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Abstract

We investigate the problem of unconstrained
combinatorial multi-armed bandits with full-
bandit feedback and stochastic rewards for sub-
modular maximization. Previous works investi-
gate the same problem assuming a submodular
and monotone reward function. In this work, we
study a more general problem, i.e., when the re-
ward function is not necessarily monotone, and
the submodularity is assumed only in expecta-
tion. We propose Randomized Greedy Learn-
ing (RGL) algorithm and theoretically prove that
it achieves a 1

2 -regret upper bound of Õ(nT 2
3 )

for horizon T and number of arms n. We also
show in experiments that RGL empirically out-
performs other full-bandit variants in submodu-
lar and non-submodular settings.

1 Introduction

The stochastic multi-armed bandits, first introduced by
Robbins (1952), formalizes several challenging decision-
making problems, such as clinical decisions, investment,
pricing, influence maximization, and product recommen-
dation. The goal of a decision-maker can be modeled as
maximizing a particular reward function that depends on
her decisions throughout time. The decision maker needs to
tradeoff between exploration (exploring sub-optimal arms)
and exploitation (playing the chosen arm), and efficient
guarantees for regret have been widely studied (Thomp-
son, 1933; Auer, 2002; Auer et al., 2002a; Auer and Ortner,
2010; Agrawal and Goyal, 2012; Gopalan et al., 2014).

One natural extension for the multi-armed bandit problem
is the combinatorial multi-armed bandit problem. At each
round, instead of selecting just one base arm, the agent
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selects a set of arms and receives a joint reward for that
set. If the agent only receives the reward for a chosen set
of arms, then it is called full-bandit feedback. Otherwise,
if the agent receives further information about his choice,
such as the reward of each individual arm of that set, then it
is called semi-bandit feedback. The former setting is more
challenging, as the decision maker has far less information
to decide than in the latter. The former setting is the focus
of this paper.

The study of combinatorial multi-armed bandits problems
with submodular reward functions has recently attracted
much attention (Nie et al., 2022; Niazadeh et al., 2020).
Formally, a set function f : 2Ω → R defined on a fi-
nite ground set Ω is said to be submodular if it satisfies
the diminishing return property: for all A ⊆ B ⊆ Ω,
and x ∈ Ω\B, it holds that f(A ∪ {x}) − f(A) ≥
f(B ∪ {x}) − f(B). The submodularity assumption is
motivated by several real-world scenarios. For example,
opening more supermarkets in a certain area would result in
diminishing returns due to demand saturation. Hence, the
widespread use of submodular functions as utility functions
in economics and algorithmic game theory. Furthermore,
submodularity appears in many important settings in com-
binatorial optimization such as cuts in graphs (Goemans
and Williamson, 1995; Iwata et al., 2001), rank functions
of matroids (Edmonds, 2003), and set covering problems
(Feige, 1998).

Multi-armed bandits have been studied in two different set-
tings, adversarial setting where an adversary generates a
reward sequence potentially based on the agent’s previous
decisions (Auer et al., 2002b), and stochastic setting where
the reward of each action is drawn independently from a
certain (unknown) distribution (Auer et al., 2002a). An ad-
versarial setting is harder for standard multi-armed bandits,
and its result can be directly used as one achievable strat-
egy for the stochastic setting (Lattimore and Szepesvári,
2020). However, the same is not true for the research on
submodular bandits. In prior works in the area (Rough-
garden and Wang, 2018; Niazadeh et al., 2020), the envi-
ronment in adversarial bandits chooses a sequence of sub-
modular functions {f1, ..., fT }. In this work, we focus on
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stochastic reward functions. Thus, we assume a more re-
laxed property of submodularity which is submodularity in
expectation (as defined in Definition 1). That is, the re-
alizations of the stochastic function ft in the problem we
consider need not be submodular, making the adversarial
algorithms no longer hold in this setting.

Definition 1. A stochastic set function f : 2Ω → R de-
fined on a finite ground set Ω is said to be submodular in
expectation if it satisfies the diminishing return property in
expectation: for all A ⊆ B ⊆ Ω, and x ∈ Ω\B, we have,

Ef(A ∪ {x})− Ef(A) ≥ Ef(B ∪ {x})− Ef(B). (1)

Several works in the literature assume submodular mono-
tone functions, as it is simpler to manipulate and can have
stronger guarantees (Nie et al., 2022; Chen et al., 2020). A
submodular set function f : 2Ω → R is called monotone if
for any A ⊆ B ⊆ Ω we have f(A) ≤ f(B). This work
considers a more general problem where the functions are
not necessarily monotone.

There are several motivating use cases for the non-
monotone submodular maximization, including optimizing
feature selection (Das and Kempe, 2008; Khanna et al.,
2017; Elenberg et al., 2018), and data summarization
(Mirzasoleiman et al., 2016). Optimizing feature selec-
tion can be modeled as a non-monotone submodular maxi-
mization due to the possible overfitting to the training data
(Fahrbach et al., 2018). Data summarization selects a rep-
resentative subset of data points, and the typical utility
functions are submodular while not monotone to penalize
larger solutions (Tschiatschek et al., 2014; Dasgupta et al.,
2013). For further motivating examples, see Appendix A.

Contributions: The key contributions in this paper are
summarized as follows:

i. We propose Randomized Greedy Learning (RGL), the
first algorithm designed for stochastic combinatorial multi-
armed bandits problems with a non-monotone stochastic
submodular reward function and full-bandit feedback. It
has low storage and computational complexity.

ii. We prove that RGL achieves a 1
2 -regret upper bound

gurantees of O(nT 2
3 log(T )

1
3 ) for horizon T and number

of arms n.

iii. We empirically show that RGL outperforms other full-
bandit feedback variants regarding expected reward and cu-
mulative regret.

Related Work: Submodular maximization is NP-hard.
Feige et al. (2011) showed that for any constant ε > 0,
any algorithm achieving an approximation of ( 12 + ε) re-
quires an exponential number of oracle queries to the non-
monotone submodular function. Further, they proposed
several greedy algorithms, such as deterministic adaptive
and randomized adaptive, that are 1

3 and 2
5 -approximation

algorithms, respectively. More recently (Buchbinder et al.,
2015; Buchbinder and Feldman, 2018) proposed linear
time 1

2 -approximation algorithms. Our work extends the
greedy algorithms in (Buchbinder et al., 2015) from the
non-stochastic offline setting to the stochastic online setting
and proves the regret guarantees in the stochastic online
setup. In practical scenarios, rewards are stochastic; thus,
the agent has to optimize online exploration and exploita-
tion under noisy rewards. The online setting requires an
exploration-exploitation tradeoff for efficient regret guar-
antees, with samples from the stochastic function, making
the problem more complex.

