continuous output space, the probabil-
ity density of M(X) at y is denoted PrfM (X)) = y].

Definition 3.1 (Differential privacy [5]). Fixe,d > 0. A
randomized algorithm M : X — R satisfies (¢, 0)-DP if
for all neighboring datasets X ~ X’ and for all measurable
sets S C R,

PrIM(X) € S] < ePr[M(X') € 5] +6.

Definition 3.2 (Sensitivity). The global /,-sensitivity of a
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function f is defined as

and its local sensitivity at dataset X is
— _ 1
Ars(X) = max [IF(X) = F(X).

Theorem 3.3 (Noise-adding mechanisms). Consider a real-
valued function f : X — R with global {1-sensitivity A
and global {o-sensitivity Ao.

The Laplace mechanism M(X)
satisfies e-differential privacy.

The Gaussian mechanism M(X) = f(X) + N(0,0?)
satisfies (e,0)-differential privacy with noise parameter

o= Ag\/2log(1.25/0)/e.

3.1 Propose-Test-Release

= J(X) + Lap (Ar/e)

Calibrating the noise level to the local sensitivity Az s(X)
of a function would allow us to add less noise and therefore
achieve higher utility for releasing private queries. However,
the local sensitivity is a data-dependent function and naively
calibrating the noise level to A g(X) will not satisfy DP.

PTR resolves this issue in a three-step procedure: propose
a bound on the local sensitivity, privately test that the bound
is valid (with high probability), and if so calibrate noise
according to the bound and release the output.

PTR privately computes the distance Dg(X ) between the
input dataset X and the nearest dataset X’ whose local
sensitivity exceeds the proposed bound 3:

Dﬁ(X) = H)}l/p{d(X, X”) : ALs(X”) > 5}

Algorithm 1 Propose-Test-Release [4]
1: Input: Dataset X; privacy parameters ¢, J; proposed
bound ; query function f : X — R.
2: if Dg(X) + Lap (1) < M then output L,

3: else release f(X) + Lap (g)

Theorem 3.4. Algorithm 1 satisfies (2¢,9)-DP. [4]

Rather than proposing an arbitrary bound 5 on A g(X),
one can also privately release an upper bound of the local
sensitivity and calibrate noise according to this upper bound.
This was used for node DP in graph statistics [9], and for
fitting topic models using spectral methods [3].

4 Generalized PTR

This section introduces the generalized PTR framework.
We first formalize the notion of data-dependent differential
privacy that conditions on an input dataset X .

Definition 4.1 (Data-dependent privacy). Suppose we have
d > 0 and a function € : X — RT. We say that mechanism
M satisfies (e(X), §) data-dependent DP? for dataset X if
for all possible output sets .S and neighboring datasets X',

Pr[M(X) € S] < e“CIPr[M(X') € S] +5,
Pr[M(X’) € S| < e“X®Pr[M(X) € S] +34.

In generalized PTR, we propose a value ¢ for the random-
ized algorithm M, which could be a noise scale or regular-
ization parameter — or a set including both. For example,
the parameter set is ¢ = (A, ) in Example 4.4. We then
say that M is the mechanism M parameterized by ¢, with
€4(X) its data-dependent DP.

The following example illustrates how to derive the data-
dependent DP for a familiar friend — the Laplace mecha-
nism.

Example 4.2. (Data-dependent DP of Laplace Mechanism.)
Given a function f : X — R, we will define

My (X) = f(X) + Lap (¢) -

We then have

log

Maximizing the above calculation over all possible outputs
y vields an equality between the two expressions. So using
Definition 4.1,

6¢<X) = X/{r)l(agx/ |f(X) ;f(X >| _ ALZ(X)

The data-dependent DP €,(X) is a function of both the
dataset X and the parameter ¢. Maximizing e4(X) over
X recovers the standard DP guarantee of running M with
parameter ¢.

Algorithm 2 distills the generalized PTR framework into
a simple procedure: we run mechanism M with proposed
parameter ¢ only if the test 7 “passes”.

Let’s suppose that our privacy budget for mechanism M
is (e, 8); that our test T satisfies (¢, 0)-DP; and that 7 has
a “false positive” rate §’, meaning 7 passes an insufficient
proposal ¢ (where M exceeds its privacy budget) with
probability at most ¢’. Theorem 4.3 states the privacy guar-
antee of generalized PTR under these assumptions.

*We will sometimes write that M(X) satisfies ¢(X) data-
dependent DP w.r.t. 4.
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Algorithm 2 Generalized Propose-Test-Release
1: Input: Dataset X; mechanism Mg : X — R and its
privacy budget €, §; (¢,6)-DP test T; false positive rate
< ¢’; data-dependent DP function €4(-) w.r.t. 4.

2: if not 7(X) then output L,
3: else release § = My (X).

Theorem 4.3 (Privacy guarantee of generalized PTR). Con-
sider a proposal ¢ and a data-dependent DP function
€p(X) w.rt. 8. Suppose that we have an (€, 5)-DP test
T : X — {0,1} such that when €,(X) > ¢,

T(X) = 0 wz:th probabl:ll:ty 1/— o,
1 with probability ¢'.
Then Algorithm 2 satisfies (€ + ¢, + & + §')-DP.

Proof sketch. We can split the possible input datasets X
into two main cases based on the data-dependent DP for a
given d: €4(X) > e and €4(X) < e. Ata high level, we
can analyze both cases using the composition property of
DP (that €’s and 4’s “add up”) and then combine them by
taking an upper bound of the maximum value of the €’s and
d’s between the two cases.

By the “false positive” assumption on the test T, the first
case can be viewed as a composition of an (¢, ) )-DP mecha-
nism and a (0, §’)-DP mechanism. The second case, when
the data-dependent DP is at most €, is a composition of an
(¢,6)-DP mechanism and an (e, §)-DP mechanism.

Full details of the proof are provided in the appendix. [J

Generalized PTR is a strict generalization of Propose-Test-
Release. For some function f, define M, and 7 as follows:

My(X) = f(X) + Lap(¢);
0 if DB(X) +Lap (%) > M’

€
1 otherwise.

Notice that our choice of parameterization is ¢ = g where
¢ is the scale of the Laplace noise. In other words, we
know from Example 4.2 that €,(X) > e exactly when
Aps(X) > B.

For noise-adding mechanisms such as the Laplace mech-
anism, the sensitivity is proportional to the privacy loss
(in both the global and local sense, i.e. Agg o € and
Aps x €(X)). Therefore for these mechanisms the only
difference between privately testing the local sensitivity
(Algorithm 1) and privately testing the data-dependent DP
(Theorem 4.3) is a change of parameterization.

4.1 Limitations of local sensitivity

Why do we want to generalize PTR beyond noise-adding
mechanisms? Compared to classic PTR, the generalized
PTR framework allows us to be more flexible in both the
type of test conducted and also the type of mechanism whose
output we wish to release. For many mechanisms, the local
sensitivity either does not exist or is only defined for spe-
cific data-dependent quantities (e.g., the sensitivity of the
score function in the exponential mechanism) rather than
the mechanism’s output.

The following example illustrates this issue.

Example 4.4 (Private posterior sampling). Let M : X' X
Y — O be a private posterior sampling mechanism [13, 27,
8] for approximately minimizing Fx (6).

M samples 6 ~ P(0) oc e=YFxO+03XIOI) \pish param-

eters v, A. Note that v, A\ cannot be appropriately chosen

for this mechanism to satisfy DP without going through a

sensitivity calculation of arg min Fx (). In fact, the global

and local sensitivity of the minimizer is unbounded even in
1

linear regression problems, i.e when Fx (0) = %||y—X6||?.

Output perturbation algorithms do work for the above prob-
lem when we regularize, but they are known to be sub-
optimal in theory and in practice [2]. In Section 5.1 we
demonstrate how to apply generalized PTR to achieve a
data-adaptive posterior sampling mechanism.

Even in the cases of noise-adding mechanisms where PTR
seems to be applicable, it does not lead to a tight privacy
guarantee. Specifically, by an example of privacy amplifica-
tion by post-processing (Example 9.1 in the appendix), we
demonstrate that the local sensitivity does not capture all
sufficient statistics for data-dependent privacy analysis and
thus is loose.

4.2 Which ¢ to propose

A limitation of generalized PTR (inherited from its pre-
decessor) is that one needs to “propose” a good guess of
parameter ¢. Take the example of ¢ being the noise level in
a noise-adding mechanism. Choosing too small a ¢ will re-
sult in a useless output L, while choosing too large a ¢ will
add more noise than necessary. Finding this ’Goldilocks’ ¢
might require trying out many different possibilities — each
of which will consume privacy budget.

This section introduces a method to jointly tune privacy
parameters (e.g., noise scale) along with parameters related
only to the utility of an algorithm (e.g., learning rate or batch
size in stochastic gradient descent) — while avoiding the L
output.

