S-Bottleneck Scheduling with Safety-Performance
Trade-offs in Stochastic Conditional DAG Models

Ashrarul H. Sifat*, Xuanliang Deng*, Shao-Yu Huang, Burhanuddin Bharmal, Sen Wang,
Ryan K. Williams, Haibo Zeng, Changhee Jung, Jia-bin Huang
Virginia Tech, Purdue University, University of Maryland

Abstract—In this paper, we propose a general solution to the
problem of scheduling real-time applications on heterogeneous
hardware platforms. To fully utilize the computing capacity of
heterogeneous processing units, we model the real-time applica-
tion as a heterogeneous Directed Acyclic Graph (DAG) which
specifies the types of processors (CPU, GPU, etc.) where each
task should run. In this well-known DAG context, we propose
a novel extension aimed at safety-critical systems that operate
in unpredictable environments: the coupling of conditional DAG
nodes with stochasticity. Specifically, conditional DAG nodes en-
able the modeling of systems that execute computational pipelines
based on environmental context, while stochasticity of DAG edges
captures the uncertain nature of a system’s environment or
the reliability of its hardware. Furthermore, considering the
pessimism of deterministic worst-case execution time (WCET)
in scheduling processes, we model execution times of tasks (DAG
nodes) as probability distributions which yields a novel stochastic
conditional DAG model. Coupled with a novel S-bottleneck heuris-
tic and safety-performance (SP) metric, our proposed framework
allows for efficient online scheduling in complex computational
pipelines, with more flexible representation of timing constraints,
and ultimately, safety-performance trade offs.

I. SYSTEM MODEL

A. Stochastic Heterogeneous Conditional DAGs

In the challenge problem model, there are precedence
constraints among different computational tasks, i.e., tasks
are connected with input/output ports following a specific
execution order. To capture this nature, we propose a new
DAG task model, the Stochastic Heterogeneous Conditional
Directed Acyclic Graph (StochHC-DAG), which incorporates
both the timing and resource constraints for safety-critical
autonomous systems. Our core concept is to model com-
putational pipelines that execute conditionally under some
uncertainty, recognizing that not all outcomes can be perfectly
predicted in real-world applications (e.g., extreme events). In
practice, the execution times of tasks are not perfectly known
before run-time and may vary online due to environmental
dynamism and conditions of the hardware platform. Thus,
we propose a generalization of the challenge problem model
by assuming the execution times of tasks follow probability
distributions rather than WCET to reduce schedule pessimism.
To fully utilize this probabilistic information and respect
timing constraints, we additionally propose new DAG node
structures: (1) stochastic conditional nodes for computational

This work was supported by the National Science Foundation under grant
CNS-1932074.

path selection; and (2) sensor/synchronization nodes for con-
trolling the difference of timestamps among data streams. A
real-time application is then represented by a StochHC-DAG,
G = (V,E,C,Type, Tag), described by [1] [2]:

e V={v1,v9, - ,v,} is the set of IDs for all computa-
tional tasks in the application.

e E C V xV is the set of edges among tasks that indicates
the data dependencies, with associated probabilities indi-
cating the likelihood of edge traversal during execution.

o C={Cy,Cy,--,Cy,} is the set of probability distribu-
tions of execution times for all tasks.

o Type = {typei,types,--- ,type,} is the set of types
of all tasks. A node in StochHC-DAG has one of the
following types {Computing, Conditional, Sensor, Sync}

o Tag = {tagi,tags, - ,tag,} indicates the type of pro-
cessing units that each task should run onto (e.g. CPU,
GPU, DLA etc.).

An example of the proposed DAG framework for the

challenge problem is given in Figure 4.

B. Stochastic Conditional Nodes in DAG Models

To capture the stochastic nature of real-time applications,
a new stochastic conditional node structure is proposed in
StochHC-DAG. This node allows for the selection of compu-
tational paths in a DAG based on events that occur under un-
certainty. For example, consider the event that an autonomous
vehicle is in a good environment for object detection/tracking
vs. a bad environment. In any given window of time, the
outcome of this event is uncertain as detecting/predicting en-
vironment conditions in practice is imperfect. Thus, if varying
computational pipelines are necessary based on environment
conditions, it is critical to model the distribution of possible
execution times. Figure 1 illustrates the structure of our
stochastic conditional node which allows for such a modeling.
Nodes vy and vy represent two different computational paths
selected according to environment type. The outgoing edges
of the conditional node are associated with probabilities since
the detection of environment type is uncertain, allowing us
to define execution time distributions based on conditional
uncertainty.

