
S-Bottleneck Scheduling with Safety-Performance

Trade-offs in Stochastic Conditional DAG Models

Ashrarul H. Sifat∗, Xuanliang Deng∗, Shao-Yu Huang, Burhanuddin Bharmal, Sen Wang,

Ryan K. Williams, Haibo Zeng, Changhee Jung, Jia-bin Huang

Virginia Tech, Purdue University, University of Maryland

Abstract—In this paper, we propose a general solution to the
problem of scheduling real-time applications on heterogeneous
hardware platforms. To fully utilize the computing capacity of
heterogeneous processing units, we model the real-time applica-
tion as a heterogeneous Directed Acyclic Graph (DAG) which
specifies the types of processors (CPU, GPU, etc.) where each
task should run. In this well-known DAG context, we propose
a novel extension aimed at safety-critical systems that operate
in unpredictable environments: the coupling of conditional DAG
nodes with stochasticity. Specifically, conditional DAG nodes en-
able the modeling of systems that execute computational pipelines
based on environmental context, while stochasticity of DAG edges
captures the uncertain nature of a system’s environment or
the reliability of its hardware. Furthermore, considering the
pessimism of deterministic worst-case execution time (WCET)
in scheduling processes, we model execution times of tasks (DAG
nodes) as probability distributions which yields a novel stochastic
conditional DAG model. Coupled with a novel S-bottleneck heuris-
tic and safety-performance (SP) metric, our proposed framework
allows for efficient online scheduling in complex computational
pipelines, with more flexible representation of timing constraints,
and ultimately, safety-performance trade offs.

I. SYSTEM MODEL

A. Stochastic Heterogeneous Conditional DAGs

In the challenge problem model, there are precedence

constraints among different computational tasks, i.e., tasks

are connected with input/output ports following a specific

execution order. To capture this nature, we propose a new

DAG task model, the Stochastic Heterogeneous Conditional

Directed Acyclic Graph (StochHC-DAG), which incorporates

both the timing and resource constraints for safety-critical

autonomous systems. Our core concept is to model com-

putational pipelines that execute conditionally under some

uncertainty, recognizing that not all outcomes can be perfectly

predicted in real-world applications (e.g., extreme events). In

practice, the execution times of tasks are not perfectly known

before run-time and may vary online due to environmental

dynamism and conditions of the hardware platform. Thus,

we propose a generalization of the challenge problem model

by assuming the execution times of tasks follow probability

distributions rather than WCET to reduce schedule pessimism.

To fully utilize this probabilistic information and respect

timing constraints, we additionally propose new DAG node

structures: (1) stochastic conditional nodes for computational

This work was supported by the National Science Foundation under grant
CNS-1932074.

path selection; and (2) sensor/synchronization nodes for con-

trolling the difference of timestamps among data streams. A

real-time application is then represented by a StochHC-DAG,

G = (V,E,C, Type, Tag), described by [1] [2]:

• V = {v1, v2, · · · , vn} is the set of IDs for all computa-

tional tasks in the application.

• E ⊆ V ×V is the set of edges among tasks that indicates

the data dependencies, with associated probabilities indi-

cating the likelihood of edge traversal during execution.

• C = {C1, C2, · · · , Cn} is the set of probability distribu-

tions of execution times for all tasks.

• Type = {type1, type2, · · · , typen} is the set of types

of all tasks. A node in StochHC-DAG has one of the

following types {Computing, Conditional, Sensor, Sync}
• Tag = {tag1, tag2, · · · , tagn} indicates the type of pro-

cessing units that each task should run onto (e.g. CPU,

GPU, DLA etc.).

An example of the proposed DAG framework for the

challenge problem is given in Figure 4.

