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Abstract

Recent research works have shown that image
retrieval models are vulnerable to adversarial at-
tacks, where slightly modified test inputs could
lead to problematic retrieval results. In this paper,
we aim to design a provably robust image retrieval
model which keeps the most important evaluation
metric Recall@1 invariant to adversarial perturba-
tion. We propose the first 1-nearest neighbor (NN)
image retrieval algorithm, RetrievalGuard, which
is provably robust against adversarial perturba-
tions within an ¢, ball of calculable radius. The
challenge is to design a provably robust algorithm
that takes into consideration the 1-NN search and
the high-dimensional nature of the embedding
space. Algorithmically, given a base retrieval
model and a query sample, we build a smoothed
retrieval model by carefully analyzing the 1-NN
search procedure in the high-dimensional embed-
ding space. We show that the smoothed retrieval
model has bounded Lipschitz constant and thus
the retrieval score is invariant to /5 adversarial
perturbations. Experiments on image retrieval
tasks validate the robustness of our Retrieval-
Guard method.

1. Introduction

Image retrieval has been an important and active research
area in computer vision with broad applications, such as
person re-identification (Zheng et al., 2015), remote sensing
(Chaudhuri et al., 2019), medical image search (Nair et al.,
2020), and shopping recommendation (Liu et al., 2016).
In a typical image retrieval task, given a query image, the
image retrieval algorithm selects semantically similar im-
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ages from a large gallery. To conduct efficient retrieval, the
high-dimensional images are often encoded into an embed-
ding space by deep neural networks (DNNs). The encoder
is expected to cluster semantically similar images while
separating dissimilar images.

Despite a large amount of works on image retrieval, many
fundamental questions remain unresolved. For example,
DNNs are notorious for their vulnerability to adversarial
examples (Szegedy et al., 2014; Biggio et al., 2013; Yang
et al., 2020a; Blum et al., 2022; Zhang et al., 2022), i.e.
slightly modified test inputs can lead to the largely changed
and incorrect prediction results. In image retrieval, the en-
coders are oftentimes parameterized by DNNs and existing
approaches are susceptible to adversarial attacks. Though
adversarial training alleviates the issue by building a back-
bone that is robust against off-the-shelf attacks (Zhang et al.,
2019a), the backbone is not certifiably robust against attacks
with growing power. In fact, there has been long-standing
arms race between adversarial defenders and attackers: de-
fenders design empirically robust algorithms which are later
exploited by new attacks designed to undermine those de-
fenses (Athalye et al., 2018). Moreover, existing defenses
(Panum et al., 2021; Zhou et al., 2020) only focus on one
type of attacks and fail to generalize to other types of attacks.
Thus, it is desirable to develop more powerful defenses for
image retrieval with provable adversarial robustness.

For image classification tasks, there are two types of prov-
ably robust methods against adversarial perturbations. The
first type is deterministic approaches represented by lin-
ear relaxations (Zhang et al., 2020b), mixed-integer linear
programming (Tjeng et al., 2019), and Lipschitz constant
estimation (Zhang et al., 2019b). But these approaches only
work with certain neural architectures and are hard to train.
The second category is randomized smoothing (Cohen et al.,
2019; Li et al., 2019a), which provides probabilistic robust-
ness guarantees. The insight behind randomized smoothing
is a construction of smoothed model g by voting the pre-
diction of vanilla model h over a smoothing distribution.
The smoothed model g is provably Lipschitz bounded. Ad-
ditionally, randomized smoothing is model-agnostic and
can be applied to arbitrary backbones. Although recent
works show that randomized smoothing suffers from curse
of dimensionality (Blum et al., 2020; Kumar et al., 2020;
Wau et al., 2021), the method remains the state-of-the-art
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certified defense against adversarial perturbation.

Challenges. Unfortunately, direct application of random-
ized smoothing does not work in our setting of image re-
trieval. Randomized smoothing is carefully designed for
classification tasks, where the output of the model is a dis-
crete label. However, in the image retrieval task, the output
of the model is a high-dimensional embedding vector. It
remains unclear how to implement the “voting” operation
for the embedding vector. In addition, retrieval results are
computed by comparing the distance between the embed-
ding of query images and gallery images and finding the
nearest neighbor, but randomized smoothing was not de-
signed for this procedure. Therefore, many observations
and techniques for randomized smoothing break down when
we consider more sophisticated image retrieval tasks.

