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Abstract

Motivated by personalized healthcare and other
applications involving sensitive data, we study
online exploration in reinforcement learning with
differential privacy (DP) constraints. Existing
work on this problem established that no-regret
learning is possible under joint differential pri-
vacy (JDP) and local differential privacy (LDP)
but did not provide an algorithm with optimal
regret. We close this gap for the JDP case by
designing an e-JDP algorithm with a regret of
O(VSAH?T + S?AH?3/e¢) which matches the
information-theoretic lower bound of non-private
learning for all choices of € > S5 A% H? /\/T.
In the above, S, A denote the number of states
and actions, H denotes the planning horizon, and
T is the number of steps. To the best of our
knowledge, this is the first private RL algorithm
that achieves privacy for free asymptotically as
T — oo. Our techniques — which could be of
independent interest — include privately releas-
ing Bernstein-type exploration bonuses and an
improved method for releasing visitation statis-
tics. The same techniques also imply a slightly
improved regret bound for the LDP case.

1 Introduction

The wide range application of Reinforcement Learning (RL)
based algorithms is becoming paramount in many personal-
ized services, including medical care [Raghu et al., 2017],
autonomous driving [Sallab et al., 2017] and recommen-
dation systems [Afsar et al., 2021]. In these applications,
the learning agent continuously improves its performance
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by learning from users’ private feedback and data. The
private data from users, however, usually contain sensitive
information. Take recommendation system as an instance,
the agent makes recommendation (corresponding to the ac-
tion in a MDP) according to users’ location, age, gender,
etc. (corresponding to the state in a MDP), and improves
its performance based on users’ feedback (corresponding
to the reward in a MDP). Unfortunately, it is shown that
unless privacy protections are launched, learning agents
will implicitly memorize information of individual training
data points [Carlini et al., 2019], even if they are irrelevant
for learning [Brown et al., 2021], which makes RL agents
vulnerable to various privacy attacks.

Differential privacy (DP) [Dwork et al., 2006] has become
the standard notion of privacy. The output of a differentially
private RL algorithm is indistinguishable from its output
returned under an alternative universe where any individual
user is replaced, thereby preventing the aforementioned
privacy risks. However, recent works [Shariff and Sheffet,
2018] show that standard DP is incompatible with sublinear
regret bound for contextual bandits. Therefore, a relaxed
variant of DP: Joint Differential Privacy (JDP) [Kearns
et al., 2014] is considered. JDP ensures that the output of
all other users will not leak much information about any
specific user and such notion has been studied extensively in
bandits problems[Shariff and Sheffet, 2018, Garcelon et al.,
2022]. In addition, another variant of DP: Local Differential
Privacy (LDP) [Duchi et al., 2013] has drawn more and
more attention due to its stronger privacy protection. LDP
requires that each user’s raw data is privatized before being
sent to the agent and LDP has been well studied under
bandits [Basu et al., 2019, Zheng et al., 2020].

Compared to the large body of work on private bandits, ex-
isting work that studies private RL is sparser. Under the
tabular MDP model, Vietri et al. [2020] first defined JDP
and proposed PUCB with regret bound and JDP guaran-
tee. Garcelon et al. [2021] introduced LDP under tabu-
lar MDP and designed LDP-OBI with regret bound and
LDP guarantee. Recently, Chowdhury and Zhou [2021]
provided a general framework for this problem and de-
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Algorithms Regret under e-JDP Regret under e-LDP Type of bonus
PUCB [Vietri et al., 2020] O(VSZAHBT + S*AH® [e)* NA Hoeffding
LDP-OBI [Garcelon et al., 2021] NA O(VS?AHT + S2AVHST [e)t Hoeffding
Private-UCB-PO [Chowdhury and Zhou, 2021] | O(VSZAH®T + S2AH?/¢) | O(VS?AHST + S2AVH®T/¢) | Hoeffding
Private-UCB-VI [Chowdhury and Zhou, 2021] | O(VSAH®T + S2AH3/¢) | O(VSAH®T + S2AVH5T Je) Hoeffding
DP-UCBVI (Our Algorithm 1) O(SAH?T + S2AH3/¢) | O(VSAH?T + S2AVHOT /) Bernstein
Lower bound without DP [Jin et al., 2018] Q(VSAH?T) Q(VSAH?T) NA

Table 1: Comparison of our results (in blue) to existing work regarding regret under e-joint differential privacy, regret
under e-local differential privacy and type of bonus. Here 1" = K H is the number of steps, S, A, H refer to number of
states, number of actions and the planning horizon. Bernstein-type bonus uses the knowledge of estimated variance while
Hoeffding-type bonus directly bounds the variance by its uniform upper bound. %: For more discussions about this bound,
please refer to Chowdhury and Zhou [2021]. §: The original regret bound in Garcelon et al. [2021] is achieved under
stationary MDP, and can be translated to the bound stated here by adding v/ H to the first term.

rived the best-known regret bounds under both JDP and
LDP. However, the best known regret bound under e-JDP
O(VSAH3T + S?AH?3 /¢), although with the additional
regret due to JDP being a lower order term, is still sub-
optimal by v'H compared to the minimax optimal regret
O(VSAH?T)! [Azar et al., 2017] without constraints on
DP. Therefore, if we run Algorithm 2 of Chowdhury and
Zhou [2021], we not only pay for a constant additional regret
O(S2AH3 /e), but also suffer from a multiplicative factor
of v/ H. Motivated by this, we want to find out whether it
is possible to design an algorithm that has optimal regret
bound up to lower order terms while satisfying Joint DP.

Our contributions. In this paper, we answer the above
question affirmatively by constructing a general algorithm
for DP RL: Algorithm 1. Our contributions are threefold.

* A new upper confidence bound (UCB) based algo-
rithm (DP-UCBVI, Algorithm 1) that can be com-
bined with any Privatizer (for JDP or LDP). Under
the constraint of e-JDP, DP-UCBVI achieves regret of
O(VSAH?T + S?AH?3 /¢), which matches the mini-
max lower bound up to lower order terms.

* We propose a novel privatization of visitation numbers
that satisfies several nice properties (see Assumption
3.1 for details). More importantly, our approach is
the first to privatize Bernstein-type bonus, which helps
tighten our regret bounds through law of total variance.

¢ Under the ¢-LDP constraint, DP-UCBVI achieves re-

gret of O(V/SAH?T + S2AVHST /) and improves
the best known result [Chowdhury and Zhou, 2021].

1.1 Related work

Detailed comparisons with existing work on differentially
private RL under tabular MDP [Vietri et al., 2020, Garcelon
et al., 2021, Chowdhury and Zhou, 2021] are given in Ta-
ble 1, while we leave more discussions about results on

"Under the non-stationary MDP as in this paper, the result in
Azar et al. [2017] will have additional v/ H dependence.

regret minimization to Appendix A. Notably, all existing
algorithms privatize Hoeffding-type bonus and suffer from
sub-optimal regret bound. In comparison, we privatize
Bernstein-type bonus and the non-private part of our regret?
matches the minimax lower bound in Jin et al. [2018].

Generally speaking, to achieve DP guarantee under RL, a
common approach is to add appropriate noise to existing
non-private algorithms, and derive tight regret bounds. We
discuss about private algorithms under tabular MDP below
and leave more discussions about algorithms under other
settings to Appendix A. Under the constraint of JDP, Vietri
et al. [2020] designed PUCB by privatizing UBEV [Dann
etal., 2017]. Private-UCB-VI [Chowdhury and Zhou, 2021]
resulted from UCBVI (with bonus 1) [Azar et al., 2017].
Under the constraint of LDP, Garcelon et al. [2021] designed
LDP-OBI based on UCRL2 [Jaksch et al., 2010]. However,
all these works privatized Hoeffding-type bonus, which is
easier to handle, but will lead to sub-optimal regret bound.
In contrast, we directly build upon the non-private algorithm
with minimax optimal regret bound: UCBVI with bonus 2
[Azar et al., 2017], where the privatization of Bernstein-type
bonus requires more advanced techniques.

A concurrent work [Qiao and Wang, 2022b] focused on the
offline RL setting and derived a private version of APVI
[Yin and Wang, 2021]. Their algorithm achieved tight sub-
optimality bound of the output policy through privatization
of Bernstein-type pessimism®. However, their analysis re-
lied on the assumption that the visitation numbers of all
(state,action) pairs are larger than some threshold. We over-
come the requirement of such assumption via an improved
privatization of visitation numbers. More importantly, of-
fline RL can be viewed as one step of online RL, therefore

2As shown in Table 1, the regret bounds of all DP-RL algo-
rithms contain two parts: one results from running the non-private
RL algorithms, while the other is the additional cost due to DP
guarantees. Throughout the paper, we use “non-private part” to
denote the regret from running the non-private RL algorithms.

3Pessimism is the counterpart of bonus under offline RL, which
aims to discourage the choice of (s, a) pairs with large uncertainty.



Dan Qiao, Yu-Xiang Wang

privatization of Bernstein type bonus is more technically
demanding. Finally, our approach actually realizes the fu-
ture direction stated in the conclusion of Qiao and Wang
[2022b].

1.2 A remark on technical novelty.

The general idea behind the previous differentially pri-
vate algorithms under tabular MDP [Vietri et al., 2020,
Garcelon et al., 2021, Chowdhury and Zhou, 2021] is to
add noise to accumulative visitation numbers, and con-
struct a private bonus based on privatized visitation numbers.
Since Hoeffding-type bonus b% (s, a) only uses the infor-
mation of visitation numbers (e.g., in Azar et al. [2017],
bi(s,a) = O(H - \/1/NF(s,a))), the construction of
private bonus is straightforward. We can simply replace
original counts N/ (s, a) with private counts NJ(s,a) and
add an additional term to account for the difference be-
tween these two bonuses. Next, combining the construc-
tion of private bonuses with the uniform upper bound of
|NF(s,a) — NF(s,a)|, we can upper bound the private
bonus by its non-private counterpart plus some additional
lower order term. Therefore the proof schedule of the origi-
nal non-private algorithms also applies to their private coun-
terparts.