B. Stochastic Conditional Nodes in DAG Models

To capture the stochastic nature of real-time applications,

a new stochastic conditional node structure is proposed in

StochHC-DAG. This node allows for the selection of compu-

tational paths in a DAG based on events that occur under un-

certainty. For example, consider the event that an autonomous

vehicle is in a good environment for object detection/tracking

vs. a bad environment. In any given window of time, the

outcome of this event is uncertain as detecting/predicting en-

vironment conditions in practice is imperfect. Thus, if varying

computational pipelines are necessary based on environment

conditions, it is critical to model the distribution of possible

execution times. Figure 1 illustrates the structure of our

stochastic conditional node which allows for such a modeling.

Nodes v1 and v2 represent two different computational paths

selected according to environment type. The outgoing edges

of the conditional node are associated with probabilities since

the detection of environment type is uncertain, allowing us

to define execution time distributions based on conditional

uncertainty.

C. Sensor and Synchronization Nodes in DAG Models

As our stochastic conditional node is based on the concept

of environmental events, we propose two new DAG nodes

for sensing, data synchronization, and event generation: (1) a

nanguan
Highlight



Fig. 1: Structure of stochastic conditional node.

Fig. 2: Event generation pipeline depicting sensor and sync nodes.

sensor node for modeling sensor lag and data post-processing;

and (2) a synchronization node for fusing sensor data with

different frequencies. We then define an event generation

pipeline comprising these nodes which acts as an event source

for our DAG task model (Figure 2). The sensor node defines

the distribution of lag between the occurrence of a physical

event (e.g., nearby obstacle) and the availability of raw sensor

data representing the event. Modeling this information in a

DAG allows our scheduling algorithm to account for sensor

characteristics and satisfy data-based timing constraints. The

synchronization node then collects data streams from our

sensor nodes and outputs a fused data stream with a given user-

defined frequency, guaranteeing a bounded difference of data

stream timestamps. To implement our synchronization node,

we propose a smart ring buffer which utilizes data age and

period as illustrated in Figure 3. At each timestep, any new

data are written into the smart ring buffer head. The sensor

timestamp difference as well as the individual period and age

requirements are then verified and data not satisfying these

criteria are dropped from the tail. The wide availability of

DDS middleware make the information for the synchronicity

check readily available for most autonomous systems [3].

Fig. 3: Smart ring buffer for sensor synchronization in sync node.

II. SHIFTING BOTTLENECK SCHEDULING ALGORITHM

We propose a new scheduling algorithm which utilizes our

proposed DAG model and shifting bottleneck heuristics [4]

[5]. Baruah et al. has proposed an exact method to solve the

DAG scheduling problem by solving it as an Integer Linear

Programming (ILP) problem [6]. However, it only works with

the simplest DAG model and he proves in his later work

that it is unlikely to write ILP solver for conditional DAG in

polynomial time [7]. Therefore, considering the safety-critical

requirements and dynamism of autonomous systems, we need

an efficient heuristic instead of an exact method.

A detailed explanation and preliminary implementa-

tion of our algorithm is provided on https://github.com/

Xuanliang-Deng/RTSS2021 Industry Submission. The pro-

cess of the algorithm is briefly summarized below.

• Partition the DAG nodes: We consider the hetero-

geneous platform which consists of different types of

processing units (e.g., CPU, GPU, DSP etc.). In StochHC-

DAG, each node is associated with a tag which indicates

the processing unit where the node should run. Each

node is statically mapped to a processing unit and the

mapping is fixed a priori, thereby partitioning the DAG

nodes according to their tags and allocating them to the

corresponding processing unit.

• Select Bottleneck Processor: The starting makespan of

the DAG is determined by the maximal finish time (FT)

of all nodes on the set of processing units. To select the

bottleneck processor, we first assume that there are no

resource conflicts and each schedulable task originates at

a source node and finishes in a sink node of the DAG.