Our setting. In the image retrieval tasks, we search for
semantically similar images in a large reference set for a
given query image. The quality of an image retrieval model
can be measured by the Recall@k score: given a reference
set R, a query sample = and an embedding mapping h(-),
the Recall@k of sample x is 1 if the first k nearest neigh-
bors of h(x) in R contains at least one sample with the
same class as x; otherwise, Recall @k of = is 0. We expect
the retrieval score to be 1 for as many query samples as
possible. Among Recall @k, perhaps the most widely-used
metric is Recall@1. Our goal is to design a provably robust
retrieval model which keeps the metric Recall@1 invariant
to adversarial perturbation, i.e., the nearest neighbor of x is
of the same class as = even in the presence of /5 bounded
perturbations.

Summary of contributions. Our work explores the adver-
sarial robustness of 1-NN image retrieval.

* Algorithmically, we propose RetrievalGuard, the first
provably robust 1-NN image retrieval framework
against {5 adversarial perturbations. Given an input and
a base embedding mapping, our algorithm averages the
embeddings of Gaussian-perturbed inputs to achieve
the robustness and conducts 1-NN search based on the
smoothed embedding.

e Theoretically, we analyze RetrievalGuard by new
proof techniques regarding the 1-NN search and the
smoothed high-dimensional embedding. We show that
the smoothed embedding is Lipschitz with a tight and
calculable Lipschitz bound. Additionally, we analyze
the Monte-Carlo method for computing the certified
radius of each input. The algorithmic error only loga-
rithmically depends on the dimension of the embedding
space. Our analysis of smoothed embedding might be
of independent interest to other computer vision tasks
more broadly.

* Experimentally, we evaluate the certified robustness
and accuracy of RetrievalGuard on popular image re-
trieval benchmarks under different choices of dimen-
sion of embedding space, number of Monte-Carlo sam-
plings, and variance of Gaussian noise.

2. Related Works

Deep metric learning. Deep metric learning (DML) is one
of the most popular methods used for image retrieval. It
learns semantic embedding of images by putting the feature
vectors of similar samples closer in the embedding space
while separating the feature vectors of dissimilar samples.
There are two types of metric losses in DML, tuple-based
loss and classification-based loss. Tuple-based loss charac-
terizes the distance between similar and dissimilar image
embedding, which includes triplet loss (Schroff et al., 2015),
margin loss (Wu et al., 2017), and multi-similarity loss
(Wang et al., 2019). Classification-based loss is designed
with a fixed (Boudiaf et al., 2020) or learnable proxy (Kim
et al., 2020), where the proxy refers to a subset of training
data. However, the performance of different DML losses are
similar under the same training settings (Roth et al., 2020;
Musgrave et al., 2020). In this work, we choose a broadly
used DML model, DML with margin loss (Wu et al., 2017),
as the base image retrieval model in our experiments.

Image retrieval attacks. (Bouniot et al., 2020; Wang
et al., 2020a) designed metric-based attacks for person re-
identification tasks, where the adversarial samples were
generated by maximizing the distance between similar pairs
and minimizing the distance between dissimilar pairs. (Feng
et al., 2020) attacked a type of image retrieval method, deep
product quantization network, by generating perturbations
from the peak of the Centroid Distribution, which is the es-
timation of the probability distribution of codewords assign-
ment. (Li et al., 2019b) introduced a universal perturbation
attack on image retrieval to break the neighborhood rela-
tionships of image features via degrading the corresponding
ranking metric. (Zhou et al., 2020) proposed image ranking
candidate attack and query attack, which can raise or lower
the rank of selected candidates by adversarial perturbations.

Randomized smoothing. If the prediction of a model on
sample = does not change in the presence of perturbations
with bounded radius 7, this model is said to be certifiably
robust on sample x with radius r. To the best of our knowl-
edge, randomized smoothing (Cohen et al., 2019; Lecuyer
etal., 2019; Li et al., 2019a; Salman et al., 2019) is currently
the only approach that provides certified robustness in a
model-agnostic way. Applications of randomized smooth-
ing include image classification (Cohen et al., 2019), graph
classification (Bojchevski et al., 2020), and point cloud clas-
sification (Liu et al., 2021), with £, £5 and /., robustness
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guarantees. In the image classification tasks, randomized
smoothing transforms a base classifier f to a smoothed
classifier g, which is certifiably robust in an ¢5 ball. More
specifically, given a sample x and arbitrary binary classi-
fier f which maps inputs in R? to a class in {0,1}, the
smoothed classifier g labels = as the majority vote of predic-
tions of f on the Gaussian-perturbed images N (z,0%1).
In particular, let

9(x) = P({z|f(z + 2) = c2}),

where ¢, is the label of sample z, we expect g(z) > 0.5 to
correctly classify x. An important property of the smoothed
classifier g is its L-Lipschitzness w.r.t. {5 norm (Salman
et al., 2019). With this property, for arbitrary perturbation o
such that ||d]|2 < r, the difference between two prediction
scores g(z) and g(z +0) is bounded by L||z — (z +0)]||2 <
Lr. Thus if g(x) > 0.5, we can choose a small r, namely,
r = (g(x) — 0.5)/2L, such that g(z + &) > 0.5 for all
perturbations § with ||d||2 < 7. In (Cohen et al., 2019), the
authors obtained a tighter certified radius r = c®~1(g(z)),
where g(z) is a probabilistic lower bound of g(z) and ® is
the cumulative distribution function of standard Gaussian
distribution.

