Scalable Irregular Parallelism with GPUs: Getting
CPUs Out of the Way

Yuxin Chen
University of California, Davis
Davis, USA
yxxchen@ucdavis.edu

Aydin Bulug

Lawrence Berkeley National Laboratory
Berkeley, USA
abuluc@lbl.gov

Abstract—We present Atos, a dynamic scheduling frame-
work for multi-node-GPU systems that supports PGAS-style
lightweight one-sided memory operations within and between
nodes. Atos’s lightweight GPU-to-GPU communication enables
latency hiding and can smooth the interconnection usage for
bisection-limited problems. These benefits are significant for
dynamic, irregular applications that often involve fine-grained
communication at unpredictable times and without predeter-
mined patterns. Some principles for high performance: (1) do
not involve the CPU in the communication control path; (2)
allow GPU communication within kernels, addressing memory
consistency directly rather than relying on synchronization with
the CPU; (3) perform dynamic communication aggregation
when interconnections have limited bandwidth. By lowering
the overhead of communication and allowing it within GPU
kernels, we support large, high-utilization GPU kernels but
with more frequent communication. We evaluate Atos on two
irregular problems: Breadth-First-Search and PageRank. Atos
outperforms the state-of-the-art graph libraries Gunrock, Groute
and Galois on both single-node-multi-GPU and multi-node-GPU
settings.

Index Terms—PGAS, distributed GPUs, asynchronous, irreg-
ular application

I. INTRODUCTION

The bulk-synchronous communication model [1] is one of
the most popular models for distributed CPU computing. By
splitting up applications into bulk phases of communication
and computation, the bulk synchronous parallelism (BSP)
model produces communication patterns that are a good match
for modern inter-node communication networks, which require
large messages to achieve peak communication bandwidth.
The BSP model performs particularly well for programs
with regular, fixed communication patterns, but can encounter
difficulties when communication volume and timing becomes
irregular and dynamic.

More recently, the distributed implementations of many
Partitioned Global Address Space (PGAS) languages such as
UPC, UPC++ [2], and OpenSHMEM [3] have found success in
adopting an alternative communication model: one that issues
many independent small communication messages. This model

SC22, November 13-18, 2022, Dallas, Texas, USA
978-1-6654-5444-5/22/31.00 ©2022 TEEE

Benjamin Brock
University of California, Berkeley
Berkeley, USA
brock@cs.berkeley.edu

Katherine Yelick
University of California, Berkeley
Berkeley, USA
yelick @berkeley.edu

Serban Porumbescu
University of California, Davis
Davis, USA
sdporumbescu@ucdavis.edu

John D. Owens
University of California, Davis
Davis, USA
jowens@ece.ucdavis.edu

works well in applications where independent computation can
be scheduled simultaneously with communication, allowing
these applications to overlap communication latency with com-
putation time. In addition, small one-sided communication re-
moves the need for remote processor synchronization, and thus
reduces overall synchronization overhead. And small commu-
nications can often be evenly spread over the runtime of the
program, thus smoothing network usage, compared to the more
variable network usage in many bulk-synchronous programs.
These benefits are especially significant for dynamic, irregular
applications that often involve fine-grained communication at
unpredictable times and without predetermined patterns.

These advantages often allow PGAS implementations to
achieve speedups over the traditional BSP approach [4]-[8].
The chief disadvantage of small-grained communication is
lower bandwidth utilization, but in spite of this, Bell et al. [9]
showed that this communication model can provide significant
performance advantage even on interconnection bandwidth-
limited applications.

Despite these PGAS successes on distributed CPUs, they
are still not the most common target on distributed GPUs for
three reasons:

1) Historically, GPU memory was not directly accessible
by other GPUs in a distributed system. This precluded
efficient, fine-grained asynchronous GPU-to-GPU com-
munication, since these had to be routed through the
CPU, increasing latency.

2) Traditionally, GPU communication has taken place at
kernel boundaries. Relaxing this restriction significantly
complicate data consistency. A single large kernel is
unabled to achieve much overlap, since communica-
tion becomes much more coarse-grained, while running
many small kernels usually leads to significant kernel
launch overheads and low GPU utilization.

3) The most prevalent formulations of many distributed
algorithms use the BSP model. These formulations
may not map well to one-sided communication. In
particular, algorithmic formulations with more inherent

asynchronous operations are better suited for one-sided
communication, but many (BSP) formulations may not
be structured in this way.

Consequently, GPUs on distributed systems have predomi-
nantly been used in a bulk-synchronous way for both compu-
tation and communication. A PGAS-like programming model
however, can be a superior alternative especially for irregular
applications: those with varying communication and synchro-
nization patterns. Thus, in this work, we describe “Atos”,
a PGAS-style framework for asynchronous execution across
multiple GPUs in a cluster. Atos supports fine-grained, one-
sided communication, along with the following features:

1) Though direct GPU-to-GPU data movement is now
widespread on modern systems, the communication con-
trol path (including communication preparation and trig-
gering, possibly matching and synchronization) is even
today typically run on CPUs. Our work moves the com-
munication control path to the GPU and achieves authen-
tic one-sided communication between GPUs by leverag-
ing NVIDIA’s OpenSHMEM-based NVSHMEM, which
maps GPU memories to the NIC (and vice versa) so
that GPU memory is directly accessible by remote GPU
threads without local or remote CPU involvement.

2) Traditionally, ensuring data consistency before commu-
nication is implemented by synchronizing CUDA ker-
nels from the CPU. This implicitly couples data consis-
tency with synchronization. To avoid this coupling and
the resulting overheads, Atos implements asynchronous
distributed queues to ensure data consistency and enable
one-sided kernel communication without any need for
synchronization.

3) Communication traditionally occurs only after synchro-
nization of CUDA compute kernels. This forces a
trade-off between (a) large, high-utilization GPU ker-
nels with delayed messages and little communication-
computation overlap and (b) small, low-utilization GPU
kernels with more frequent communication and more
communication-computation overlap. Atos avoids this
tradeoff by enabling high-utilization GPU kernels with
fine-grained lightweight communication from within the
kernel. This leads to more overlap of communication
and computation, as smaller communication sizes make
it easier to find sufficient computation to hide latency.

4) Enabling communication without explicit synchroniza-
tion enables the deployment of synchronization-free
algorithms, with potential performance benefits due to
reduced synchronization cost. In contrast, traditional
BSP approaches on the GPU preclude the use of
synchronization-free algorithms.

5) Finally, our approach is robust enough to work effi-
ciently without changes on multi-GPU systems with two
different interconnect families, NVLink and InfiniBand
B).

Atos’s approach is distinct enough from traditional ap-
proaches that we can evaluate our system and show apprecia-

ble differences with previous work even with relatively simple
algorithms. For our evaluation, we implemented breadth-first
search (BFS) and PageRank and compare our single-node,
multi-GPU NVLink implementation against Groute [10] and
Gunrock [11] and our multi-node, multi-GPU InfiniBand (IB)
implementation against Galois [12].

In our work, we examine NVLink and InfiniBand.

a) NVLink: Using an NVLink interconnect, we show
that the fine-grained one-sided communication in our BFS and
PageRank implementations enables superior performance and
scalability compared to other frameworks because of better
latency hiding and better use of the network.

b) IB: InfiniBand is less efficient for small messages than
NVLink. To optimize communication for InfiniBand, Atos im-
plements a communication aggregator that runs concurrently
with application code, transparently aggregating messages
together and sending them off in larger message bundles.
We show that this aggregator effectively addresses bandwidth
underutilization on an IB system due to fine-grained one-sided
communication. Our Atos BFS and PageRank implementa-
tions also outperform other frameworks with respect to runtime
and scalability on an IB-based system.

II. PGAS PROGRAMMING MODEL ON GPUSs

Many of the fastest supercomputers available today use
GPUs for the bulk of their computational performance, while
CPUs are responsible for communication. GPUs achieve high
performance and energy efficiency through simple throughput-
optimized cores and parallelism, but they have limited support
for OS-level features such as interrupts, single helper threads,
or the large memory space needed for dynamic message
buffering. Common communication protocols, such as two-
sided send/receive or collective communication, are complex
and require message matching and synchronization; these
typically run on CPUs but are a significant challenge to
implement efficiently on GPUs.

PGAS programming models instead feature one-sided com-
munication primitives in the form of implicit communication
(pointer and array references) and explicit put and get calls.
This approach is a good fit for modern GPU-to-GPU com-
munication mechanisms such as NVLink or PCle within a
single node. Recent advances enable GPUs in separate nodes
to perform one-sided memory operations directly into and out
of the InfiniBand network. Furthermore, both PGAS and the
GPU use a relaxed memory model, which automatically uni-
fies the guarantees for ordering, synchronization, and atomic
operations.

On distributed CPU systems, from the memory model
perspective, the PGAS model allows users to directly access
the union of shared memories across nodes. Users can access
global pointers and distributed arrays and connect them into
a single distributed data structure. From the programming
model perspective, PGAS languages use a SPMD approach
where a fixed set of processes start together at the beginning
of the computation and terminate together at the end. Some
PGAS frameworks such as Legion use a sophisticated runtime

to map work to hardware automatically with a default task
mapper or a user-provided mapper. The use of accelerators
complicates the PGAS programming model because GPUs
have a hardware scheduler internally (scheduling CTA to SMs
within a kernel, or concurrently running two kernels). PGAS
has a uniform model for parallelism within and between nodes,
but does not have a natural way to deal with GPUs. Our
work here proposes a single integrated programming model
that is efficient, flexible, and principled, contrasting against
the current disjoint model for on-node GPU parallelism that
is tacked onto a SPMD model between nodes.