Algorithm 3 takes a list of parameters as input, runs general-
ized PTR with each of the parameters, and returns the output
with the best utility. We show that the privacy guarantee
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with respect to € is independent of the number of ¢ that we
try.

Formally, let ¢1, ..., ¢; be a set of hyper-parameters and
0; € {1, Range(M)} denotes the output of running gener-
alized PTR on a private dataset X with ¢;. Let X,,; be a
public validation set and ¢(6;) be the score of evaluating 6;
with X4 (e.g., validation accuracy). The goal is to select a
pair (6;, ¢;) such that DP model 6; maximizes the validation

score.

The generalized PTR framework with privacy calibration
is described in Algorithm 3; its privacy guarantee is an
application of Liu and Talwar [11].

Algorithm 3 PTR with hyper-parameter selection

1: Input: Privacy budget per PTR algorithm (e*, 6*), cut-
off T, parameters ¢y, flipping probability 7 and vali-
dation score function ¢(-).
Initialize the set S = @.
Draw G from a geometric distribution D and let T =
min(7, G).
fori=1,..., T do
pick a random ¢; from ¢ ..
evaluate ¢i:~(9~i, g(éi)) + Algorithm 2(¢;, (€*,0*)).
S+ SU {(9“ q(&l)}
end for
Output the highest scored candidate from S.

R A

Theorem 4.5 ( Theorem 3.4 Liu and Talwar [11] ). Fix any
7 € [0,1],62 > 0 and let T = Llog é. If each oracle
access to Algorithm 2 is (e*,0*)-DP, then Algorithm 3 is
(3€* + 3v/28*,V/20*T + 65)-DP.

The theorem implies that one can try a random number of
¢ while paying a constant €. In practice, we can roughly
set 7 = ﬁ so that the algorithm is likely to test all k
parameters. We emphasize that the privacy and the utility
guarantee (stated in the appendix) is not our contribution.
But the idea of applying generalized PTR to enforce a uni-
form DP guarantee over all choices of parameters with a
data-dependent analysis is new, and in our opinion, signifi-
cantly broadens the applicability to generic hyper-parameter
tuning machinery from Liu and Talwar [11].

4.3 Construction of the DP test

Classic PTR uses the Laplace mechanism to construct a
differentially private upper bound of Dg(X), the distance
from input dataset X to the closest dataset whose local
sensitivity exceeds the proposed bound 3. The tail bound
of the Laplace distribution then ensures that if Dg(X) =0
(i.e. if Aps(X) > B), then the output will be released with
only a small probability J.

The following theorem shows that we could instead use a
differentially private upper bound of the data-dependent DP

€4(X) in order to test whether to run the mechanism M.

Theorem 4.6 (Generalized PTR with private upper bound).
Suppose we have a differentially private upper bound of
€x(X) wrt. § such that with probability at least 1 — ¢,
eg(X) > €4(X). Further suppose we have an (€,0)-DP
test T such that

T(X) = 1 ife(I;(X)<e,
)0 otherwise.

Then Algorithm 2 is (e + €,6 4 0 + 6')-DP.

In Section 5.2, we demonstrate that one can upper bound the
data-dependent DP through a modification of the smooth
sensitivity framework applied on €,(X). Moreover, in Sec-
tion 5.1 we provide a direct application of Theorem 4.6 with
private linear regression by making use of the per-instance
DP technique [25].

The applications in Section 5 are illustrative of two distinct
approaches to constructing the DP test for generalized PTR:

1. Private sufficient statistics release (used in the private
linear regression example of Section 5.1) specifies the
data-dependent DP as a function of the dataset and
privately releases each data-dependent component.

2. The second approach (used in the PATE example of
Section 5.2) uses the smooth sensitivity framework to
privately release the data-dependent DP as a whole,
and then construct a high-confidence test using the
Gaussian mechanism.

These two approaches cover most of the scenarios arising
in data-adaptive analysis. For example, in the appendix we
demonstrate the merits of generalized PTR in handling data-
adaptive private generalized linear models (GLMs) using
private sufficient statistics release. Moreover, sufficient
statistics release together with our private hyper-parameter
tuning (Algorithm 3) can be used to construct data-adaptive
extensions of DP-PCA and Sparse-DP-ERM (see details in
the future work section).

5 Applications

In this section, we put into action our approaches to con-
struct the DP test and provide applications in private linear
regression and PATE.

5.1 Private Linear Regression

Theorem 5.1 ([25]). For input data X € X andY € ),
define the following:

* Amin(X) denotes the smallest eigenvalue of X* X ;
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Figure 1: Differentially private linear regression algorithms on UCI datasets. y-axis reports the MSE error with confidence

intervals. € is evaluated with 6 = le — 6.

* ||0%]| is the magnitude of the solution 0% = (XTX +
ADLXTY;

* and L(X,y) == [|X[|([[X|[[|6]] + [|V]]) is the local
Lipschitz constant, denoted L in brief.

For brevity, denote \* = A 4+ A\pin(X). The algorithm
used in Example 4.4 with parameter ¢ = (\,) obeys
(e4(Z), ) data-dependent DP for each dataset Z = (X,Y)
with €4(Z) equal to

vL?log(2/9) yL?

. L+ log(2/3) ¥
X a0 [AP) |

2(A*)

Notice that the data-dependent DP is a function of
(Amins L, [|0%]], A, v), where (Amin, L, ||0%]|) are data-
dependent quantities. One can apply the generalized PTR
framework as in the following example.

Example 5.2 (OPS with PTR). We demonstrate here how
to apply generalized PTR to the one-posterior sample (OPS)
algorithm, a differentially private mechanism which outputs

one sample from the posterior distribution of a Bayesian
model with bounded log-likelihood.

* Propose ¢ = (A, ).

* Based on (\,7), differentially privately release
Amins |10%]]; L with privacy budget (e, §/2).

* Condition on a high probability event (with probabil-
ity at least 1 — §/2) of Apmin, |10%]], L, test ifeg(X)
is smaller than the predefined privacy budget (€, 5),

where eg (X) denotes the sanitized data-dependent
DP.

* Based on the outcome of the test, decide whether to
release 0 oc e~ 3 |[Y =XOIP+A[0]*

Theorem 5.3. The algorithm outlined in Example 5.2 satis-
fies (e +€,0 + 0)-DP.

The main idea of the above algorithm boils down to privately
releasing all data-dependent quantities in data-dependent DP,
constructing high-probability confidence intervals of these
quantities, and then deciding whether to run the mechanism
M with the proposed parameters. We defer the details of
the privacy calibration of data-dependent quantities to the
appendix.

One may ask why we cannot directly tune privacy parame-
ters (A, ) based on the sanitized data-dependent DP. This
is because, in many scenarios, data-dependent quantities
depend on the choice of privacy parameters, e.g., ||6%]| is
a complicated function of A\. Thus, the optimization on
A becomes a circular problem — to solve A, we need to
sanitize ||#%||, which needs to choose a A to begin with.
Alternatively, generalized PTR provides a clear and flexible
framework to test the validity of privacy parameters adapted
to the dataset.

Remark 5.4. The above “circular” issue is even more se-
rious for generalized linear models (GLMs) beyond linear
regression. The data-dependent DP there involves a local
strong-convexity parameter, a complex function of the reg-
ularizer A and we only have zeroth-order access to. In the
appendix, we demonstrate how to apply generalized PTR
to provide a generic solution to a family of private GLMs
where the link function satisfies a self-concordance assump-
tion.

We next apply Algorithm 3 for Example 5.2 with UCI re-
gression datasets. Standard z-scoring is applied and each
data point is normalize with a Euclidean norm of 1. We con-
sider (60%, 10%, 30%) splits for training, validation and
testing test.
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Baselines

* Output Perturbation (Outpert) [2]: 6 = (X TX +
M)~ 1 XTy. Release § = 0 + b with an appropriate ),
where b is a Gaussian random vector.

« Posterior sampling (OPS). Sample § ~ P(f) o
e Y(EO)F05A0*) with parameters 7, A.

* Adaptive posterior sampling (AdaOPS) [26]. Run OPS
with (), ~y) chosen adaptively according to the dataset.

Outpert and OPS serve as two non-adaptive baselines. In
particular, we consider OPS-Balanced [26], which chooses
A to minimize a data-independent upper bound of empirical
risk and dominates other OPS variants. AdaOPS is one state-
of-the-art algorithm for adaptive private regression, which
automatically chooses A by minimizing an upper bound of
the data-dependent empirical risk.

We implement OPS-PTR as follows: propose a list of A
through grid search (we choose & = 30 and \ ranges from
[2.5,2.519] on a logarithmic scale); instantiate Algorithm 3
with 7 = 0.1k, T = Llog(1/8,) and 65 = 1/26; calibrate
~ to meet the privacy requirement for each A. sample 0 using
(X, ) and return the one with the best validation accuracy.
Notice that we use a “no _L” variant of Algorithm 2 as the
calibration of v is clear given a fixed A and privacy budget
(see more details in the appendix). We can propose various
combinations of (), ) for more general applications.