Novelties and difference of our method from randomized
smoothing. In this work, we focus on a different problem
from classification, namely, 1-NN image retrieval. Unlike
the binary classification tasks, where the output of the base
model f : R? — {0, 1} is a discrete one-dimensional scalar,
the base model in the 1-NN retrieval task is an embedding
model i : R? — R¥ with a high-dimensional output. There-
fore, directly applying randomized smoothing to our image
retrieval problem does not work. Instead, we propose a
new proof technique and demonstrate that we can build a
smoothed embedding g : R — RF that is Lipschitz con-
tinuous. Algorithimcally, different from voting by majority
as in randomized smoothing, our algorithm is built upon
averaging the embedding of Gaussian-perturbed inputs. We
carefully analyze the nearest neighbor of a query sample
in the positive and negative reference sets of embedding
space, such that the nearest neighbor is stable to adversarial
perturbation in the input space. Our analysis of smoothed
embedding might be of independent interest to other repre-
sentation learning tasks more broadly.

3. RetrievalGuard

In this section, we will introduce our method of building a
certifiably robust embedding for the 1-NN image retrieval
task. Denote the embedding model by A. For each sample x,
we will first calculate its embedding h(x). We then search
for the sample z’ in the reference set whose embedding
h(z') is closest to h(x). If the ground-truth labels of 2 and
2’ match, the retrieval score is 1; otherwise, the retrieval

score is 0. Our goal is to build a certifiably robust retrieval
model, such that the retrieval score is invariant to arbitrary
£5 bounded perturbations. All proofs of this section can be
found in the Appendix.

Intuition of RetrievalGuard. RetrievalGuard is an ap-
proach to build a provably robust image retrieval from a
vanilla image retrieval model. In RetrievalGuard, we will
build a smoothed retrieval model by averaging the embed-
ding of the given model, and calculate the robustness guar-
antee for the smoothed model based on its Lipschitz contin-
uous property. We want to emphasize that the given model
doesn’t have any robustness guarantee.

3.1. Robustness guarantee with 1-NN retrieval

Let R, be the subset of reference R in which the samples
have the same label as z, and let R/R,, be its complement
in R. We note that the 1-NN retrieval score of a sample x
depends only on its nearest embedding in R, and R/R,.
For arbitrary encoder h, if the distance between h(z) and
its nearest embedding in R, is smaller than the distance
between h(x) and its nearest embedding in R/R,, the 1-
NN retrieval score is 1; otherwise, the score is 0. To use
this property, we have the following definition of minimum
margin.

Definition 3.1. (Minimum margin)

d(a: )= min |[h(z)=h(zs)lla— min [|h(@)~h@)]l2
where h is arbitrary embedding model.

If d(z; h) > 0, the retrieval score of z is 1 and otherwise
0. In this work, we only consider the certified robustness
of “correctly-retrieved samples”, i.e., samples with retrieval
score 1. Thus, in order to make the retrieval score of  + §
invariant to the perturbation §, we expect d(x + d; h) > 0.
In the following theorem, we show an important property of
0, with which the retrieval score is invariant to adversarial
perturbation.

Lemma 3.2. For any embedding model h, if the retrieval
score of x w.r.t. his 1 and

Ih() b+ D)l < 25,

the retrieval score of x + § w.r.t. h is also 1.

Proof. Recall R, is the subset of the reference set R in
which the samples have the same label as . With the
classifier h, denote the nearest embedding of sample x in
R, by z7T, it is not hard to observe

d(z, h) = ,hn [h(@) = h(y)ll2 = [|7(2) = ~(zT)]]2,

thus we have

17(z)=h(z")|l2 < [[P(2)—R(y)||2—d(z, h),Vy € R/R,.
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For an arbitrary y € R/R,, we will show ||h(z + §) —
h(ﬁ))llz < |[(x +6) = h(y)ll2, if ||h(z) = h(z +0)]]2 <
sh

d(z

1h(z +6) = h(z™)|l2
< k(@ +0) = h(@)ll2 + [|h(z) — h(z™)]]2

< 2+ ln(a) — )l
< &+ lIn(a) — h(y)ll> —d

)~ hw)llo — &

<|[P(z) = h(y)ll2 = |Ih(x + 6) = h(z)ll2
< [[h(z + &) = h(y)ll2
The nearest embedding of x + § might change (not ),

but still have the same label as z, which means the 1-NN
retrieval score x + ¢ is still 1. O