Previous asynchronous multi-GPU frameworks have not yet
reached this goal. For example, Galois [12], PTask [13], and
StarPU [14] each use a similar approach: treating each GPU
as the equivalent of a CPU process. Within these frameworks,
each GPU kernel collects all the communication generated
during the kernel and issues it in bulk at the end of the kernel.
This approach is typically used with large kernels, which
naturally results in large bulk communications. It forces appli-
cation/framework implementers into an unappetizing tradeoff:
high GPU utilization but high-latency communication, or low
GPU utilization with lower-latency communication.

An alternative is to treat each GPU thread as the analog of
a CPU process, and allow each GPU thread to independently
issue communication requests. However, an individual GPU
thread is rather weak, and coordinating the hundreds of
thousands of concurrently running threads required to fully
utilize a GPU is a significant challenge.

What programmers want is more flexibility: the ability of
the programmer to specify a group of threads with a size
that is the best fit for the application. The GPU already has
abstractions (warp, CTA, cooperative thread group) that help
organize these groups. The abstraction we choose for Atos is
a “worker”: a set of GPU resources, including a configurable
number of CUDA threads, shared memory, coupled with the
number of tasks that this worker will target. One of the
significant advantages of specifying groups of threads as a
worker is that collective loads/stores among the threads of a
worker can be issued as coalesced accesses that are necessary
to make the most of the GPU memory system. Listings 1 and 2
show an intuitive example, simplified for clarity, of multi-GPU
BFS programmed in the traditional way and with a PGAS
style.

III. ATOS’S DESIGN DECISIONS

A key feature of PGAS programming models is the de-
coupling of communication and synchronization, which are
inherently intertwined in the BSP model [15]. Unlike BSP,
which requires global synchronization in order to perform
communication operations like all-to-all data redistributions,
one-sided memory operations allow PGAS programs to send
data asynchronously, without synchronization. This can enable
significant performance improvements for applications like
graphs [16] and genomics [17] algorithms. The many-to-many
communication pattern [17], [18] is a well-studied alternative
to BSP’s synchronous all-to-all that uses asynchronous queue

Listing 1 Traditional approach to a multi-GPU BFS.

BFS(graph G) {
frontier F = {source_node};
Vertex recv_buf[], send_buf[];
while(!F.empty()) {
GPU: :one_step_traversal<<stream>>>(F, G, send_buf);
// Launch CUDA kernel
cudaStreamSynchronize(stream);
MPI_Irecv(recv_buf, request);
MPI_Isend(send_buf);
MPI_Wait(request);
GPU: :merge_recv_buf_update_depth<<<stream>>>(F,G,recv_buf);

}

__global__ void
one_step_traversal(frontier F, graph G, Vertex *send_buf)

for (thread in all_threads) {
Vertex node = F.exclusive_pop();
for (j in node.neighbor()) {
if (j.remote())
send_buf.append(3);
else if (F.depth_update(j, cur_depth) == SUCCEED)
F.push(3);

Listing 2 PGAS approach to a multi-GPU BFS.

BFS(graph G) {
GPU: :BFS_traverse<<stream>>>(F, G);
cudaStreamSynchronize(stream);

// Launch CUDA kernel

__global__ void BFS_traverse(frontier F, graph G) {
frontier F = {source_node};
while (!F.empty()) {
for (thread in all_threads) {
Vertex node = F.exclusive_pop();
for (j in node.neighbor()) {
if (j.remote())
if (F.depth_update_remote(j, cur_depth)==SUCCESS)
// one-sided remote update
F.push_remote(j); // one-sided remote update
else if(F.depth_update_local(j, cur_depth)==SUCCESS)
F.push_local(j);

insertions to distribute data without global coordination. In
this work, we take advantage of asynchronous communication
to enable better performance on irregular graph problems.

Our GPU dynamic scheduling framework, Atos, implements
a PGAS programming model. Inspired by thread-parallel CPU
programming systems, Atos is programmed in a task-parallel
way, maintaining a distributed queue of tasks. GPU workers
fetch a task from the queue, then process it. Any newly
generated tasks are added to the local distributed queue if
they belong to a local process, and otherwise added to the
remote distributed queue of the owner process. The program
runs until either a stop condition is met or the entirety of the
distributed queue is empty (Listing 3). In our system, we use
the following terminology:

o worker: one or a group of GPU threads that work together
as a single unit (optionally leveraging shared memory).

« task: one or more pieces of work that are scheduled as
a single unit in our system. Tasks may consist of one or
multiple data elements.

o application function f(): the code that processes each
task. Each application function declares the worker size
it requires to run.

Listing 3 Simplified task parallelism in Atos for illustration.

for each worker:
while not dist_queue.empty():

task = dist_queue.concurrent_pop(task.size())

new_tasks = f(task)

if(new_tasks.local())
dist_queue.concurrent_push(new_tasks)

else
dist_queue.concurrent_push(new_tasks, findPE(new_tasks))

Atos is a configurable framework with three key configura-
tion decisions:

1) Kernel implementation strategy: Atos can use either dis-
crete kernels or persistent kernels [19]. In the latter case,
only one kernel is launched, which remains resident
on the GPU until the program finishes. This strategy,
while more complex, is better suited for applications
that are otherwise dominated by kernel launch overhead.
Listing 3 is written using a persistent kernel. We could
alternatively interchange its outer and inner loops, mak-
ing one discrete kernel call per iteration.

2) Queue architecture: a standard distributed queue vs. a
distributed priority queue. In the standard queue, tasks
are processed in FIFO order, while a more complex
priority queue can prioritize tasks marked with higher
priority. As we will show later, this capability is im-
portant in an asynchronous setting to reduce the cost of
speculation.

3) Worker size: Atos provides thread-, warp- and CTA-
sized workers, to support tasks of different sizes and
different synchronization requirements.

Listing 4 shows Atos distributed queue APIs. launch* API
functions are used to launch workers that repeatedly pop tasks
from the local and remote receive queues; each worker then
applies function f1 to the popped task. When the worker
fails to pop, it runs function f2 (default noop) instead. In
the 1aunchCTA API, the choice of numThread determines the
number of threads used for each worker. launchThread and
launchWarp use worker sizes with 1 and 32 threads respec-
tively and can each be implemented more efficiently using
warp intrinsic instructions. Under the persistent-kernel mode,
numThread X numBlock, by default, is set to the maximum
number of threads that can concurrently reside on the GPU
based on the application’s register and shared memory usage,
but can be overridden by users.

To illustrate the use of the framework API, we use the
example of BFS with warp worker granularity. In Listing 5,
we create a BFS class and define and allocate memory for its
relevant variables. The code defines a SIMD function BFSWarp,
in which all threads in a warp participate, collectively iterating
over all neighbors of node and updating their depth values. If
the depth of a neighbor is improved, neighbor is pushed into
the local queue if it is a local vertex, otherwise into the remote

Listing 4 Atos framework APIs.

template<typename RECV_T, typename LOCAL_T, typename COUNTER_T>
class DistributedQueues {
public:
__host__ void init (int my_pe, int n_pes, COUNTER_T local_cap,
COUNTER_T recv_cap, int num_queues, int iteration);

template<typename F1, typename F2, typename... Args>
__host__ void launchThread (bool ifPersist, int numBlock,
int numThread, int shareMem, F1 f1, F2 f2, Args... arg);

template<typename F1, typename F2, typename... Args>
__host__ void launchWarp (bool ifPersist, int numBlock,
int numThread, int shareMem, F1 f1, F2 f2, Args... arg);

template<int FETCH_SIZE,

typename F1, typename F2, typename... Args>

__host__ void launchCTA (bool ifPersist, int numBlock,

int numThread, int shareMem, F1 f1, F2 f2, Args... arg);
¥

template<typename RECV_T, typename LOCAL_T,
typename THESHOLD_T, typename COUNTER_T>
class DistributedPriorityQueues {
public:
__host__ void init (int my_pe, int n_pes, COUNTER_T local_cap,
COUNTER_T recv_cap, THRESHOLD_T threshold,
THRESHOLD_T threshold_delta, int num_queues, int iteration);

#Same thread-,warp- and CTA-launch APIs as in DistributedQueues
b

Listing 5 Atos BFS (worker size: warp).

struct BFS {
int my_pe;
int n_pes;
int total_nodes;
int total_edges;
CSR *csr;
int xdepth;
DistributedQueues<int, int, int> worklists;

BFS(Csr my_csr, int local_cap, int recv_cap, int my_pe,

int n_pes, int num_gs) {
csr = &my_csr;
worklists.init(my_pe, n_pes, local_cap, recv_cap, num_gs);
nvshmem_malloc(&depth, sizeof(int) * total_nodes);

}

void BFSStartWarp(int numBlock, int numThread) {

worklists.launchWarp(1, numBlock, numThread, @, BFSWarp(), *this);

}
b

class BFSWarp {
public:
__device__ void operator()(int node, BFS bfs) {
int depth = bfs.depth[nodel;
int node_offset = bfs.csr.neighborlist_start(node);
int neighborlen = bfs.csr.neighbor_list_length(node);
for (int item=LANE; item<neighborlen; item = item + 32){
int neighbor = bfs.csr.get_neighbor(node_offset + item);
int old = atomicMin(bfs.depth+neighbor, depth+1);
if (old > depth + 1) {
if(bfs.iflocal(neighbor))
bfs.worklists.push_warp(neighbor);
else {
int pe = bfs.csr.findPE(neighbor);
if(atomicMin(bfs.depth+neighbor, depth+1, pe) > depth+1)
// remote RDMA direct atomic operation
bfs.worklists.push_warp(neighbor, pe);
// RDMA push to remote receive queues
}
}
}
__syncwarp();
}
3

receive queue of its owner GPU. Lastly, we pass BFSWarp()
and its arguments onto launchWarp and invoke it.