Non-monotone submodular maximization has recently
been studied in the adversarial setting (Roughgarden
and Wang, 2018), where a greedy algorithm under full-
information is proposed which achieves a 1

2 -regret upper
bound of Õ(nT 1

2 ). Apart from the differences in the
stochastic and adversarial settings, our work is also dif-
ferent from a feedback perspective. While they study the
problem under full-information, namely after playing an
action St, they receive not only the reward ft(St) but the
entire function ft(·). We study the problem under full-
bandit feedback, i.e., the agent, in our case, has much less
information to make decisions. Full-bandit feedback in the
adversarial setting has also been recently studied (Niazadeh
et al., 2020) where the proposed algorithm achieves a 1

2 -
regret upper bound of Õ(nT 2

3 ).

2 Problem Statement
In this section, we formally define the problem studied in
this paper. Let Ω be the set of all the base arms, ui an arm
of index i, and n = |Ω| be the number of arms. We consider
a sequential decision-making problem with a fixed horizon
T , where at each time step t, the agent chooses a subset of
arms (action), St ⊆ Ω. At every step t, the agent receives
a sample reward for selecting a subset using a stochastic
function f(St).

We assume the reward function f(·) to be stochastic and
submodular in expectation, see Definition 1, not necessar-
ily monotone, and i.i.d. conditioned on a given subset.
Without loss of generality, we assume f(·) to be bounded
in [0, 1] 1. The agent’s goal is to maximize the cumulative
reward over time until the time horizon T .

One standard metric to measure the performance of an on-
line learner over time is to compare its performance with
an agent that has access to the optimal maximizer OPT of
the expectation of the reward function f(·),

OPT = argmax
S⊆Ω

Ef(S). (2)

1The results can be directly extended to a general submodular
in expectation function f(·) with a minimum value fmin and a
maximum values fmax by considering a normalized submodular
function g(S) = (f(S)− fmin)/(fmax − fmin)



Fares Fourati, Vaneet Aggarwal, Christopher John Quinn, Mohamed-Slim Alouini

Maximizing a general non-monotone submodular function
is an NP-hard problem. Feige et al. (2011) studied the hard-
ness of non-monotone submodular maximization assuming
the function f(·) is obtained through a value oracle. They
proved that for any constant ε > 0, any algorithm achiev-
ing an approximation of ( 12 + ε) requires an exponential
number of oracle queries. Subsequently, Buchbinder et al.
(2015) achieved the 1

2 -approximation in linear time in the
offline non-stochastic setting. Therefore, we compare the
agent’s cumulative reward to 1

2TEf(OPT ), and we denote
the cumulative 1

2 -regretR 1
2
(T ), where,

R 1
2
=

T∑︂
t=1

(
1

2
f(OPT )− f(St)) (3)

Notice that the 1
2 -regret is random, and its randomness is

due to the stochasticity of the reward function f(·) and the
chosen actions (subsets) throughout time. Thus, we mainly
focus on minimizing the expected 1

2 -regret of the agent,
defined as follows,

E[R 1
2
] =

1

2
TE[f(OPT )]−

T∑︂
t=1

E[f(St)], (4)

where the expectation is defined over the stochasticity of
f(·) and the randomness of the chosen sequence of actions,
for ease of notation, we write R(T ) instead of R 1

2
(T ) for

the remainder of the paper.

3 Proposed RGL Algorithm

This section presents our proposed RGL algorithm, adapted
from the offline algorithm proposed in (Buchbinder et al.,
2015) for a non-stochastic f(·). The pseudocode for RGL
can be found in Algorithm 1.

For the problem we consider (unconstrained action space),
if the reward function is monotone, then the best set is
simply the set of all base arms Ω. A trivial algorithm
(no exploration needed) can attain an approximation ratio
of α = 1. However, when the reward function is non-
monotone, adding arms is no longer necessarily a good
choice. Consequently, tracking two sets Xi (starting as ∅)
and Yi (starting as Ω) is a useful strategy. RGL goes over
all the individual arms one by one and decides whether to
add it to a set of base arms Xi or remove it from the set of
base arms Yi. The decisions of adding or removing any arm
are made in a randomized greedy fashion using empirical
estimates of marginal gains until a decision is made for all
the individual arms and then exploits the decided best set
of arms.

Let Xi and Yi be two sets of arms. Initially, X0 = ∅ and
Y0 = Ω. The algorithm has n phases, where n is the num-
ber of arms, and each phase has m sub-phases, where m is
the number of repetitions to estimate the quality of a given
set of arms. In phase i out of n, the agent estimates the

expectation of the following two random variables, ai and
bi, defined as follows,

ai = f(Xi−1 ∪ {ui})− f(Xi−1)

bi = f(Yi−1 \ {ui})− f(Yi−1).
(5)

Algorithm 1 RGL
Require: Set of base arms Ω, horizon T

X0 ← ∅, Y0 ← Ω, n← |Ω|

m← ⌈
(︂
T
√︂

25
32 log(T )

)︂2/3
⌉

for arm index i ∈ {1, · · · , n} do
āi ← 0 and b̄i ← 0
for sample j ∈ {1, . . . ,m} do

Play Xi−1 ∪ {ui}, Xi−1, Yi−1, and Yi−1 \ {ui}
āi ← āi + (fj(Xi−1 ∪ {ui})− fj(Xi−1))/m
b̄i ← b̄i + (fj(Yi−1 \ {ui})− fj(Yi−1))/m

end for
a′i ← max(āi, 0) and b′i ← max(b̄i, 0)

with probability (
a′
i

a′
i+b′i

) do
Xi ← Xi−1 ∪ {ui} and Yi ← Yi−1

else
Yi ← Yi−1 \ {ui} and Xi ← Xi−1

end for
for remaining time do

Play Xn

end for

Since f(·) is stochastic, ai and bi are too, even when con-
ditioned on Xi−1, Yi−1, and the arm ui. To estimate their
expectations given the sets Xi and Yi and the arm ui, the
agent samples each of the four random set values in (5) m
times. Denote the jth sample of a played set S as fj(S)
and the empirical mean of playing an action S as follows,

f̄(S) :=
1

m

m∑︂
j=1

fj(S). (6)

Hence, the agent computes their empirical means āi and b̄i
over m repetitions, i.e.,

āi = f̄(Xi−1 ∪ {ui})− f̄(Xi−1)

b̄i = f̄(Yi−1 \ {ui})− f̄(Yi−1).
(7)

These two estimates are important for the decision-making
process. āi measures the expected impact of adding arm
ui to Xi−1, while b̄i measures the expected impact of re-
moving arm ui from Yi−1. A decision is made greedily and
probabilistically by computing a certain probability that de-
pends on these two estimates āi and b̄i, defined as follows,

p =
a′i

a′i + b′i
, (8)

where a′i = max(āi, 0) and b′i = max(b̄i, 0), which ex-
plains the randomized greedy name of the algorithm. In
the special case when a′i = b′i = 0, we set p = 1.
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With that probability p, the agent adds the individual arm i
to the set of arms Xi and keeps it in the set of arms Yi, and
with probability 1−p, the agent removes the arm i from the
set of arms Yi and keeps the same arms as in Xi−1. Thus,
Xi ⊆ Yi for all i = 1, . . . , n. After checking all the n
individual arms, it can be easily seen that by the algorithm’s
construction, both sets Xn and Yn contain exactly the same
arms, i.e., Xn = Yn. Thus, after deciding on each of the n
base arms, the agent exploits Xn for the remaining time.