Unfortunately, although the idea to privatize UCBVI with
bonus 2 (Bernstein-type) [Azar et al., 2017] is straight-
forward, the generalization of the previous approaches is
technically non-trivial. Since the bonus 2 in Azar et al.
[2017] includes the term Var }3},5(.'5’&)1/,{““ (+), the first tech-
nical challenge is to replace the empirical transition kernel
PF(s,a) with a private estimate. However, the private tran-
sition kernel estimates constructed in previous works are
not valid probability distributions. In this paper, for both
JDP and LDP, we propose a novel privatization of visitation
numbers such that the private transition kernel estimates
are valid probability distributions and meanwhile, the upper
bound on |NJ(s,a) — NF(s,a)| is the same scale com-
pared to previous approaches. With the private transition
kernel estimates PF, we can replace Varﬁ},f("w)vifﬂ(.)
with Var 5, (,‘m)f/hkﬂ () where V}¥(-) is the value function
calculated from value iteration with private estimates. Then
the second challenge is to bound the difference between
these two variances and retain the optimism. We overcome
the second challenge via concentration inequalities. Briefly
speaking, we add an additional term (using private statistics)
to compensate for the difference of these two bonuses and
recovered the proof of optimism. With all these techniques,
we derive our regret bound using techniques like error de-
composition and error propagation originated from Azar
etal. [2017].

2 Notations and Problem Setup

Throughout the paper, for N € Z*, [N] = {1,2,--- ,N}.
For any set W, A(W) denotes the set of all probability
distributions over V. Besides, we use stangard n~0tati0ns
such as O and € to suppress constants while O and €2 absorb
logarithmic factors.

Below we present the definition of episodic Markov De-
cision Processes and introduce differential privacy in rein-
forcement learning.

2.1 Markov decision processes and regret

We consider finite-horizon episodic Markov Decision Pro-
cesses (MDP) with non-stationary transitions, denoted by a
tuple M = (S, A, H, { P}, {ry}fL |, d;) [Sutton and
Barto, 1998], where S is state space with [S| = S, A is
action space with |A| = A and H is the horizon. The non-
stationary transition kernel has the form Py, : S x A x S +—
[0, 1] with Py (s'|s, a) representing the probability of tran-
sition from state s, action a to next state s’ at time step h.
In addition, r4(s,a) € A([0,1]) denotes the correspond-
ing distribution of reward, we overload the notation so that
r also denotes the expected (immediate) reward function.
Besides, d; is the initial state distribution. A policy can
be seen as a series of mapping m = (71, ,7y), where
each 7, maps each state s € S to a probability distribution
over actions, i.e. m, : S = A(A), Vh € [H]. A ran-
dom trajectory (s1,a1,71, " ,SH,QH,TH,SH+1) 1S gen-
erated by the following rule: sy ~ dy, ap, ~ 7 (:|sp), rh ~
rh(sh, ah), Sh41 ™~ Ph(-|8h, ah),Vh S [H]

Given a policy m and any h € [H], the value function V;7(-)
and Q-value function Q7 (-,-) are defined as: V;7(s) =
En[S L, rilsn = ], Q(s,a) = B[S0, rilsn,an =
s,al, Vs,a € 8 x A. The optimal policy 7* maximizes
V7 (s) forall s, h € S x [H] simultaneously and we denote
the value function and Q-value function with respect to 7*
by V¥ (-) and Q; (-, -). Then Bellman (optimality) equation
follows Vh € [H]:

QZ(Sv a) = Th(s,a) + Ph('|37a)vhﬂ+17 Vh‘rr = EaNT"h [Qﬂ,
Q(5,0) = ru(5,0) + PaCls, )Virsr, Vi = maxQh(a).

We measure the performance of online reinforcement learn-
ing algorithms by the regret. The regret of an algorithm is
defined as

Regret(K) := Y [Vi"(s) — V™ (s1)],
k=1

where s¥ is the initial state and 7y, is the policy deployed at
episode k. Let K be the number of episodes that the agent
plan to play and total number of stepsis 7' := K H.
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2.2 Differential privacy under episodic RL

Under the episodic RL setting, each trajectory represents
one specific user. We first consider the following RL proto-
col: during the h-th step of the k-th episode, user uy sends
her state s§ to agent M, M sends back an action af, and
finally uy, sends her reward rf to M. Formally, we denote
a sequence of K users who participate in the above RL pro-
tocol by U = (uy, - ,ur). Following the definition in
Vietri et al. [2020], each user can be seen as a tree of depth
H encoding the state and reward responses they would reply
to all A possible sequences of actions from the agent. We
let M(U) = (ai,--- ,ak) denote the whole sequence of
actions chosen by agent M. An ideal privacy preserving
agent would guarantee that M (U/) and all users but uy, to-
gether will not reveal much information about user ug. We
formalize such privacy preservation through adaptation of
differential privacy [Dwork et al., 2006].

Definition 2.1 (Differential Privacy (DP)). For any e > 0
and § € [0,1], a mechanism M : U — AKH s (¢, 6)-
differentially private if for any possible user sequences U
and U’ differing on a single user and any subset E of AKH,

PM(U) € E] < e PIM(U') € E] + 6.
If § = 0, we say that M is e-differentially private (e-DP).

However, although recommendation to other users will not
affect the privacy of user uy, significantly, it is impractical
to privately recommend actions to user uj while protecting
the information of her state and reward. Therefore, the
notion of DP is relaxed to Joint Differential Privacy (JDP)
[Kearns et al., 2014], which requires that for all user uy, the
recommendation to all users but u; will not reveal much
information about uy. JDP is weaker than DP, while JDP
can still provide strong privacy protection since it protects a
specific user from any possible collusion of all other users
against her. Formally, the definition of JDP is shown below.

Definition 2.2 (Joint Differential Privacy (JDP)). For any
€ > 0, a mechanism M : U — AXH is e-joint differen-
tially private if for any k € [K], any user sequences U, U’
differing on the k-th user and any subset E of AUK—DH

PIM_i(U) € E] < e PIM_i(U') € E],

where M_1(U) € E means the sequence of actions recom-
mended to all users but uy, belongs to set E.

JDP ensures that even if an adversary can observe the rec-
ommended actions to all users but uy, it is impossible to
identify the trajectory from wuy accurately. JDP is first de-
fined and analyzed under RL by Vietri et al. [2020].

Although JDP provides strong privacy protection, the agent
can still observe the raw trajectories from users. Under some
circumstances, however, the users are not even willing to
share their original data with the agent. This motivates a

stronger notion of privacy which is called Local Differential
Privacy (LDP) [Duchi et al., 2013]. Since under LDP, the
agent is not allowed to directly observe the state of users,
we consider the following RL protocol for LDP: during the
k-th episode, the agent M sends policy 7, to user ug, after
deploying 7, and getting trajectory Xy, user uy privatizes
her trajectory to X, and finally sends it to M. We denote
the privacy mechanism on user’s side by M and define local
differential privacy formally below.

Definition 2.3 (Local Differential Privacy (LDP)). For any
€ > 0, a mechanism M is e-local differentially private if
for any possible trajectories X, X' and any possible set
E C {M(X)|X is any possible trajectory},

PIM(X) € E] < e’ P[M(X') € E].

Local DP ensures that even if an adversary observes the
whole reply from user uy, it is still statistically hard to
identify her trajectory. LDP is first defined and analyzed
under RL by Garcelon et al. [2021].

3 Algorithm

In this section, we propose DP-UCBVI (Algorithm 1) that
takes Privatizer as input, where the Privatizer can be either
Central (for JDP) or Local (for LDP). We provide regret
analysis for all privatizers satisfying the following Assump-
tion 3.1, which naturally implies regret bounds under both
Joint DP and Local DP.

We begin with the following definition of counts. Let
NF(s,a) = ¥ M1(si, ai = s,a) denote the visitation
number of (s,a) at step h before the k-th episode. Simi-
larly, Nf(s,a,s') = Z;:ll 1(s},,a},, s} = s,a,s") and
RF(s,a) = ¥ (st ai = s,a) - i denote the visi-
tation number of (h, s,a, s’) and accumulative reward at
(h, s, a) before the k-th episode. In non-private RL, such
counts are sufficient for estimating transition kernel P}, re-
ward function r;, and deciding the exploration policy, as in
Azar et al. [2017]. However, these counts are derived from
the raw trajectories of the users, which could contain sensi-
tive information. Therefore, under the constraint of privacy,
we can only use these counts in a privacy-preserving way, i.e.
we use the private counts N (s, a), NJ(s,a,s"), RE (s, a)
returned by Privatizer. We make the Assumption 3.1 below,
which says that with high probability, the private counts are
close to real ones, such assumption will be justified by our
Privatizers in Section 5.

Assumption 3.1 (Private counts). We assume that for any
privacy budget € > 0 and failure probability 3 € [0, 1], the
private counts returned by Privatizer satisfies that for some
E. 3 > 0, with probability at least 1 — 3/3, uniformly over
all (h,s,a,s' k) € [H xS x Ax S x [K]:

(1) |Nf(s,a,8") — NF(s,a,8)| < Eeg, |NF(s,a) —
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Algorithm 1 DP-UCBVI

1: Input: Number of episodes K, privacy budget e, failure probability 3 and a Privatizer (can be either Central or Local).
2: Initialize: Private counts R}, (s,a) = N} (s,a) = N}(s,a,s’) = 0forall (h,s,a,s') € [H] x § x Ax S. Setup the
confidence bound E. g w.r.t the Privatizer. . = log(30HSAT /).

3: fork=1,2,--- K do

4: VI]}+1(-) =0.

5 forh=H,H—-1,---,1do

6 Compute PF(s'|s,a) and 77 (s, a) as in (1).

Var , sk vk ()
. . K - s/~ PE(|s,a) Tht1 2 20HS5Ee 5 .
7: Calculate private bonus by (s,a) = 2\/ T o) + T (o) + A + 44
Sk ] 2 1B54,2 10002H4S4A2E€2,5/.4 2116 g4 42,4
S PRy min{ 4 o g
Nk (s,a) :

8: for (s,a) € S x Ado

A e _ ~ ~
9: QZ(Sv a) = mln{Qh (87 a)7 H> TZ(Sv a) + Zs’ Pilf(sl‘sv a) : th-&-l(sl) + bﬁ(sv a)}
10: end for
11: for s € Sdo _
12: Vi (s) = maxaea Qi(f, a).
13: 7 (s) = arg max,e 4 QF (s, @) with ties broken arbitrarily.
14: end for
15:  end for

16:  Deploy policy 75, = (7¥,- -

17:  Update the private counts to R*1, N*+1 via Privatizer.

18: end for

, k) and get trajectory (s¥,af, r¥, ...