Figure 1 demonstrates how the MSE error of the linear
regression algorithms varies with the privacy budget e. Out-
Pert suffers from the large global sensitivity of output 6.
OPS performs well but does not benefit from the data-
dependent quantities. AdaOPS is able to adaptively choose
(X, ) based on the dataset, but suffers from the estimation
error of the data-dependent empirical risk. On the other
hand, OPS-PTR selects a (A, «y) pair that minimizes the em-
pirical error on the validation set directly, and the privacy
parameter ~ adapts to the dataset thus achieving the best
result.

5.2 PATE

nln this section, we apply the generalized PTR framework
to solve an open problem from the Private Aggregation of
Teacher Ensembles (PATE) [18, 19] — privately publishing
the entire model through privately releasing data-dependent
DP losses. Our algorithm makes use of the smooth sen-
sitivity framework [16] and the Gaussian mechanism to
construct a high-probability test of the data-dependent DP.
The one-dimensional statistical nature of data-dependent DP
enables efficient computations under the smooth sensitivity
framework. Thus, this approach is generally applicable for
other private data-adaptive analysis beyond PATE.

PATE is a knowledge transfer framework for model-agnostic
private learning. In this framework, an ensemble of teacher
models is trained on the disjoint private data and uses the
teachers’ aggregated consensus answers to supervise the
training of a “student” model agnostic to the underlying
machine-learning algorithms. By publishing only the ag-
gregated answers and by the careful analysis of the “con-
sensus”, PATE has become a practical technique in recent
private model training.

The tight privacy guarantee of PATE heavily relies on a
delicate data-dependent DP analysis, for which the authors
of PATE use the smooth sensitivity framework to privately
publish the data-dependent privacy cost. However, it re-
mains an open problem to show that the released model is
DP under data-dependent analysis. Our generalized PTR
resolves this gap by carefully testing a private upper bound
of the data-dependent privacy cost. Our algorithm is fully
described in Algorithm 4, where the modification over the
original PATE framework is highlighted in blue.

Algorithm 4 takes the input of privacy budget (€', €, §), unla-
beled public data x;.7 and K teachers’ predictions on these
data. The parameter ¢ denotes the privacy cost of publishing
the data-dependent DP and €’ is the predefined privacy bud-
get for testing. n;(x;) denotes the the number of teachers
that agree on label j for x; and C' denotes the number of
classes. The goal is to privately release a list of plurality out-
comes — argmax ¢ 1 (z;) for i € [T] — and use these
outcomes to supervise the training of a “student” model in
the public domain. The parameter o1 denotes the noise scale
for the vote count.

In their privacy analysis, Papernot et al. [19] compute the
data-dependent RDP,, (o, X) of labeling the entire group
of student queries. RDP,,, (a, X') can be orders of magni-
tude smaller than its data-independent version if there is a
strong agreement among teachers. Note that RDP,,, (o, X)
is a function of the RDP order « and the dataset X, analo-
gous to our Definition 4.1 but subject to RDP [14].

Theorem 5.5 ([19]). If the top three vote counts of x; are
ny > ng > ng and ny — Ng, Ne — ng > o1, then the data-
dependent RDP of releasing argmax;{n;+N(0,07)} satis-
fies (o, exp{—2a/c?}/a)-RDP and the data-independent
RDP (using the Gaussian mechanism) satisfies (c, 0%)
RDP.



Manuscript under review by AISTATS 2023

Algorithm 4 PATE with generalized PTR

1: Input: Unlabeled public data x1.7, aggregated teachers

prediction n(+), privacy parameter ¢, €, §, noisy param-
eter oy.

2: Seta = 21%@/6)4—1,05 =09 =

smoothness parameter 5 = %.

3: Compute noisy labels: y;? < argmax ;¢ o {n;(z;) +
N(0,02)} foralli € [1:T).
4: RDPy, (a, X') < data-dependent RDP at the a-th or-
der.
5: SS3(X) « the smooth sensitivity of RDP P (a, X).
6: Privately release p1 := log(SSs(X)) + 8- N(0,03) +
2log(2/62) - 02+ B
7: RDP ™ (a) < an upper bound of data-dependent
RDP through Lemma 5.6.
8: €5, < DP guarantee converted from RDP'P* (a).
9: If ¢ > ¢, return a student model trained using
(ILT; yi)T)
10: Else return L.

Bat2 5, = 6/2,

However, RDP,,, (o, X) is data-dependent and thus cannot
be revealed. The authors therefore privately publish the
data-dependent RDP using the smooth sensitivity frame-
work [16]. The smooth sensitivity calculates a smooth
upper bound on the local sensitivity of RDP,, (a, X), de-
noted as SSz(X), such that SS5(X) < e#SS5(X’) for
any neighboring dataset X and X’. By adding Gaus-
sian noise scaled by the smooth sensitivity (i.e., releasing
€0, (0, X) 4+ 555(X) - N(0,02)), the privacy cost can be
safely published.

Unlike most noise-adding mechanisms, the standard de-
viation o, cannot be published since SSz(X) is a data-
dependent quantity. Moreover, this approach fails to pro-
vide a valid privacy guarantee of the noisy labels obtained
through the PATE algorithm, as the published privacy cost
could be smaller than the real privacy cost. Our solution in
Algorithm 4 looks like the following:

* Privately release an upper bound of the smooth sensi-
tivity SS(X) with e”.

* Conditioned on a high-probability event of e#, publish
the data-dependent RDP with RDP PP («v).

* Convert RDPPP*(«r) back to the standard DP guaran-
tee using RDP to DP conversion at 6 /2.

* Test if the converted DP is above the predefined budget

€.

The following lemma states that RDP PP («) is a valid
upper bound of the data-dependent RDP.

Lemma 5.6 (Private upper bound of data-dependent RDP).
We are given a RDP function RDP(«, X) and a $-smooth

sensitivity bound SS(-) of RDP(«, X). Let p (defined in
Algorithm 4) denote the private release of 1og(SSs(X)).
Let the (B, 05, 02)-GNSS mechanism be

RDP"”(a):=RDP(a,X)+5S3(X)-N (0,07)+05 , /2 log(Z )e"

Then, the release of RDP"P" (X)) satisfies (c, ‘35‘;22 )-RDP

foralll < a< %; w.p. at least 1 — 09, RDP"PP*" (@) is an
upper bound of RDP(a, X).

The proof (deferred to the appendix) makes use of the facts
that: (1) the log of SS3(X) has a bounded global sensitivity
B through the definition of smooth sensitivity; (2) releas-
ing RDP,, (ar, X) 4+ SS3(X) - N(0,02) is (a, %51 )-RDP
(Theorem 23 from Papernot et al. [19]). ’

Now, we are ready to state the privacy guarantee of Algo-
rithm 4.

Theorem 5.7. Algorithm 4 satisfies (¢ + €,5)-DP.

In the proof, the choice of « ensures that the cost of the §/2
contribution (used in the RDP-to-DP conversion) is roughly

€/2. Then the release of RDPWP” () with oy = |/ 2£3
accounts for another cost of (¢/2,/2)-DP.

Empirical results. We next empirically evaluate Algo-
rithm 4 (PATE-PTR) on the MNIST dataset. Following the
experimental setup from Papernot et al. [19], we consider
the training set to be the private domain, and the testing set is
used as the public domain. We first partition the training set
into 400 disjoint sets and 400 teacher models, each trained
individually. Then we select T = 200 unlabeled data from
the public domain, with the goal of privately labeling them.
To illustrate the behaviors of algorithms under various data
distributions, we consider two settings of unlabeled data,
high-consensus and low-consensus. In the low-consensus
setting, we choose T unlabeled data such that there is no
high agreement among teachers, so the advantage of data-
adaptive analysis is diminished. We provide further details
on the distribution of these two settings in the appendix.

Baselines. We consider the Gaussian mechanism as a data-
independent baseline, where the privacy guarantee is valid
but does not take advantage of the properties of the dataset.
The data-dependent DP ( Papernot et al. [19]) serves as a
non-private baseline, which requires further sanitation. Note
that these two baselines provide different privacy analyses
of the same algorithm (see Theorem 5.5).