Remark 1. Note that the randomness of our randomized
greedy algorithm was essential to achieve the 1/2 approx-
imation guarantees. The same algorithm with determin-
istic decisions, i.e., adding arm of index i when ai ≥ bi
would only achieve 1/3 approximation guarantee, (Buch-
binder et al., 2015).

RGL has low storage complexity and per-round time com-
plexity. During exploitation, RGL only needs to store the
indices of the selected set Xn of base arms, which is at
most n and does not need further computation. During ex-
ploration, in phase i, RGL needs to update the empirical
means for āi and b̄i, and update the Xi and Yi. Thus, RGL
has an O(n) storage complexity and O(1) per round time
complexity.

4 Regret Analysis

In this section, we will provide the paper’s main result,
which is a bound on the expected cumulative 1

2 -regret of
the proposed algorithm. Before we mention the main re-
sult, we provide the Lemmas that will be useful in proving
the main result.

Lemma 1. For every i ∈ {1, · · · , n}, we have E[ai+bi] ≥
0, where ai, bi are as defined in (5).

Proof. By construction, Xi−1 ⊆ Yi−1\{ui} and ui ∈
Yi−1. Thus, by Definition 1 of submodularity, the expected
marginal gain of adding ui to Yi−1\{ui} is less than or
equal to the marginal gain of adding ui to Xi−1,

E [f (Yi−1)− f (Yi−1\ {ui})]
≤ E[f (Xi−1 ∪ {ui})− f (Xi−1)]. (9)

Plugging (5) into (9) yields E[−bi] ≤ E[ai] which upon
rearranging finishes the proof.

For each arm ui, the agent plays the following list of ac-
tions Si = [Xi−1, Xi−1 ∪ {ui} , Yi−1, Yi−1\ {ui}] exactly
m times, then computes marginal gain estimates. To de-
termine m, we consider the equal-sized confidence radii
rad :=

√︁
2 log(T )/m for empirical estimates for all the

actions Si. Increasing m improves the concentration of
empirical estimates around their mean values, improving

the quality of decisions made using those empirical esti-
mates. However, increasing m comes at the cost of more
time spent playing actions whose values may be far from
1
2f(OPT ) leading to high cumulative regret.

Denote the event that the empirical means of actions played
when testing arm ui are concentrated around their statisti-
cal means as,

Ei :=
⋂︂

S∈Si

{|f̄(S)− E[f̄(S)]| < rad} (10)

Then we define the clean event E to be the event that the
empirical means of all actions played up to and includ-
ing arm un are within rad of their corresponding statistical
means:

E := E1 ∩ · · · ∩ En. (11)

The specific sequence of actions played will depend on em-
pirical estimates of earlier actions and their rewards. How-
ever, conditioned on the current action St played at any
time t, the random reward f(St) is independent of past ac-
tions and their rewards.

Using the Hoeffding bound, we show that E happens with
high probability. We then use the concentration of empiri-
cal means (10) and properties of submodularity in expecta-
tion, Definition 1, to show the next steps.

Remark 2. Under the clean event Ei (10), for all S ∈ Si,

|f̄(S)− E[f̄(S)]| < rad .

Thus, since Xi−1 is in Si,

E[f̄(Xi−1)]− rad ≤ f̄(Xi−1) ≤ E[f̄(Xi−1)] + rad .

We have similar relation for Xi−1∪{ui}, Yi−1, Yi−1\{ui}.

Thus,

E[f̄(Xi−1 ∪ {ui})]− E[f̄(Xi−1)]− 2rad

≤ f̄(Xi−1 ∪ {ui})− f̄(Xi−1)

=
1

m

m∑︂
j=1

(fj(Xi−1 ∪ {ui})− fj(Xi−1))

= āi. (by (7))

Therefore,
E[ai]− 2rad ≤ āi

Using similar steps, it can be easily verified that,

E[ai]− 2rad ≤ āi ≤ E[ai] + 2rad

E[bi]− 2rad ≤ b̄i ≤ E[bi] + 2rad.
(12)

Corollary 1. Under the clean event E , for every 1 ≤ i ≤ n,
āi + b̄i ≥ −4rad.

Proof. Under clean event E , āi ≥ E[ai] − 2rad and b̄i ≥
E[bi]− 2rad. Since E[ai + bi] ≥ 0 (by Lemma 1), then,
āi + b̄i ≥ E[ai + bi]− 4rad ≥ −4rad.
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Lemma 2. Define OPTi := (OPT ∪Xi)∩Yi. Under the
clean event E , for every 1 ≤ i ≤ n, we have

E[f(OPTi−1)− f(OPTi))]

≤ 1

2
E[f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] + 5rad.

(13)

Proof. It is sufficient to prove the inequality condi-
tioned on any event of the form Xi−1 = Si−1 where
Si−1 ⊆ {u1, ..., ui−1}, for which the probability
Xi−1 = Si−1 is non-zero. The remainder of the proof
assumes everything is conditioned on this event. We prove
Lemma 2 by considering the following four possible cases
for āi and b̄i:

Case 1 (āi ≥ 0 and b̄i ≤ 0): In this case b̄i ≤ 0⇒ b′i =

0⇒ a′
i

a′
i+b′i

= 1. Thus, Yi = Yi−1 and Xi = Xi−1 ∪ {ui}.
Since Xi = Xi−1 ∪ {ui}, we have

E[ai] = E[f(Xi−1 ∪ {ui})− f(Xi−1)]

= E[f(Xi)− f(Xi−1)].
(14)

Since Yi = Yi−1, the relation (13) that we want to show
reduces to,

E[f(OPTi−1)− f(OPTi)]

≤ 1

2
E[f(Xi)− f(Xi−1)] + 5rad.

Notice, OPTi = (OPT ∪Xi) ∩ Yi = OPTi−1 ∪ {ui}.

If ui ∈ OPT ⇒ OPTi = OPTi−1. Thus,

E[f(OPTi)− f(OPTi−1)]

= 0

≤ āi
2

(by case 1 condition)

≤ E[ai]
2

+ rad (using (12))

=
1

2
E[f(Xi)− f(Xi−1)] + rad (by (14))

≤ 1

2
E[f(Xi)− f(Xi−1)] + 5rad.

Now consider that ui /∈ OPT . Since OPTi−1 ⊆ Yi−1

holds by definition of OPTi, here OPTi−1 ⊆ Yi−1\{ui},
and (Yi−1\ {ui}) ∪ {ui} = Yi−1, so by Definition 1 of
submodularity in expectation,

E[f (Yi−1)]− E[f (Yi−1\ {ui})]
≤ E[f(OPTi−1 ∪ {ui})]− E[f(OPTi−1)].