C. Sensor and Synchronization Nodes in DAG Models

As our stochastic conditional node is based on the concept
of environmental events, we propose two new DAG nodes
for sensing, data synchronization, and event generation: (1) a


nanguan
Highlight


Node vl (C1, CPU)

("Bad" environment, Pg2)

Condition

("Bad" environment, Pb2)

Synchronized dat
V@ ynchronized data

Node v2 (C2, CPU)

Fig. 1: Structure of stochastic conditional node.

Event generation pipeline

3
mmWave Radar nOde 1

@ G

S
Sensor
UBAR
™ Sensor $

P node 4

Fig. 2: Event generation pipeline depicting sensor and sync nodes.

sensor node for modeling sensor lag and data post-processing;
and (2) a synchronization node for fusing sensor data with
different frequencies. We then define an event generation
pipeline comprising these nodes which acts as an event source
for our DAG task model (Figure 2). The sensor node defines
the distribution of lag between the occurrence of a physical
event (e.g., nearby obstacle) and the availability of raw sensor
data representing the event. Modeling this information in a
DAG allows our scheduling algorithm to account for sensor
characteristics and satisfy data-based timing constraints. The
synchronization node then collects data streams from our
sensor nodes and outputs a fused data stream with a given user-
defined frequency, guaranteeing a bounded difference of data
stream timestamps. To implement our synchronization node,
we propose a smart ring buffer which utilizes data age and
period as illustrated in Figure 3. At each timestep, any new
data are written into the smart ring buffer head. The sensor
timestamp difference as well as the individual period and age
requirements are then verified and data not satisfying these
criteria are dropped from the tail. The wide availability of
DDS middleware make the information for the synchronicity
check readily available for most autonomous systems [3].

tail head

[81,828sln [S1,52S3k

Sensor
node 1
Sensor Sensor dat'aA
node 2
Sensor
node 3

Synchronized
[S1,5,.8;

Smart ring buffer:
check threshold,
discard from tail

Fig. 3: Smart ring buffer for sensor synchronization in sync node.

II. SHIFTING BOTTLENECK SCHEDULING ALGORITHM

We propose a new scheduling algorithm which utilizes our
proposed DAG model and shifting bottleneck heuristics [4]
[5]. Baruah et al. has proposed an exact method to solve the
DAG scheduling problem by solving it as an Integer Linear
Programming (ILP) problem [6]. However, it only works with
the simplest DAG model and he proves in his later work
that it is unlikely to write ILP solver for conditional DAG in
polynomial time [7]. Therefore, considering the safety-critical
requirements and dynamism of autonomous systems, we need
an efficient heuristic instead of an exact method.

A detailed explanation and preliminary implementa-
tion of our algorithm is provided on https:/github.com/
Xuanliang-Deng/RTSS2021_Industry_Submission. The pro-
cess of the algorithm is briefly summarized below.

o Partition the DAG nodes: We consider the hetero-
geneous platform which consists of different types of
processing units (e.g., CPU, GPU, DSP etc.). In StochHC-
DAG, each node is associated with a tag which indicates
the processing unit where the node should run. Each
node is statically mapped to a processing unit and the
mapping is fixed a priori, thereby partitioning the DAG
nodes according to their tags and allocating them to the
corresponding processing unit.

o Select Bottleneck Processor: The starting makespan of
the DAG is determined by the maximal finish time (FT)
of all nodes on the set of processing units. To select the
bottleneck processor, we first assume that there are no
resource conflicts and each schedulable task originates at
a source node and finishes in a sink node of the DAG.
The potential starting time (ST), where a node v; can
start its execution, is the maximal finish time among all
its predecessors,

ST, = mazr FT; (D

kepred(i)
The execution time is denoted as ET;, which follows a
probability distribution, yielding the finish time of node
v; as:
FT; = ST, + ET;(C}) 2)