The potential starting time (ST), where a node vi can

start its execution, is the maximal finish time among all

its predecessors,

STi = max
k2pred(i)

FTk (1)

The execution time is denoted as ETi, which follows a

probability distribution, yielding the finish time of node

vi as:

FTi = STi + ETi(Ci) (2)

The starting makespan MKk of processing unit k is,

MKk = max
node vi2proc(k)

FTi (3)

Finally, the starting bottleneck processor is selected by,

max
k21,2,...,K

MKk (4)

• Find optimal schedule with Branch and Bound (BnB):

For selected bottleneck processor, we apply a single-

processor analysis by searching with BnB to determine

the optimal schedule. This search is different from typical

BnB techniques as we utilize the precedence constraints

and criticality of nodes in StochHC-DAG (see next Sec-

tion) to greatly reduce the search. Specifically, any po-

tential schedule which violates the precedence constraints

https://github.com/Xuanliang-Deng/RTSS2021_Industry_Submission
https://github.com/Xuanliang-Deng/RTSS2021_Industry_Submission
nanguan
Highlight



(a)

(b)

Fig. 4: (a) Challenge model of an autonomous vehicle computational system; (b) Proposed Stochastic HPC-DAG framework for the problem statement.

in StochHC-DAG will be infeasible. This branch will

be cut directly in the search. In addition, nodes with

higher criticality are expected to be scheduled ahead of

normal DAG nodes on the same processor. The remaining

feasible schedules with greatest objective function value

(see next Section) will be selected as the optimal one.

• Shift Bottleneck Processor Once the optimal schedule

of bottleneck processor is determined, we shift the bot-

tleneck to the next processing unit which has maximal

value of MKk in the remaining processing units. The

whole process is terminated when all the processors are

traversed.

III. A SAFETY-PERFORMANCE METRIC

Our proposed scheduling approach requires an objective

function to optimize when selecting appropriate schedules.

While a typical function can be used, such as makespan,

we propose a metric that recognizes that safety can live on

a spectrum and, when appropriate, safety can be traded off

with system performance. Importantly, we do not suggest that

safety requirements are ignored, instead we propose to identify

safety-critical nodes and paths in our StochHC-DAG, allowing

our scheduler to ensure safety where necessary and then ex-

ploit remaining timing “headroom” to maximize performance.

Specifically, we propose a novel safety-performance metric

by defining a series of penalties/rewards based on violat-

ing/satisfying timing constraints in a StochHC-DAG. We start

with the concept that our metric should penalize when safety-

critical paths and/or critical nodes violate timing constraints

based on a particular schedule. This implies that a system

designer must label all paths and nodes in our StochHC-

DAG as either safety-critical or non-safety-critical based on the

application (e.g., a computational path for pedestrian detection

would certainly have a safety-critical label). With this in mind,

we define the first term of our metric which penalizes unsafe

critical paths:

f p
cp(S) =

X

`i2Cus

pcp(P (R`i > ⌧`i)− �`i) (5)

In the above term, we define Cus as the set of safety-critical

DAG paths that violate a probabilistic timing constraint, that

is, P (R`i > ⌧`i) > �`i where R`i is the random variable

describing the uncertain response time of critical path `i, ⌧`i
is the minimally safe response time for path `i, and �`i is the

probabilistic timing constraint for `i. With these definitions,

and noting that f
p
cp(S) represents a penalty term (p) for critical

path violations (cp) based on schedule S with a generic penalty

function pcp(·), equation (5) can be interpreted as penalizing

based on the deviation of every violating critical path from its

probabilistic timing constraint. Thus, if there are no safety-



critical paths that violate their timing constraints based on

schedule S then Cus = ∅ and f
p
cp(S) = 0 yielding no penalty.

Otherwise, the severity of constraint violation dictates the

penalty, driving our schedule optimization to improve critical

path timing. It is important to note for the above term and

all terms defined below, that if a hard timing constraint is

desired, one can simply set �`i = 0 which enforces sureness

of satisfying R`i > ⌧`i .