(15)

Negating (15), we obtain

E[f(OPTi−1)]− E[f(OPTi−1 ∪ {ui})]
≤ E[f (Yi−1\ {ui})]− E[f (Yi−1)] (negating (15))
= E[bi] (by def. of bi (5))
≤ b̄i + 2rad (using (12))

≤ āi
2

+ 2rad (condition for case 1)

≤ 1

2
E[ai] + 3rad (using (12))

=
1

2
E[f(Xi)− f(Xi−1)] + 3rad (by (14))

≤ 1

2
E[f(Xi)− f(Xi−1)] + 5rad.

Case 2 (āi < 0 and b̄i ≥ 0): This case is analogous to
Case 1, for its proof, we refer the reader to Appendix B.2.

Case 3 (āi < 0 and b̄i < 0): For this case, by definition
of a′i and b′i, we will have a′i = b′i = 0. Thus, the selection
probability of arm ui will be set as a′

i

a′
i+b′i

= 1, meaning
Xi = Xi−1 ∪ {ui} and Yi = Yi−1. Hence, we have

E[ai] = E[f(Xi−1 ∪ {ui})− f(Xi−1)]

= E[f(Xi)− f(Xi−1)].
(16)

Thus, it suffices to prove that

E(f(OPTi−1)− f(OPTi))) ≤
1

2
E[ai] + 5rad. (17)

Note that OPTi = (OPT ∪Xi) ∩ Yi = OPTi−1 ∪ {ui}.
Further, by Corollary 1, under the clean event, for every
1 ≤ i ≤ n, āi+b̄i ≥ −4rad. As b̄i < 0, then, āi ≥ −4rad,
we have

āi
2

+ 2rad ≥ 0 > b̄i. (18)

If ui ∈ OPT , then OPTi = OPTi−1. Thus, we have

E[f(OPTi)− f(OPTi−1)]

= 0

≤ āi
2

+ 2rad (by (18))

≤ 1

2
E[ai] + 3rad (using (12))

≤ 1

2
E[ai] + 5rad.

If ui /∈ OPT , then OPTi−1 ⊆ Yi−1 and
(Yi−1\ {ui}) ∪ {ui} = Yi−1 Thus, like in case 1, (15)
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holds. Negating (15), we obtain,

Ef(OPTi−1)− Ef(OPTi−1 ∪ {ui})
≤ Ef (Yi−1\ {ui})− Ef (Yi−1) (from (15))
= E[bi] (from def. (5))
≤ b̄i + 2rad (using (12))

≤ āi
2

+ 4rad (by (18))

≤ 1

2
E[āi] + 5rad.

Case 4 (āi ≥ 0 and b̄i > 0): In this case, a′i = āi and
b′i = bi. Hence, by the algorithm with probability ai′

ai′+bi′ ,
Xi ← Xi−1 ∪ {ui} and Yi ← Yi−1, and with probability

b′i
a′
i+b′i

, Yi ← Yi−1 \ {ui} and Xi ← Xi−1. We have,

E [f (Xi)− f (Xi−1) + f (Yi)− f (Yi−1)]

= E[E [f (Xi)− f (Xi−1) + f (Yi)− f (Yi−1)| āi, b̄i]]

= E[
āi

āi + b̄i
E [f (Xi−1 ∪ {ui})− f (Xi−1)]

+
b̄i

āi + b̄i
E [f (Yi−1\ {ui})− f (Yi−1)]]

= E
[︃
āiE[ai]
āi + b̄i

+
b̄iE[bi]
āi + b̄i

]︃
(def. of ai and bi)

≥ E
[︃
āi(āi − 2rad)

āi + b̄i
+

b̄i(b̄i − 2rad)

āi + b̄i

]︃
(using (12))

= E

[︄
ā2i

āi + b̄i
+

b̄
2
i

āi + b̄i
− 2rad(āi + b̄i)

āi + b̄i

]︄

= E

[︄
ā2i + b̄

2
i

āi + b̄i

]︄
− 2rad.

Hence,

1

2
E

[︄
ā2i + b̄

2
i

āi + b̄i

]︄
− rad

≤ 1

2
E [f (Xi)− f (Xi−1) + f (Yi)− f (Yi−1)] .

(19)

Moreover,

E[f(OPTi−1)− f(OPTi)]

= E[
āi

āi + b̄i
E[f(OPTi−1)− f(OPTi−1 ∪ {ui})]

+
b̄i

āi + b̄i
E[f(OPTi−1)− f(OPTi−1 \ {ui})]]

If ui /∈ OPT ⇒ second term is zero and OPTi−1 ⊆ Yi−1\

{ui}. Thus, by submodularity in expectation,

E[f(OPTi−1)− f(OPTi−1 ∪ {ui})]
≤ E[f(Yi−1 \ {ui})− f(Yi)]

= E[bi]
≤ b̄i + 2rad,

so if ui /∈ OPT then

E[f(OPTi−1)− f(OPTi)]

≤ E[
āi

āi + b̄i
(b̄i + 2rad) +

b̄i
āi + b̄i

0]

= E[
āib̄i

āi + b̄i
] + 2radE[

āi
āi + b̄i

]. (20)

If ui ∈ OPT ⇒ first term is zero and Xi−1 ⊆
(OPT ∪Xi−1)∩Yi−1 \{ui}. Hence, by submodularity in
expectation, we have

E[f(OPTi−1)− f(OPTi−1 \ {ui})]
≤ E[f(Xi−1 \ {ui})− f(Xi)]

= E[ai]
≤ āi + 2rad.

Thus, if ui ∈ OPT then

E[f(OPTi−1)− f(OPTi)]

≤ E[
āi

āi + b̄i
0 +

b̄i
āi + b̄i

(āi + 2rad)]

= E[
āib̄i

āi + b̄i
] + 2radE[

b̄i
āi + b̄i

]. (21)

Since we are conditioning on (āi ≥ 0 and b̄i > 0) for this
case, then we have that

E[
āi

āi + b̄i
] ≥ 0 and E[

b̄i
āi + b̄i

] ≥ 0

Combining the bounds (20) and (21), we have

E[f(OPTi−1)− f(OPTi)]

≤ E[
āib̄i

āi + b̄i
] + 2radE[

b̄i
āi + b̄i

] + 2radE[
b̄i

āi + b̄i
]

= E[
āib̄i

āi + b̄i
] + 2rad, (22)

which holds regardless of ui’s membership in OPT .

For x+ y > 0, by the Cauchy-Schwarz inequality,

xy

x+ y
≤ 1

2

x2 + y2

x+ y
. (23)
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Combining the above observations, it follows that

E[f(OPTi−1)− f(OPTi)]

(22)
≤ E[

āib̄i
āi + b̄i

] + 2rad

(23)

≤ 1

2
E[

ā2i + b̄
2
i

āi + b̄i
] + 2rad

(19)

≤ 1

2
E [f (Xi)− f (Xi−1) + f (Yi)− f (Yi−1)] + 3rad

≤ 1

2
E [f (Xi)− f (Xi−1) + f (Yi)− f (Yi−1)] + 5rad.

Corollary 2. Under the clean event E ,

E[f(Xn)] +
5

2
n rad ≥ 1

2
E[f(OPT )]. (24)

Proof. Summing up (13) in Lemma 2 for 1 ≤ i ≤ n yields,

n∑︂
i=1

E [f (OPTi−1)− f (OPTi)]

≤ 5n rad+
1

2

n∑︂
i=1

E [f (Xi)− f (Xi−1)]

+
1

2

n∑︂
i=1

E [f (Yi)− f (Yi−1)] .

