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Abstract
Federated Learning has been actively studied due
to its efficiency in numerous real-world applica-
tions in the past few years. However, the feder-
ated stochastic compositional optimization prob-
lem is still underexplored, even though it has
widespread applications in machine learning. In
this paper, we developed a novel local stochas-
tic compositional gradient descent with momen-
tum method, which facilitates Federated Learning
for the stochastic compositional problem. Impor-
tantly, we investigated the convergence rate of our
proposed method and proved that it can achieve
the O(1/ϵ4) sample complexity, which is better
than existing methods. Meanwhile, our commu-
nication complexity O(1/ϵ3) can match existing
methods. To the best of our knowledge, this is the
first work achieving such favorable sample and
communication complexities. Additionally, ex-
tensive experimental results demonstrate the supe-
rior empirical performance over existing methods,
confirming the efficacy of our method.

1. Introduction
Federated Learning has attracted increasing attention in re-
cent years. It facilitates the distributed data analysis without
sharing the raw data. Thus, it has been applied to various
machine learning tasks. However, most existing works just
focus on the standard stochastic minimization problem, ig-
noring the stochastic compositional optimization problem.
In fact, numerous machine learning models can be formu-
lated as the stochastic compositional optimization problem,
such as the model-agnostic meta-learning (MAML) prob-
lem (Finn et al., 2017), the imbalanced image classification
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problem (Qi et al., 2021). To bridge this gap, in this pa-
per we consider the federated compositional optimization
problem as follows:

min
x∈Rd

1

K

K∑
k=1

E
ζ∼D(k)

f

[
f (k)

(
E
ξ∼D(k)

g
[g(k)(x; ξ)]; ζ

)]
.

(1)
Here, f (k)(y) ≜ E

ζ∼D(k)
f

[f (k)(y; ζ)] ∈ R is the outer-level

function on the k-th device where y ∈ Rd′
and D(k)

f denotes
the data distribution for the outer-level function on the k-th
device. g(k)(x) ≜ E

ξ∼D(k)
g

[g(k)(x; ξ)] ∈ Rd′
is the inner-

level function on the k-th device where x ∈ Rd and D(k)
g

is the data distribution for the inner-level function on the
k-th device. It can be observed that there are two stochastic
functions in this optimization problem, which is different
from the standard Federated Learning model.

Due to the widespread application of the stochastic compo-
sitional optimization problem in machine learning, a lot of
efforts (Wang et al., 2017a;b; Zhang & Xiao, 2019a; Yuan
et al., 2019; Yang & Hu, 2020) have been made to develop
efficient optimization algorithms for solving Eq. (1) when
K = 1. Since there are two level stochastic functions in
Eq. (1), the standard stochastic gradient is a biased estima-
tion of the full gradient when the outer-level function is
nonlinear. As a result, stochastic gradient descent (SGD)
converges slowly when optimizing Eq. (1). To address this
issue, (Wang et al., 2017a) developed the stochastic compo-
sitional gradient descent (SCGD) method by introducing the
moving average estimation for the inner-level function to
improve the convergence performance, whose sample com-
plexity to achieve the ϵ-accuracy solution is O(1/ϵ8) for
nonconvex problems. Afterwards, a series of works, such
as (Zhang & Xiao, 2019a;b; Yuan et al., 2019; Yuan & Hu,
2020; Qi et al., 2020), focus on further improving the sample
complexity of SCGD by incorporating the acceleration or
variance reduction techniques. However, the single-machine
setting is different from Federated Learning so that it is un-
clear how to apply these methods to Federated Learning
and how they converge. Especially, it is unclear how the
communication period in Federated Learning affects their
convergence rates.

On the other hand, numerous federated optimization meth-
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ods have been explored in recent years. The essential idea of
federated optimization methods is to conduct multiple local
updates and then perform communication. Under this set-
ting, the computation/sample and communication complexi-
ties of federated optimization methods have been extensively
studied. For instance, (Stich, 2018) studied the convergence
rate of local SGD for strongly convex problems. (Yu et al.,
2019b;a) established the convergence rate of local SGD
and momentum local SGD for nonconvex problems. More-
over, a series of methods have been proposed to address the
heterogeneous data distribution issue (Karimireddy et al.,
2020b; Murata & Suzuki, 2021; Li et al., 2020) and alleviate
the communication issue (Basu et al., 2019; Rothchild et al.,
2020; Reisizadeh et al., 2020; Gao et al., 2021). However,
these works restrict their focus on the standard minimization
problem so that it is not appropriate to utilize them to solve
Eq. (1). Recently, (Huang et al., 2021) developed a local
biased SGD method for optimizing Eq. (1). This method
just employed standard stochastic gradient so that the bias
caused by the compositional structure in the loss function
degenerates the convergence rate. Specifically, its sample
complexity is O(1/ϵ8) and communication complexity is
O(1/ϵ4) for nonconvex problems. Another recent work
(Wang et al., 2021) formulated the model personalization in
Federated Learning as a stochastic compositional optimiza-
tion, and proposed a local SCGD method whose sample
complexity is O(1/ϵ5) and communication complexity is
O(1/ϵ3). Obviously, these two methods’ sample complex-
ity is much worse than O(1/ϵ4) of existing single-machine
SCGD methods (Ghadimi et al., 2020; Chen et al., 2020;
2021b). Therefore, a natural question follows: Is it possible
to have a local SCGD method which can achieve a better
sample complexity than existing federated compositional
optimization methods?