751191-5-1)-

NF(s,a)| < E. g and |§Z(s,a) — Ri(s,a)| < Eep.
(2) Nji(s,a) = Y ,esNi(s,a,8') = Nf(s,a).
Nf}’f(s,a, s") > 0. Also, we let ]v,’f(s) = uca N,’f(s,a).

Under Assumption 3.1, for all (h, s, a, s', k), we define the
private estimations of transition kernel and reward function.

NE(s,a,s
B (s)s.0) = T ; a))
RE(s 2) 7 M
(s, a) = (J%’) .
h(87a [0,1]

Remark 3.2. Different from the private empirical transi-
tion kernels in Vietri et al. [2020], Garcelon et al. [2021],
Chowdhury and Zhou [2021], Assumption 3.1 implies that
our estimated transition kernel PF(-|s,a) is a valid proba-
bility distribution, this property results from our construc-
tion of Privatizer. We truncate the empirical reward function
so that it stays in [0, 1] while still preserving privacy.

Algorithmic design. Similar to non-private algorithms
[Azar et al., 2017], DP-UCBVI (Algorithm 1) follows the
procedure of optimistic value iteration. More specifically,
in episode k, we do value iteration based on private esti-
mations P, 7 and private bonus term b} to derive private
Q-value functions éﬁ Next, the greedy policy 7 w.r.t
@ﬁ is chosen and we collect one trajectory by running 7.

Finally, the Privatizer translates the non-private counts to
private ones for the next episode. We highlight that, differ-
ent from all previous works regarding private RL, our bonus
is variance-dependent. According to Law of total variance,
variance-dependent bonus can effectively save a factor of
VH in regret bound. Intuitively, the first term of blii aims to
approximate the variance w.r.t to V}*, the last term accounts
for the difference between these two variances and the third
term is the additional bonus due to differential privacy.

4 Main results

In this section, we present our main results that formalize the
algorithmic ideas discussed in previous sections. We first
state a general result based on Assumption 3.1, which can
be combined with any Privatizers. The proof of Theorem
4.1 is sketched in Section 6 with details in Appendix C.

Theorem 4.1. For any privacy budget € > 0, failure prob-
ability 0 < B < 1 and any Privatizer that satisfies As-
sumption 3.1, with probability at least 1 — (3, the regret of
DP-UCBVI (Algorithm 1) is

Regret(K) < O(VSAH?T + S?AH?E.3), (2)
where K is the number of episodes and T = HK.
Under Assumption 3.1, the best known regret bound is

O(VSAHST + S?AH?E, ) (Theorem 4.2 of Chowdhury
and Zhou [2021]). As a comparison, in our regret bound,
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the term parameterized by privacy loss € remains the same
while the leading term is improved by a factor of Vv H into
O(VSAH?T). More importantly, when T is sufficiently
large, our result nearly matches the lower bound in Jin et al.
[2018], hence is information-theoretically optimal up to a
logarithmic factor.

5 Choice of Privatizers

In this section, we design Privatizers that satisfy Assumption
3.1 and different DP constraints (JDP or LDP). All the
proofs in this section are deferred to Appendix D.

5.1 Central Privatizer for Joint DP

The Central Privatizer protects the information of all sin-
gle users by privatizing all the counter streams NF (s, a),
NF(s,a,s") and Rf(s,a) using the Binary Mechanism
[Chan et al., 2011], which focused on privately releasing
data stream [Zhao et al., 2022]. More specifically, for each
(h,s,a), {N}(s,a) = Y1 1 (s, al, = s, a) }re(k] is the
partial sums of data stream {1(s},aj, = s,a)}ic(k]. Bi-
nary Mechanism works as below: for each episode &, after
observing 1(s¥~* af~* = s, a), the mechanism outputs
private version of >.¥ "' 1 (s}, ai = s, a) while ensuring
Differential Privacy.* Given privacy budget € > 0, we con-
struct the Central Privatizer as below:

(1) For all (h,s,a,s’), we privatize {N}(s,a)}e(x] and
{N}(s,a,")}reix) (which is summation of bounded
streams) by applying Binary Mechanism (Algorithm 2 in
Chan et al. [2011]) with ¢ = m We denote the

output of Binary Mechanism by N}.

(2) The private counts N, ,’f are solved through the procedure
in Section 5.1.1 with E 3 = O(£ log(HSAT/B)?).

(3) For the counters of accumulative reward, for all (h, s, a),
we apply the same Binary Mechanism with ¢’ = m
to privatize R¥ (s, a) and get Eﬁ(s, a).

We sum up the properties of Central Privatizer below.
Lemma 5.1. Forany e > 0and 0 < 8 < 1, the Central
Privatizer satisfies e-JDP and Assumption 3.1 with B, g =

o).

Therefore, combining Lemma 5.1 and Theorem 4.1, the
following regret bound holds.

Theorem 5.2 (Regret under JDP). Forany e > 0and 0 <
B < 1, running DP-UCBVI (Algorithm 1) with Central
Privatizer as input, with probability 1 — 3, it holds that:

Regret(K) < O(VSAH?T + S?AH?/e).  (3)

“For more details about Binary Mechanism, please refer to
Chan et al. [2011] or Kairouz et al. [2021].

Under the most prevalent regime where the privacy budget
€ is a constant, the additional regret bound due to JDP is
a lower order term. The main term of Theorem 5.2 im-
proves the best known result O(v/ SAH?3T) (Corollary 5.2
of Chowdhury and Zhou [2021]) by v/H and matches the
minimax lower bound without constrains on DP [Jin et al.,
2018].

5.1.1 A post-processing step

During the k-th episode, given the noisy counts N k(s,a)
and ]v,’f(s,a,s’) (for all (h,s,a,s’) € [H] x & x A x
&), we construct the following private counts that satisfy
Assumption 3.1. The choice of N} follows: for all (h, s, a)

{]\Nf;]f(s,a,s’)}s/eg = argmin (max Ty — ﬁ,’f(s,a,s’)’)

{%’}s'es s'€S
such that Z Ty — ]Vf’f(s,a) < Eep and o > 0,Vs.
s'eS 4
Nfi(s,a) = Z Nfi(s,a,s").

s'eS

)
Finally, for all (h, s, a), we add the following terms such that
with high probability, N} (s, a) will never underestimate.

~ ~ E.
N}f(s,a,s’):N;’f(s,a,s’)—&— 357
2 5)

~ ~ E.
NF(s,a) = NF(s,a) + TB
Remark 5.3. The optimization problem (4) can be reformu-
lated as:
min ¢, s.t.|zy — ]v,’f(s,a,s/)| <t zg >0,Vs €S,

N E.
ZxS/—N,]f(s,a) < 2B
s'eS

4
(6)

Note that (6) is a Linear Programming problem with
O(S) variables and O(S) linear constraints. This can be
solved efficiently by the simplex method [Ficken, 2015] or
other provably efficient algorithms [Nemhauser and Wolsey,
1988]. Therefore, since during the whole process, we only
solve HS AK such Linear Programming problems, our Al-
gorithm 1 is computationally efficient.

The properties of private counts N ,’f is summarized below.
Lemma 5.4. Suppose N ,’f satisfies that with probability
1-— g uniformly over all (h, s, a, s, k), it holds that

< Bes.

- 4

~ . E.
[N (s.0) = Nii(s,0)] < =37,

|NII'L€(33 a, sl) - Nllj(sv a, S,)
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then the N ,’f derived from (4) and (5) satisfies Assumption
3.1

Remark 5.5. Compared to the concurrent work [Qiao and
Wang, 2022b], our private counts NI (s, a) have additional
guarantee of never underestimating the true values, which is
a desirable property for analysis in Appendix B. In compar-
ison, the analysis in Qiao and Wang [2022b] heavily relies
on the assumption that the visitation number is larger than
some threshold such that the scale of noise is ignorable.

5.2 Local Privatizer for Local DP

For each episode k, the Local Privatizer privatizes each
single trajectory by perturbing the statistics calculated
from that trajectory. For visitation of (state,action) pairs,
the original visitation number {cf(s,a) = 1(sf,af =
5,a)}(h,s,a) has £y sensitivity H. Therefore, the per-
turbed version of the counts above 57 (s, a) = oF(s,a) +
Lap(%) satisfies %—LDP. In addition, similar perturbations
to {ﬂ(si,aﬁ',sﬁﬂ = 5,0,5")}(h,s,0,s) and {1(sk,al =
s,a) - r,’f}(h7S,G) will lead to the same result. As a result, we
construct Local Privatizer as below:

(1) For all (k,h,s,a,s'), we perturb of(s,a) =
1(sk,af = s,a) and of(s,a,s') = ]l(sfl,ai,s§+1 =
s,a, s') by adding independent Laplace noises:

~ 3H
02(55 a) = O';CL(Sa a) + Lap(?)a

L 3H
a;’j(s,a,s) ],i(s a, s)—&-Lap(?).

(2) The noisy counts are calculated by

k-1
Nhsa gohsa
i=1

k—1
SGS EO’SGS
i=1

Then the private counts [V, ,’f are solved through the procedure
in Section 5.1.1 with E, 3 = O(£ /K log(HSAT/p)).

(3) We perturb the trajectory-wise reward by adding in-
dependent Laplace noise: 77 (s,a) = 1(s},af = s,a) -
r¥ + Lap(22). The accumulative statistic is calculated by

Rf(s,a) = Y0 7h(s,a).

Properties of our Local Privatizer is summarized below.

Lemma 5.6. For any ¢ > 0 and 0 < < 1, the Local
Privatizer satisfies e-LDP and Assumption 3.1 with E, g =

O(ZVK).

Therefore, combining Lemma 5.6 and Theorem 4.1, the
following regret bound holds.

Theorem 5.7 (Regret under LDP). For any ¢ > 0 and
0 < B < 1, running DP-UCBVI (Algorithm 1) with Local
Privatizer as input, with probability 1 — 5, it holds that:

Regret(K) < O(VSAH?T + S?AVH5T[¢).  (T)

Theorem 5.7 improves the non-private part of regret bound
in the best known result (Corollary 5.5 of Chowdhury and
Zhou [2021]).

5.3 More discussions

The step (1) of our Privatizers is similar to previous works
[Vietri et al., 2020, Garcelon et al., 2021, Chowdhury and
Zhou, 2021]. However, different from their approaches
(directly use N, ,’j as private counts), we apply the post-
processing step in Section 5.1.1, which ensures that P,f
is valid probability distribution while E, g is only worse by
a constant factor. Therefore, we can apply Bernstein type
bonus to achieve the optimal non-private part in our regret
bound.