Notice the sums above are telescopic. Simplifying them,

E [f (OPT0)− f (OPTn)]

≤ 5nrad+
1

2
· E [f (Xn)− f (X0) + f (Yn)− f (Y0)]

≤ 5nrad+
E [f (Xn) + f (Yn)]

2
.

We obtain the result by noticing that OPT0 = OPT and
OPTn = Xn = Yn.

Having discussed the key Lemmas, the next result provides
the bound on expected cumulative 1

2 -regret of RGL.

Theorem 1. For the sequential decision making problem
defined in Section 2 with T ≥ 2, the expected cumulative
1
2 -regret of RGL is at most O(nT 2

3 log(T )
1
3 ).

Proof. We first condition the expected cumulative regret on

the clean event.

E(R(T )|E)

=
1

2
TE[f (OPT )]−

T∑︂
t=1

E[f (St)]

=

T∑︂
t=1

(︃
1

2
E[f(OPT )]− E[f (St)]

)︃

=

n∑︂
i=1

m∑︂
j=1

[︃(︃
1

2
E[f(OPT )]− E[f (Xi−1)]

)︃

+

(︃
1

2
E[f(OPT )]− E[f (Xi−1 ∪ {ui})]

)︃
+

(︃
1

2
E[f(OPT )]− E[f (Yi−1)]

)︃
+

(︃
1

2
E[f(OPT )]− E[f (Yi−1 \ {ui})]

)︃]︃
+

T∑︂
t=4nm+1

(︃
1

2
E[f(OPT )]− E[f (St)]

)︃
.

(25)

We split the sum into two parts, the first accounting for
cumulative regret incurred during the exploration phase
and the second for the exploitation phase. During explo-
ration, for each arm ui the agent plays four subsets, Xi, Yi,
Xi−1∪{ui}, and Yi−1\{ui}, for m times each. Hence, the
agent explores for 4mn time steps. Since f(·) is bounded
in [0, 1], for any subset St played at time t by the agent,

1

2
E[f (OPT )]− E[f (St)] ≤

1

2
. (26)

Substituting (26) in (25), we have

E[R(T ) | E ]

≤ 4nm
1

2
+

T∑︂
t=Tn+1

(︃
1

2
E[f(OPT )]− E[f (St)]

)︃

= 2nm+

T∑︂
t=Tn+1

(︃
1

2
E[f(OPT )]− E[f (Xn)]

)︃
.

From Corollary 2, we have 1
2E(f(OPT )) − E[f(Xn)] ≤

5
2n rad. Thus,

E[R(T ) | E ] ≤ 2nm+

T∑︂
t=Tn+1

(︃
5

2
n rad

)︃
≤ 2nm+

5

2
Tn rad.

Since rad =
√︁
2 log(T )/m, we have

E(R(T ) | E) ≤ 2nm+
5

2
Tn

√︃
2
log(T )

m
.
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Figure 1: Comparison results for the non-monotone stochastic submodular reward function. From left to right, the plots show cumula-
tive regret as a function of time step T , instantaneous rewards as a function of time step t, and cumulative regret as a function of time
horizon t, respectively.

Figure 2: Comparison results for the non-monotone stochastic non-submodular reward function. From left to right, the plots show
cumulative regret as a function of time step T , instantaneous rewards as a function of time step t, and cumulative regret as a function of
time horizon t, respectively.

The above inequality is true for all m strictly greater than
zero. Hence, to find a tighter bound, we find m∗ that mini-
mizes the left side. The exact minimizer is:

m⋆ =

(︄
T

√︃
25

32
log(T )

)︄2/3

.

Therefore, we choose m = ⌈m⋆⌉.

E(R(T ) | E) ≤ 2n⌈m⋆⌉+ 5

2
nT

√︄
2 log(T )

⌈m⋆⌉

≤ 2n⌈m⋆⌉+ 5

2
nT

√︃
2 log(T )

m∗

For T ≥ 2, m⋆ ≥ 1
2 and thus ⌈m⋆⌉ ≤ 2m∗. Thus, we have

E(R(T ) | E) ≤ 4nm⋆ +
5

2
nT

√︃
2 log(T )

m∗

≤ O(nT 2
3 log(T )

1
3 )

Under the bad event, i.e., the complement Ē of the good
event E , given that the rewards are bounded in [0, 1], it
can be easily seen that E(R(T ) | Ē) ≤ T . More-
over, by using Lemma 3 in Appendix B, the Hoeffding
inequality (Hoeffding, 1994), we have P(Ē) ≤ 8n

T 4 , see

Lemma 4 in Appendix B. Therefore, we obtain E(R(T )) ≤
O(nT 2

3 log(T )
1
3 ).

Remark 3. When the time horizon T is not known, we
can extend our result to an anytime algorithm using the
geometric doubling trick. Essentially, we pick a geomet-
ric sequence Ti = T02

i for i ∈ {1, 2, · · · }, where T0 is
a large enough number to let the algorithm initialize, and
run RGL within time interval Ti+1 − Ti with a full restart,
(Besson and Kaufmann, 2018). From Theorem 4 in the
work of Besson and Kaufmann (2018), it follows that the
regret bound conserves the original T 2/3 log(T )1/3 depen-
dence with only changes in constant factors.

5 Experiments

In this section, we empirically evaluate our RGL algo-
rithm in non-monotone, submodular and non-submodular
settings. For further experiments, we refer the reader to the
linear reward minus cost experiment in Appendix D.1, and
to the revenue maximization over social networks experi-
ment in Appendix D.2.

We compare our method to the exact optimal solution and
compute the empirical mean over different repetitions of
the cumulative full regret instead of the cumulative 1

2 -
regret, defined as follows,
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R̄(T ) = 1

rep

rep∑︂
n=1

T∑︂
t=1

(f (OPT )− f (St)).

We test the algorithms on a non-monotone stochastic sub-
modular function of the chosen set S, defined as f(S) =
min(max(g(S) + ε, 0), 1), where ε ∼ N (µ, σ). In our
experiments, we choose a non-monotone submodular ex-
ample of g(S), where g({}) = 0.2, g({1}) = 0, g({2}) =
0.6, g({1, 2}) = 0.2. Note that E[f(S)] = g(S), and g(S)
is submodular.

In the second experiment, we choose a non-monotone
non-submodular example of g(S), where g({}) = 0.3,
g({1}) = 0, g({2}) = 0.5, g({1, 2}) = 0.9. Notice, that
E[f(S)] = g(S), and g(S) is not submodular.