A. Implementing One-Sided GPU Communication

The three most important design decisions we make in
implementing Atos focus on enabling lightweight, efficient
one-sided GPU communication:

1) GPU-Based Control Path: Data transfers require two
paths: the path by which data actually moves, and the commu-
nication control path that includes preparing messages, trigger-
ing data movement, and signaling the remote process. Most
frameworks enable a GPU-to-GPU data movement path, but
implement the control path on the CPU. Atos implements both
on the GPU, which both reduces control path latency and low-
ers overhead. Together these improvements make fine-grained
communication feasible and potentially desirable. Briefly, on
NVLink systems, we leverage CUDA’s unified memory to
allow reads from and writes to remote GPU memory on the
same node. On IB systems, we turn to NVIDIA’s NVSHMEM
and its put, get, and atomic operations. Both mechanisms keep
all control on GPUs and do not require CPU intervention.

2) Ensuring Data Consistency with an Asynchronous Dis-
tributed Queue: We implement a lock-free queue that is able
to replace the heavyweight synchronization between CPUs
that would traditionally occur at the end of CUDA kernels
before initiating communication. Our design is able to avoid
two resulting overheads: the cost of synchronization and the
lack of overlap of communication and computation.

Maintaining data consistency in a queue without kernel
synchronization where multiple asynchronous Atos workers
are both reading and writing is a challenge. Because our
queue is implemented as a single block of memory and
respects FIFO ordering, we use a counter-based mechanism
(Listing 6) to carefully manage the queue’s start and end
states to guarantee consistency, preventing invalid data from
being popped before it is either processed locally or sent
to remote GPUs. In our design, all data before end in the
queue is valid and ready to pop. end max and end count
are used to update end; Listing 6 details the mechanism.
In contrast, other concurrent queue implementations such as
Troendle et al. [20] and the broker queue [21] address this
problem by wrapping each queue item in a tuple with a flag.
Pushing to their queues requires 3 steps: (1) write the item to
the reserved spot in the queue; (2) call __ threadfence();
(3) set the corresponding flag to ready. Popping from their
queues requires reading a valid flag beforehand. Our choice
of additional global counters instead of per-item flags results
in two benefits: (1) the flag solution consumes unnecessary
memory (typically an entire word to ensure alignment), and
(2) querying new work items can be done via a single end
counter broadcast, which consumes less memory bandwidth
than polling a different flag for each item. In addition, our
choice of an atomicAdd synchronization primitive instead of
atomicCAS [22], [23] enables higher performance under high-
contention concurrent popping, as CAS failure probability
increases significantly with increasing contention.

Our implementation differs from recent queue designs [20],
[21] that also use atomicAdd in two ways. (1) We use the
GPU thread hierarchy to reduce contention. More specifically,
each (warp- or CTA-sized) worker computes the total number
of push/pop requests for the entire worker first, then only
the worker’s leading thread atomically increases the counter.
(2) We pad the memory to ensure end, start, end alloc,
end max, and end count are stored in different cache lines
because those counters are each updated through atomics and
storing them in the same cache line would otherwise serialize
the updates.

Listing 6 Update counter end mechanism.

void Queue: :push_warp(T item)

unsigned mask = __activemask();
uint32_t total = __popc(mask);
int rank = __popc(mask & lanemask_1t());
int leader = __ffs(mask)-1;
uint32_t reserv_index = -1;
if (rank==0) reserv_index = atomicAdd(&end_alloc, total);
reserv_index = __shfl_sync(mask, reserv_index, leader);
queuel[reserv_index+rank] = item;
if (rank==0) {
atomicMax(&end_max, reserv_index+total);
__threadfence();
3
__syncwarp(mask) ;
if (rank == 0) {
if (atomicAdd(&end_count, total) + total == end_max)
atomicMax(&end, end_max);

These two differences enable our queue implementation to
perform better than the alternatives. We characterize queue
performance with three experiments, each with high con-
tention: (1) n concurrent threads each push to the queue 10
times; (2) n concurrent threads each pop from the queue
10 times; and (3) n concurrent threads each push and then
pop from the queue 10 times without synchronization be-
tween push and pop. We compare two implementations of
our queue—warp-API and CTA-API—with the open-source
broker queue [21] and with our own implementation of an
atomicCAS-based queue!. Figure 1 shows the runtime of
concurrent push, concurrent pop and, concurrent pop-and-push
as the number of threads, and hence contention, increases. In
all benchmarks, both the warp and CTA implementations of
our queue are faster than the broker queue and CAS-based
queue and show better scalability.

3) Integrating a communication aggregator: Different ap-
plications result in different native message sizes. In order to
minimize programmer burden, the ideal programming model
would allow applications to use their native message sizes.
This presents a challenge, however, when an application
prefers small, irregular message sizes, as is the case for the
applications considered in this work. Such communications
may be, from a performance perspective, poorly suited for a

"Troendle et al’s queue [20] would be an interesting comparison, but
only supports AMD GPUs and lacks warp intrinsics. Our atomicCAS queue
implementation leverages warp intrinsics to avoid inter-warp contention.

concurrent push concurrent pop

02 concurrent pop and push

I
o

0.06 - our queue(warp)
—e— our queue(cta)

=)
5y
o
7y

Broker queue
—— CAS queue(warp)
—=— CAS queue(cta)

(
(=3
=3
-
time (ms)
< o
time (ms)
o

£ 0.03 e

o
=3
b3
=)
=3
b3

L

0.02 0200855,

< 0 0
0 5 10 0 5 10 0 5 10
#threads 0% #threads 0% #threads «10*

Fig. 1. Runtime performance of our queue with warp- and CTA-sized workers
against the broker queue [21] and our implementation of a CAS-based queue.

= PClegen3 == NVLink
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

Bandwidth Efficiency

25 50 75 100 125

Requested Data Size (bytes)

Fig. 2. Bandwidth efficiency (fraction of message size occupied by payload)
vs. requested bytes on PCle Gen 3 and NVLink. The minimum payload size
on NVLink is a 32-byte sector. A NVLink package can contain up to 4 sectors.

particular communication technology (primarily, in our case,
InfiniBand). We next note design issues for each of our
communication technologies:

a) Choosing communication size on NVLink: For
NVLink-connected single-node GPUs, remote memory ac-
cesses essentially look like GPU loads and stores. With
them, remote GPU memory access latency can be hidden by
other instructions in a kernel, taking advantage of dynamic
instruction scheduling. Any adjacent remote memory accesses
within a warp (a group of 32 neighboring threads) will first be
aggregated before issue (“coalescing”). Unlike other commu-
nication technologies such as PCle or InfiniBand with a wide
range of payload sizes, NVLink packages are more restricted
in payload size (only up to 128 bytes). Figure 2 shows that
even modest payload sizes achieve relatively good bandwidth
efficiency over NVLink. Coupling this bandwidth efficiency
with a relatively low latency and high throughput (even a
32 byte payload has more than 50% efficiency), NVLink is
a good solution for the kind of small random accesses we
expect to target.

b) Choosing communication size on InfiniBand: Infini-
band presents a more significant challenge. IB messages
pass through the NIC and are not able to take advantage
of instruction-level parallelism (ILP) in the way NVLink
messages do. IB bandwidth is lower, and messages have
longer latencies. IB supports a smaller number of operations
than NVLink (e.g., lacking atomicMin). IB does have one
advantage: because IB memory requests are offloaded to the
NIC, IB requests require only one or a few threads to initiate
data transfer, in contrast to the many threads involved in an
NVLink request. In summary, more severe latency and band-
width constraints mean that if we follow the same strategy as
NVLink communications with small messages, we are likely

to make poor use of IB and gate our overall performance.

c) Communication Aggregator: We implement a com-
munication aggregator that runs transparently alongside ap-
plication code to aggregate individual requests into larger
messages. By achieving larger message sizes, we are able to
improve bandwidth utilization. Figure 3 shows the workflow
for our communication aggregator, which bundles messages
together locally until either a maximum message size or a
maximum wait time is reached. Once one of these user-
configurable parameters is exceeded, the runtime will send
the bundled messages over the wire. Our aggregator allows
us to achieve higher IB bandwidth utilization, through larger
messages sizes, at the cost of higher message latency.