IN

If h is a Lipschitz continuous embedding, i.e., there exists a
constant L such that

[1h(z) = h(y)ll2 < Ll|z = yll2,

we can choose perturbation § such that its ¢> norm is

bounded by % In this case,

Ih(z) — h(z + 8)|l2 < Lz — (z + )|z < @

That is, h is guaranteed to be robust against any perturbation
as long as its /5 radius is bounded by % Our following
subsections will focus on designing an embedding model

with a bounded Lipschitz constant.
3.2. Building a Lipschitz continuous model

It is commonly known that deep neural networks are not Lip-
schitz continuous (Weng et al., 2018). To build a Lipschitz
continuous embedding, one approach is by using Lipschitz
preserving layers, e.g., orthogonal convolution neural net-
works (OCNN) (Wang et al., 2020b). However, OCNN
is hard to be trained due to its strong constraints imposed
on each layer. Another approach is by applying random-
ized smoothing (Cohen et al., 2019) to the base embedding
model. It has been shown that in the classification tasks, the
smoothed classifier is £5-Lipschitz bounded (Salman et al.,
2019). In this work, we show that we can build a smoothed
embedding model which also has bounded Lipschitz con-
stant beyond the classification problem. In particular, given
a base embedding model i : R? — R*, a sample = and a
distribution ¢, the smoothed embedding g is given by

9(z) = E.nglh(z + 2)].

Different from the randomized smoothing method in the
classification task, where h and g represent the probabil-
ity of correct predictions, in the embedding models h(z)

16 — Eq.1

14 Eq. 2

12

10

Bound
o]
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Figure 1. Comparison of the upper bounds of ||g(z) — g(y)||2
given by Equation 1 and Equation 2, where we set F' = 1,0 = 0.1.

and g(x) represent the feature vectors of sample . In the
next theorem, we show that if we select ¢ as a Gaussian
distribution, the smoothed model g has a bounded Lipschitz
constant.

Lemma 3.3. If ¢ ~ N(0,021), for arbitrary samples x, v,

llg(x) — g(y)ll2

<oF (q) (Iw—yllz) @ (—Ix—y|2>) ’ (1
20 20

where ® is the cumulative density function of N'(0,1) and
F is the maximum (5 norm of the base embedding model h.

Detailed proof is in Appendix A.

Tightness of this bound. Consider a one-dimensional
dataset X in R and an embedding model h(z) = Fsign(zx).
The smoothed model g(x) = E.. n0,02)[h(z + 2)] =
F(®(%) — ®(—%)). Given two samples x and —u, the dif-
ference between g(z) and g(—x) is 2F(®(%) — ®(—2)),

which reaches the upper bound in Equation 1. As ®(z) —
O(—2) <

or (o522 g (=)
20 20

2
< Fy ﬁ”fﬂ—yﬂl

Thus the smoothed model g has bounded Lipschitz con-
stant, and bounded /5 perturbation on the input will result
in bounded shift of its embedding.

%z for z > 0, we have

3.3. Calculating certified radius

Definition 3.4. (Certified radius) Given a sample = and an
embedding model h, the certified radius r(x; h) is the radius
of the largest /5 ball, such that all perturbations § within the
ball cannot change the retrieval score of the sample x:

r(z;h) = maxr, s.t. Ri(x) = Ry(z+9),Voe{||d]]2 < r},
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where R (z) is the retrieval score of x.

Following the discussion in subsection 3.2, the smoothed
embedding model g satisfies

2
llg(z) — g(y)ll2 SF\/ﬁllw*sz- (2)

Thus if we choose r(z;g) = 2‘%@ d(z; g), for all §s with

1612 < 7(w; g), we have [|g(z) — gz + 8)||2 < 422,

However, Equation 2 is looser than Equation 1, and the
certified radius computed by Equation 2 is smaller than the
radius given by Equation 1. As shown in Figure 1, when
F =1 and ¢ = 0.1, the Lipschitz bound of Equation 2
is much worse than that of Equation 1 when ||z — y||2
is moderately large. Thus we will use the tighter bound
(Equation 1) to calculate our certified radius.