Figure 2 plots privacy-utility tradeoffs between the three
approaches by varying the noise scale o1. The purple region
denotes a set of privacy budget choices (¢ + €’ used in
Algorithm 4) such that the utility of the three algorithms is
aligned under the same ;. In more detail, the purple region
is lower-bounded by €+¢,,. We first fix o5 = 02 = 15 such
that € is fixed. Then we empirically calculate the average of
€5, (the private upper bound of the data-dependent DP) over
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—— Gaussian mechanism
5 ---- PATE-PTR (£ + &5,)
data-dependent DP (non-private)

—— Gaussian mechanism
5 ---- PATE-PTR (£ + &,)
data-dependent DP (non-private)

15 20 25 30 35 40 45 50

Noise scale o1

(a) High consensus and strong data-dependent DP

15 20 25 30 35 40 45 50
Noise scale 01

(b) Low consensus and low data-dependent DP

Figure 2: Privacy and utility tradeoffs with PATE. When o is aligned, three algorithms provide the same utility. y-axis plots
the privacy cost of labeling 7' = 200 public data with § = 10~°. The left figure considers the high-consensus case, where

the data-adaptive analysis is preferred.

10 trials. Running Algorithm 4 with any choice of € + ¢’
chosen from the purple region implies € > €,, . Therefore,
PATE-PTR will output the same noisy labels (with high
probability) as the two baselines.

Observation As o increases, the privacy loss of the Gaus-
sian mechanism decreases, while the data-dependent DP
curve does not change much. This is because the data-
dependent DP of each query is a complex function of both
the noise scale and the data and does not monotonically de-
crease when o increases (see more details in the appendix).
However, the data-dependent DP still dominates the Gaus-
sian mechanism for a wide range of ;. Moreover, PATE-
PTR nicely interpolates between the data-independent DP
guarantee and the non-private data-adaptive DP guaran-
tee. In the low-consensus case, the gap between the data-
dependent DP and the DP guarantee of the Gaussian mecha-
nism unsurprisingly decreases. Meanwhile, PATE-PTR (the
purple region) performs well when the noise scale is small
but deteriorates when the data-independent approach proves
more advantageous. This example demonstrates that using
PTR as a post-processing step to convert the data-dependent
DP to standard DP is effective when the data-adaptive ap-
proach dominates others.

6 Limitations and Future Work

One weakness of generalized PTR is that it requires a case-
specific privacy analysis. Have we simply exchanged the
problem of designing a data-adaptive DP algorithm with
the problem of analyzing the data-dependent privacy loss?
We argue that this limitation is inherited from classic PTR.
In situations where classic PTR is not applicable, we’ve
outlined several approaches to constructing the DP test for
our framework (see Sections 4.3 and 5.2).

Furthermore, the data-dependent privacy loss is often more

straightforward to compute than local sensitivity, and often
exists in intermediate steps of classic DP analysis already.
Most DP analysis involves providing a high-probability tail
bound of the privacy loss random variable. If we stop before
taking the max over the input dataset, then we get a data-
dependent DP loss right away (as in Example 4.2).

There are several exciting directions for applying general-
ized PTR to more problems. Sufficient statistics release
and our private hyperparameter tuning (Algorithm 3) can
be used to construct data-adaptive extensions of DP-PCA
[7] and Sparse-DP-ERM [10]. For DP-PCA we could use
our Algorithm 3 to tune the variance of the noise added
to the spectral gap; for Sparse-DP-ERM we would test the
restricted strong convexity parameter (RSC), i.e. not adding
additional regularization if the RSC is already large.

7 Conclusion

Generalized PTR extends the classic “Propose-Test-Release”
framework to a more general setting by testing the data-
dependent privacy loss of an input dataset, rather than its
local sensitivity. In this paper we’ve provided several ex-
amples — private linear regression with hyperparameter se-
lection and PATE - to illustrate how generalized PTR can
enhance DP algorithm design via a data-adaptive approach.
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8 Omitted proofs

Proof of Theorem 4.3. The proof of our main privacy result relies on two central properties of differential privacy: composi-
tion and immunity to post-processing. We review these below.

Theorem 8.1 (Composition [6]). Fori € [k], let M; : Z — R; be a randomized algorithm satisfying (e;, §;)-DP. Define the
mechanism M : Z — Hle Rias M(Z) = (My(Z),Ma(Z), ..., Mr(Z)). Then M satisfies (Zle €, Zle 62-)-DP.

Theorem 8.2 (Closure under post-processing [6]). Consider a mechanism M : Z — R that satisfies (€,0)-DP. Let
f: R — R’ be a data-independent (randomized or deterministic) mapping. Then f o M satisfies (€, 0)-DP.
We consider two cases:
CaseI: €,(X) > ¢
Let E be the event 7 (X) = 1 and consider a possible output set S C R U {_L}. Recall that the test 7 satisfies (€, 6)-DP.
When L€ S,
Pr[M(X) €S N E°] =Pr[T(X)=0]
< ePr[T(X') =044
= ePr [M(X') €S N EY] +54.
This inequality also holds true when L¢ S, in which event Pr [M(X) € S N E°] =Pr [M(X') € S N E¢] =0.
From the assumption of Theorem 4.3 on the test 7, Pr[E] = Pr[T(X) = 1] < d’. So
PriM(X)e S N E|<Pr[E]<{.
Putting these together, we have
PriM(X) e S]=Pr[M(X)eS N E“] +Pr[M(X) €S N E|
<ePr(M(X)eSn EY]+46+0
< ePrM(X') e S| +5+45.
CaseIl: ¢,(X) < ¢

Since M, satisfies (¢,(X ), §) data-dependent DP for dataset X, for any neighboring dataset X’ and output set © C R we
have

Pr[My(X) € 0] < eXIPr[My(X') € ©] 49,
Pr[My(X') € O] < e«XIPr[My(X) € O] + 6.

By the assumption e4(X) < ¢,
Pr [M¢(X) S @] < e‘Pr [M¢(X/) S @] + 5,
Pr[My4(X') € B] < ePr[M,(X) € ©] 4 6.
Running M is therefore a composition of a (¢, §)-DP mechanism and a (e, §)-DP mechanism, and by basic composition
properties satisfies (e + ¢,0 + 9)-DP.
Taking Cases I and II together, mechanism M therefore satisfies (¢ + €, + ¢ + 6’)-DP.

9 Omitted examples in the main body

In this appendix, we provide more examples to demonstrate the merits of generalized PTR. We focus on a simple example
of post-processed Laplace mechanism in Section 9.1 and then an example on differentially private learning of generalized
linear models in Section 4. In both cases, we observe that generalized PTR provides data-adaptive algorithms with formal
DP guarantees, that are simple, effective and not previously proposed in the literature (to the best of our knowledge).
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9.1 Limits of the classic PTR in private binary voting

The following example demonstrates that classic PTR does not capture sufficient data-dependent quantities even when the
local sensitivity exists and can be efficiently tested.

Example 9.1. Consider a binary class voting problem: n users vote for a binary class {0, 1} and the goal is to output
the class that is supported by the majority. Let n; denote the number of people who vote for the class i. We consider the
report-noisy-max mechanism:

M(X) : argmax;c ;o 1yni(X) + Lap(b),
where b = 1/€ denotes the scale of Laplace noise.

In the example, we will (1) demonstrate the merit of data-dependent DP; and (2) empirically compare classic PTR with
generalized PTR.

We first explicitly state the data-dependent DP.
Theorem 9.2. The data-dependent DP of the above example is

1—

where p := Pr[ng(X) + Lap(1/¢) > n1(X) + Lap(1/¢)] and p' := Prng(X’) + Lap(1/e) > n1(X’) + Lap(1/e€)].
There are four possible neighboring datasets X' : no(X') = max(ng(X) £ 1,0),n1(X’) = n1(X) or no(X’)
no(X), n1(X’") = max(nq(X) + 1,0).

D 1-p
€(X) 1= mgx{log 7|, | log 13}

In Figure 3(a), we empirically compare the above data-dependent DP with the Laplace mechanism by varying the gap
between the two vote counts |ng(X) — nq(X)|. The noise scale is fixed to ¢ = 10. The data-dependent DP substantially
improves over the standard DP if the gap is large. However, the data-dependent DP is a function of the dataset. We next
demonstrate how to apply generalized PTR to exploit the data-dependent DP.

Notice that the probability no(X) + Lap(1/€) > n1(X) 4+ Lap(1/€) is equal to the probability that a random variable
7Z := X — Y exceeds €(n1(X) — no(X)), where X, Y are two independent Lap(1) distributions. We can compute the pdf

of Z through the convolution of two Laplace distributions, which implies fx_y (z) = 4+| |T| Let ¢ denote the difference
el?
between 11 (X) and ng(X), i.e., t = n1(X) — no(X). Then we have
2+¢€-t
=Pr[Z = —
P iz >e-1] dexp(e-t)

24¢-(t+0)

dexp(e- (t+4))
dataset X'. Therefore, we can upper bound log(p/p’) by

24€-t  dexp(e(t + ))
4exp(6 6 2+4e (t+

2 4 et
<6'1°g< +t€+1>

= elog <1 2+e(t+1)>

Then we can apply generalized PTR by privately lower-bounding ¢.