We remark that the Laplace Mechanism can be replaced
with other mechanisms, like Gaussian Mechanism [Dwork
et al., 2014] for approximate DP (or zCDP). According to
Theorem 4.1, the regret bounds can be easily derived by
plugging in the corresponding E, g.

6 Proof Sketch

In this section, we provide a proof overview for Theorem 4.1,
which can imply the results under JDP (Theorem 5.2) and
LDP (Theorem 5.7). Recall that N (s, a) and NJ (s, a, s')
are real visitation numbers while N F’s are private ones
satisfying Assumption 3.1. Other notations like PF, 7,
@lfb, IN/,{“ and ¢ are defined in Algorithm 1. The statement
“with high probability” means that the summation of all
failure probabilities is bounded by /5. We begin with some
properties of private statistics below.

Properties of P and 7. Due to concentration inequalities
and Assumption 3.1, we provide high probability bounds

‘ﬁ;’f(\s, a) — Pp(|s, a)H and
1

for |77;§(s,a) —rn(s,a)
|PE(s')s, ) -
bound the key term ‘ (ﬁ}’f - Ph> “Vira (s, a)} below.

Lemma 6.1 (Informal version of Lemma B.6). With high
probability, for all (h, s, a, k), it holds that:

(7

Pn(s'|s, a)’ in Appendix B. In addition, we

Var pr 1) Vi1 ()
NE(s,a)

10 H5Ees )
Ni(s,a)

- Ph) -v,;ﬂ(s,a)) <0

®)
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With these concentrations, we are ready to present our proof
sketch. Since we apply Bernstein-type bonus, the proof of
optimism is not straightforward. We prove our regret upper
bound through induction, which is shown below.

Induction over episodes. Our induction is for all k € [K],

(1) Given that for all (i,h,s,a) € [k] x [H] x § x A,
Q5 (s,a) > Q5 (s, a), we prove (I, = kH)

Regret(k) < O (\/H2SATk + H2S2AEE,B)
and for all (h, s) € [H] x S,

SAH?
N;(s)

Vi(s) = Vir(s) < 5(

S2AH?E, 4
Ny (s)

(2) Given that for all (h, s) € [H] x S,

SAH®
N;(s)

. - 2 2
T (s) — Vi (s) s0< S AH Eﬂ)

Ny (s)
we prove that for all (h, s, a), Q¥"(s,a) > Q} (s, a).

Suppose the above induction holds, we have point (1) holds
for all k£ € [K] and therefore,

Regret(K) < O (\/HZ‘SAT + HQSQAEeﬂ) . )

Below we discuss about the proof of (1) and (2) separately.

Proof of regret bound: (1). We only need to prove the
upper bound of Regret(k), as the upper bound of V}¥(s) —
V¥ (s) follows similarly. Using the standard technique of
layer-wise error decomposition (details in Appendix C.3)
and ignoring lower order terms: summation of martingale
differences, we only need to bound Z - A ey b (st ab)
which consists of four terms according to the definition of
b;’j. First of all, the second and forth terms are dominated by
the first and third terms. Next, for the third term, we have

ZZ WHSFept _ L 20HSE. 4
i=1 h=1 sh,ah) i=1 h=1 N, (shap) (10)
<O(S?AH*E.p).

Now we analyze the first term (which is also the main term):

Var, sicisi wiy Vg ()
k H s/ ~Pi (-8t at) Vh+1
doim1 2oh=1 \/ J\i}};(s?,a%) . It holds that

S g Vo PO
i=1 h=1 Nﬁ(shv )
k k

(]

i=1 h=1 h(sh’ ah) i=1 h=1

<O(HSA) (a)

Y

H 1 H ~.
2 NiGna) |2 2 VerEcisgap Vi ()

We bound (a) below (details are deferred to Appendix C.4).

M=

<y

i=1

Varp, (|si ai)Viq1(-) +lower order terms.

1

|/\¢

O(H?2k) w.h.p due to LTV
(12)

Therefore, the main term in the regret bound scales as
O(VH?SAT,, + H?S?AE. g). The details about lower
order terms are deferred to Appendix C.3, C.4 and C.5.

Proof of optimism: (2). To prove optimism, we only need

Py)- Vi (s, a)l

It is clear that |7} (s,a) — 7(s, a)| can be bounded by the
second term and a portion of the third term of b (s, a). Due

to Lemma 6.1, [(PF — P,) - Vi%,,(s,a)| can be bounded
by O (\/Varﬁf(-|s,a)vh*+1(')/Nilf(sva))’ which can be
further bounded by O (\/Varﬁf oo Vi O/ NEGs, a))

plus a portion of the third term of b5 (s,

with the upper bound of |I~/;{C (s) —Vy¥(s)]| (derived from con-
dition of (2) and optimism), the last term of b% (s, a) compen-

sates for the difference of \/Varﬁk(.|s ) h+1( )/Nk(s a)
h

(first term of b¥ (s, a)) and \/Varﬁ,’f(-\s,a) Vi (¢ )/N, (s,a).
More details about optimism are deferred to Appendix C.6.

bl}cz(sva) > |FZ(S7G)_rh(Sva)|+‘(ﬁilz€ -

a). Finally, together

7 Simulations
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Figure 1: Comparison of cumulative regret for UCBVI and
DP-UCBVI with different DP guarantees.

In this section, we run simulations to show the performance
of DP-UCBVI (Algorithm 1). We run simulation on a stan-
dard benchmark for tabular MDP: Riverswim [Strehl and
Littman, 2008], and Chowdhury and Zhou [2021] run sim-
ulations on the same environment. Briefly speaking, the
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environment consists of six consecutive states and two ac-
tions “left” and “right”. Choosing “left”, the agent will tend
to move towards the left side, and vice versa. The agent
starts from the left side and tries to reach the right side,
where she can get higher reward. For more details and il-
lustration about this setting, please refer to Chowdhury and
Zhou [2021].

Similar to Chowdhury and Zhou [2021], we set the planning
horizon to be H = 20 and run K = 50000 episodes. For
each algorithm, we run 5 times and derive the average perfor-
mance and confidence region. We compare the performance
of DP-UCBVI under constraints of JDP and LDP, and the
original UCBVI. The cumulative regret for each algorithm
is shown in Figure 1. Comparing the regret, it is shown that
the non-private UCB VI has the best performance, while the
cost of privacy under constraints of JDP is a small constant,
and thus becomes negligible as the number of episodes in-
creases. In addition, the DP-UCBVI with weaker privacy
protection (i.e., larger €) has smaller regret. However, under
constrains of LDP, the cost of privacy remains high and it
takes a much longer period for the algorithm to converge
to near-optimal policies. Our simulation results are consis-
tent with our theories which state that the cost of JDP is a
constant term while the cost of LDP is multiplicative.

8 Conclusion

In this paper, we studied the well-motivated problem of
differentially private reinforcement learning. Under the
tabular MDP setting, we propose a general framework:
DP-UCBVI (Algorithm 1) that can be combined with
any Privatizers for different Vgriants of DP. Under ¢-JDP,
we achieved regret bound of O(V SAH2T + S?AH?3 /e),
which matches the lower bound up to lower order terms.
Meanwhile, under e-LDP, we derived regret upper bound
of O(VSAH2T + S? AV H5T /e) and improves the best
known result.

We believe our framework can be further generalized to
more general settings, like the linear MDP setting. The best
known result under linear MDP [Ngo et al., 2022] built upon
LSVI-UCB [Jin et al., 2020], which is arguably a Hoeffding-
type algorithm. The main term of regret bound in Ngo et al.
[2022], O(vVd>H?3T), is known to be suboptimal due to the
recent work [Hu et al., 2022], which incorporates Bernstein-
type self-normalized concentration. An interesting future
direction is to privatize LSVI-UCB™ (Algorithm 1 in Hu
et al. [2022]) and derive tighter regret bounds under linear
MDP and constraints of JDP. We believe the techniques
in this paper (privatization of Bernstein-type bonus under
tabular MDP) could serve as basic building blocks.
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A Extended related works

Regret minimization under tabular MDP. Under the most fundamental setting of tabular MDP, regret minimization has
been widely studied by a long stream of works [Kearns and Singh, 2002, Jaksch et al., 2010, Jin et al., 2018, Xu and Wang,
2021, Qiao et al., 2022, Xu et al., 2022, Qiao and Wang, 2022a, Xu and Wang, 2022]. Among the optimal results, Azar
et al. [2017] designed an UCB-based algorithm: UCBVI and derived the minimax optimal regret bound O (v HS AT') under
stationary MDP. Later, Zhang et al. [2020] achieved the optimal regret bound (5(\/ H2SAT') under non-stationary MDP
through Q-learning type algorithm: UCB-ADVANTAGE. Meanwhile, in addition to stating optimal regret bound, Dann et al.
[2019] also provided policy certificates via their algorithm: ORLC. Different from the minimax optimal algorithms above,
Zanette and Brunskill [2019] designed an algorithm: EULER and derived the first problem-dependent regret bound, which
can imply the minimax optimal regret.

Other differentially private reinforcement learning algorithms. In this paragraph, we discuss about algorithms under
linear MDP or linear mixture MDP. Under linear MDP, the only algorithm with JDP guarantee: Private LSVI-UCB [Ngo
et al., 2022] is private version of LSVI-UCB [Jin et al., 2020], while LDP under linear MDP still remains open. Under linear
mixture MDP, LinOpt-VI-Reg [Zhou, 2022] generalized UCRL-VTR [Ayoub et al., 2020] to guarantee JDP. In addition,
Liao et al. [2021] also privatized UCRL-VTR for LDP guarantee. On the offline side, Qiao and Wang [2022b] provided the
first result under linear MDP based on VAPVI [Yin et al., 2022].