The starting makespan M K, of processing unit k is,

MK, = max FT; 3

node v; €proc(k)
Finally, the starting bottleneck processor is selected by,

el MK @

« Find optimal schedule with Branch and Bound (BnB):
For selected bottleneck processor, we apply a single-
processor analysis by searching with BnB to determine
the optimal schedule. This search is different from typical
BnB techniques as we utilize the precedence constraints
and criticality of nodes in StochHC-DAG (see next Sec-
tion) to greatly reduce the search. Specifically, any po-
tential schedule which violates the precedence constraints


https://github.com/Xuanliang-Deng/RTSS2021_Industry_Submission
https://github.com/Xuanliang-Deng/RTSS2021_Industry_Submission
nanguan
Highlight


mmWave Radar

EI 10 Hz
camera
i 0 _BEpEiEgy 0H: 10 Hz 10 Hz 10 Hz 10 Hz
@ Perception ‘
: Perception i e i
LiDAR i Tracking Prediction Planning Control
10 Hz D
: Perception B 10 Hz 100 Hz

[rem—

10 Hz

100 Hz

|
r"_"-\
e

GNSS5/IMU

Event generation pipeline

(a)

} ’
10 Hz _
Localization —————

Vehicle Chassis

Path 1: Tracking 1 - prediction 1 2planning = control

Path 2: Tracking 2 = prediction 2 planning = control

Path 3: L

?

(b)

Fig. 4: (a) Challenge model of an autonomous vehicle computational system; (b) Proposed Stochastic HPC-DAG framework for the problem statement.

in StochHC-DAG will be infeasible. This branch will
be cut directly in the search. In addition, nodes with
higher criticality are expected to be scheduled ahead of
normal DAG nodes on the same processor. The remaining
feasible schedules with greatest objective function value
(see next Section) will be selected as the optimal one.
Shift Bottleneck Processor Once the optimal schedule
of bottleneck processor is determined, we shift the bot-
tleneck to the next processing unit which has maximal
value of M K}, in the remaining processing units. The
whole process is terminated when all the processors are
traversed.

III. A SAFETY-PERFORMANCE METRIC

Our proposed scheduling approach requires an objective
function to optimize when selecting appropriate schedules.
While a typical function can be used, such as makespan,
we propose a metric that recognizes that safety can live on
a spectrum and, when appropriate, safety can be traded off
with system performance. Importantly, we do not suggest that
safety requirements are ignored, instead we propose to identify
safety-critical nodes and paths in our StochHC-DAG, allowing
our scheduler to ensure safety where necessary and then ex-
ploit remaining timing “headroom” to maximize performance.
Specifically, we propose a novel safety-performance metric

by defining a series of penalties/rewards based on violat-
ing/satisfying timing constraints in a StochHC-DAG. We start
with the concept that our metric should penalize when safety-
critical paths and/or critical nodes violate timing constraints
based on a particular schedule. This implies that a system
designer must label all paths and nodes in our StochHC-
DAG as either safety-critical or non-safety-critical based on the
application (e.g., a computational path for pedestrian detection
would certainly have a safety-critical label). With this in mind,
we define the first term of our metric which penalizes unsafe
critical paths:

cpp(S) = Z pCP(P(RZi > Téi) - )‘27)
£;€Cys

&)

In the above term, we define Cys as the set of safety-critical
DAG paths that violate a probabilistic timing constraint, that
is, P(Ry, > 7,) > Mg, Where Ry, is the random variable
describing the uncertain response time of critical path /¢;, 7y,
is the minimally safe response time for path ¢;, and )y, is the
probabilistic timing constraint for ¢;. With these definitions,
and noting that f%,(S) represents a penalty term (p) for critical
path violations (cp) based on schedule S with a generic penalty
function p,(-), equation (5) can be interpreted as penalizing
based on the deviation of every violating critical path from its
probabilistic timing constraint. Thus, if there are no safety-



critical paths that violate their timing constraints based on
schedule S then Cys = () and f&(S) = 0 yielding no penalty.
Otherwise, the severity of constraint violation dictates the
penalty, driving our schedule optimization to improve critical
path timing. It is important to note for the above term and
all terms defined below, that if a hard timing constraint is
desired, one can simply set A\;,, = 0 which enforces sureness
of satisfying Ry, > 7y,.