Similarly, p’ = , where ¢ € [—1, 1] denotes adding or removing one data point to construct the neighboring

log

On the other hand, the local sensitivity Ay s(X) of this noise-adding mechanism is 0 if ¢ > 1. Specifically, if the gap is
larger than one, adding or removing one user will not change the result. To apply classic PTR, we let v(X) denote the
distance to the nearest dataset X such that Ay g > 0 and test if v(X) + Lap(1/e) > M. Notice in this example that
~v(X) = max(¢ — 1, 0) can be computed efficiently. We provide the detailed implementation of these approaches.

1. Gen PTR: lower bound ¢ with t? =t — M + Lap(1/€). Calculate an upper bound of data-dependent DP €? using
Theorem 9.2 with ¢P. The algorithm then tests if € is within an predefined privacy budget ¢’. If the test passes, the
algorithm returns argmax; |y ;7 (X) + Lap(1/¢) satisfies (€ + €', 6)-DP.
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(a) data-dependent DP vs Laplace mechanism (b) Privacy-utility tradeoff between three approaches.

Figure 3: In Figure 3(a), we compare the privacy guarantee by varying the gap. In Figure 3(b) We fix t = ng(X) —n1(X) =
100 and compare privacy cost when the accuracy is aligned. Gen-PTR with any choice of privacy budget (¢ + €") chosen
from the purple region would achieve the same utility as Laplace mechanism but with a smaller privacy cost. The curve of
Gen-PTR is always below than that of the classic PTR, which implies that Gen-PTR can result a tighter privacy analysis
when the utility is aligned.

2. classic PTR: lower bound ¢ with tP = ¢ — M + Lap(1/¢€). If t» > 1, classic PTR outputs the ground-truth result

else returns a random class. This algorithm satisfies (€, ¢)-DP.

3. Laplace mechanism. M(X) : argmax; (o yjn:(X) + Lap(1/e). M is (¢, 6)-DP.

We argue that though the Gen-PTR and the classic PTR are similar in privately lower-bounding the data-dependent quantity
t, the latter does not capture sufficient information for data-adaptive analysis. That is to say, only testing the local sensitivity
restricts us from learning helpful information to amplify the privacy guarantee if the test fails. In contrast, our generalized
PTR, where privacy parameters and the local sensitivity parameterize the data-dependent DP, can handle those failure cases
nicely.

To confirm this conjecture, Figure 3(b) plots a privacy-utility trade-off curve between these three approaches. We consider a
voting example with ng(X) = n1(X) 4 100 and ¢t = 100, chosen such that the data-adaptive analysis is favorable.

In Figure 3(b), we vary the noise scale b = 1/e between [0, 0.5]. For each choice of b, we plot the privacy guarantee of three
algorithms when the error rate is aligned. For Gen-PTR, we set € = ﬁ and empirically calculate € over 100000 trials.

In the plot, when € < M, the classic PTR is even worse than the Laplace mechanism. This is because the classic
PTR is likely to return L while the Laplace mechanism returns argmax;¢ o ;7:(X) + Lap(1/€), which contains more
useful information. Compared to the Laplace mechanism, Gen-PTR requires an extra privacy allocation € to release the gap
t. However, it still achieves an overall smaller privacy cost when the error rate < 10~° (the purple region). Meanwhile,
Gen-PTR dominates the classic PTR (i.e., the dashed black curve is always below the blue curve). Note that the classic
PTR and the Gen-PTR utilize the gap information differently: the classic PTR outputs _L if the gap is not sufficiently large,
while the Gen-PTR encodes the gap into the data-dependent DP function and tests the data-dependent DP in the end. This
empirical result suggests that testing the local sensitivity can be loosely compared to testing the data-dependent DP. Thus,
Gen-PTR could provide a better privacy-utility trade-off.

9.2 Self-concordant generalized linear model (GLM)

In this section, we demonstrate the effectiveness and flexibility of generalized PTR in handling a family of GLMs where the
link function satisfies a self-concordance assumption. This section is organized as follows:

¢ Introduce a family of GLMs with the self-concordance property.

* Introduce a general output perturbation algorithm for private GLMs.
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* Analyze the data-dependent DP of GLMs with the self-concordance property.

* Provide an example of applying our generalized PTR framework to logistic regression.

Consider the empirical risk minimization problem of the generalized linear model

0" = argmin, Z 1;(0) +r(6),

i=17

where [ : R x R — R belongs to a family of convex GLMs: ;(0) = I(y, 27'0). Let r : R? — R be a regularization function.

We now define the self-concordance property.

Definition 9.3 (Generalized self-concordance [1]). A convex and three-times differentiable function f : © — R is R-
generalized-self-concordant on an open nonempty convex set ©* C © with respect to norm || - || if for all w € ©* and all
v eR?,

V2 f(w)[v, v, 0] < 2R[[0|[(V2 f(u)[v, v]).

The closer R is to 0, the “nicer” — more self-concordant — the function is. A consequence of (generalized) self-concordance
is the spectral (multiplicative) stability of Hessian to small perturbations of parameters.

Lemma 9.4 (Stability of Hessian[15, Theorem 2.1.1], [1, Proposition 1]). Let Hy := V2F, (0). If Fs is R-self-concordant
at 0, then for any v such that R||v||m, < 1, we have that

(1 — R||v||z,)>V2F4(0) < V2F,(0 +v)

1
< —V2Fs 0).
= Rlolme "

If instead we assume F is R-generalized-self-concordant at 0 with respect to norm || - ||, then

e RII2Fy(0) < VEF, (6 + v) < ®IMIV2F,(6)

The two bounds are almost identical when R||v|| and R||v||s are close to 0. In particular, for x < 1/2, we have that
—2z —x
e <l—ax<e®

In particular, the loss function of binary logistic regression is 1-generalized self-concordant.

Example 9.5 (Binary logistic regression). Assume ||x|2 < 1forallx € X andy € {—1, 1}. Then binary logistic regression
with datasets in X x Y has a log-likelihood of F(8) = Y, log(1+ e*yi”iT(’). The univariate function | := log(1+exp(-))
satisfies
|l///| _ | &P ()(1 —exp()) ‘ exp (-) "
(I+exp(-))?® |7 (I+exp())?

We next apply the modified output perturbation algorithm to privately release 6*. The algorithm is simply:

1. Solve .
0* = argmin, Z 1;(0) +r(6).
i=1

2. Release .
0—0°+ 7,
where v > 0 is a tuning parameter and Z ~ N'(0,7~ (321, V21;(0) + V2r(6))~1).

The data-dependent DP of the above procedure is stated as follows.

Theorem 9.6 (Data-dependent DP of GLM). Denote the smooth part of the loss function Fs = Y1 1(y;, < z;,- >)+714(-).
Assume the following:

1. The GLM loss function l is convex, three-times continuously differentiable and R-generalized-self-concordant w.r.t.

2,
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2. Fy is locally a-strongly convex w.r.t. || - ||2,

U'(y,z"0)

3. and in addition, denote L := SUDge g+ G+]
[B-smooth.

» B = supye g 5oy 11" (1, xT0)|. That is, £(-) is L-Lipschitz and

We then have the data-dependent DP

(2) < BEED 1 voggago + 12 4 12 gy,

The proof follows by taking an upper bound of the per-instance DP loss (Theorem 12.1) €(Z, z) over z = (x,y) € (X, ).

Notice that the Hessians can be arbitrarily singular and « could be 0, which leads to an infinite privacy loss without additional
assumptions. Thus, we will impose an additional regularization of form %||9| |2, which ensures that for any dataset Fs is
A-strongly convex.

This is not yet DP because it is still about a fixed dataset. We also need a pre-specified privacy budget (¢, ). We next
demonstrate how to apply the generalized PTR to provide a general solution to the above GLM, using logistic regression as
an example.

Remark 9.7 (Logistic regression). For logistic regression, we know L < 1, 8 < 1/4 and if ||z|2 < 1, it is 1-generalized
self-concordant. For any dataset Z = (X, y), the data-dependent DP €(X) w.r.t. 4 can be simplified to:

201 4 t0g(2/0)) + L+ [ L1os(2/6)

Now, the data-dependent DP is a function of o and -, where o denotes the local strong convexity at 6} and y controls the
noise scale. We next show how to select these two parameters adapted to the dataset.

Example 9.8. We demonstrate here how we apply generalized PTR to output perturbation of the logistic regression problem.

1. Take an exponential grid of parameters {\} and propose each ).
2. Solve for 05 = argminyF(0) + X||0]|%/2

3. Calculate the smallest eigenvalue A\min(V2F(03)) (e.g., using power method).

4. Differentially privately release Ayin with A . := max{A\min + 7“?/(;/6) -Ags - Z — 210g(4/5)€'/1;g(1/6mgs ,0},

where Agg denote the global sensitivity of Ay using Theorem 9.11.

5. Let €°(-) be instantiated with €(X ) w.r.t. 0 from Remark 9.7, where o = \P. + X\. Then, conditioned on a high

probability event, P (-) (a function of y) is a valid DP bound that holds for all datasets and all parameters .