B Properties of private estimations

In this section, we present some useful concentrations about our private estimations that hold with high probability.
Throughout the proof, we denote the non-private estimations by:

R Nk /
PE(/)s,0) = T 05)

NFE(s,a) ’
; i ) (13)
(s, ) = Tl
Nh (57 a)
In addition, recall that our private estimations are defined as:
Nk /
P,’f(s/\s,a): h(s,a,s)
NE(s,a)
- (14)
- Ri(s,a)
rh(s,a) = | =,
Nh (87 a’) [071]
Lemma B.1. With probability 1 — %,for all hys,a,k € [H] x § x A x [K], it holds that:
. 2 2F,
‘r,’i(s,a) — rh(s,a)’ < : B (15)

— + = .
N}’f(s,a) N,’f(s,a)
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Proof of Lemma B.1. We have for all h, s,a,k € [H] x S x A x [K],

nk
7 (5,0) — ra(s, )| < ]%E >) -
< ?§Z(S’a)<— {iﬁ(s’a) + %?Z(S’a — (s, a)
Np(s,a)  Nf(s,a)| |Nf(s,a
E.p N}f(s,a)(R,’?L(s,a) ) NF(s,a) 1
N N7 — I'h\o; ACH = — 16
N (s,a) i (s,a) \Ni(s,a) ru(sa) )|+ ra(s.0) Nf(s,a) (16)

where the third and last inequalities are because of Assumption 3.1. The forth inequality holds with probability 1 — 1% due
to Hoeffding’s inequality and union bound over h, s, a, k. O

Lemma B.2. With probability 1 — £, forall h,s,a,k € [H] x S x A x [K], it holds that:

15’

St QSEE”(;
]V,’f(s,a) N,’f(s,a).

| PiCIs,0) = PaCls,0)| <2 a7

Proof of Lemma B.2. We have for all h, s,a,k € [H] x § x A X [K],
H]B}’f(.|3,a) - Ph(.|5,a)Hl = Z ‘ﬁff(s’|s,a) - Ph(s’|s,a)‘

N,’f(s, a,s)
Nf(s,a)

<Z

SE.
<——<f 13
NE(s, a)

s’/

SE.
<——<f 13
Ny (s,a)

s’/

s'|s, a)

(s,a,8') — NF(s,a,s
A )’+Z

NF(s,a)

NF(s,a,s") Nf(s,a)
Nj(s,a) N,’f(s,a)

NF(s,a,s") Cp(slsa) . NE(s,a)
< NiGsa) e >> NE(s,a)

HPh ‘Is,a) — Pr( |saH +Z

- Ph(S/‘S,CL)

/ N (s,
+3 | Pu(s'ls. a) <Z\7}’CEZ; - 1) ‘ (18)
o h\S

E.
Pu(s']s, a)iﬁ

< SEBes NG

Nk(s,a)  Nk(s, NE(s,a)
NE(s,a) 9 St 25E. 3
Nk(s a) Nj(s,a) ]\Nf}’f(s,a)
SQ St QSEE,/g

- + = ,

Nji(s,a)  Nj(s,a)

where the second, forth and last inequalities hold since Assumption 3.1. The fifth inequality holds with probability 1 — +

according to Theorem 2.1 of Weissman et al. [2003] and union bound. D

Remark B.3. Similarly, we have forall h,s,a,k € [H| x S x A x [K],

NEF(s,a,8")  NEF(s,a,s)
NE(s,a) N} (s,a)

NF(s,a,s')  NF(s,a,s')
th |s,a) — Ph(\sa‘ <Z‘ ]};bfksa) - ]’ka(sa) +3
riS,

2SE, 5
< P7eB
Nj(s,a)

s’/

19)
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Lemma B.4. With probability 1 — %, for all h,s,a,s', k € [H] x § x A x 8 x |K], it holds that:

15’

- 2P, (s’ 2E,
PF(s'|s,a) —Ph(s’|s,a)’ < ﬁgj s, a)¢ + = Y (20)
Nh(57a) Nh(57a’)
Proof of Lemma B.4. We have for all h, s,a,s", k € [H] xS x Ax S x [K],
~ NE(s,a,s') — NF(s,a,s) Nf(s,a,s")
‘Ph(s’|s,a)—Ph(s’|s,a)‘ < | him & ho 0" Pu(s]s,a)
Ni(s,a) Nf(s,a)
Ee Nk ! Nk
S _ B + hscs’a’s) . ~h(8’a’) _ Ph(s/‘87a)
F(s,a) Ni(s,a)  NF(s,a)
E. NE(s,a,5' ; NE
<= SR ( h’(ks’a’s) —Ph(s/ls,a)) - ~’;(S’a) Py(s'|s,a) ( ~Z(S’a) —1
F(s,a) Ni(s,a) F(s, Nf(s,a) 2

2P, (s']s,a)t 2
' NE T ok
Y(s,a) 3N (s,a)
2P (s'|s,a)t 2FE. gt
Nf(s,a)  Nf(s,a)’

where the second, forth and last inequalities result from Assumption 3.1. The fifth inequality holds with probability 1 — %
due to Bernstein’s inequality and union bound. O

Remark B.5. Similarly, we have for all h, s,a, s,k € [H] x S x Ax S x [K],

Nllf(&avsl) . N}f(s,ms’) N,’f(s,a,s’) _ N}If(sa%s/)

PE(s')s,a) = PE(s')s, )| <‘

NE(s, a) NF(s,a) NE(s,a) NE(s,a)
k /
< ~E€7ﬂ NNh (S,a,S )Ee,,B (22)
NF(s,a)  NF(s,a)- Nf(s,a)
2Eep
T Ni(s,a)
Lemma B.6. With probability 1 — 22, for all h,s,a,k € [H] x S x A x [K], it holds that:
P 2Varp, (s Vi () -0 | 285550 Vi () 0 | 2HSE
‘(P;]f _Ph) ~Vh*+1(s,a)) < min APu(]s,a) e () L’ Pi(ls.a) Tht1 ~S B o3
N}’f(S,a) N,’f(s,a) N,’f(s,a)
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Proof of Lemma B.6. We have for all h, s,a,k € [H] x S x A x [K],

’(ﬁilf _Ph) 'Vh*+1(5»a)’ <

> (Pis'ls,0) = Pals'ls,0)) Virya ()

NFE(s,a,s') — NF(s,a,s) NF(s,a,s")
< hi% 7 h\Z 2 ) yx + T Pu(s']s,a) | Vi (s
2 N oa) R )|+ ey~ 1) Vi)
HSEeﬁ NF(s,a) (N;f(s a,s’) ) , [ NE(s,a)
+ . - L P s,a) |V, s's,a) Vi, (s") | ="~ —1
Nk(s a) ‘Né(s,a g Nj(s,a) H(Else) ) Vit (18 Vi (=) NE(s,a)
2HSE. 3 h s, a ( (s,a,s") ) ,
<— 2o — P s,a) |V, s
N}’f(s,a) h s,a Nk S a h( | ) h+1( )
_2HSE.5  Nj(s.a) 2Varp, (. Isa)Vh+1() L 2H \/QVME’S(-S,a)Vhﬁrl(')'L L TH
“Ni(sa) | N(s,a) (s.a) BNE(s.a) NE(s,a) 3NE(s, )
* . .
cmin d | [2VATRC |Sa)Vh+1() v | 2Varpe g o Vi () | 2HSE 5t
NF(s,a) Nk(s a) NE(s,a)
(24)

where the third, forth and last inequalities come from Assumption 3.1. The fifth inequality holds with probability 1 — <&
because of Bernstein’s inequality, Empirical Bernstein’s inequality and union bound. D

Remark B.7. Similarly, we have for all h,s,a,k € [H| x S x A x [K],

2HSE, 3

(B = BE) Vit < H - [BiCls,) = BiCls. o) < =, 5)
h 9

where the last inequality results from Remark B.3.

Combining all the concentrations, we have the following lemma.

Lemma B.8. Under the high probability event that Assumption 3.1 holds, with probability at least 1 — 8 the conclusions in
Lemma B.1, Lemma B.2, Lemma B.4, Lemma B.6, Remark B.3, Remark B.5 and Remark B.7 hold simultaneously.

In the following proof, we will prove under the high probability event where Assumption 3.1 and Lemma B.8 hold. Lastly,
we state the following lemma regarding difference of variance.

Lemma B.9 (Lemma C.5 of Qiao and Wang [2022b]). For any function V€ R® such that |V ||« < H, it holds that

‘\/Varﬁh,?(,lsja) \/Varpk(‘ < V3H - \/Hpk (1s,a) — PE(s, a)Hl. (26)

In addition, according to Remark B.3, the left hand side can be further bounded by

SE. s
‘\/Varﬁ;]f(“s’a)(v) - \/Varﬁ’]:(_‘sya) (V)’ S 3H m (27)

C Proof of Theorem 4.1
In this section, we assume the conclusions in Assumption 3.1 and Lemma B.8 hold and prove the regret bound.

C.1 Some preparations
C.1.1 Notations

For all 4, j € [K] x [H], we define the following variances we will use throughout the proof.

Vi% = Varp, s ai) Vita ()- (28)
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Vit = Varp, (st a1y Vi ()- (29)
Vig = Varpjss a Vi (- (30)

Next, recall the definition of our private bonus b¥.

Vary, g s Vi () -t L[ 20HSE. 31

by (s,a) =2 — = <~
Ny(s,a) Ny(s,a) Ny(s,a)

€29

~r . 235 A2 10002 H4S* A2 E? 504 10002HGS4A2L4 9
PF(s'|s,a) min ¢ 1000 + —- = + ,H
Zs/ h( | ’ ) N;LC+1(SI) N}]:+1(S’)2 (s )2

NE(s,a)

+4v/0-

According to Assumption 3.1, the private visitation numbers will never underestimate the real ones, therefore it holds that

k Vars’wlg}’f(<|s,a)vff+l(') L 2L 2OHSE67B -l
br(s,a) <2 N + = =
n (s a) Ni(s,a) Ny (s,a)
by | (s,a) (32)
Dk ( of [ 10002H35A,2 | 1000°HASTAZEZ 5t 1000210544264 2
N 5y P15, ) min { 5022555 NP T N o
Nji(s,a)
b’fb72(s,a)
For the analysis later, we define EZ (s,a) := 2b’fb71(s, a) + bﬁ,g (s,a).
In addition, we define the following three terms for all (¢, j) € [K] x [H]:
H?Su T Tiod i
Cajij = m, Clij = ; bij = bi(s),al). (33)
FANY

C.1.2 Typical episodes

Now we define the typical episodes and the typical episodes with respect to (h, s) € [H] x S. Briefly speaking, typical
episodes ensure that the number of total episodes or visitation number to some state is large enough.

Definition C.1 (Typical episodes). We define the general typical episodes as [k, = {i : i € [k], i > 250H>S% A%}, Also,
we define typical episodes with respect to (h, s) € [H] x S as:

[Klop.n.s = {i € [k] : Ni(s) > 250H2S% Ai?},
where N} (s) is the real visitation number of (h, s) before episode i.
According to Definition C.1 above, it is clear that
H - |[k]/[K]eyp| < 250H>S? A2 (34)

In the following proof, when we consider summation over episodes, we can consider only the typical episodes since all
episodes that are not typical only contribute to a constant term in final regret bound.