We run our method for T ∈
{︁
102, 103, 104, 105, 106

}︁
time

horizons. We assume ε ∼ N (0, 0.1). We average our ex-
periments over rep = 20 repetitions. We average the in-
stantaneous rewards over a window of size 50.

We use the optimal solution, which is {2} in the first exper-
iment and {1, 2} in the second experiment, and run it in the
online setting, where the optimal agent (OPT) only exploits
the best set of arms throughout the time until T , see Algo-
rithm 2. Moreover, we compare to random bandits (RND),
see Algorithm 3, which at each time step plays a random
subset of Ω, where each arm is sampled independently with
probability 1

2 . The random algorithm in the offline setting
has 1

4 -approximation guarantee (Feige et al., 2011). Fur-
thermore, we compare to one online monotone submodular
maximization algorithm, ETCG, (Nie et al., 2022). Unfor-
tunately, the online algorithms for monotone submodular
maximization require an extra input, which is the cardinal-
ity k. Thus, we define R-ETCG, see Algorithm 4, which
initially generates a random k ∼ U(0, n), then finds the
best k arms.

From Fig. 1 for the sub-modular function case, it can be
seen that RGL reaches the optimum. From Fig. 2, in the
non-submodular case, it can be seen that RGL still reaches
the optimum. In both experiments, RGL outperforms all
the above-defined benchmarks. Even though the theory is
not developed for non-submodular cases, the approach can
still work well even in such cases. Further, the proposed
algorithm outperforms R-ETCG, indicating that the algo-
rithms for monotone functions cannot be directly applied
to the non-monotone case.

Remark 4. The cumulative regret upper bound depen-
dence of O(T 2/3) is on the horizon T (not time-step t) (see
left sub-figures in all Figures, which have cumulative regret
curves increasing in T ). For a fixed time horizon T, RGL
found the optimal set of arms, which makes its cumulative
regret for a fixed time horizon T a constant w.r.t. time t
(right sub-figures for Fig. 1 and 2). Furthermore, the theo-
retical guarantees are for the worst-case scenario, i.e., the
theory gives an upper bound on the regret, which for some

instances, will be lower.

6 Conclusion

This paper proposes RGL, the first online stochastic non-
monotone submodular maximization algorithm under full-
bandit feedback, i.e. when the agent only receives the re-
ward for a chosen set of arms and has no extra information
about the individual arms. The proposed algorithm prov-
ably achieves a 1

2 -regret upper bound of Õ(nT 2
3 ) for hori-

zon T and number of arms n. Moreover, the algorithm em-
pirically outperforms the considered baselines under full-
bandit feedback.

We note that the existing results for sub-modular bandits
with full-bandit feedback also achieve Õ(T 2

3 ) regret bound
in the monotone function setup (Nie et al., 2022; Niazadeh
et al., 2020). Further, the results for non-monotone func-
tion in adversarial setting is also Õ(T 2

3 ) (Niazadeh et al.,
2020). While a formal lower bound for this setup has not
been studied, proving such a lower bound or improving the
regret bounds in all these setups is an open problem.
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tive non-monotone submodular maximization subject to
a knapsack constraint. Advances in Neural Information
Processing Systems, 33:16903–16915, 2020.

Peter Auer. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning Re-
search, 3(Nov):397–422, 2002.

Peter Auer and Ronald Ortner. UCB revisited: Improved
regret bounds for the stochastic multi-armed bandit prob-
lem. Periodica Mathematica Hungarica, 61(1-2):55–65,
2010.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-
time analysis of the multiarmed bandit problem. Ma-
chine Learning, 47(2):235–256, 2002a.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and
Robert E Schapire. The nonstochastic multiarmed ban-
dit problem. SIAM Journal on Computing, 32(1):48–77,
2002b.



Randomized Greedy Learning for Non-monotone Stochastic Submodular Maximization Under Full-bandit Feedback

Lilian Besson and Emilie Kaufmann. What doubling tricks
can and can’t do for multi-armed bandits. arXiv preprint
arXiv:1803.06971, 2018.

Niv Buchbinder and Moran Feldman. Deterministic algo-
rithms for submodular maximization problems. ACM
Transactions on Algorithms (TALG), 14(3):1–20, 2018.

Niv Buchbinder, Moran Feldman, Joseph Seffi, and Roy
Schwartz. A tight linear time (1/2)-approximation for
unconstrained submodular maximization. SIAM Journal
on Computing, 44(5):1384–1402, 2015.

Lin Chen, Mingrui Zhang, Hamed Hassani, and Amin Kar-
basi. Black box submodular maximization: Discrete
and continuous settings. In International Conference on
Artificial Intelligence and Statistics, pages 1058–1070.
PMLR, 2020.

Abhimanyu Das and David Kempe. Algorithms for subset
selection in linear regression. In Proceedings of the for-
tieth annual ACM Symposium on Theory of Computing,
pages 45–54, 2008.

Anirban Dasgupta, Ravi Kumar, and Sujith Ravi. Summa-
rization through submodularity and dispersion. In Pro-
ceedings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pages 1014–1022, Sofia, Bulgaria, August 2013. Asso-
ciation for Computational Linguistics.

Jack Edmonds. Submodular functions, matroids, and cer-
tain polyhedra. In Combinatorial Optimization—Eureka,
You Shrink!, pages 11–26. Springer, 2003.

Ethan R Elenberg, Rajiv Khanna, Alexandros G Dimakis,
and Sahand Negahban. Restricted strong convexity im-
plies weak submodularity. The Annals of Statistics, 46
(6B):3539–3568, 2018.

Matthew Fahrbach, Vahab Mirrokni, and Morteza Zadi-
moghaddam. Non-monotone submodular maximization
with nearly optimal adaptivity and query complexity.
arXiv preprint arXiv:1808.06932, 2018.

Uriel Feige. A threshold of ln n for approximating set
cover. Journal of the ACM (JACM), 45(4):634–652,
1998.

Uriel Feige, Vahab S Mirrokni, and Jan Vondrák. Maximiz-
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A Motivating Examples for (Non-montone) Submodular Maximization

A.1 Data Summarization

As huge amount of data is generated daily, selecting a good representative subset of data points remains as a challenge.
Often, the utility function capturing the coverage or diversity of a subset of the entire dataset satisfies submodularity
(Mirzasoleiman et al., 2016). However, utility functions that accommodate diversity are not necessarily monotone as they
penalize larger solutions (Tschiatschek et al., 2014; Dasgupta et al., 2013).

A.2 Feature Selection

One compelling use of non-monotone submodular maximization algorithms is modeling some learning problems such as
feature selection (Das and Kempe, 2008; Khanna et al., 2017; Elenberg et al., 2018; Qian and Singer, 2019). Optimizing
feature selection can be modeled as a non-monotone submodular maximization due to the possible overfitting to the training
data (Fahrbach et al., 2018).