6. Calculate the maximum ~y such that e§/2('y) <e€/2.

7. Release § ~ N (05,7 'V2F,(65)7).
8. Evaluate the utility on the validation set and return the (X, ) pair that leads to the highest utility.

Theorem 9.9. For each proposed ), the algorithm that releases 0 ~ N(03, 7 V2E,(03)7 ) is (e, 26)-DP.

Proof. The proof follows the recipe of generalized PTR with private upper bound (Example 4.6). First, the release of
Amin(V2F(6%)) is (¢/2,/2)-DP. Then, with probability at least 1 — 4, €5(-) > €5(X) holds for all X and . Finally, v is
chosen such that the valid upper bound is (¢/2, 6/2)-DP. O

For the hyper-parameter tuning on X (Steps 1 and 8), we can use Algorithm 3 to evaluate each ).

Unlike Example 5.2, the M\in(V2F(0%)) is a complicated data-dependent function of \. Thus, we cannot privately release
the data-dependent quantity X\i,(V2F (0%)) without an input X\. The PTR approach allows us to test a number of different A
and hence get a more favorable privacy-utility trade-off.
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An interesting perspective of this algorithm for logistic regression is that increasing the regularization « is effectively
increasing the number of data points within the soft “margin”? of separation, hence a larger contribution to the Hessian from
the loss function.

Remark 9.10. The PTR solution for GLMs follows a similar recipe: propose a regularization strength A; construct a lower
bound of the strong convexity « at the optimal solution 65 ; and test the validity of data-dependent DP using Theorem 12.1.

Before moving on to other applications of generalized PTR, we will show how to differentially privately release A,
according to the requirements of the logistic regression example.

9.3 Differentially privately release \,;, (V2F(6))

To privately release Apin, V2F(6), we first need to compute its global sensitivity. Once we have that then we can release it
differentially privately using either the Laplace mechanism or the Gaussian mechanism.

Theorem 9.11 (Global sensitivity of the minimum eigenvalue at the optimal solution). Let F'(0) = >\, f;(8) + r(6) and
F(9)~: F(0) + f(0) where f1, ..., fn, are loss functions corresponding to a particular datapoint x. Let 0* = argmin, F(0)
and 0* = argminyF (). Assume f is L-Lipschitz and B-smooth, () is \-strongly convex, and F and F are R-self-
concordant. If in addition, A\ > RL, then we have

sup(Amin (V2 F(63)) — )‘min<v2ﬁ(9}))) <2RL+B.
X,x

Proof.

= (Anin (VEF(65)) = Amin (V2 E(63))) (D

We first bound the part on the left. By applying Weyl’s lemma A(X + E) — A(X) < ||E||2, we have

sup [[V2F(03) — VZF(05)]12 = V2 £ (63)]]2 < B )
xT
In order to bound the part on the right, we apply the semidefinite ordering using self-concordance, which gives
e—R\|0~;—9§|\v2F(9~K) < V2R(0Y) < eRné;—e;pr(g;).
By the Courant-Fischer Theorem and the monotonicity theorem, we also have that for the smallest eigenvalue

e IO A i (VQF (9§)> < Amin (V2F(9§))
< eRIOZ—030 ) (V2F(9~§\)> . 3)

Moreover by Proposition 12.2, we have that

V@l L

N RN )

If Amin (VQF(QE‘\D > RL, then use that e” — 1 < 2z for < 1. Substituting the above bound to (3) then to (1) together
with (2), we get a data-independent global sensitivity bound of
Amin(VEF(03)) = Anin(VEE(0%)) < 2RL + 3

as stated. O

31f we think of logistic regression as a smoothed version of SVM, then increasing o leads to more support vectors. The “margin” is
“softer” in logistic regression, but qualitatively the same.
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Proposition 9.12. Let || - || be a norm and || - ||, be its dual norm. Let F(0), f(0) and F(0) = F(0) + f(0) be proper
convex functions and 0* and theta be their minimizers, i.e., 0 € OF(0*) and 0 € 8F(théta*). If in addition, F, F is

@, a-strongly convex with respect to || - || within the restricted domain 0 € {t0* + (1 — t)0* | t € [0,1]}. Then there exists
g € 0f(0*)and § € Of(0*) such that

* 0% . 1. 1
167 — 67| < mln{lgl*,~|g|*}~
« o

Proof. Apply the first order condition to F' restricted to the line segment between * and 0*, we get
F(0") = F(6%) + (OF(67),6" —9*>+%II§*—9*II2 O]
F(0°) = F(6%) + (OF(67),6" —9~*>+%II9*—6’*II2 )

Note by the convexity of /" and f, OF =90F +0 f, where + is the Minkowski Sum. Therefore, 0 € AF (6*) implies that
there exists § such that § € 0f(0*) and —g € OF (6*). Take —g € OF(0*) in Equation 10 and 0 € OF(6*) in Equation 9
and add the two inequalities, we obtain
0> (=§,0" = 0%) +af|§* — 07|
> —[gll 10" = 67| + |6 — 07|,

For ||0* — 6*|| = 0 the claim is trivially true; otherwise, we can divide both sides of the above inequality by [|f* — 6*|| and
get [|0* — 6% < 21|l

It remains to show that ||6* — 6*|| < Z|g]|+. This can be obtained by exactly the same arguments above but applying strong

convexity to F instead. Note that we can actually get something slightly stronger than the statement because the inequality
holds for all g € Of(6*). O

9.4 Other applications of generalized PTR

Besides one-posterior sampling for GLMs, there are plenty of examples that our generalized-PTR could be applied, e.g.,
DP-PCA [7] and Sparse-DP-ERM [10] (when the designed matrix is well-behaved).

[7] provides a PTR style privacy-preserving principle component analysis (PCA). The key observation of [7] is that the
local sensitivity is quite “small” if there is a large eigengap between the k-th and the k& 4 1-th eigenvalues. Therefore, their
approach (Algorithm 2) chooses to privately release a lower bound of the k-th eigengap (k is fixed as an input) and use that
to construct a high-confidence upper bound of the local sensitivity.

For noise-adding mechanisms, the local sensitivity is proportional to the data-dependent loss and generalized PTR is
applicable. We can formulate the data-dependent DP of DP-PCA as follows:

Theorem 9.13. For a given matrix A € R™*™, assume each row of A has a bounded {5 norm being 1. Let V}, denotes
the top k eigenvectors of AT A and dj, denotes the gap between the k-th and the k + 1-th eigenvalue. Then releasing
ViViI + E, where E € R™ ™ is a symmetric matrix with the upper triangle is i.i.d samples from N'(0, o2) satisfies (€(A), &)

data-dependent DP and e(A) = 27”(:?1()61_'2;;/5).

The proof is based on the local sensitivity result from [7] and the noise calibration of Gaussian mechanism.

We can combine Theorem 9.13 with our Algorithm 3 to instantiate the generalized PTR framework. The improvement over
Dwork et al. [7] will be to allow joint tuning of the parameter k and the noise variance (added to the spectral gap dy,).

10 Omitted proofs in Section 4

The utility of Algorithm 3 depends on how many rounds that Algorithm 2 is invoked. We next provide the utility guarantee
of Algorithm 3, which follows a simplification of the result in the Section A.2 of Papernot and Steinke [17].

Theorem 10.1. Suppose applying Algorithm 2 with each ¢; has an equal probability to achieve the highest validation
score. Let T denotes the number of invocation of Algorithm 2, where T follows a truncated geometric distribution. Then the

expected quantile of the highest score candidate is given by E; |1 — Tlﬂ} .
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Algorithm 5 OPS-PTR: One-Posterior Sample with propose-test-release (no-“perp” version)

1: Input: Data X, y. Private budget : €, d, proposed regularizer \.
2: Calculate the minimum eigenvalue Api, (X7 X).

3: Sample Z ~ N (0,1) and privately release Ayin = max{)\mm + V1os(6/9) 7 — V/2105(6/6) 1og(2/9) , O}

€/4 e/4
4: Calculate § = (XTX + XI)~1XTy,.

5. Sample Z ~ A(0,1) and privately rel A = 1 + X0 + leeQHIXIE/OtAm)) £
ample (0.1) and privately release og(IVIl + NIxII1AIN) LA/ O Rl 7

log (14| X[12/ (A t-Amin))
¢/(4y/2108(6/5) 1og(2/2))
6: Set the local Lipschitz L := || X|[e?.
7: Calibrate -y with Theorem 5.1(6/3, €/2.)

8: Output § ~ p(0]X,y) ox e~ 3Iy=X0I*+x/l6]*

In practice, we can roughly set 7 = ﬁ so that the algorithm is likely to test all k¥ parameters.