Theorem 3.5. For any sample x and the smoothed embed-
ding g, with Equation 1, if d(x; g) > 0, the certified radius
of x is

1 d(l‘;Q)) _ 3)

r(z;9) = 2007 (2 + 528

Proof. From Lemma 3.2, we know that the 1-NN retrieval
score of a sample x with smoothed embedding model g does
not change when

lo(e) (e + )l < 152,

From Lemma 3.3, we have

1] 119l
5o )~ (5 ),

llg(2) = g(z +d)[l2 < 2F(D(

thus if  satisfies

19112

—élla,, _ dlz;g)
20

5y ) 5

2F(@(1012) — @

the 1-NN retrieval score of x will not change. As

2r(@(1012) _ g =10l2)) _ ppiaq([0lz) ).
by solving
2F(2¢(%) 1)< Lxgg),

we have ||6]|2 < 20071(3 + %), thus the certified

: _ —1/1 _ d(zg)
radius r(z, g) = 20971 (5 + SE) O
In practice, it is hard to compute the smoothed model g =
E. A 0,021, [P(z + 2)] and the minimum margin d(z; g)
in a closed form. To resolve the issue, we use Monte-Carlo

sampling to estimate ¢g(z) and calculate a probabilistic lower
bound of d(z;g). Denote the Monte-Carlo estimation of

g(x) by .
i) = S b+ =),
=1

where {z1, ..., 2, } are sampled i.i.d. from N (0,02%1;). By
matrix Chernoff bound (Ahlswede & Winter, 2002; Tropp,
2012), we have the following theorem.

Lemma 3.6. With g(z) € R* and §(z) := 23" | h(z +

z;), where {z1,...,zn} are the Monte-Carlo samples of
N(0,021,), we have

e2n
Plale) ~ (o)l > ) < (b Dexp (=55 )

Proof. We start with an introduction of the matrix Chernoff
bound.

Lemma 3.7. (Matrix Chernoff bound (Ahlswede & Win-
ter, 2002; Tropp, 2012)) Let My, ..., M; be independent
matrix valued random variables such that M; € C%*xd2
and E[M;] = p. Denote the operator norm of the ma-
trix M by ||M||. If || M;]| < ~ holds almost surely for all
1€ {1,...,t}, thenforeverye >0

1o 3e%t

4)
Now we prove Lemma 3.6.

Assume we have n i.i.d. random variables G1, ..., G,,, each
G; have the same distribution with f(z + Z), where Z is
an arbitrary smoothing distribution. Notice in our paper
Z ~ N(0,0I), but this does not influence the conclusion.
We will show for any Z, the bound in Lemma 3.6 with
g(z) = E[f(x + Z)] always hold.

Since G; has the same distribution with f(z + Z), we have
G; € R¥*! and E[G;] = g(=). The /5 operator norm of G
is given by,

[|G;l| = sup < Gi,v >

[[v]|2<1,0eRFX1
= ||Gs||2 < sup||f(z)]|2 = F.
xT

Thus with Lemma 3.7 we have

I 3€’n
P |- i — <(k+1 —— .
[ R
(5)
As g(z) = Y1, f(z+Z;), where Z; are sampled indepen-
dently from Z, §(z) follows the distribution of 1 > | G;.
Therefore we have

2

P(llg(x) — 92l > ) < (k + 1) exp(~ )
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O

Taking o = (k + 1) exp(— %5;?), we have that with prob-

ability at least 1 — «, the ¢5 norm of g(z) — §(z) is upper

bounded by 4/8F? 111(%)/311. Thus the error of the es-

timation is asymptotically decreasing with rate O(1/1/n),
and we can obtain arbitrarily accurate estimation of g(z)
with large Monte-Carlo samplings.

Lemma 3.8. With probability at least 1 — q,

a4
3n

sF2in (&51)

Detailed proof is in Appendix B.

With the lower bound estimation and Theorem 3.5, we are
able to calculate the certified radius for any given sample z.

Proposition 3.9. (Monte-Carlo calculation of certified ra-
dius) If d(x; g) > 0, with probability at least 1 — «,

1 d(x;
r(xz;g) > 2001 <2 + (gpg)> . (6)

Proof. This proposition is a naive combination of Theorem
3.5 and Lemma 3.8, as ®~!(x) is a monotonously increas-
ing function with x and d(z, g) > d(«, g) with probability
1 — o, obviously

1 d(z;
rlaig) =200 (54952
1 (1 d(=x;9)
> 20071 (= + =2
=7 (2 Ay
with probability 1 — a. O

Remark 3.10. Our Monte-Carlo calculation of certified ra-
dius logarithmically depends on the dimension of the em-
bedding space k. So our method works even when the
dimension of the embedding space is high. This is different
from randomized smoothing as its output is required to be a
one-dimensional scalar.

Algorithm 1 describes our procedure of calculating the certi-
fied radius. We want to emphasize that the base embedding
model h does not have any robustness guarantee; only its
smoothed version ¢ is certifiably robust.