A.3 Recommender Systems

Recommending items with redundant information leads to diminishing returns on utility. This problem of sequentially
recommending sets of items to users has been studied through the framework of contextual submodular combinatorial
bandits (Qin and Zhu, 2013; Takemori et al., 2020). The optimization is not necessarily monotone as adding further
recommendations might lead to a counter effect (Amanatidis et al., 2020).

A.4 Influence Maximization

One possible way to market a newly developed product can be done by selecting a set of highly influential people and hope
they recommend it to their communities. A recent line of research has considered the problem as a multi-armed bandit
problem (with extra feedback) without requiring the knowledge of the network and diffusion model (Lei et al., 2015; Wen
et al., 2017; Vaswani et al., 2017; Li et al., 2020; Perrault et al., 2020). Most works consider that there is a fixed constraint
on cardinality or budget. However, a revenue maximization model to maximize income from influence minus the costs is
in general a non-monotone unconstrained submodular maximization problem (Lu and Lakshmanan, 2012).

B Additional Lemmas and Proofs

B.1 Probability of the Clean Event

Hoeffding’s inequality (Hoeffding, 1994) is a powerful technique for bounding probabilities of bounded random variables.
We state the inequality, then we use it to show that E happens with high probability.
Lemma 3. (Hoeffding’s inequality). Let X1, X2, ..., Xn be independent random variable bounded in [0, 1] and let X̄ their
empirical mean. Then we have for any ε > 0,

P(|X̄ − E(X)| ≥ ε) ≤ 2 exp
(︁
−2nε2

)︁
.

Lemma 4. The probability of clean event E satisfies

P(E) ≥ 1− 8n

T 4
. (27)

Proof. Applying Lemma 3 to the empirical mean f̄ (S) of m rewards for action S and choosing ϵ = rad =
√︁

2 log(T )/m,
we have

P
[︁⃓⃓
f̄ (S)− f (S)

⃓⃓
≥ rad

]︁
≤ 2 exp

(︁
−2m rad2

)︁
(by Lemma 3)

= 2 exp(−2m(2 log(T )/m))

= 2 exp(−4 log(T ))

=
2

T 4
. (28)
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For each arm ui, the agent plays the following list of actions Si = [Xi−1, Xi−1 ∪ {ui} , Yi−1, Yi−1\ {ui}] exactly m
times, then computes marginal gain estimates. Thus, for any individual action S ∈ Si, we can bound the probability that
its sample mean f̄ (S) is within a specified confidence radius (complementary of the event above) as

∀S ∈ Si P
[︁⃓⃓
f̄ (S)− f (S)

⃓⃓
< rad

]︁
= 1− P

[︁⃓⃓
f̄ (S)− f (S)

⃓⃓
≥ rad

]︁
≥ 1− 2

T 4
. (29)

We now focus on bounding P (Ei | Xi−1 = X,Yi−1 = Y ). By conditioning on the sets decided in the previous phase,
Xi−1 = X,Yi−1 = Y , we know all the actions that will be played in the current phase i, i.e. Si. The rewards of all the
actions are bounded in [0, 1] and are conditionally independent (given the corresponding action).

P (Ei | Xi−1 = X,Yi−1 = Y ) = P

(︄ ⋂︂
S∈Si

{︁⃓⃓
f̄ (S)− E [f (S)]

⃓⃓
< rad

}︁
| Xi−1 = X,Yi−1 = Y

)︄
(by (10))

=
∏︂
S∈Si

P
(︁{︁⃓⃓

f̄ (S)− f (S)
⃓⃓
< rad

}︁
| Xi−1 = X,Yi−1 = Y

)︁
(rewards are independent when conditioned on actions)

≥
(︃
1− 2

T 4

)︃|Si|

(by (29))

=

(︃
1− 2

T 4

)︃4

(30)

With this, we can then lower bound the probability of the clean event E ,

P(E) = P (E1 ∩ · · · ∩ En) (by (11))

=

n∏︂
i=1

P (Ei | E1, . . . , Ei−1)

=

n∏︂
i=1

∑︂
X,Y

P (Xi−1 = X,Yi−1 = Y, Ei | E1, . . . , Ei−1) (law of total probability)

=
n∏︂

i=1

∑︂
X,Y

P (Xi−1 = X,Yi−1 = Y | E1, . . . , Ei−1)× P (Ei | Xi−1 = X,Yi−1 = Y, E1, . . . , Ei−1)

=

n∏︂
i=1

∑︂
X,Y

P (Xi−1 = X,Yi−1 = Y | E1, . . . , Ei−1)× P (Ei | Xi−1 = X,Yi−1 = Y )

≥
n∏︂

i=1

∑︂
X,Y

P (Xi−1 = X,Yi−1 = Y | E1, . . . , Ei−1)×
(︃
1− 2

T 4

)︃4

(by (30))

=

n∏︂
i=1

(︃
1− 2

T 4

)︃4∑︂
X,Y

P (Xi−1 = X,Yi−1 = Y | E1, . . . , Ei−1)

=

n∏︂
i=1

(︃
1− 2

T 4

)︃4

=

(︃
1− 2

T 4

)︃4n

≥
(︃
1− 8n

T 4

)︃
. (Bernoulli’s inequality)
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B.2 Proof of Case 2 in Lemma 2.

It is sufficient to prove the inequality conditioned on any event of the form Xi−1 = Si−1 where Si−1 ⊆ {u1, ..., ui−1},
for which the probability Xi−1 = Si−1 is non-zero. The remainder of the proof assumes everything is conditioned on this
event. The proof of Lemma 2 was divided in 4 cases in the text, where the detailed proof of three of them is provided in
the main text. The proof of Case 2 is provided here for completeness.

Proof. Case 2 (āi < 0 and b̄i ≥ 0): In this case āi ≤ 0 ⇒ a′i = 0 ⇒ b′i
a′
i+b′i

= 1. Thus, Xi = Xi−1 and
Yi = Yi−1 \ {ui}. Since Yi = Yi−1 \ {ui}, we have

E[bi] = E[f(Yi−1 \ {ui})− f(Yi−1)]

= E[f(Yi)− f(Yi−1)].
(31)

Since Xi = Xi−1, the relation (13) that we want to show reduces to,

E[f(OPTi−1)− f(OPTi)] ≤
1

2
E[f(Yi)− f(Yi−1)] + 5rad.

Note that
OPTi = (OPT ∪Xi) ∩ Yi = OPTi−1 \ {ui} (32)

If ui /∈ OPT ⇒ OPTi = OPTi−1. Thus,

E[f(OPTi−1)− f(OPTi)] = 0

≤ b̄i
2

(by case 2 condition)

≤ E[bi]
2

+ rad (using concentration)

=
1

2
E[f(Yi)− f(Yi−1)] + rad (by (31))

≤ 1

2
E[f(Yi)− f(Yi−1)] + 5rad.

Now consider that ui ∈ OPT . By definition of OPTi−1, Xi−1 ⊆ OPTi−1. Since, ui /∈ Xi−1. Then, Xi−1 ⊆
OPTi−1 \ {ui}. Thus by submodularity in expectation,