Next, we define a similar term for penalizing unsafe critical

nodes in a DAG:

f p
cn(S) =

X

vi2Vus

pcn(P (Rvi
> ⌧vi)− �vi) (6)

where Vus is the set of safety-critical DAG nodes that violate

a probabilistic timing constraint, that is, P (Rvi
> ⌧vi

) > �vi

where Rvi is the random variable describing the uncertain

response time of critical node vi, ⌧vi
is the minimally safe

response time for node vi, and �vi
is the probabilistic timing

constraint for node vi. Importantly, we model specific terms

for critical nodes as there may be instances where a timing

constraint for a critical path is satisfied but the system remains

unsafe. For example, if a localization and mapping node is too

slow, even if the computational path it lies on meets a timing

constraint, the staleness of the map may endanger the system

or bystanders.

With the penalties for our metric defined, we now describe

rewards gained when timing constraints for safety-critical

paths are satisfied. Critically, the following reward terms are

non-zero only when there exists no critical path or node

constraints that are violated. In this way, a system will focus

purely on safety when required, only balancing safety and

performance when all critical constraints are satisfied. The

reward terms for our metric are now:

f r
path(S) =

X

`i2P

↵`ir
s
path(�`i − P (R`i > ⌧`i))

+ (1− ↵`i)r
p
path(P (R`i))

(7)

and

f r
node(S) =

X

vi2V

↵vi
rs

node(�vi
− P (Rvi

> ⌧vi
))

+ (1− ↵vi)r
p
node(P (Rvi))

(8)

In the above, f r
path(S) and f r

node(S) represent a reward term (r)

for every path and node based on schedule S , respectively, with

generic reward functions rs
path(·), r

p
path(·), r

s
node(·), r

p
node(·) that

separately reward safety margins (s) and system performance

based on timing (p). Then, with safety-performance balancing

parameters ↵`i ,↵vi
, equations (7) and (8) can be interpreted as

rewarding for each DAG path and node, a balance of exceeding

timing constraints (safety margin) and system performance

related to improved response time (P (R`i) and P (Rvi
)).

Finally, with all terms defined our scheduler can optimize our

safety-performance metric defined as a weighted sum of terms

(5)-(8), yielding efficiently computable schedules that trade off

safety and system performance relative to probabilistic timing

constraints.

REFERENCES

[1] Zahaf Houssam-Eddine, Nicola Capodieci, Roberto Cavicchioli, Giuseppe
Lipari, and Marko Bertogna. The hpc-dag task model for heterogeneous
real-time systems. IEEE Transactions on Computers, 2020.

[2] Donald W Gillies and Jane W-S Liu. Scheduling tasks with and/or
precedence constraints. SIAM Journal on Computing, 24(4):797–810,
1995.

[3] Real-Time Innovations (RTI). DDS in Autonomous Car Design.
[4] Subhash C Sarin, Balaji Nagarajan, and Lingrui Liao. Stochastic schedul-

ing: expectation-variance analysis of a schedule. Cambridge university
press, 2010.

[5] Thomas Morton and David W Pentico. Heuristic scheduling systems: with

applications to production systems and project management, volume 3.
John Wiley & Sons, 1993.

[6] Sanjoy Baruah. Scheduling dags when processor assignments are speci-
fied. In Proceedings of the 28th International Conference on Real-Time

Networks and Systems, RTNS 2020, page 111–116, New York, NY, USA,
2020. Association for Computing Machinery.

[7] Sanjoy Baruah and Alberto Marchetti-Spaccamela. Feasibility Analysis
of Conditional DAG Tasks. In Björn B. Brandenburg, editor, 33rd

Euromicro Conference on Real-Time Systems (ECRTS 2021), volume 196
of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–
12:17, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.


	Introduction
	Problem Definition
	Verification Constraints & Analysis
	Constraint Maximum Reaction Time
	Constraint Maximum Data Age
	Maximum Time Stamp Difference

	References
	System model
	Stochastic Heterogeneous Conditional DAGs
	Stochastic Conditional Nodes in DAG Models
	Sensor and Synchronization Nodes in DAG Models

	Shifting Bottleneck Scheduling Algorithm
	A Safety-Performance Metric
	References