Finally, we define the following summations for all k, h, s € [K] x [H] x

k H
Crp = Z ﬂ(l 6 typ Z Ci,i,j 1 €4, 7,,] (35)
i—1 j=1
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k H
By =Y 1(i € [klyp) Y _bi;. (36)
i=1 j=1
k ' H
Ckvhas = Z ]1(5;7 =51 6 typ,h,e Z Clij +Cay ] 37
i1 j=h
k ‘ H
Byhs = Z]l(s}l =5, € [Kliyp,h.s) Z (38)
i=1 i=h

C.2  Our induction

Since we apply Bernstein- type bonus, different from Chowdhury and Zhou [2021], optimism is not very straightforward.
This is because even if Vh is upper bound of V;* and P} is close to Ph, Varz Br( s, o)V ¥ 1 (-) is not necessarily an upper

bound of Vars pr (-\s,a)vh *1(+). However, we can prove by induction that Vh ‘1 1s close enough to V7, |, and therefore the

last term of bfL will be sufficiently large to make ‘7}5 a valid upper bound of V;*. More precisely, our induction is as below:
1. Assume for all (i, b, s,a) € [k] x [H] x 8 x A, Qi (s,a) > Q% (s, a), we prove for all (h, s) € [H] x S,

ViE(s) = Vi(s) <O ( SAH3/NF(s) + S2AH?E, 5 /N (s) + S2AH® /N;f(s)) .

2. We deduce that the last term of b compensates for the possible variance difference and for all (h, s,a) € [H] x S x A,
Ak+1 *
h (S,CL) 2 Qh(sva)'

Next, we will first prove the point 1 above under optimism in Section C.3, Section C.4 and Section C.5, and then prove
optimism (point 2 above) based on point 1 in Section C.6.

C.3 Error decomposition

We define §; ;, := V;*(s) — V;"(s},) and 5 o= Vh( i) — Vi (sh). Now we provide the error decomposition below,
based on optimism, for all (i, h) € [k} x [H],

Sin < 0un = Vi(sh) — Vi (s) = Qi (sh, al) — Q' (55, i)
<P (s}, ap) + Ph - Vi (sh, ah) + b, (sh, ) — ra(sh, ) — Py - Vi (sh, al)
2 2B
Nﬁ(s}b,a}L) N;L(s’h,a}z)

+Pp - (Vif+1 - V}ﬁq)(%aam

<bj(sh,an) + + Py = Pu) - Vit (s ap) + (P = Po) - (Vg = Vilia) (sh ai)

WA i i i i * i i i 2HSE. gt
<bj, (8, ah) + bh 1 (shyap) + crin + (By = Pa) - (Vi — Vi) (sho a) + Pro- (Vi — Vh+1)(5mah) Ni (st af‘)
h\Shy Qp
- ~. ~. o ~ . . i 2HSE, gt
<bin+crin+ (P — Pn) - (Vg — Vicg1) (8hsay) + Pro- (Vs = Vi) (8hsa) =~ f .
Ni (s}, a},)

(39)

The second inequality is because of the definition of @}1 The third inequality results from Lemma B.1. The forth inequality
holds since Lemma B.6 and the definition of bﬁhl, ¢1,i,n- The last inequality holds due to definition of b; p,.
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In addition, we have:

(P = Pa) - (Vs = Vi) (shoah) = D (Pi(s/Ishr i) = Pals'lshsah)) - (Vi () = Vi ()

2Ph /|Sh’ah) 2E6 gl (~, , ,
Z B ) (Vi -V )
- < N (sh, ap,) * Nj (st al) () = Vi (s7)
P (s'|s},, ap) H. 2F, g1 o
< E J MY “Be,pl (v _y ,
5 ( H i Nj (s}, aj,) - N (st ab) ( na1(8) = Vil (s ))

H2S. +2HSE€”3L
Ni(sirah) — Nj(sha;)

(40)

1 =i
Sﬁph “(Vig1 — Vh+1)(sh7 aj,) +

The first inequality is because of Lemma B.4. The second inequality holds since AM-GM inequality. The last inequality
results from the fact that V| > V}ﬂl.

Plugging (40) into (39), we have:

Sin < Oin <bzh+clzh+c4zh+(1+ )Ph (V}erl_VhJ,-l)(shaah)

1 - 1 41)
=(1+ ﬁ)(si,thl +bin+crint+cain+ 1+ E)Gi,h;
where ¢; 5, is martingale difference that is bounded in [ H, H].
Recursively applying (41), we have:
~ H o~
(51"}1 S 32 |:bi,j + Cl,i,j + C477;’j + Ei,j} . (42)

j=h
Summing over episodes, we have
Z5lh<261h<322{bm—l—clu—i—c“]—i—e”}. (43)
i=1 j=h

According to Azuma-Hoeffding inequality and union bound, we can bound the partial sum of martingale differences below.

Lemma C.2. Let T}, := Hk be the number of steps until episode k. Then with probability 1 — the following inequalities

12’
hold for all k,h,s € [K] x [H] x S and h' > h:
k H
D NG € [klyp) D> iy < Hy/ Tk
i=1 j=h 44
. Y (44)
Z]l(s}l =5,1€ [klypn,s) Z €i; < H\/HNF(s)e.
i=1 j=h’
We define Uy, = 3 Zle 1(i € [k}typ) Zf:h [i)\i,j +c14,5 + 64,174 + 3H+/T}t and
k
Ukhys = 32 ]1(82 =s,1€] typ h,s Z |:bi,j +C1,4,5 + C47Z‘,j] + SH\/HN;LC(S)L.
i=1 j=h
Therefore, combining (42) and Lemma C.2, we have the following key lemma that upper bounds summation of d; ;.
Lemma C.3. Under the high probability event in Lemma C.2, for all h,s € [H] x S,
k
D (i € [Kly) Lh<z]126 )in < Uk < U1,
45)

k

H
D Ui € [Klyy) > 015 < HUk 1.
j=h

i=1
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At the same time, for all h,s € [H] x Sand j > h,

k k
D A(s), = 5, € [Kop,h,s) Z (sh = 5,1 € [Klop,ns)0ij < Ui,
=1 i=1
X Y (46)
Zﬂ(sfl:s,ie Loy s Z i < HUp p,s-
i=1 j=h

C.4 Upper bounds of variance

From the analysis above, it suffices to derive upper bounds for Cy, By, Cj 5 s and By p s. As a middle step, we discuss
several upper bounds about summation of variances. We begin with the following lemma from Azar et al. [2017]. Recall

that VZFJ = Varpj(.|sj;’a;)Vj7fﬁl(-) and Tk = Hk
Lemma C.4 (Lemma 8 of Azar et al. [2017]). With probability 1 — 12,for all k,h,s € [K] x [H] x S, it holds that

k H
> Ui € [Klyp) > Vi < HT), + 2/ H T + H®, < 2HT,
) =1 j=h (47)
D A(s) =5, € [Klopns) D Vi < HXNF(s) + 2/ HSNF(s)e + H?t < 2H>Nf(s).

i=1

The proof results from a combination of Law of total variance, Freedman’s inequality, union bound and our definition of
typical episodes, more details can be found in Azar et al. [2017]. Next, we provide another upper bound for further bounding
Ck (and Cy p,5). Recall that V*; = Varpj(,|5¢_7a;)Vj{H(-).

Lemma C.5. Under the high probability event in Lemma C.2, it holds that

k H
Z Elop) Z < 2H? U1+ 2H?\/Tje. (48)
i=1 j=1

Similarly, under the same high probability event, for all (h,s) € [H] x S,

k H
> A(sj, =5, € [Klpn.s) Z ) < 2H?Uy s + 2H?\ HNE(s)1. (49)

=1 j=h

Proof of Lemma C.5. We only prove the first conclusion, the second one can be proven in identical way.

k k H
Z t)’P Z = Z]l(l € [k]typ) ZES/NPJ(~|837Q3) [ijjrl( ) V;ll( )2]
i=1 j=1 i=1 j=1
k
§2HZ]1(Z E typ ZES’NP |s a [ ]+1( ) ‘/]711( )]
i=1 (50)
k ~
<2H Y 1(i € [klyp) Z Si 1+ H/Tit
i=1 j=1

<2H?*Up 1 + 2H*\/ Tt

The first inequality is because V', ; > V. The second inequality results from the fact that V", ; + V/"{; < 2H. The third

inequality holds since Lemma C.2. The last inequality is due to Lemma C.3. U

Lastly, we prove the following lemma for bounding By, (and By, 5, s). Recall that ‘Z j = Var Bi(ls 7@)‘7]-1 +1(~).
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Lemma C.6. Under the high probability event in Lemma C.2, with probability 1 — 5 K, it holds that

H
Z 106 € Wlop) D (Vig = Vi) < 2H2Ups + SH2SV/HAT0 + 6H*S? AB, . (51)
j=1
Similarly, under the same high probability event, for all (h, s) € [H] x S,
k H
S (s, = 5,0 € Rlopias) S (17“ - V;;.) < 2HUpps + SH3S\JANE()e + 6H3S? AEcgi.  (52)
i=1 j=h

Proof of Lemma C.6. We only prove the first conclusion, the second one can be proven in identical way. We have

H
Z]lze lypz( V) < Z]lze )32 (B s =B Vi (6

(a)

k H
—i—Z]l(i € [k]typ)ZEstpj(.p;,a;) [le-u( ) Vﬁd( ) }

i=1 j=1

(b)
k H
* / 2 * / 2

+Z Klip Z ( S~Pj(~|sj;',a§)v.j+1(3 )) - (E«Nﬁ;(.\s;,a;)‘/jﬂ(s )) .

i=1 7j=1

©
(53)

The inequality holds because of direct calculation and the fact that V}; < V5 < V " 1- Next we bound these terms
separately. First of all,

k H
< 310 € Hop) DA ||Pic1sia) = Picls e
k H
St 2SE (54)
<N "1(i € [k H? (2 &b
_; (i€l ]typ)zz: ( N’(Sj,aj) + Nz(sj,aj)>

<2H?S\/HAT+ 2H*S*AE, gu.