New techniques compared to randomized smoothing. a)
Randomized smoothing is designed for the classification
tasks, where one can prove that the prediction score w.r.t.
the smoothed classifier is larger than 0.5 if the true label is
1. However, in the 1-NN retrieval tasks, we need to iden-
tify the conditions under which the 1-NN search is robust

Algorithm 1 Certified Radius by RetrievalGuard
Input: training set X; number of random samples n; base
embedding model h; standard derivation of Gaus-
sian o; confidence level a.
Initialize class balanced sampler S
for x € X do
sample N random variable 21, ..., 2z from A'(0, 0%1);
calculate §(z) = L 30 | h(z + 2);

end

for z € X do

calculate d(x; g) by Lemma 3.8;
if d(z;g) < 0 then

r(x) = —1; (reject this sample because its retrieval
score is 0)
else
calculate certified radius r(z) = 20®~1(1/2 +
d(z;9)/8F);
end

end
return all certified radius 7.

against perturbation attacks (Lemma 3.2). b) We prove the
Lipschitzness of the smoothed embedding model in Lemma
3.3. Compared to randomized smoothing where the output
is a one-dimensional scalar, in the image retrieval tasks we
need to take into account the high-dimensional nature of the
embedding space (see Remark 3.10). c) Compared to the
probabilistic guarantee in randomized smoothing, which is
a result of Neyman-Pearson lemma, the probabilistic guar-
antee (Lemma 3.8) for our model is based on brand new
analysis of minimum margin in Definition 3.1. The mini-
mum margin d(z, g) depends on multiple samples, and we
need to provide a union bound to characterize the uncer-
tainty of all relevant samples.

4. Experiments

In the experiments, we use the metric learning model with
margin loss (Wu et al., 2017) as our base embedding model.
We apply our RetrievalGuard approach on vanilla metric
learning (DML) and the DML augmented by Gaussian noise
(GDML) to build the smoothed DML and compare them on
three benchmarks. We emphasize that all results reported in
this section are from the smoothed models g instead of the
base models h, as we can only provide robustness guarantee
for g.

4.1. Deep metric learning with margin loss

Margin loss is a tuple-based metric loss, which requires
(anchor, positive, negative) triplets as input. The anchor
and the positive point are expected to be in the same class
while the anchor and the negative point should be in the
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Figure 2. Experiments with DML+RetrievalGuard on image re-
trieval benchmarks with different o. Top: DML+RetrievalGuard
on Online-Products. Bottem: GDML+RetrievalGuard on Online-
Products.

different classes. Denote the (anchor, positive, negative) by
(z,z ", 27 ) and the distribution of the triplets by py,.;. The
margin loss (Wu et al., 2017) is defined as

L(hv ﬂ) :E(I,IJF,I’)NMN‘[
(Ih(z) = Rz )|z = B+ )+
+(8 = l|h(z) = h(z7)[l2 +7)+];

where (3 is a learnable parameter with initial value 0.6 or 1.2
and learning rate 0.0005. v = 0.2 is a fixed triplet margin.
In the margin loss, p;,; is given by a distance sampling
method, such that the probability of sampling a negative
point with large distance to z in the embedding space is
much larger than that of sampling a negative point with
small distance to z.

4.2. Gaussian augmented model

The norm of Gaussian noise sampled from A (0,0%1,) is
of magnitude ©(cov/d) with high probability (Zhang et al.,
2020a). With moderately large o, the distribution of natural
images has nearly disjoint support from the distribution of
Gaussian-perturbed images. It is therefore hard for the base
model h to generate effective embedding, if it can only get

access to natural images. As a result, the smoothed model g,
which is estimated by averaging the base embedding, may
suffer from poor performance. A solution to resolve this
issue is by training the base embedding model h with Gaus-
sian augmented images (Cohen et al., 2019). Figure 2 shows
that using Gaussian augmented model as the base model
outperforms using the vanilla model as the base model in all
settings. The objective function for the Gaussian augmented
model is

L(h7 B) :E(x,er,a:*)Nptri[
(Ih(z + Z1) = h(a™ + Zo)|l2 — B+7)+
+(B = |[h(x + Z1) = h(z™ + Z3)|2 + 7)+],

where Z1, Z5, and Z3 are Gaussian random variables and
(t)+ = max{t,0}.

4.3. Experimental settings

Datasets. We run experiments with a popular dataset Online-
Products of metric learning (Song et al., 2016), which con-
tains 120,053 product images. We use the first 11,318
classes of products as the training set and another 1,000
classes as the test set. The experiments with CUB200 (Wah
etal., 2011) and CARS196 (Krause et al., 2013) are listed
in Appendix C