Our aggregator is transparent to the programmer?, who
implements their application by writing tasks. Inside tasks,
users can use a combination of local memory operations, new
task launches, and PGAS-style one-sided memory operations,
to implement their applications. Our aggregator is critical for
performance, as it allows us to decouple the code that gen-
erates new messages from the code that actually sends them
out over the network. Users can then impelment their tasks
using the task granularity most natural for their application,
and these can be sent out over the network in batches.

An ideal batch size will generate messages that are large
enough to saturate the network bandwidth while maintaining a
relatively low latency. In order to determine the optimal batch
size, we perform two experiments. (1) Measure the latency
cost at different message sizes (Figure 4, left). (2) Measure
the bandwidth achieved at different message sizes (Figure 4,
right). In these experiments, each send is performed as a
blocking send operation followed by a system memory fence
(necessary to ensure completion of the send) and a remote
counter update. When initiating communication on the GPU
in our IB system, the optimal message size balances between
minimizing latency and maximizing bandwidth. Figure 4
shows this tradeoff on our system; we choose a 1 MiB message
size, with near-minimal latency and high bandwidth. This
message size is consistent with previous studies of optimal
message size for GPU-initiated communication on IB net-
works [24]. While larger message sizes always achieve higher
bandwidth during the time the data is being sent, smaller
messages are preferred when there are not enough tasks to
fill the buffer. In such a case, without another mechanism for
triggering a message, the queue batching might wait forever.
If the application takes long to fill the buffer, communication
latency would increase, which hampers increased throughput
because longer latency hinders the generation of new tasks.
We expect to see this problem particularly if the application is
limited by available parallelism. To address this problem, we
enable a second mechanism for triggering a message send: a
maximum wait time. We implement this using a WAIT_TIME
counter, which counts each query to the queue to see if it is
full. After WAIT _TIME visits, the data is sent out, whether it

2This is not entirely true; our applications are currently implemented using
separate push-to-network-via-aggregator and push-directly-to-network calls,
but we believe integrating these would be straightforward.

e

Aggregate queue

@ ® ®
T | | |
o=

4
7
- ! GPUD
/

GPU1

® ®

Fig. 3. Step 1: instead of directly sending to remote GPUs, Atos workers push
the messages to an aggregate queue for accumulation. Step 2: Workers return
immediately when they finish writing the messages to the aggregate queue.
Step 3: Our aggregator, running persistently and concurrently alongside Atos
workers, monitors message accumulation count. Steps 4 and 5: If accumulated
messages reach a BATCH_SIZE, or if enough time passes, the aggregator
writes the accumulated messages to the remote GPU distributed queue.

3][’)lot of Latency against Bytes Transferred lU]’lm of Bandwidth against Message Size

25 |

%)
=)

Latency (ms)
o
Bandwidth (GB/s)

10 20 30 10 15 20 25 30
Iﬂgz(Bytss) logz(Bytes)

Fig. 4. On our IB system, a batch size of 220 B allows us to achieve both
near-peak bandwidth and relatively low latency.

meets the maximum message size or not. Programmers can
thus utilize a “eager” mode that minimizes latency by setting
the wait time to be very low.

B. Related Work

Substantial prior work on GPUs has described alternate
design approaches to the traditional BSP-focused program-
ming model. In general, these prior frameworks [10], [12]-
[14] adopt a master-slave model, where the CPU orchestrates
the executions, streams the data to the GPUs alongside running
GPU computation kernels, so that the communication can be
overlapped with the computation. This is the same benefit
we advocate in this paper. However, because of the design
decisions discussed in Section III-A, we are able to send
many smaller messages with much less overhead than previous
frameworks. The frequency and granularity of communication
matters as it increases the depth of message pipelines, allows
more communication and computation overlap. Particularly the
difference between Atos and asynchronous graph frameworks
Groute, Galois will be discussed in more detail in section IV.

IV. RESULTS AND ANALYSIS

In order to evaluate the performance of Atos, which enables
PGAS-style communication for dynamic, irregular applica-
tions, we select two graph algorithms—BFS and PageRank—
as representatives of irregular applications.

BFS: Our BFS “push” asynchronous implementation begins
by adding a single vertex to the queue. Workers continuously
pop vertices from the queue. Once a worker succeeds in
popping work, workers propagate the popped vertex’s depth
to its neighbors using an atomicMin operation and add the
neighbor to the queue if that neighbor’s depth has been
modified. BFS finishes when the queue becomes empty. We
discuss this BFS formulation, with pseudocode, in more detail
in our Atos single-GPU work [16].

PageRank: PageRank computes the importance (rank) of
nodes in a graph with the assumption that more links to a node
from other highly-ranked nodes indicate greater importance.
A PageRank “push” implementation begins by assigning each
node to an initial PageRank and residue value and pushing
all vertices into the work queue. Workers continuously pop
from the queue. If the pop succeeds, the worker adds the
popped vertex’s residue to its rank and propagates some of
the residue to all its neighbors. If the pop fails, the worker
loops over its assigned vertices and pushes the vertices that
have residue higher than the convergence threshold and are
not in the queue. The PageRank finishes when all vertices
have converged and the queue becomes empty. We discuss
this PR formulation, with pseudocode, in more detail in our
Atos single-GPU work [16].

We designed Atos to be able to achieve high performance
on systems with different interconnect characteristics. Thus
we test on a single-node system with 4 GPUs connected by
NVLink and on a multi-node system with 8 GPUs connected
by InfiniBand (IB).

1) NVLink System (‘“Daisy’’): Daisy is an NVIDIA DGX
Station running Linux with 4 V100 GPUs each with
32 GB memory, two 2.20 GHz Intel hyper-threaded ES5-
2698 v4 Xeon CPUs, and 128 GB of main memory.
The 4 V100 GPUs on Daisy are all-to-all connected via
NVLink; each GPU has one dual-link (50 GB/s) con-
nection to one GPU peer and two single-link (25 GB/s)
connections to the others. We use NVIDIA’s nvce ver-
sion 11.1.168 and gcc 9.3.0, both with the -O3 flag. All
tests were run 10 times with the average runtime used
for results.

2) IB System (“Summit”): Each node of Oak Ridge Lead-
ership Computing Facility’s Summit supercomputer [25]
is equipped with two IBM POWERS processors and six
NVIDIA Tesla V100 accelerators, each with 16 GB of
memory. Each GPU connects to one of the POWER9
processors, as well as the other two GPUs in its NUMA
domain, using a bidirectional 50 GB/s NVLink link. In
order to isolate the effect of inter-node communication
over InfiniBand, we run our experiments using a single
GPU per Summit node. This ensures that all commu-

TABLE I
SUMMARY OF THE DATASETS USED IN OUR EXPERIMENTS.

Max. Max. Avg.

Dataset Vertices Edges Diam indeg. outdeg. degree type

soc-LiveJournall 4.8M 68M 20 13,905 20,292 14 scale-free
hollywood_2009 1.IM 11M 11 11,467 11,467 105 scale-free
indochina_2004 7.4M 191M 26 256,425 6,984 8 scale-free
twitter50 S5IM 1.9B 12 3.5M 0.77M 38 scale-free
road_usa 23.9M 57TM 6,809 9 9 2 mesh-like
osm_eur 174M 348M 21,158 15 15 2 mesh-like

nication between GPUs is performed using InfiniBand.
Each Summit node is connected to the network using
dual-rail EDR InfiniBand, with each rail providing 12.5
GB/s of unidirectional injection bandwidth.

We test BFS and PageRank on two graph types: scale-free
datasets (primarily generated from social networks) and mesh-
like datasets (primarily road networks), summarized in Table I.
In all experiments, we use 512-thread CTA workers, which
achieve the best performance for both BFS and PageRank.
More details on the choice of the worker size can be found in
our Atos single-GPU work [16].

A. Evaluation on NVLink

We evaluated two different configurations of Atos (dis-
cussed in Section III) on the 4-GPU NVLink system: Afos-
standard-persistent, which uses a distributed standard queue
with persistent kernels, and Atos-priority-discrete, which uses
a distributed priority queue with discrete kernels. The most
direct comparison possible is against single-node, multi-GPU
frameworks, and we choose two leading frameworks for which
source code is available: Gunrock [11] and Groute [10]. All
experiments use the same graph partitionings®. Out of the 6
tested datasets, Groute cannot run twitter50 due to an out-of-
memory error. We summarize performance results in Tables II
and IV.

a) Summary of NVLink Results: BFS Atos achieves
speedup over Groute over all tested graphs except indochina-
2004 with 1 and 2 GPUs; BFS Atos achieves speedup over
Gunrock over all tested graphs except twitter50. PageRank
Atos achieves speedups over both Gunrock and Groute over
all tested graphs. Atos’s speedup is greatest when compared to
Gunrock for BFS on mesh-like datasets and when compared
to Groute for PageRank on all tested datasets. In addition
to superior runtime performance, Atos achieves better overall
strong scaling.

1) BFS on NVLink: Of the two Atos configurations: on
mesh-like datasets, Atos-standard-persistent is faster than
Atos-priority-discrete; conversely, on scale-free datasets, Atos-
priority-discrete is faster. The primary reason for this differ-
ence is that BFS on mesh-like datasets suffers from a lack
of parallelism, thus underutilizing GPUs; conversely BFS on
scale-free datasets has more parallelism and is more bounded
by bandwidth [16], [26].