The second inequality comes from Lemma B.2. The last inequality is because of direct calculation. For (b), according to
Lemma C.2, similar to the proof of Lemma C.5, it holds that

k

H
(b) <2H (D 0(i € [klyp) D dijar + HV/Tit | < 2H Uy + 2H*\/Tit. (55)
=1

i=1
1}

Lastly, for (c), we have

k H 2 2 . N
¢) <Y 1(i € [kl Z[( vpy s Vi) = (Bypiuan Vi () +2H2 || (B = PY) (s}, af)
2 > Clsia

k A L 2S5E,
<> 1 § OH - 2H [— 4 og?. Z27¢B
< 2 (te] typ = ( Ni(st, at) * NZ(SZ a’ ))

J\73 7 Jr7g

<4H?*\/HSATy. +4H?S?AE, gt.
(56)

The second inequality holds with probability 1 — % due to Hoeffding’s inequality and Remark B.3. The last inequality
holds because of direct calculation.

Combining the upper bounds of (a), (b), (c), the proof is complete. O
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C.5 Upper bound of regret

With the upper bounds in Section C.4, we are ready to bound C}, By, and the regret. In this section, we assume the high
probability events in Lemma C.2 and Lemma C.4 hold. We begin with the upper bound of Cj, and C}, 5, s. Recall that

Cr =311 11 € [klyp) Y1y (15 + caig) and Chpo = Yoy U(sh, = 5,1 € [Klypns) S jmp (Crig + Caig)-

Lemma C.7. Under the high probability events in Lemma C.2 and Lemma C.4, we have
k
Crp=Y 1(i € [kly) Z (crij + caij) < 3V H2SAT2 + 24/ H3S AU 112 + H?S? A2,
i=1 j=1

Similarly, under the same high probability event, for all h, s € [H| X S,

Cite < 3y HSSANE(3)2 + 2\ [HIS AUy 2 + HOS? A2,
Proof of Lemma C.7. We only prove the first conclusion, the second one can be proven in identical way. We have

H H
Cku]l i € [klyp chm+Z]l i € [klyp Zcm,j.
j=1 J=1

(a) (b)
For (a), due to Cauchy-Schwarz inequality, it holds that

k H V.
(a) = Z Kliyp Z Ni(s )
i=1 j=1 J J ’ J
k H H
VB | M) Y st | 0 ) Y0
i=1 j=1 5(85a3) j=1
(c) (d)

Due to direct calculation, we have (¢) < HSA: and in addition,

(c

k H k H
(d) <D 1€ [Kup) D Vi + Y 1 € Fyp) D (Vi

j j=1 i=1 Jj=1

<2HTy, + 2H?*Uy 1 + 2H?*\/ T,

where the second inequality holds due to Lemma C.4 and Lemma C.5. Therefore, We have

a) < 3V H2SAT? + 24/ H3S AU 112

For (b), according to direct calculation, it holds that

k H
H2S. 302 4 2
; [yp ‘;m S H°S AL”.

2770
Combining (62) and (63), the proof is complete.

o~

Next, we bound By, and By, 5, s. Recall that By, = Zle 1(i € [k]iyp) Zszl b; ; and
Bins =20y 1(sh, =5, € [Klypns) S bij-
Lemma C.8. Under the high probability events in Lemma C.2, Lemma C.4 and Lemma C.6, with probability 1 —

By, < 167/ H2SATy12 + 64/ H3S AU, 112 + 250 H2S? AE, 5% + 250HS? A%

Similarly, under the same high probability event, for all h,s € [H] x S,

Bips < 16\/H35AN,{7(5)L2 + 6\/H3SAUk7h’5L2 +250H2S?AE, g% + 250H>S? A,

(57)

(58)

(59)

(60)

(61)

(62)

(63)

12K’

(64)

(65)
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Proof of Lemma C.8. We only prove the first conclusion, the second one can be proven in identical way. We have

H k H
/ 40HSEE,3L

typ 22 i +Z ‘YP Z i
j=1 NJ(SJ’aJ) i=1 j=1 N Sy’aj)

(a) (b) (c)

Pi( o] g0 10002H3S A2 | 10002H1S1AZEZ ;04 10002 1 51 42,4 2}
+§k:11(z' € %] )§H:4ﬁ. S By(s/ls} 0 min { RS + TG 4 ORISR i
; P/ . N (s}, a?)
i=1 j=1 37
(d)
(66)
We bound these terms separately, we first bound (a) below.
k H k H
(a) <4v/e- Z]l(ie typ ZN7 ) Z]l(l Eliyp) Z‘/z]
i=1 = Ni(shq i=1 =
H k H
<4v/i-VHSAL- Z]l i € [klyp) DV + D016 € ) - (Vi = Vi) ©7)
j=1 i=1 j=1

4 - \/HSA\/ QHTy + 2H2Uy, 1 + 8H2S\/H ATy + 6 H3S2AE, 41

<
<8\/H2SAT2 + 4y/2H3S AUy 102 + 10,/ HAS3 A2, g13.

The first inequality is because of Cauchy-Schwarz inequality. The second inequality results from direct calculation.
The third inequality is due to Lemma C.4 and Lemma C.6. The last inequality holds because for typical episodes,
8H2S\/ HATk-L S QHTk.

According to direct calculation,

(b) < 2¢/20- HSAT}, < \/H2S AT} (68)

For (c), it holds that

(c) <40HSE gt - HSAL < 40H*S?AE, 5i*. (69)

Finally, we bound the most complex term (d) as below. Because of Cauchy-Schwarz inequality,

Z Pq( /|S a )mln 10002 H3 S Au? I 10002H%S4A2E€2,Bb4 i 10002 H654 A2, H?2
s/ N}+1(S’) Ng,+l(sl)2 N}+1(s’)2 I

Nj (s}, a5)

10002H3S A2 10002H*S*AE? ;1 10002 H6S* A2, H2}

k

z / mi 2)
Z i€ 1}’P ZZP |SJ’ J { Ni+1(5/) + N L(s)2 + N
i1 j

I+ j+1( )

()
(70)
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Note that (e) < HS A:. For (f), we have with probability 1 —

- 12K’
2
Z ZE typ ZHZHPl |5]’ ]) (|8], ])‘1
=1 j=1
10002 H3S A2 10002H4S4A2E25L4 10002 H6S4 42,4
T2 tielk P;(s'lsj, a3) mi ; + A H?
Z b ]le o) { Nja(s) Nii(s)? N (52

k
SZIL(Z'E typ ZHQ s5,a5) — Pj(‘[s},a 7)‘1+H2\/Tk’/

*Z“G " me 1000 HS A2 | 10002 HESIAPE it | 10002HOS A%
Nz—&-l( ]+1) N;+1(5;‘+1)2 N;+1(5;+1)2

=1 j=1

H
St 29E 10002H3S A2
2 .8
<§ 1(2 € [Elyp ]gle (2 Ni(s a)+N1(s a))+§ 1(z € [Elyp }: mln{ N ,H}

37 J*g i=1 j+1( ]+1)
H 2774 g4 A2 2 H
. [ 1000°H*S*A?E? 10002 H6S4A%4
*Z]“e ) 2 { E }+Z“6 o) 2 {N()H
+H TkL
<3H?S\/HATy1 + 2H3S*AE, g1+ 1000H*S* AE, 5:* + 2000H°S3 A2,
(71
where the first inequality holds because min{-, H2} < H?2. The second inequality holds with probability 1 — B K due

to Azuma-Hoeffding inequality. The third inequality results from Lemma B.2. The last inequality comes from direct
calculation. Therefore, we have

d) < 7\/ H3S2A12\/HATy1 + 1204/ H5SAA2E, 514 4 200H?S? A% (72)

Combining (67), (68), (69) and (72), the proof is complete. O

Now we are ready to bound the regret until episode k based on optimism. We define the following regret functions.

k k
Regret(k) := Zém, Regret(k) := Zg“ (73)

i=1
In addition, we define the regret with respect to (h,s) € [H] x S:

k
Regret(k, h, s) := Z 1(sh = 8) - i, Regret (k,h,s) Z 1(s} = s) (74)
i=1
Lemma C.9. With probability 1—§3, for all k € [K], as well as the optimism holds (1.e. forall (i,h, s,a) € [k] x[H] xS XA,
Q' (s,a) > Q5 (s, a)), it holds that
Regret(k) < Regret(k) < 1000 (\/HQSATkLQ + H2S?AE, 52 + H3S2AL2) . (75)

In addition, for all (h, s) € [H] x S, we have

Regret(k, h, s) < Regret(k, h, s) < 1000 ( H3SANF(s)2 + H2S2AE, 51° + H352A3> . (76)

Proof of Lemma C.9. For the proof of this lemma, we assume the high probability events in Assumption 3.1, Lemma B.8,
Lemma C.2, Lemma C.4, Lemma C.6 (for all k¥ € [K]) and Lemma C.8 (for all £ € [K]) hold. The failure probability is

bounded by
g B, B B g B
= TR * QPN G
3+3+12+12+ 12K+ 12K_B a7
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We only prove the first conclusion, the second one can be proven in identical way. It holds that

k
Regret(k) < Regret(k) = Z gm
i=1
<Up1 + 250H%S? Ar?
<3Bj, + 3C), + 3H /Tt + 250H352 A2 (78)
<60\ H2SATyi2 + 24,/ H3S AUy, 112 + T50H? S* AE, gi* + 1000H>S* Ai?

<1000 (\/HQSATkLQ + H2S?AE, 52 + H352AL2) :

where the second inequality is because Lemma C.3 and the fact that H - |[k]/[k]sy,| < 250H3S? A2, The forth inequality is
by combining Lemma C.8 and Lemma C.7. The last inequality results from solving the inequality with respect to Uy, ;. [

Corollary C.10. Under the event in Lemma C.9, we have

1000 ( H3SANF(s)i2 + H>S2AE, 12 + HSSzAL2) > Regret(k, h, s)

(sh =) (Vi(s) = Vi (s)) (79)

where the first three inequalities are due to definitions of I@_rgt(k:, h,s) and gzh The forth inequality holds because
V¥ > V,Ti. The last inequality results from our algorithmic design that V}(s) is non-increasing (line 9 of Algorithm 1).

Therefore, we have ‘fo(s) — Vi (s) <1000 ( H3SA2/NF(s) + H2S?AE, gi® /NF(s) + H352AL2/N,’f(s)>.

Now we have proven the first point of our induction. Together with the point 2 (which we will prove in Section C.6), we
have with probability 1 — /3, the whole induction process is valid.