Next, we define a similar term for penalizing unsafe critical
nodes in a DAG:

a(S) = Z Pen(P(Ry; > To;) — Au,)

v; € Vs

(6)

where Vy; is the set of safety-critical DAG nodes that violate
a probabilistic timing constraint, that is, P(R,, > T,) > Ay,
where R, is the random variable describing the uncertain
response time of critical node v;, 7, is the minimally safe
response time for node v;, and \,, is the probabilistic timing
constraint for node v;. Importantly, we model specific terms
for critical nodes as there may be instances where a timing
constraint for a critical path is satisfied but the system remains
unsafe. For example, if a localization and mapping node is too
slow, even if the computational path it lies on meets a timing
constraint, the staleness of the map may endanger the system
or bystanders.

With the penalties for our metric defined, we now describe
rewards gained when timing constraints for safety-critical
paths are satisfied. Critically, the following reward terms are
non-zero only when there exists no critical path or node
constraints that are violated. In this way, a system will focus
purely on safety when required, only balancing safety and
performance when all critical constraints are satisfied. The
reward terms for our metric are now:

f;ath(s) = Z a@iT:)ath()‘fi - P<REI > T@i))

LeP (7N
+ (1 = g )rpun(P(Re,))
and
f;ode(s) = Z avirtb;ode()"vi - P(RW > TU@))
=y 3

+ (1 - avi)rrl?ode(P(Rvi))

In the above, f;,,(S) and fi 4. (S) represent a reward term (r)
for every path and node based on schedule S, respectively, with
generic reward functions 773, (-), oy (*)s hode (+)s Thoge () that
separately reward safety margins (s) and system performance
based on timing (p). Then, with safety-performance balancing
parameters v, , &, , equations (7) and (8) can be interpreted as
rewarding for each DAG path and node, a balance of exceeding
timing constraints (safety margin) and system performance
related to improved response time (P(R,) and P(R,,)).
Finally, with all terms defined our scheduler can optimize our
safety-performance metric defined as a weighted sum of terms
(5)-(8), yielding efficiently computable schedules that trade off
safety and system performance relative to probabilistic timing
constraints.

[1

—

[2

—

(3]
(4]

[5

—_

[6

[t}

(71

REFERENCES

Zahaf Houssam-Eddine, Nicola Capodieci, Roberto Cavicchioli, Giuseppe
Lipari, and Marko Bertogna. The hpc-dag task model for heterogeneous
real-time systems. IEEE Transactions on Computers, 2020.

Donald W Gillies and Jane W-S Liu. Scheduling tasks with and/or
precedence constraints. SIAM Journal on Computing, 24(4):797-810,
1995.

Real-Time Innovations (RTI). DDS in Autonomous Car Design.
Subhash C Sarin, Balaji Nagarajan, and Lingrui Liao. Stochastic schedul-
ing: expectation-variance analysis of a schedule. Cambridge university
press, 2010.

Thomas Morton and David W Pentico. Heuristic scheduling systems: with
applications to production systems and project management, volume 3.
John Wiley & Sons, 1993.

Sanjoy Baruah. Scheduling dags when processor assignments are speci-
fied. In Proceedings of the 28th International Conference on Real-Time
Networks and Systems, RTNS 2020, page 111-116, New York, NY, USA,
2020. Association for Computing Machinery.

Sanjoy Baruah and Alberto Marchetti-Spaccamela. Feasibility Analysis
of Conditional DAG Tasks. In Bjorn B. Brandenburg, editor, 33rd
Euromicro Conference on Real-Time Systems (ECRTS 2021), volume 196
of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1—
12:17, Dagstuhl, Germany, 2021. Schloss Dagstuhl — Leibniz-Zentrum fiir
Informatik.



	Introduction
	Problem Definition
	Verification Constraints & Analysis
	Constraint Maximum Reaction Time
	Constraint Maximum Data Age
	Maximum Time Stamp Difference

	References
	System model
	Stochastic Heterogeneous Conditional DAGs
	Stochastic Conditional Nodes in DAG Models
	Sensor and Synchronization Nodes in DAG Models

	Shifting Bottleneck Scheduling Algorithm
	A Safety-Performance Metric
	References