Proof. Suppose each oracle access to Q(X) has a probability 1/k of achiving the best validation accuracy. Let 8 denote the
probability that A (shorthand for Algorithm 3) outputs the best choice of ¢;.

B8 =1 — Pr[A(X)is not best]

=1-E; [Pr[Q(X)is not best]ﬂ
= 1-1@4(1— i)T}

Let f(z) = E[«"]. Applying a first-order approximation on f(1— 1), we have f(1— 1) ~ f(1) — f/(1) - £ = 1 —E[T]/k.
Then, if k is large and we choose 7 = 0.1/k, A can roughly return the best ¢;. O

11 Experimental details

11.1 Experimental details in private linear regression

We start with the privacy calibration of the OPS-PTR algorithm.

Algorithm 5 provides the detailed privacy calibration of the private linear regression problem.

Theorem 11.1. Algorithm 5 is (€,25)-DP.

Proof. There are three data-dependent quantities in Theorem 5.1: Awin, ||6%|| and L. First, notice that Ay, has a global
sensitivity of ||X||> by Weyl’s lemma. Under the assumption ||X||* < 1, we privately release Amin using (e/4,4/3) in
Step 3. Notice that with probability at least 1 — /2, Apin is a lower bound of Apip.

Then, we apply Lemma 11.2 from Wang [26] to privately release log(]|)|| + ||X||]|0]|) using (¢/4,5/3). Note that both
the local Lipschitz constant L and the norm ||6%|| are functions of log(||Y|| + ||X||||0]]). Thus, we can construct a private
upper bound of these by post-processing of A.

Then, with probability at least 1 — § (by a union bound over S\min and A), instantiating Theorem 5.1 with S\min and L
provides a valid upper bound of the data-dependent DP. We then tune the parameter ~ using the remaining privacy budget
(e/2,0/3). U

Lemma 11.2 (Lemma 12 [26]). Let 05 be the ridge regression estimate with parameter X and the smallest eigenvalue of
XT X be Apin, then the function log(||Y + || X|]|10%|]) has a local sensitivity of log(1 + M)

AmintA
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11.2 Details of PATE case study

Definition 11.3 (Renyi DP [14]). We say a randomized algorithm M is (v, e aq(cr))-RDP with order o > 1 if for neighboring
datasets X, X’

Do (M(X)|IM(XT)) =

At the limit of o — oo, RDP reduces to (€, 0)-DP. We now define the data-dependent Renyi DP that conditioned on an input
dataset X.

Definition 11.4 (Data-dependent Renyi DP [19]). We say a randomized algorithm M is («, epq (o, X ))-RDP with order
a > 1 for dataset X if for neighboring datasets X’

Do (M(X)|IM(X")) =

log EONM(X/) |:<

PrM(X) = o

Prw<x>=o]>a] = eml@ X).

a—1

RDP features two useful properties.
Lemma 11.5 (Adaptive composition). € aq, a,) = €, (+) + €, (¢).
Lemma 11.6 (From RDP to DP). If a randomized algorithm M satisfies (a, €(«))-RDP, then M also satisfies (e(a) +
loi(%, 0)-DP for any § € (0,1).
Definition 11.7 (Smooth Sensitivity). Given the smoothness parameter 3, a 3-smooth sensitivity of f(X) is defined as
SS5(X) :=maxeP.  max  Apg(X)
d>0 X":dist(X,X")<d

Lemma 11.8 (Private upper bound of data-dependent RDP, Restatement of Theorem 5.6). | Given a RDP function
RDP(«, X) and a B-smooth sensitivity bound SS(-) of RDP(«, X). Let p (defined in Algorithm 4) denote the private
release of log(SSp(X)). Let (3,05, 02)-GNSS mechanism be

RDP“" (a):=RDP(,X)+S5S5(X)-N(0,02)+05,/2 log (5 )e”

Then, the release of RDP""*'(X) satisfies (cv, 2352)-RDP for all 1 < o <
upper bound of RDP(a, X).

ﬁ; w.p. at least 1 — 02, RDP"P*' () is an
Proof sketch. We first show that releasing the smooth sensitivity SSs with e/ satisfies (o, 577 )-RDP. Notice that the log
2
of S53(X) has a bounded global sensitivity § (Definition 11.7 implies that |log SS3(X) — log SS3(X’)| < 3 for any
neighboring dataset X, X'). By Gaussian mechanism, scaling noise with 30 to log SS5(X) is (o, 527 )-RDP. Therefore,
2

the release of RDP(a, X) is (cv, e5(c) + 5% )-RDP. Since the release of f(X) + SS3(X) - N'(0,02) is (a, 25 )-RDP
2

I U’?
1 a  _ 3ait2
26° 205 7 207 °

(Theorem 23 from Papernot et al. [19]) for o < we have €,(a) +

We next prove the second statement. First, notice that with probability at least 1 — d2/2, e** > SSz(X) using the standard
Gaussian tail bound. Let £ denote the event that e/ > SS3(X).

Pr|RDP"P (q) < RDP(a,X)]

= Pr|RDP" () < RDP(a, X)|E] +Pr [RDP“PP“(Q) < RDP(a, X)|E°

< Pr|RDP"P(q) < RDP(a,X)|E] +65/2

=Pr|N(0,02) - SSp(x) > 05 - \/2log(2/52)e“|E} +02/2

denoted by ()
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Condition on the event E, e/ is a valid upper bound of SSz(X), which implies

(¥) < Pr[N(0,02) - SS5(X) > 04 - \/210g(2/82)SSs(X)|E] < 52/2
Therefore, with probability at least 1 — 6o, RDP"P*'(«) > RDP(«x, X). O

Theorem 11.9 (Restatement of Theorem 5.7). Algorithm 4 satisfies (€' + €, §)-DP.

Proof. The privacy analysis consists of two components — the privacy cost of releasing an upper bound of data-dependent
RDP (eypper () := €s(a) + 52> and the valid upper bound €} (o). First, set a = M + 1 and use RDP to DP

2
10g(2/5)

conversion with §/2 ensures that the cost of §/2 contribution to be roughly €/2 (i.e., = ¢/2). Second, choosing

_ 243

o5 =/ ==% gives us another €/2. O

Experimental details X' = 400 teacher models are trained individually on the disjoint set using AlexNet model. We set
09 = 05 = 15.0. Our data-dependent RDP calculation and the smooth-sensitivity calculation follow Papernot et al. [19].
Specifically, we use the following theorem (Theorem 6 from Papernot et al. [19]) to compute the data-dependent RDP of
each unlabeled data = from the public domain.

Theorem 11.10 (data-dependent RDP Papernot et al. [19]). Let § > Pr[M(X) # Argmax;cicin;(z)], i.e., an upper

bound of the probability that the noisy label does not match the majority label. Assume o < pi1 and § < e(#2=1)e2 / M =

M2
H2”21> , then we have:

1 ~ ~ a— ~ ~ a—
exnlanX) £ Lo (0= 0)- A o)™+ Bl )

Ko —

1 1 =
where A(G, pi2, €2) == (1 — Q)/(l — (qe2) 2 ) B(G, p1,€1) = €1 /g T, u2 = o1 - \/log(1/q), p1 = p2 + 1,61 =
p1/o? and €3 = /o3,

In the experiments, the non-private data-dependent DP baseline is also based on the above theorem. Notice that the
data-dependent RDP of each query is a function of ¢, where ¢ denotes an upper bound of the probability where the plurality
output does not match the noisy output. ¢ is a complex function of both the noisy scale and data and is not monotonically
decreasing when o is increasing.

Simulation of two distributions. The motivation of the experimental design is to compare three approaches under different
data distributions. Notice that there are X' = 400 teachers, which implies the number of the vote count for each class will be
bounded by 400. In the simulation of high-consensus distribution, we choose 7" = 200 unlabeled public data such that the
majority vote count will be larger than 150 (i.e., max;¢[c) 15 () > 150). For the low-consensus distribution, we choose to
select 7" unlabeled data such that the majority vote count will be smaller than 150.