The asynchronous BFS algorithm used in Atos and Groute
exposes additional parallelism at the cost of redundant work.

3Groute requires Metis, so for all tests that Groute can run, we use Metis
partitionings; twitter50 uses a random partitioning.

TABLE I

BFS RUNTIMES IN MS (SPEEDUP VS. GUNROCK IN PARENTHESES) ON
DAISY (NVLINK). PERFORMANCE LEADERS ARE BOLDED. GRAPH TYPES
ARE S (SCALE-FREE) AND M (MESH-LIKE).

Application: BFS on Gunrock

Dataset 1 GPU 2 GPUs 3 GPUs 4 GPUs
soc-LiveJournal1° 134 (x1) 10.0 (x1) 8.15 (x1) 8.03 (x1)
hollywood_2009° 6.28 (x1) 5.38 (x1) 5.62 (x1) 5.39 (x1)
indochina_2004* 11.0 (x1) 12.8 (x1) 13.6 (x1) 14.9 (x1)
twitter50° 906 (x1) 477 (x1) 330 (x1) 258 (x1)
road_usa™ 604 (x1) 917 (x1) 963 (x1) 1009 (x1)
osm-eur™ 2094 (x1) 3163 (x1) 3282 (x1) 3442 (x1)
Application: BFS on Groute
Dataset 1 GPU 2 GPUs 3 GPUs 4 GPUs
soc-LiveJournal 1% 19.0 (x0.71) 10.8 (x0.93) 10.2 (x0.80) 12.6 (x0.64)
hollywood_2009% 7.17 (x0.88) 5.81 (x0.93) 5.82 (x0.97) 8.63 (x0.62)
indochina_2004% 7.55 (x1.47) 743 (x1.73) 23.2 (x0.59) 29.7 (x0.50)
road_usa™ 144 (x4.42) 145 (x6.32) 152 (x6.32) 163 (x6.17)
osm-eur™ 570 (x3.66) 507 (x6.22) 502 (x6.53) 512 (x6.71)
Application: BFS on Atos (queue+persistent kernel)
Dataset 1 GPU 2 GPUs 3 GPUs 4 GPUs
soc-LiveJournal1* 12.4 (x1.08) 9.00 (x1.12) 6.87 (x1.19) 6.33 (x1.27)
hollywood_2009° 6.27 (x1.00) 7.90 (x0.68) 6.86 (x0.82) 6.77 (x0.80)
indochina_2004% 8.03 (x1.38) 9.44 (x1.36) 843 (x1.62) 7.38 (x2.03)
twitter50° 1412 (x0.64) 841 (x0.57) 587 (x0.56) 452 (x0.57)
road_usa™ 46.5 (x13.7) 57.5 (x15.9) 63.6 (x15.1) 62.0 (x16.2)
osm-eur™ 247 (x8.47) 218 (x14.5) 236 (x13.8) 227 (x15.1)
Application: BFS on Atos (priority queue+discrete kernel)
Dataset 1 GPU 2 GPUs 3 GPUs 4 GPUs
soc-LiveJournall® 11.3 (x1.18) 6.45 (x1.56) 5.01 (x1.63) 4.01 (x2.00)
hollywood_2009° 5.77 (x1.09) 5.14 (x1.05) 4.69 (x1.20) 3.84 (x1.40)
indochina_2004% 9.68 (x1.15) 9.21 (x1.39) 7.23 (x1.89) 6.48 (x2.31)
twitter50° 1052 (x0.86) 506 (x0.94) 348 (x0.95) 270 (x0.96)
road_usa™ 189 (x3.38) 181 (x5.05) 200 (x4.81) 207 (x4.86)
osm-eur™ 518 (x4.04) 617 (x5.12) 623 (x5.26) 709 (x4.85)
TABLE IIT

NORMALIZED WORKLOAD WITHOUT — WITH PRIORITY QUEUE
Dataset 1 GPU 2 GPUs 3 GPUs 4 GPUs
soc-LJ1 1.063 — 1.003 126 — 1.06 134 — 1.10 142 — 1.141
hollywd 1.168 — 1.197 136 — 1.11 142 — 1.21 1.57 — 1.248
indoch 1.004 — 1.00 1.03 - 1.03 1.03 — 1.04 1.05 — 1.047
twtr50 1.237 - 1.008 129 — 1.16 131 — 1.26 1.34 — 1.305

Redundant work occurs because out-of-order iterations may
require visiting vertices multiple times in order to find the
shortest path. In practice, we observe that BFS on mesh-like
datasets benefits from this tradeoff and are instead sensitive
to kernel launch overhead which can be reduced directly by
using persistent kernels.

BFS on scale-free datasets is not limited by parallelism
(e.g., twitterS0 shows excellent strong scalability), but instead
by bandwidth. Here, the tradeoff of redundant work for
more parallelism is unfavorable and worsens the bandwidth
bottleneck. We thus directly mitigate the cost of redundant
work with a priority queue in order to give vertices with lower
depth values higher processing priority. We quantify this by
counting the total number of vertices visited and normalizing
against an ideal traversal that only visits each vertex once
(without p.q. — with p.q.) in Table III.

a) Atos vs. Groute/Gunrock, mesh-like datasets: Groute
and Atos use the same algorithm (asynchronous BFS) and
kernel strategy (persistent kernel), so these factors do not

contribute to the performance difference. BFS on mesh-like
datasets suffers from lack of parallelism, and interconnection
latency further hinders saturation of the workers by slowing
the rate that individual processes can push or pop to the work
queue. Atos’s performance advantage comes from its lower
communication latency. Why? Atos sends communication im-
mediately when communication data is available. This stands
in constrast to Groute’s control path, which passes through the
CPU, while Atos’s entire control path is on the GPUs.

Gunrock’s control path also passes through the CPU, but
Gunrock has additional complications. It implements a BSP
version of BFS, incurring further latency due to waiting for
kernel synchronization. In BSP BFS, the parallelism in any
given iteration is limited to only the vertices in the current step;
in contrast, asynchronous BFS uses speculation to expose more
parallel work [16]. Finally, Atos’s persistent-kernel formula-
tion reduces the large kernel launch overhead seen in Gunrock
on mesh-like datasets [16], [26]. These additional factors lead
to Atos’s much larger speedup over Gunrock (13.8x) compared
to Groute (2.44x).

b) Atos vs. Groute/Gunrock, scale-free datasets: BFS
on scale-free datasets is more limited by interconnection
bandwidth. Priority queues mitigate the amount of redundant
work, directly reducing bandwidth cost. Atos’s performance
advantage over Groute (1.71x) and Gunrock (1.29x) is due to
Atos’s aggressive overlap of communication and computation
during kernel execution. This allows consistent communication
throughout the entire program and best utilizes the most
bottlenecked resource, interconnect bandwidth.

c) Strong Scaling: Figure 5 (left) shows strong scaling
results for the four BFS implementations. Not surprisingly,
all frameworks scale better on bandwidth-limited scale-free
graphs than parallelism-limited mesh-like graphs. Regardless
of the type of dataset, the Atos configuration with priority
queue and discrete kernel achieves similar or better scalability
than both Gunrock and Groute on all datasets.

2) PageRank: Excluding indochina_2004*, Groute gener-
ally performs worse than Gunrock (0.85x). Both Atos im-
plementations outperform Gunrock (2.59x for Atos-standard-
discrete and 2.37x for Atos-standard-persistent). Gunrock uses
the BSP model for both computation and communication. The
two Atos implementations and Groute all use asynchronous
PageRank. We conclude that the overall performance dif-
ference is less due to algorithmic differences (asynchronous
vs. BSP) and more due to implementation differences in the
frameworks.

Compared to BFS, PageRank generally has more parallelism
as well as communication volume. For instance, on the twit-
ter50 dataset, on {2, 3, 4}-GPU configurations, Atos’s PageR-
ank has {10, 13, 14}x the workload of Atos’s BFS. We see
three reasons for Atos’s performance advantage: (1) Atos com-
munications are spread out, smoothing the spikes in network
communication that typically occur when communication is

40On PageRank, Groute is very slow on indochina_2004 (more than 200
times slower than Gunrock).

TABLE IV

PAGERANK RUNTIME IN MS (SPEEDUP VS. GUNROCK IN PARENTHESES)
ON DAISY (NVLINK). PERFORMANCE LEADERS ARE BOLDED. GRAPH
TYPES ARE S (SCALE-FREE) AND M (MESH-LIKE).