E[f (Xi−1 ∪ {ui})]− E[f (Xi−1)] ≥ E[f(OPTi−1 \ {ui}) ∪ {ui}))]− E[f(OPTi−1 \ {ui})]. (33)

This allows us to finish the bound with

E[f(OPTi−1)]− E[f(OPTi)] = E[f(OPTi−1)]− E[f(OPTi−1 \ {ui})] (by (32))
= E[f(OPTi−1 \ {ui}) ∪ {ui}))]− E[f(OPTi−1 \ {ui})]
≤ E[f (Xi−1 ∪ {ui})]− E[f (Xi−1)] (by (33))
= E[ai] (by def. of ai)
≤ āi + 2rad (using concentration)

≤ b̄i
2
+ 2rad (condition for case 2)

≤ 1

2
E[bi] + 3rad (using concentration)

=
1

2
E[f(Yi)− f(Yi−1)] + 3rad (by (31))

≤ 1

2
E[f(Yi)− f(Yi−1)] + 5rad.
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C Benchmarks

We now discuss benchmarks to assess the performance of our proposed algorithm.

C.1 Optimal Bandit

The optimal bandit (OPT) requires the optimal set of arms as an input, and it only exploits this set throughout the time until
T , see Algorithm2. The optimal set should be known in advance, or found using some offline algorithm.

Algorithm 2 OPT
Require: horizon T , solution S⋆

for step time t ∈ {1, . . . , T} do
Play S⋆

end for

C.2 Random Bandit

The random bandits (RND), plays at each time step a random subset of Ω, where each arm is sampled independently with
probability 1

2 , see Algorithm 3. The random algorithm in the offline setting has 1
4 -approximation guarantee (Feige et al.,

2011).

Algorithm 3 RND
Require: Set of base arms Ω, horizon T
n← |Ω|
for step time t ∈ {1, . . . , T} do

S(t) ← ∅
for i ∈ {1, . . . , n} do

with probability 1
2 do

S(t) ← S(t) ∪ {ui}
end for
Play S(t)

end for

C.3 R-ETCG Bandit

Explore-then-commit greedy (ETCG) (Nie et al., 2022) is an online algorithm for monotone submodular maximization
under full-bandit feedback, with proven guarantees in the monotone setting. The submodular monotone maximization,
only makes sense when it is under constraint, otherwise the agent will pick all the arms as long as adding an arm is always
beneficial. Therefore, the online algorithms for monotone submodular maximization require at least an extra input, such
as the cardinality constraint k. Thus, to make applicable in our unconstrained non-monotone setting, we define random
ETCG (R-ETCG), which initially generates a random cardinality budget k ∼ U {0, n}, then finds the best k arms, see
Algorithm 4.

D More Experimental Evaluations

In this section, we empirically evaluate our RGL algorithm in another non-monotone setting. We compare our method to
the exact optimal solution and compute the empirical mean over different repetitions of the cumulative full regret instead
of the cumulative 1

2 -regret, defined as follows,

R̄(T ) = 1

rep

rep∑︂
n=1

T∑︂
t=1

(f (OPT )− f (St)).

We test for n = 8 base arms, T ∈
{︁
102, 103, 104, 105, 106

}︁
time horizon. We average our experiments over rep = 9

repetitions. We average the instantaneous rewards over a window of size 50.
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Algorithm 4 R-ETCG
Require: Set of base arms Ω, horizon T

Initialize S(0) ← ∅, n← |Ω|, k ← U {0, n}

Initialize m←

⌈︄(︃
T
√

2 log(T )

n+2nk
√

2 log(T )

)︃2/3
⌉︄

for phase i ∈ {1, . . . , k} do
for arm a ∈ Ω\S(i−1) do

Play S(i−1) ∪ {a}m times
Calculate the empirical mean f̄

(︁
S(i−1) ∪ {a}

)︁
end for
ai ← argmaxa∈Ω\S(i−1) f̄

(︁
S(i−1) ∪ {a}

)︁
S(i) ← S(i−1) ∪ {ai}

end for
for remaining time do

Play S(k)

end for

Figure 3: Comparison results for the non-monotone stochastic reward function. From left to right, the plots show cumulative regret
as a function of time step T , instantaneous rewards as a function of time step t, and cumulative regret as a function of time horizon t,
respectively.

D.1 Linear Reward Minus Cost

We test the algorithms on a non-monotone stochastic function of the chosen set X , defined as follows,

f(X) =

{︄
1, if X = {5, 6, 7, 8}
min(max(

∑︁
a∈X r(a)− |X|

k⋆ , 0), 1), otherwise

where r(a) is the stochastic reward function of an individual arm where ∀X,∀a ∈ X, r(a) ∈ [0, 1]. In fact, we choose
r(a) ∼ min(max(N (µa, σ), 0), 1), where ∀X,∀a ∈ X,µa ∈ [0, 1].

We fix an oracle constant of the submodular function k⋆ = 6. We choose σ = 0.02, and µ the vector of all the µas, such
as µ values are arranged from 0 to 0.35 with a step of 0.05. It can be easily verified that the set {5, 6, 7, 8} is the optimal
subset of arms.

From Fig. 3, it can be seen that our proposed algorithm RGL is the only one that reaches the optimum among the above
defined benchmarks (middle plot) and it has the least cumulative regret in terms of time horizon T (left plot). In terms
of time step t (right plot), similarly to RND, RGL starts by a higher cumulative reward compared to R-ETCG, which is
explainable by the relatively long early exploration phase of RGL, however, in later time steps, RGL outperforms R-ETCG,
by reaching less cumulative regret, by exploiting the optimum set of arms.
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Figure 4: Revenue Maximization over Social Networks. From left to right, the plots show cumulative regret as a function of time step
T , instantaneous rewards as a function of time step t, and cumulative regret as a function of time horizon t, respectively.

D.2 Revenue Maximization over Social Networks

In several real-world scenarios, non-monotone objectives are more meaningful. For example, for revenue maximization
over social networks, it is more meaningful to optimize the total revenue (influence minus costs; non-monotone) rather
than the influence alone (monotone) with a budget as a constraint. Solutions to the latter will use all the budget, while the
revenue-maximizing solution might use only a portion.

We test RGL on a non-monotone revenue maximization over social networks via influence maximization minus the costs.
Influence maximization is indeed a submodular maximization problem which becomes non-monotone when we subtract
the cost of adding nodes (Appendix A.4).

We use the Karate network, which includes 34 nodes, with an oracle function f , where for a subset of nodes S,

f(S) = N (
∑︂
c∈C

max
a∈S∩c

d(a), σ)− α|S|,

where C refers to the set of communities, d(a) is the degree of node a, N is the normal distribution, and α is a positive
constant which depends on the cost. As shown in Fig. 4, RGL outperforms all the other algorithms, as it has the lowest
cumulative regret and almost reaches the optimal instantaneous rewards.
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