For clarity, we restate the induction process under the high probability event in Lemma C.9. For all k € [K],
1. Given that for all (i, h, s,a) € [k] x [H] x S x A, Q! (s,a) > Q7 (s,a), we prove

P

Regret(k) < Regret(k) < 1000 (\/HQSATkLQ + H?*S?AE, gi* + H352AL2>

and for all (h,s) € [H] x S,

ViE(s) — Vi (s) < 1000 (« [SAH3.2/NF(s) + S2AH?E, 50> /NJ(s) + SQAH3L2/N;L“(3)) .

2. Given that for all (h, s) € [H]xS, ‘N/}{“(s)—Vh*(s) < 1000 (\/SAHSLQ/N}f(s) + S?2AH?E, 512 /NF(s) + SzAH?’Lz/N,’j(s)> )
we prove that for all (h, s,a) € [H] X S x A, @Eﬂ(s, a) > Qi (s, a).
Therefore, with probability 1 — 3, we have (T’ = K H)

—_~—

Regret(K) < Regret(K) < O (\/H2SAT + H2S?AE. 5+ H352A) . (80)

This completes the proof of Theorem 4.1.
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C.6 Proof of optimism

In this part, we prove optimism. Given the condition that for all (h,s) € [H] x S,

VE+L(s) — Vi (s) < 1000 (\/ SAH3.2 /N (s) + SPAH?E, 2 /N (s) + S2AH?.2 /N,’j+1(3)> ,

we prove for all (h, s,a) € [H] X S x A, Qv]ﬁl(s, a) > Q5 (s, a) through backward induction (induction from H + 1 to 1).
Since the conclusion holds trivially for H 4 1, it suffices to prove the following Lemma C.11.

Lemma C.11. Under the high probability event in Assumption 3.1 and Lemma B.8, if it holds that

1. Forall (§,s,a) € [H] xS X A, @;‘?(57@) > Q5 (s, a).

2. Foralls € §,0 < V}ffll(s)—V,f_i_l(s) < 1000 <\/SAH3L2/N;:1_11(S) + SQAHQEeﬁbz/N}’le(S) + SQAHSLQ/N;:I%(S)).

Then we have for all (s,a) € S x A, @Z“(s, a) > Qi (s, a).

Proof of Lemma C.11. Forall (s,a) € S x A, since Qf (s, a), H > Q}(s, a), it suffices to prove that 7 (s, a) + PF* -
Vit (s.a) + b3 (s, 0) > Qj (s, a). We have
7t (s, a) + IS;IfH : vhkrll(sa a) + by (s,a) — Qi (s, a)

> (?Z‘H — rh) (s,a) + (ﬁ;f“ — Ph) V(s a) + bﬁ“(s,a)

T 7k+1
Vars/wﬁ:+1(-|s,a)vh:1 () L 19HSEE,5 <l
Ny (s, a) Nyt(s,a)

> (ﬁ,’;‘“ - Ph) Vi (s a) +2

~ . 27173 2 10002 H4S4A2E2 4 2776 Q4 A2,4
Zs’ P]ichl(s/‘S’a) mln{lOOO H3SAL .8 10002 H6S54 A2, 7H2

N ATk N
i NFEL(s) NFTI(s)? NFTI(s)?
Nf(s,a)
~ * .. ~ ~k+1 .-
< 2Var, pren (g0 Vi () ¢ ) Var,, pretsa)Vast ()¢ 1THSE 5 -1
= Nk + NE+L NE+1
h (8, a) h (8, a) h (370') (81)
~ . 27173 2 10002 H4S4A2E2 14 2776 Q4 A2,4
Z ,PkJrl(S/‘S a) min 100~0ﬂb€ SAL . e,8 1000 Hls A2, H?2
s h ) k+ ’ k+ 72 k+ N2 )
Nh+1 (s) Nh+1 (s") Nh+1 (s")
+4+/1 - ~
Nk
h(s,a)
A * (). _ VAR YA
- 2vars/~Pf+l(‘|s,a)Vh+1( ) 42 Vary, prt s, Vi ( )¢
N N1 (s,a) N1 (s,a)
h ’ h )
Bkl .} 10002H354,2 | 1000°H4S2AEZ 1* 19002 054424
ZS’ Ph (S/“S’a’) min NE+L o - NLEE T 26 . + NEFL L2 ‘ 7H2
Nh+l (S ) Nh+1 (S ) N}L+1 (s )
+4+/1 - ~
NF(s,a)
r\S,
>0

9

where the first inequality is because of Bellman equation and condition 2. The second inequality holds since the definition
of bZH and Lemma B.1. The third inequality results from Lemma B.6. The forth inequality comes from Lemma B.9 and
Remark B.3. The last inequality is due to the following analysis.

Because y/Var(X) < y/2Var(Y) + /2Var(X —Y) (Lemma 2 of Azar et al. [2017]), we have

\/Vars'wlg}’f+l(-\s,a)viz(+l(.) < \/2Vars’~ﬁ:'+l(-\s,a)thill(.) + \/QVars’Nﬁ}If+1(-|s,a) (th—:rll() - f:—‘rl()) . (82)

(a)
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In addition,

a)s\/zzﬁﬁl(sws,a) (T = Vi)

Nlc+1( ) + Nk+1( ) Nk+1( ) ’

5 10002H3S A2 10002H*S*A2E? ;14 10002 H6S4A2,4
< 62Pf+1(5’|5,a) min{ 000%H*5 A B 000%H°5%A% 2
! h+1 h+1 h+1

2174Q4 A2 2 4
<5 2Zﬁk+1(s/|s 4) min 10002 H3S A2 N 10002 HASTAPES gt 10002HOS4A%4
= h ’ T+l k+1 k+1 )
s’ Nh+1( ) Nh+1( ) Nh+1( )

where the first inequality results from the definition of variance. The second inequality holds because of condition 2 and the
fact that min{(a + b + ¢)?, H?} < 3min{a? + b? + ¢?, H?}. The last inequality holds according to Assumption 3.1.

Finally, plugging (82) and (83) into (81), we have the last inequality of (81) holds. Therefore, the proof of Lemma C.11 is
complete. O

D Missing proofs in Section 5

In this section, we state the missing proofs in Section 5. Recall that N} is the original count, N * is the noisy count after
step (1) of both Privatizers and N, ,’f is the final private counts.

Proof of Lemma 5.1. Due to Theorem 3.5 of Chan et al. [2011] and Lemma 34 of Hsu et al. [2014], the release of
{N’“(s @)} (h,s,a,k) satisfies $-DP. Similarly, the releases of {Nh(s a,5")} (k,hs,a,s) and {Rh(s @)} (k,h,s,a) both sat-

isfy £-DP. Therefore, the release of the following private counters {N (5,0) }(h,s,0,k)> {N (8,0, 8") }(k,hys,a,5) and
{Rh(s @)} (k,h,s ) satisfy e-DP. Due to post-processing (Lemma 2.3 of Bun and Steinke [2016]), the release of all
private counts {Nh (8,0) }(h,s,0,k)> {Nh (5,a,5")} (k,h,s,a,s') and {Rh(s @)} (k,h,s,a) also satisfies e-DP. Then it holds that
the release of all 7y, is e-DP according to post-processing. Finally, the guarantee of e-JDP results from Billboard Lemma
(Lemma 9 of Hsu et al. [2014]).

For utility analysis, because of Theorem 3.6 of Chan et al. [2011], our choice ¢ = m in Binary Mechanism and a

union bound, with probability 1 — g, for all (k, h,s,a,s’),

~

[Nji(s,a,8") = Nii(s,a,5')| < O(glog(HSAT/ﬂ)Q)v [N (s,a) = Nj(s,a)| < 0( log(HSAT/B)?),

. o (84)

|[Bh(s,0) = Rj,(s,a)| < O(— log(HSAT/B)?).
Together with Lemma 5.4, the Central Privatizer satisfies Assumption 3.1 with F, g = (3(%) O
Proof of Theorem 5.2. The proof directly results from plugging F. g3 = O( H ~) into Theorem 4.1. 0
Proof of Lemma 5.4. For clarity, we denote the solution of (4) by N} and therefore N F(s,a,s") = NF(s,a,s") + E;é‘* ,

N{f(&a) N’“(s a) + E;’S

When the condition (two inequalities) in Lemma 5.4 holds, the original counts { Nf(s, a, s')}s s is a feasible solution to
the optimization problem, which means that

Eep
7

max INF(s,a,s") — NF(s,a,s")| < Htgx|N,]f(s,a, s') = NF(s,a,5)| <

Combining with the condition in Lemma 5.4 with respect to N, F(s,a, '), it holds that

Eep

INF(s,a,8) — Nf(s,a,8)| < |NF(s,a,s") — ]v,’f(s,a,s’ﬂ + |]Wf(s,a, s') — NF(s,a,s")| < 5
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Since Nf (s, a,s') = NF(s,a,') + 22 and Nf (s, a,5') > 0, we have

]v,lf(s,a,sl) > 0, |Z\~7;f(s,a,s’) — Nf(s,a,8")| < Ecp. (85)

For Nf (s, a), according to the constraints in the optimization problem (4), it holds that

_ ~ E.
[N (s.0) = Nf(s,0)] < =57

Combining with the condition in Lemma 5.4 with respect to N, F(s,a), it holds that

_ _ N N E.
[N (s.0) = Ni(s. )| < [N£(s,0) = Nf(s,0)| + [Nf (s, 0) = Nf(s. )] < =52,

Since Nf(s,a) = Nf(s,a) + 252, we have

Nf(s,a) < Nf(s,a) < Nf(s,a) + E. p. (86)

According to the last line of the optimization problem (4), we have N (s,a) = > cs NF (s, a,s’) and therefore,

Nf(s,a) =Y Nfi(s,a,5). 87)
s'eS

The proof is complete by combining (85), (86) and (87). O

Proof of Lemma 5.6. The privacy guarantee directly results from properties of Laplace Mechanism and composition of DP
[Dwork et al., 2014].

For utility analysis, because of Corollary 12.4 of Dwork et al. [2014] and a union bound, with probability 1 — g, for all
(k’ h? S’ a? Sl)’

N (s,0.5') = NE(s,a,8)| < OC2 K Iog(HSAT]R)), |NE(s,a) — N (s )| < O(2 /K Tog(HSAT]))

B (s,0) — Rh(s,0)| < O(/Ko(HS AT/ ).
(88)

Together with Lemma 5.4, the Local Privatizer satisfies Assumption 3.1 with F, g = 6(%\/? ). O

Proof of Theorem 5.7. The proof directly results from plugging F. g3 = 6(%\/? ) into Theorem 4.1. O
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