Application: PageRank on Gunrock

Dataset 1 GPU 2 GPUs 3 GPUs 4 GPUs
soc-LiveJournall® 262 (x1) 188 (x1) 89.8 (x1) 75.3 (x1)
hollywood_2009°% 87.3 (x1) 51.7 (x1) 44.8 (x1) 33.8 (x1)
indochina_2004% 159 (x1) 120 (x1) 105 (x1) 100 (x1)
twitter50° 25483 (x1) 15075 (x1) 8996 (x1) 6998 (x1)
road_usa™ 220 (x1) 189 (x1) 143 (x1) 122 (x1)
osm-eur™ 2784 (x1) 2253 (x1) 1650 (x1) 1373 (x1)
Application: PageRank on Groute
Dataset 1 GPU 2 GPUs 3 GPUs 4GPUs
soc-LiveJournall®* 259 (x1.01) 165 (x1.14) 132 (x0.68) 132 (x0.57)
hollywood_2009% 115 (x0.76) 109 (x0.47) 102 (x0.44) 105 (x0.32)
indochina_2004* 31933 (x0.00) 31845 (x0.00) 31396 (x0.00) 31360 (x0.00)
road_usa™ 479 (x0.46) 232 (x0.81) 150 (x0.96) 114 (x1.08)
osm-eur™ 2414 (x1.15) 1224 (x1.84) 829 (x1.99) 661 (x2.08)
Application: PageRank on Atos (discrete kernel)
Dataset 1 GPU 2 GPUs 3GPUs 4GPUs
soc-LiveJournall® 116 (x2.26) 58.8 (x3.20) 35.6 (x2.52) 26.3 (x2.86)
hollywood_2009% 75.1 (x1.16) 27.9 (x1.85) 21.75 (x2.06) 18.9 (x1.79)
indochina_2004* 50.8 (x3.14) 30.8 (x3.90) 24.1 (x4.39) 19.8 (x5.07)
twitter50° 11291 (x2.26) 6332 (x2.38) 4521 (x1.99) 3582 (x1.95)
road_usa™ 111 (x1.98) 76.0 (x2.49) 51.2 (x2.80) 38.9 (x3.16)
osm-eur™ 991 (x2.81) 785 (x2.87) 525 (x3.14) 408 (x3.39)
Application: PageRank on Atos (persistent kernel)
Dataset 1 GPU 2GPUs 3GPUs 4GPUs
soc-LiveJournal1® 117 (x2.23) 58.4 (x3.23) 40.0 (x2.24) 32.2 (x2.33)
hollywood_2009° 90.8 (x0.96) 33.3 (x1.55) 31.4 (x1.43) 26.2 (x1.29)
indochina_2004% 53.4 (x2.98) 37.0 (x3.24) 35.0 (x3.02) 30.1 (x3.34)
twitter50° 11037 (x2.30) 5802 (x2.59) 4016 (x2.24) 3077 (x2.27)
road_usa™ 128 (x1.72) 69.5 (x2.72) 47.3 (x3.03) 36.2 (x3.39)
osm-eur™ 923 (x3.01) 729 (x3.09) 590 (x2.80) 508 (x2.70)

isolated in a single phase; (2) small messages are better able
to overlap with computation, hiding latency; and (3) a GPU
control path reduces the latency comparing to routing through
CPUs (Groute).

a) Strong Scaling Tests: Figure 5 (right) shows the strong
scaling for the four implementations for PageRank on different
datasets. We highlight two interesting results. (1) It is possible
to have strong scaling beyond the perfect scaling line because
asynchronous PageRank may lead to less total workload than
BSP PageRank. (2) Compared to BFS, PageRank generally
sees better strong scalability. This is because PageRank gen-
erally has more opportuntiy for parallelism than BFS: each
vertex is pushed multiple times in PageRank, whereas most
vertices are only visited once in BFS.

On all datasets, both Atos implementations achieve better
absolute runtime compared to Gunrock and Groute. On the
soc-LiveJournall datasets, Atos achieves better strong scaling
as well. On the twitter50, road_usa, and osm-eur datasets,
Gunrock/Groute achieve similar/better strong scaling respec-
tively, when compared to Atos; this is because Gunrock and
Groute’s single-GPU time is very slow.

3) Latency Hiding: To test if small-grained one-sided com-
munication has better latency tolerance, we compare Gunrock
and Atos on both BFS and PageRank on two different NVLink
topologies (Figure 6). Summit’s topology requires more than
half of all GPU-to-GPU communications to pass between
sockets and thus incurs a latency penalty. Figure 7 shows that
for both BFS and PageRank, Gunrock’s strong scaling drops

soc-LiveJournall twitter50

IS

Gunrock

-~~~ Atos(priority queue+disrerete kenel)
Atos(queuc+persistent kernel)

—©—Groute

|——Perfect scaling

w

S

N

Relative Speedup to One GPU

2 3 4
Number of GPUs

road-usa

Number of GPUs

osm-eur

Relative Speedup to One GPU

1 4 4

2 3 2 3
Number of GPUs Number of GPUs

25 soc-LiveJournall 2, twitter50

@ [[—Gunrock o

£ ||~ Atos(disrcrete kemel) - g

o4 Atos(persistent kernel) © 3

< ||-e-Groute =

& 3| |=—Perfect scaling = E

& 22

@y o o Ea

£ & £

= 2,

S 1 S

= 2 3 4 201 2 3 4
Number of GPUs Number of GPUs

D osm-eur D road-usa

=% o)

st 1 T4 9

< ~ 2 _—

S [} P

23 23 P

& &

g 2 o

&2 &2

E ~ 2

<z 1= 1=

=E 2 3 4 SH 2 3 4
Number of GPUs Number of GPUs

Fig. 5. Strong scaling test for BFS (left) and PageRank (right) on 4 datasets on an NVLink system. The plot shows relative speedup for each framework,
as a function of the number of GPUs, comparing to its own single-GPU implementation (a self-to-self comparison). The black solid line in all plots shows
perfect strong scaling. The top two datasets are scale-free and the bottom two are mesh-like.

Summit

Daisy
GPU3 |+ GPU4 [+~ GPU5

GPUO

GPU1

GPU2

GPU3

GPUO «»| GPU1 [«+» GPU2

I
O] ®
Fig. 6. The left topology (Daisy) is an all-to-all NVLink connection. The

right topology (Summit) has three GPUs on each of two different sockets,
with longer latency between GPUs than on the fully connected topology.

BFS-soc-LiveJournall BFS-indochina-2004

=3 =

o <o —— Gunrock

:;‘ 2 :;‘ — -~ Atos(discrete)

<) <)

z 2 1

s =z

T 3 .

- N S — 205

@ @

L 05 B

< 0 < 0

o 2 3 4 5 6 A 2 3 4 5 6
Number of GPUs Number of GPUs

E 3 PageRank-soc-LiveJournall 2 PageRank-indochina-2004

& =3

o —— Gunrock <

g 25 - - - Atos(priority+diserete) 205

IS S -

s 2 2 2

Zis o Zs

g g Gunrock

& 1fe---- > - - - Atos(priority+discrete}

Zos 2

E =

< 0 o

S 2 3 4 5 6 <

1 2 5 6

3 3 4
Number of GPUs Number of GPUs

Fig. 7. Strong-scaling Gunrock and Atos on a single multi-GPU Summit
node.

beyond 3 GPUs. For the more interconnection-latency-limited
application BFS, Atos’s scaling also drops beyond 3 GPUs, but
less than Gunrock. For the interconnection-bandwidth-limited
application PageRank, Atos continues to achieve speedups
beyond 3 GPUs. We conclude that our implementation of
small-grained one-sided communication has better latency
tolerance than previous work.

B. Evaluation on InfiniBand

We run BFS and PageRank with Atos and Galois [12] on
an InfiniBand (IB)-connected multi-GPU system (Summit),
using one GPU per node. Neither Groute nor Gunrock run on
multiple nodes, so we compare to another framework Galois.
Galois uses the Gluon communication layer and is a non-
blocking bulk-asynchronous graph library. We also considered
Lux, built atop the Legion framework, but despite our best
efforts and requests to its authors, we were unable to compile
Lux. Galois’s own experiments [12] compare favorably to Lux,
however, so we believe we have chosen the most appropriate
comparison. The principal difference between Atos and either
Galois or Lux is the smaller granularity of communication
enabled by Atos. All runtime results below use the best
measured runtime among all available partition schemes.

a) Summary of InfiniBand Results: Atos shows runtime
speedup and better scalability over Galois on all tested graphs
on both BFS and PageRank: twitter50 demonstrates a modest
speedup and all other datasets show large speedups (Table V).

Our NVLink and IB Atos implementations are identical ex-
cept for the following consideration. It is easier to achieve scal-
able communication on the more capable NVLink interconnect
than on IB. Bandwidth on our IB system is more of a con-
straint and small communications are particularly inefficient.
Hence, in our IB implementation, we do not communicate
by directly writing to/reading from remote GPU memories
but instead route all communication messages through Atos’s
communication aggregator. The aggregator (Section III-A3)
runs as a persistent kernel concurrently with the application
code, checking the aggregated messages and sending them
to remote GPUs when the messages reach a BATCH_SIZE
or timeout threshold. We summarize performance results for
Galois and Atos in Table V.

1) BFS: For BFS on all datasets, we set the aggregate
message threshold (BATCH_SIZE) to 1 MB and WAIT_TIME
to 4 to enable eager mode (minimal accumulation), because
BFS is more bounded by interconnection latency.