12 Omitted proofs in private GLM

12.1 Per-instance DP of GLM

Theorem 12.1 (Per-instance differential privacy guarantee). Consider two adjacent data sets Z and Z' = [Z, (z,y)|, and
denote the smooth part of the loss function Fy = >\ (y;, (x;,)) + rs(-) (thus Fs = Fs + (y, (z,-)). Let the local
neighborhood be the line segment between 0* and 0*. Assume

1. the GLM loss function | be convex, three-time continuous differentiable and R-generalized-self-concordant w.rt. || -

2. Fy is locally a-strongly convex w.rt. || - ||2

"(y,270)|,

3. and in addition, denote L := supyc . 4. 1= Supge- 4 11" (¥, 7).
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Then the algorithm obeys (e, 8)-pDP for Z and z = (x,y) withany 0 < § < 2/e and

S+ ALl log(2/9)

Llzll2 L2
€ < eo(1+log(2/0)) +e o [7”5’3”

RL||e| . ,
where eg < e o - —1+ Qﬂ”x”irl + 25HI||?‘{71 . If we instead assume that | is R-self concordant. Then the same results
1 2

RL|z|l2

hold, but with all e« replaced with (1 — RL||x|| ;1)

Under the stronger three-times continuous differentiable assumption, by mean value theorem, there exists £ on the line-
segment between §* and 6* such that

1
H= [ V2F, (1 —t)0* + t0*)dt| = V2F,(€).
t=0

The two distributions of interests are N(6%,[yV2F,(6*)]~!) and N(6*, [yV2Fy(6*) + V2I(y,2T6*)]"). Denote
[V2F:(60%)]7 = ¥ and [V2F5(0*) + V2I(y,276*)]7! =: 3. Both the means and the covariance matrices are dif-
ferent, so we cannot use multivariate Gaussian mechanism naively. Instead we will take the tail bound interpretation of

(¢, 0)-DP and make use of the per-instance DP framework as internal steps of the proof.

First, we can write down the privacy loss random variable in analytic form

ot * 2
|Z‘*1/2e—§”‘9—9 I5—1 1 =1 5 . .
lo =glog {5 )+ o -0 lB - 16 - 013

) (=)

|§]‘—1/2e—%|\9—5* 12, 2

The general idea of the proof is to simplify the expression above and upper bounding the two terms separately using
self-concordance and matrix inversion lemma, and ultimately show that the privacy loss random variable is dominated by
another random variable having an appropriately scaled shifted y-distribution, therefore admits a Gaussian-like tail bound.

To ensure the presentation is readable, we define a few short hands. We will use H and H to denote the Hessian of F and
Fs + f respectively and subscript 1 2 indicates whether the Hessian evaluated at at 6* or *. H without any subscript or
superscript represents the Hessian of F; evaluated at £ as previously used.

1. |Hi| [H| |[Ha| _ 1 [ H | |H| |Ha|
(x) = zlog — = < — |log + log + log —
27 [H| [Ha| |Hy| ~ 2 |H| | Hy| |H|
By the R-generalized self-concordance of Fj, we can apply Lemma 12.3,
* Hl % S H pn
6"~ €loR < og T2l < B —glla. Rl - 8] < log 2 < Rl — 6"
|H| | Hs |

The generalized linear model ensures that the Hessian of f is rank-1:
V2F(0") =1"(y, 70" )zaT
and we can apply Lemma ?? in both ways (taking A = Hy and A = H) and obtain

[Hs| _ 1
|Hy| 1+ 1"(y,2T0*)2THy 'z

=1—1"(y,270")2" Hox

Note that I (y, 27 9*)2™ H; " is the in-sample leverage-score and I" (y, #7 6*)x™ H, 'z is the out-of-sample leverage-score
of the locally linearized problem at 8*. We denote them by 15 and ), respectively (similarly, for the consistency of notations,
we denote the in-sample and out of sample leverage score at 8* by 11 and p} ).

Combine the above arguments we get

() <R||0" — €lla + R||E — 6%[|2 + log(1 — pa) < R||6* — 6% |2 + log(1 — po) (6)
(%) > = R||0" — 6" |2 — log(1 — p2). ©)
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We now move on to deal with the second part, where we would like to express everything in terms of || — 6* ||z, , which we
know from the algorithm is y-distributed.

’Y ~ ~ ~
(o) = o (10 = 01[2, — 110 — 67112, + 116 — 0717, — 16 — 6" [[%, + 116 — 617, — 116 — 0" [17,
By the generalized self-concordance at 6*
e RN < 11, < IO,
This allows us to convert from || - || gz, to || - ||z, » and as a consequence:
116 = 61137, — 116 = 6" 17, | < [ =12 —1][16 — 677,

Also,

16— 0", — 10— 6%, = (6" — 07,20 — 26" 46" — %) =2(0— 6,6~ 6), — 6" — 6" 3,

H>

Therefore

16— 6%13, — 116 — 6”7,

< 2|0 — 0|, 16" — 6%l a, + 10" — 0°[1%,
< 2RI =029 — |y, [|0% — 67| + RO =072 j0* — 6|3,
Then lastly we have
~ - ~ - 2
0> 10— 613, — 10— %1%, = —1"(y,270) [(,0 — 0%) + (6" — §7)]
=283, -1116 = 613, — 28]l]F 116" — 67115

Y

16— 17, — 116 — 0117,

< 2Bz 13, 1110 — 0°(1%, + 26|72 10" — 0 (1%
Combine the above derivations, we get
|Gl < 3 [allo =6 %, + 116 — 6"l1, +c] )
where
. [emle*,g*\lz 1 ?5Hx||§11—1}
b :=2eR10" =0l g% — 6%

¢ = (eI =02 L ag)a)|2, )]0 — 6% |13

Lastly, by (6) and (8),

p(9|Z) * 0% gl 2
1 < R||6" -0 log(1 — = b .
’ogpwz,) <R| 2 +log(1 = p2) + 5 [aW* + bW + ¢]
where according to the algorithm W := || — 6*|| 7, follows a half-normal distribution with o = y~1/2,

By standard Gaussian tail bound, we have for all § < 2/e.

P(W| < ~v~1/2/log(2/5)) < 6.

This implies that a high probability upper bound of the absolute value of the privacy loss random variable log ;’ ((99 ‘IZZ/)) under

p(6]Z). By the tail bound to privacy conversion lemma (Lemma ??), we get that for any set S C © P(§ € S|Z) < e‘P(0 €
S|Z")+ § forany 0 < § < 2/e and

1/2

b Jos(2]9).

e = R||0* — §*||2 +log(1 — pe2) + % + %log@/é) + 7
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Denote v := 6* — §*, by strong convexity
[ollz < IVU(y, &70)[8* ]2/ = [V||lz]|2/a < Ll|z|2/a

and ~
olla < IV, 2" 0)[0"]] -1 = [V[lzl -1 < Lla|l g

Also use the fact that | log(1 — p2)| < 2us for ps < 0.5 and pe < S|z we can then combine similar terms and have

a more compact representation.

2.
H2—1 b

VL)%

€ < eo(l+log(2/8)) +e o2 [ .

+ L2l los(2/6)

where
RL|z||5

<e o —1 2 z
€ > € +25”$HH11+26H$||H21
is the part of the privacy loss that does not get smaller as « decreases.

Proposition 12.2. Let || - || be a norm and || - ||, be its dual norm. Let F(0), f(0) and F(0) = F(0) + f() be proper
convex functions and 0* and theta’ be their minimizers, i.e., 0 € OF(0*) and 0 € 3ﬁ'(théta*). If in addition, F, F is
o, @-strongly convex with respect to || - || within the restricted domain 6 € {t0* + (1 — t)6* | t € [0,1]}. Then there exists
g € df(0%) and § € Df(6%) such that

* 0% . 1. 1
10" — | gmm{|g|*,~|g|*}.
[0 [0

Proof. Apply the first order condition to F restricted to the line segment between 6* and 0", there are we get
~ ~ o~
(@) 2 F(67) + (OF (0°), 8 = 07) + S[0° — 0" ©

F(0%) > F(6*) + (OF(0%),0% — 6*) + %né* — |2 (10)

Note by the convexity of F and f, OF =9F + 0 f, where + is the Minkowski Sum. Therefore, 0 € OF (5*) implies that
there exists g such that § € Jf(0*) and —g € OF(0*). Take —g € OF(0*) in Equation 10 and 0 € 9F(6*) in Equation 9
and add the two inequalities, we obtain

0> (=3,6" —6") +allf" — 07> = —||gl|6" — 6" + all6* — 6",

For ||6* — 6*| = 0 the claim is trivially true, otherwise, we can divide the both sides of the above inequality by 6% — 6%
and get [|6" — 0% < 2 /9]l

It remains to show that ||0* — 0*|| < L|gl|+- This can be obtained by exactly the same arguments above but applying strong

convexity to F instead. Note that we can actually get something slightly stronger than the statement because the inequality
holds for all g € 9f(6*). O

A consequence of (generalized) self-concordance is the spectral (multiplicative) stability of Hessian to small perturbations
of parameters.

Lemma 12.3 (Stability of Hessian[15, Theorem 2.1.1], [1, Proposition 1]). Let Hg := V2F, (9). If Fs is R-self-concordant
at 0. Then for any v such that R||v|| g, < 1, we have that

1

1 — Rlv W2F,(0) < V2F, (0 +0v) < —————
( vl e, ) (9) ( ) (= Rl

V2E,(9).

If instead we assume F is R-generalized-self-concordant at 0 with respect to norm || - ||, then

e MIPIN2 Fy(0) < V2F (6 +v) < e™IPIV2 Py (6)

The two bounds are almost identical when R||v|| and R||v||¢ are close to 0, in particular, for z < 1/2,e72* < 1—x < e~ *.
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