Training hyper-parameters. We adapt the DML frame-
work from (Roth et al., 2020) for our training. In all ex-
periments, we use ResNet50 architecture (He et al., 2016)
pretrained on the ImageNet dataset (Krizhevsky et al., 2012)
with frozen Batch-Normalization layers as our backbone.
We first re-scale the images to [0, 1]¢, then randomly re-
size and crop the images to 224 x 224 for training, and
apply center crop to the same size for evaluation. The em-
bedding dimension k is 128 and the number of training
epochs is 100. The learning rate is le-5 with multi-step
learning rate scheduler 0.3 at the 30-th, 55-th, and 75-th
epochs. We select the initial value of 5 as 1.2, learning
rate of 5 as 0.0005, and v = 0.2 in the margin loss. We
also test the model performance under Gaussian noise with
o =0.1,0.25,0.5, 1. As the embedding of metric learning
models is /5 normalized, we have F' = 1. For each sam-
ple, we generate 100,000 Monte-Carlo samples to estimate
g(x). The confidence level « is chosen as 0.01. The running
time of RetrievalGuard for a single image evaluation with
100,000 Monte-Carlo samples on a 24GB Nvidia Tesla P40
GPU is about 3 minutes.

Evaluation metrics. We focus on the 1-NN retrieval task.
A natural metric is the Recall@1 score, which is given
by the average of 1-NN retrieval score of all samples, i.e.,
Recall@l = £ 5" | Ry (x;). To evaluate the certified ro-
bustness of the 1-NN retrieval, we define Recall@1(r) =
% Zf\;l R1(2:)1;(5,,9)>r, Which represents the averaged
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Figure 4. GDML+RetrievalGuard (¢ = 1) with different dimen-
sions of embedding space on the Online-Products dataset.

retrieval score of the samples such that the certified radius
is larger than r. Note that Recall@1l = Recall@1(0).

4.4. Experimental results

4.4.1. PERFORMANCE OF THE SMOOTHED DML
MODELS.

Figure 2 shows the plot of Recall@1(r) of DML+RG and
GDMLA+RG models under varying values of o. We see that
there is a robustness/accuracy trade-off (Yang et al., 2020b;
Zhang et al., 2019a) controlled by 0. When o is low, small
radii can be certified with high retrieval score, while large
radii cannot be certified. When o is high, large radii can be
certified, while small radii are certified with a low retrieval
score. Besides, the GDML+RG models outperform the
DMLA+RG models in all experiments, which is consistent
with our discussions in subsection 4.2.

4.4.2. ABLATION STUDY

We study the effect of number of Monte-Carlo samples
n, the failure probability «, and the embedding size k
on the model robustness. All experiments are run on the
GDML+RetrievalGuard model with 0 = 1 and the Online-
Products dataset.

Figure 3 (left) plots the rejected ratio under different num-
bers of Monte-Carlo samples n. We use a fixed o = 0.01
in our experiment. The rejected ratio is the ratio of sam-
ples with retrieval score 1 on the estimated model g, i.e.,
d(xz; g) > 0, but x is rejected as d(x; g) < 0. The ratio of
rejected samples is decreasing w.r.t. n. When n = 10, 000,
there are 14% samples being rejected. In our experiments,
we choose n. = 100, 000 with roughly 4% rejected ratio.

Figure 3 (middle) illustrates the Recall@1(r) under differ-
ent numbers of Monte-Carlo samples n. We use a fixed
o = 0.01 in the experiment. When n is increased from
1,000 to 100, 000, the improvement of Recall@1(r) is sig-
nificant. When n is increased from 100, 000 to 1, 000, 000,
the improvement of Recall@1(r) is relatively small. There-
fore, we choose n = 100, 000 in our experiments.

Figure 3 (right) draws the Recall@1(r) under different
confidence levels a. We fix n = 100, 000 in the experiment.
It shows that Recall@1(r) is stable under varying values
of a, which indicates that our robustness guarantee is not
sensitive to .

Figure 4 shows the Recall@1(r) under different dimensions
k of embedding space. We use a fixed n = 100, 000 and
a = 0.01 in the experiment. It shows that the models are
more robust with larger k. This is because high-dimensional
embedding space can improve the expressive power of the
DML models, and dissimilar samples can be separated with
a large margin, i.e., d(x, g) is large.

5. Conclusion

In this work, we propose RetrievalGuard, the first prov-
ably robust 1-NN image retrieval model, by smoothing the
vanilla embedding model with a Gaussian distribution. We
prove that, with arbitrary perturbation , whose ¢5 norm is
bounded by the certified radius, the 1-NN retrieval score
of the perturbed samples on the smoothed model does not
change. We empirically demonstrate the effectiveness of
our model on image retrieval tasks with Online-Products.
Future works include designing ¢,, certificate algorithms and
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extending our algorithm to k-NN image retrieval tasks.
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A. Proof of Lemma 3.3

Proof. Recall that g(z) := . zr(0,021,) [f (% + 2)] fRd p(2)dz, where p is the probability density function of
N(0,021,). The intuition of this proof is to seek the maximum dlscrepancy of the expectation E. _xr(0,021,)[f (x + 2)] and
E. A 0,021 [f (¥ + 2)] for arbitrary samples , y.