For BFS, Atos generally performs better than Galois on both
scale-free datasets and mesh-like datasets, even though Galois

Application: BFS on Galois

dataset 1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs 7 GPUs 8 GPUs
soc-LiveJournall® 19.8 (x1) 19.1 (x1) 361 (x1) 382 (x1) 476 (x1) 470 (x1) 587 (x1) 636 (x1)
hollywood-2009° 24.6 (x1) 204 (x1) 263 (x1) 403 (x1) 466 (x1) 499 (x1) 542 (x1) 545 (x1)
indochina-2004° 49.0 (x1) 88.4 (x1) 667 (x1) 724 (x1) 858 (x1) 931 (x1) 953 (x1) 985 (x1)
twitter50° 465 (x1) 533 (x1) 500 (x1) 591 (x1) 638 (x1) 699 (x1) 809 (x1) 702 (x1)
road_usa™ 4392 (1x) 24661 (1x) 36891 (1x) 37258 (1x) 143830 (1x) 53299 (1x) 173400 (1x) 65332 (1x)
osm-eur™ 86516 (1x) 76359 (1x) 105660 (1x) 135425 (1x) 148622 (1x) 165393 (1x) 176689 (1x) 180735 (1x)
Application: BFS on Atos
dataset 1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs 7 GPUs 8 GPUs
soc-LiveJournal1® 11.3 (x1.74) 7.34 (x2.60) 5.69 (x63.6) 4.87 (x78.6) 4.29 (x110) 3.97 (x118) 3.69 (x159) 3.72 (x171)
hollywood-2009° 5.77 (x4.26) 4.19 (x41.7) 4.22 (x62.4) 3.61 (x111) 3.11 (x150) 2.94 (x169) 3.31 (x163) 3.17 (x172)
indochina-2004° 9.68 (x5.06) 9.35 (x9.45) 7.71 (x86.5) 6.77 (x107) 7.14 (x120) 6.97 (x133) 6.75 (x141) 7.12 (x138)
twitter50° 1052 (x0.44) 539 (x0.99) 366 (x1.37) 338 (x1.75) 298 (x2.14) 286 (x2.44) 329 (x2.46) 286 (x2.46)
road_usa™ 46.5 (x94.4) 40.3 (x609) 49.0 (x752) 494 (x753) 57.1 (x2515) 64.2 (x829) 74.2 (x2336) 79.0 (x826)
osm-eur™ 247 (x349) 220 (x345) 226 (x466) 253 (x534) 278 (x534) 260 (x633) 268 (x657) 269 (x671)
Application: PageRank on Galois
dataset 1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs 7 GPUs 8 GPUs
soc-LiveJournal1® 1066 (x1) 1059 (x1) 661 (x1) 662 (x1) 669 (x1) 672 (x1) 666 (x1) 634 (x1)
hollywood-2009* 454 (x1) 702 (x1) 796 (x1) 808 (x1) 814 (x1) 810 (x1) 1042 (x1) 997 (x1)
indochina-2004° 2950 (x1) 2614 (x1) 2926 (x1) 2657 (x1) 1995 (x1) 2957 (x1) 2133 (x1) 2208 (x1)
twitter50° 15103 (x1) 14626 (x1) 8396 (x1) 7349 (x1) 6466 (x1) 6176 (x1) 5869 (x1) 5547 (x1)
road_usa™ 133 (x1) 795 (x1) 816 (x1) 805 (x1) 1024 (x1) 927 (x1) 907 (x1) 900 (x1)
osm-eur™ 1010 (x1) 2688 (x1) 2254 (x1) 2199 (x1) 2090 (x1) 2110 (x1) 2109 (x1) 2029 (x1)
Application: PageRank on Atos
dataset 1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs 6 GPUs 7 GPUs 8 GPUs
soc-LiveJournal1® 112 (x9.44) 55.8 (x18.9) 41.5 (x15.9) 36.6 (x18.0) 34.1 (x19.5) 28.7 (x23.4) 30.0 (x22.1) 30.7 (x20.6)
hollywood-2009° 74.1 (x6.13) 39.7 (x17.6) 35.2 (x22.6) 30.6 (x26.4) 30.3 (x26.8) 29.0 (x27.9) 28.8 (x36.0) 29.8 (x33.4)
indochina-2004* 51.2 (x57.5) 66.0 (x39.6) 48.2 (x60.6) 32.3 (x82.2) 36.8 (x54.0) 36.2 (x81.5) 34.1 (x62.4) 30.2 (x73.0)
twitter50° 11046 (x1.37) 5535 (x2.64) 3894 (x2.16) 3022 (x2.43) 2496 (x2.59) 2144 (x2.88) 1887 (x3.11) 1688 (x3.29)
road_usa™ 101 (x1.31) 62.1 (x12.8) 42.8 (x19.0) 33.0 (x24.3) 26.9 (x38.0) 22.3 (x41.9) 22.2 (x40.8) 22.3 (x40.3)
osm-eur™ 991 (x1.02) 874 (x3.07) 659 (x3.42) 512 (x4.29) 335 (x6.23) 294 (x7.16) 199 (x10.56) 251 (x8.06)
TABLE V

BFS AND PAGERANK RUNTIMES IN MS (SPEEDUPS IN PARENTHESES ARE VS. GALOIS) ON SUMMIT (IB). S IS SCALE-FREE, M IS
MESH-LIKE.PERFORMANCE LEADERS ARE BOLDED.

uses direction-optimized BFS and Atos only uses push BFS.
On mesh-like datasets, Atos achieves a 268x geomean speedup
over Galois. This high factor is because BFS on mesh-like
datasets is limited by interconnection latency, and Atos is able
to send messages to remote GPUs more quickly than Galois
because of Atos’s smaller message sizes and fast control path
to signal remote GPUs.

For BFS on scale-free datasets, Atos’s speedup is smaller
(although we achieve more than 100x speedup on smaller
datasets with an 8 GPU configuration). The primary differ-
ence between Galois and Atos is much more communication
overhead for Galois, which reduces its ability to fully utilize
all communication bandwidth. Atos’s GPU-centered commu-
nication control path and overlap of communication and com-
putation greatly reduces the overhead of communicating, and
its communication aggregation makes the most of available
bandwidth.

a) Strong Scaling: Figure 8 shows strong scaling for
Atos and Galois for BFS on two scale-free datasets (top) and
two mesh-like datasets (bottom). Just as with NVLink, the
lack of parallelism in mesh-like datasets results in poor strong
scalability for any system; however, Atos’s strong scalability is

soc-LiveJournall® twitter50®

%
%

—Galois
--- Atos
Perfect scaling|

Galois

=
>

Atos
Perfect scaling

o

o

-
Relative Speedup to One GPU
=

=)

Relative Speedup to One GPU

o

1 2 3 4 5 6 7 8
Number of GPUs

S

4 5 6 7 8
Number of GPUs

road-usa™ osm-eur™

Relative Speedup to One GPU
-~
Relative Speedup to One GPU

1 2 3 4 5 6 7 8
Number of GPUs

Number of GPUs

Fig. 8. Strong scaling test for BFS on 4 datasets on an 8-node, 8-GPU
InfiniBand system. The plot shows relative speedup for each framework,
as a function of the number of GPUs, comparing to its own single-GPU
implementation. The green ‘X’ line in all plots shows perfect strong scaling.

consistently better than that of Galois. On scale-free datasets,
Galois cannot achieve better performance given more GPUs,
primarily because of its high communication overhead. On
the largest dataset, twitter50, Galois’s fastest implementation

soc-LiveJournall® twitter50°

o

—Galois
6 --~"Atos
Perfect scaling

—Galois
6 --~ Atos
Perfect scaling

p to One GPU

Relative Speedup to One GPU
v -~

1 2 3 4 5 6 7 8

Number of GPUs Number of GPUs

road-usa™ osm-eur™
—Galois

6 |--—Atos

Perfect scaling

—Galois
61 |--- Atos
Perfect scaling

0

Relative Speedup to One GPU
-
Relative Speedup to One GPU

1 2 3 4 5 6 7 8

5 1 2 3 4 5 6 7 8
Number of GPUs

Number of GPUs

Fig. 9. Strong scaling test for PageRank on 4 datasets on an 8-node, 8-GPU
InfiniBand system. The top two datasets are scale-free and the bottom two
are mesh-like.

is its single-GPU implementation, which is more than twice
as fast as Atos’s; this is largely due to algorithmic differences
as Galois leverages direction optimization. However, Atos is
faster than Galois on any configuration with more than 2
GPUs.

2) PageRank: Atos configures PageRank with WAIT _TIME
= 32 and a maximum size threshold (BATCH_SIZE) of 1 MB.
The combination of a relatively high WAIT_TIME and a large
message means that the aggregator batches more messages
before sending. This communication choice is motivated by
the fact that PageRank is primarily bounded by interconnection
bandwidth and we choose a configuration that maximizes
achieved bandwidth even at the cost of latency and overwork.

For PageRank, Atos generally performs better than Galois
on both scale-free datasets and mesh-like datasets. Galois also
uses asynchronous PageRank, so the performance difference
is not due to algorithmic differences. Our IB system has less
bandwidth than NVLink, but we still show a performance
advantage even for the bandwidth-limited PageRank. Just as in
the NVLink system, the superior performance of Atos comes
from (1) spread-out communications that smooth the intercon-
nection usage surge that typically occurs when communication
is isolated in a single phase; (2) small messages that can
better overlap with computation and thus better hide latency;
and (3) the GPU-centric control path for communication that
reduces latency compared to a CPU control path.

a) Strong Scaling: Figure 9 shows strong scaling be-
havior for Atos and Galois for PageRank on two scale-free
datasets and two mesh-like datasets. Atos achieves better
strong scalability than Galois; on all datasets, Atos becomes
faster with more GPUs whereas Galois becomes slower with
more GPUs.

V. CONCLUSION

Ken Batcher noted that “A supercomputer is a device for
turning compute-bound problems into I/O-bound problems.”
Scaling many applications, including graph analytics, on GPUs
is challenging due to the network rapidly becoming a bot-
tleneck as problem sizes and machines become larger. Thus

Atos primarily targets this communication bottleneck with a
collection of techniques including one-sided communication,
fine-grained message sizes, communication overhead reduc-
tion, message aggregation, and aggressive communication and
computation overlap.

We learned the following lessons for applications ...

o Fine-grained one-sided communication enables
communication-computation overlap, and also smooths
out network usage, leading to improved runtime.

o Asynchronous task-parallel computation exposes more
parallelism, as well as reducing synchronization over-
head. PGAS-style communication is a natural fit for this
computation model.

o Applications prefer to express their communications in
the most natural way for that application.

o latency-limited applications (e.g., BFS on mesh-like
datasets) benefit from propagating messages as quickly
as possible even at the expense of non-ideal bandwidth
utilization, whereas bandwidth-limited applications (e.g.,
PageRank) benefit from sending larger messages to max-
imize bandwidth usage.

. and for frameworks that implement PGAS-style commu-

nication models for GPUs.

¢ A communication aggregator decouples communication
granularity from computation granularity, allowing the
user (or potentially the framework) to choose the optimal
communication granularity.

e A framework should enable users both to send data in
an eager (immediate) and, via aggregation, in a more
bandwidth-efficient way.

e A GPU-centric control path for communication reduces
communication latency.

o Guaranteeing consistency before communication via syn-
chronization on the CPU is expensive. An asynchronous
data structure (in Atos, an asynchronous queue) is neces-
sary to decouple synchronization from data consistency
so that communication can be issued within a kernel with-
out synchronization. Implementing such a data structure
is tricky.

e A data structure that supports scheduling preferences
(such as a priority queue) can significantly improve
application performance.

ACKNOWLEDGEMENT

This work is supported by the National Science Foundation
(NSF) under projects CCF-1823034, CCF-1823037, and OAC-
1740333; by the Department of Defense Advanced Research
Projects Agency (DARPA) under projects HR0011-18-3-0007
and FA8650-18-2-7835; by an NVIDIA gift and hardware
donations; and by the Advanced Scientific Computing Re-
search (ASCR) program within the Office of Science of the
DOE under contract number DE-AC02-05CH11231. We used
resources of the Oak Ridge Leadership Computing Facility at
the Oak Ridge National Laboratory, which is supported by
the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-000R22725.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

L. G. Valiant, “A bridging model for parallel computation,” Communi-
cations of the ACM, vol. 33, no. 8, pp. 103-111, Aug. 1990.

Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick, “UPC++:
a PGAS extension for C++,” in 2014 IEEE 28th International Parallel
and Distributed Processing Symposium. 1EEE, 2014, pp. 1105-1114.
B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel,
and L. Smith, “Introducing OpenSHMEM: SHMEM for the PGAS
community,” in Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model, Oct. 2010, pp. 1-3.

R. Nishtala, P. H. Hargrove, D. O. Bonachea, and K. A. Yelick, “Scaling
communication-intensive applications on BlueGene/P using one-sided
communication and overlap,” in 2009 IEEE International Symposium
on Parallel & Distributed Processing, ser. IPDPS 2009, May 2009.

P. Husbands and K. Yelick, “Multi-threading and one-sided
communication in parallel LU factorization,” in Proceedings of
the 2007 ACM/IEEE Conference on Supercomputing, ser. SC 07, 2007.
[Online]. Available: https://doi.org/10.1145/1362622.1362664

I. Yamazaki, E. Chow, A. Bouteiller, and J. Dongarra, “Performance
of asynchronous optimized Schwarz with one-sided communication,”
Parallel Computing, vol. 86, pp. 66-81, Aug. 2019.

K. Z. Ibrahim, P. H. Hargrove, C. Iancu, and K. Yelick, “An evaluation of
one-sided and two-sided communication paradigms on relaxed-ordering
interconnect,” in 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, ser. IPDPS 2014, May 2014, pp. 1115-1125.
F. Cantonnet, Y. Yao, M. Zahran, and T. El-Ghazawi, “Productivity
analysis of the UPC language,” in Proceedings of the 18th International
Parallel and Distributed Processing Symposium, ser. IPDPS 2004, Apr.
2004, pp. 254:1-254:7.

C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, “Optimizing band-
width limited problems using one-sided communication and overlap,”
in Proceedings of the 20th IEEE International Parallel & Distributed
Processing Symposium, ser. IPDPS 2006, Apr. 2006.

T. Ben-Nun, M. Sutton, S. Pai, and K. Pingali, “Groute: An asyn-
chronous multi-GPU programming model for irregular computations,”
in Proceedings of the 22nd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP *17, Feb. 2017, pp.
235-248.

Y. Wang, Y. Pan, A. Davidson, Y. Wu, C. Yang, L. Wang, M. Osama,
C. Yuan, W. Liu, A. T. Riffel, and J. D. Owens, “Gunrock: GPU graph
analytics,” ACM Transactions on Parallel Computing, vol. 4, no. 1, pp.
3:1-3:49, Aug. 2017.

R. Dathathri, G. Gill, L. Hoang, H.-V. Dang, A. Brooks, N. Dryden,
M. Snir, and K. Pingali, “Gluon: A communication-optimizing substrate
for distributed heterogeneous graph analytics,” in Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI 2018, 2018, pp. 752-768.

C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel, “PTask:
Operating system abstractions to manage GPUs as compute devices,” in
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, ser. SOSP °11, 2011, pp. 233-248.

C. Augonnet, J. Clet-Ortega, S. Thibault, and R. Namyst, “Data-aware
task scheduling on multi-accelerator based platforms,” in 2010 IEEE
16th International Conference on Parallel and Distributed Systems.
IEEE, Dec. 2010, pp. 291-298.

T. Cheatham, A. Fahmy, D. Stefanescu, and L. Valiant, “Bulk syn-
chronous parallel computing—a paradigm for transportable software,” in
Tools and Environments for Parallel and Distributed Systems. Springer,
1996, pp. 61-76.

Y. Chen, B. Brock, S. Porumbescu, A. Bulug, K. Yelick, and J. D.
Owens, “Atos: A task-parallel GPU scheduler for graph analytics,” in
Proceedings of the International Conference on Parallel Processing, ser.
ICPP 2022, Aug./Sep. 2022.

K. Yelick, A. Bulug, M. Awan, A. Azad, B. Brock, R. Egan,
S. Ekanayake, M. Ellis, E. Georganas, G. Guidi et al., “The parallelism
motifs of genomic data analysis,” Philosophical Transactions of the
Royal Society A, vol. 378, no. 2166, p. 20190394, 2020.

E. Georganas, M. Ellis, R. Egan, S. Hofmeyr, A. Bulug, B. Cook,
L. Oliker, and K. Yelick, “Merbench: Pgas benchmarks for high
performance genome assembly,” in Proceedings of the Second Annual
PGAS Applications Workshop, ser. PAW17. New York, NY, USA:
Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3144779.3169109

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

K. Gupta, J. Stuart, and J. D. Owens, “A study of persistent threads
style GPU programming for GPGPU workloads,” in Proceedings of
Innovative Parallel Computing, ser. InPar *12, May 2012.

D. Troendle, T. Ta, and B. Jang, “A specialized concurrent queue for
scheduling irregular workloads on GPUS,” in Proceedings of the 48th
International Conference on Parallel Processing, ser. ICPP 2019, 2019.
B. Kerbl, M. Kenzel, J. H. Mueller, D. Schmalstieg, and M. Steinberger,
“The broker queue: A fast, linearizable FIFO queue for fine-granular
work distribution on the GPU,” in Proceedings of the 2018 International
Conference on Supercomputing. ACM, Jun. 2018, pp. 76-85.

D. Cederman and P. Tsigas, “On dynamic load-balancing on graphics
processors,” in Graphics Hardware, ser. GH "08, Jun. 2008, pp. 57-64.
S. Tzeng, B. Lloyd, and J. D. Owens, “A GPU task-parallel model with
dependency resolution,” IEEE Computer, vol. 45, no. 8, pp. 34—41, Aug.
2012.

T. Groves, B. Brock, Y. Chen, K. Z. Ibrahim, L. Oliker, N. J. Wright,
S. Williams, and K. Yelick, ‘“Performance trade-offs in GPU commu-
nication: A study of host and device-initiated approaches,” in 2020
IEEE/ACM Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS), 2020, pp. 126-137.
Oak Ridge National Laboratory Leadership Computing Facility, “Oak
Ridge Summit,” https://docs.olcf.ornl.gov/systems/summit_user_guide.
html, 2021, accessed: 2021-09-30.

Gunrock team, “Throughput vs. frontier size,” https://gunrock.github.io/
docs/frontier.html, 2017, accessed: 2017-09-30.