lg(z) —9(W)ll2 = IIAdf(w+Z)p(Z)dz—/ f(y+ 2)p(2)dz]|
1 [ S =z [ G = i,
= | / T~ )~ plz ~ y)iall
=1 FE0 =) == w)idz+ [ FEE =) = pl—)-dz]l
<I [ 10— a) == p)sdelle +1| [ F0( =) = plz = )]
<P( [ =) =plz =)zl | [ (0lz =) =plz = )-d2])

= F( [ ) =pe+ o =)zl +1 [ (0) = ple+a —u)-d)

Now we need to calculate [, (p(z) — p(z + = — y))+dz explicitly, as p(z) = W exp(— Z;f)
1 2Tz z+ax—-—y)T(z+z—1y)
L0 =t =)tz = G [ (e 50) —exnl- A )iz

T
By solving exp(— 4= 5 ) —exp(— %) > O0wehave z € {27 (z—y) < 3(z—y)T(z—y)} := D. As Gaussian
distribution is {5 spherlcally symmetric, we can make a unitary transformation such that x — y located on the first axis in the
R? space, in this case D = {z1 < i||z — y||>} assuming w.Lo.g 2 > y, we have

2 d 2 z T — 2 d 2
[0 =t o —de = o [ emp(- i Em i) o IR T s,
Rd D

(2mo2)d/2 20 20

1 G (21 + |l — yll2)?
= (2no?)i2 /zl<|w—2yz exp(—%) —exp(— o0 )dz1

_ g lr =l |z —yll2
=0 ) (=)

where ®(x) = W I exp(—é)dz is the cumulative density function of a standard normal distribution. Anogously
we have

/ (p(2) —plz 4z —y))_dz = q)(_”x;iy‘b) _ (I,(Hfﬂzfiy\lz)
R o p

Thus

l9(z) — g@)ll2 = F |/ z+x—>>+dz|+\/ —p(z+ z— y))_da])
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B. Proof of Lemma 3.8

Proof. Recall R, is the subset of the reference set R in which the samples have the same label as 2. With the estimated
classifier §, denote the nearest embedding of sample z in R, by T, and the nearest embedding of sample x in R, by ™,

we have
d(z;9) = ||3(z) — 5(27)ll2 = [19(=) — g( )]
According to Theorem 3.6,

2
), Vo € R?

P(lg() — 9@z > ) < (k+ 1) exp(~ g

thus with probability at least 1 — «

. k+1
Ig(fﬂ)—g(w)|lz<\/8F21 (——)/3n,Vz € R
So we can bounded the difference between ||g(z) — g(y

)||2 and ||§( ) — §(y)||2 for arbitrary sample x and y by
Hlg(z) = g()ll2 — [lg(=) — 9(y)

2] < lg(x) = 9(y) — 9(=) + 3(y)ll2
< llg(z) = g(@)ll2 + [lg(y) — 912

\/8F21 (kzl)/3n

)

with probability at least 1 — 2c. We now consider

dlw;g):= min [lg(z) = g(@2)ll2 = min lg(z) = g(@1)ll2

Based on Equation 7 we have

E+1

KL 0> (o) - e )l — 23721

min - [[g(z) — g(z2)|l2 = ||3(x) = §(z")[l2 — 2\/8F21 (—

:EQER/R,;

with probability at least 1 — 2c, where z* := argming,cr/r, ||9(x) — g(2)[|, the second inequality is due to 2~ :=
argming, e/, ||3(z) — 3(z2)]]. Analogously

ain (lo(2) - o(ar)la < llo(e) - oMl < [36) - 3o+ 2,572 L

Z1

with probability at least 1 — 2. Thus we have

dzig) = min llg(z) —g(z2)ll2 — min [lg(z) - gl

v

19(2) — 52 — 2¢8F2 n(“ ) 30 (ng(x) — (a2 +z¢sm m(’“l‘%/%) ®

— d(z,§) — \/8F21 (kzl)/gn

with probability 1 — 4. Replace a by ¢ we obtain Theorem 3.8. O

C. Additional experiments on CUB200 and CARS196

Datasets. We conduct experiments on two popular metric learning benchmarks: CUB200 and CARS196. We follow the
setup in the previous work (Song et al., 2016) to split the training and test sets.

e CUB200-2011 contains 200 species of birds and 11,788 images (Wah et al., 2011). We use the first 100 species as the
training set and the rest as the test set.

* CARS196 has 196 models of cars and 16,185 images. (Krause et al., 2013). We use the first 98 models as the training
set and the rest as the test set.
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Figure 5. Experiments with GDML+RetrievalGuard on image retrieval benchmarks with different o. Left: GDML+RetrievalGuard on
CUB200-2011. Right: GDML+RetrievalGuard on CARS196.