In this paper, we provide an affirmative answer for the afore-
mentioned question. In particular, we developed a novel
local stochastic compositional gradient descent method with
momentum (Local-SCGDM) for optimizing Eq. (1). In
particular, Local-SCGDM demonstrates how to apply the
momentum technique to SCGD for federated compositional
optimization problems, such as what variables should be
communicated. Importantly, the convergence rate of Local-
SCGDM is improved significantly compared with exist-
ing methods. In detail, our theoretical results show that,
by setting the batch size to O(1), our method can achieve
O(1/

√
T ) convergence rate where T is the number of it-

erations. Consequently, our Local-SCGDM can achieve
the O(1/ϵ4) sample complexity, which is much better than
existing methods (Wang et al., 2021; Huang et al., 2021).
Additionally, the communication period of our method can
be as large as O(T 1/4), resulting in a O(1/ϵ3) communi-
cation complexity, which can match the existing method
(Wang et al., 2021). To the best of our knowledge, this is the

first work achieving such nice sample and communication
complexities for the federated compositional optimization
problem. At last, we conduct extensive experiments on
federated model-agnostic meta-learning task, whose results
confirm the efficacy of our proposed method. In summary,
our work made the following contributions.

• We developed a novel Local-SCGDM method for opti-
mizing the federated compositional optimization prob-
lem. This is the first time to show how the momentum
technique is used in this setting.

• Our Local-SCGDM can achieve the O(1/ϵ4) sample
complexity and O(1/ϵ3) communication complexity
with O(1) batch size, which improves existing com-
plexities significantly.

• We conduct extensive experiments on federated model-
agnostic meta-learning problems. The experimental
results validate the superiority of our theoretical results.

2. Related Work
2.1. Stochastic Compositional Optimization Methods

Since there are two levels of stochastic functions in Eq. (1),
the standard stochastic gradient is a biased estimation for
the full gradient. As a result, directly using SGD to optimize
Eq. (1) converges slowly. To address this problem, (Wang
et al., 2017a) developed SCGD. In particular, SCGD utilizes
the moving average technique to estimate the inner-level
function value, based on which the stochastic gradient of
the outer-level function is computed. Specifically, if we con-
sider the single-machine setting, SCGD updates the model
parameter as follows:

ut+1 = (1− γ)ut + γg(xt; ξ) ,

zt = ∇g(xt; ξ)
T∇gf(ut; ζ)

xt+1 = xt − ηzt ,

(2)

where γ ∈ (0, 1) and η > 0. Here, ut is the moving average
of the inner-level function value. Then, the stochastic gradi-
ent of the outer-level function is evaluated on ut rather than
g(xt; ξ). In this way, it can reduce the estimation variance.
(Wang et al., 2017a) proved that the sample complexity of
SCGD is O(1/ϵ8) when optimizing the nonconvex problem.
Afterwards, (Wang et al., 2017b) developed an accelerated
SCGD method, which applies the extrapolation-smoothing
scheme to xt for accelerating the convergence speed. As a
result, it can achieve the O(1/ϵ4.5) sample complexity for
nonconvex problems.

Inspired by the variance reduction technique in the non-
compositional stochastic optimization field, a couple of
works (Zhang & Xiao, 2019b; Yuan et al., 2019) propose
to accelerate SCGD by reducing the gradient variance. For
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instance, (Zhang & Xiao, 2019b) developed a composite
incremental variance-reduced (CIVR) method by employing
the SPIDER variance reduction technique (Fang et al., 2018;
Nguyen et al., 2017), which can achieve the O(1/ϵ3) sam-
ple complexity for nonconvex problems. However, these
methods need to periodically compute the full gradient so
that they are not applicable to large-scale applications. Re-
cently, (Chen et al., 2020) developed SCSC by employ-
ing the STORM variance reduction technique (Cutkosky &
Orabona, 2019) to estimate the inner-level function value
and achieved the O(1/ϵ4) sample complexity. (Ghadimi
et al., 2020) applied the momentum technique to SCGD,
which also achieved the O(1/ϵ4) sample complexity. More
recently, (Chen et al., 2021a) studied the convergence rate of
SCGD from the perspective of nested optimization and im-
proved the sample complexity of traditional SCGD (Wang
et al., 2017a) to O(1/ϵ4).

2.2. Federated Optimization Methods

With the development of Federated Learning, many local
SGD methods have been developed in recent years. For
instance, (Stich, 2018) established the sample complexity
and communication complexity of local SGD for strongly-
convex problems. (Yu et al., 2019b) provided the sample
complexity and communication complexity for nonconvex
problems whose stochastic gradients have bounded second
moment. Later, (Yu et al., 2019a) remove the bounded
second moment assumption and established the conver-
gence rate of momentum local SGD for nonconvex prob-
lems. In addition, (Xu et al., 2021; Liu et al., 2020; Gao
& Huang, 2020) also studied the momentum technique for
local SGD under different settings and established the con-
vergence rate. Furthermore, much progress has been made
to improve the communication complexity of local SGD
by compressing gradients (Basu et al., 2019; Rothchild
et al., 2020; Reisizadeh et al., 2020; Gao et al., 2021)
and reducing the variance of stochastic gradients (Khan-
duri et al., 2021; Karimireddy et al., 2020a; Das et al.,
2020). However, all these methods restrict their focus on
the standard minimization problem. Therefore, designing
efficient local SCGD methods is necessary and important.
Recently, (Huang et al., 2021) studied the stochastic com-
positional problem for Federated Learning. Specifically, γ
in Eq. (2) is set to 1 in (Huang et al., 2021). As such, it
is a standard stochastic gradient descent method and the
large bias of ∇g(xt; ξ)

T∇gf(g(xt; ξ); ζ) slows down the
convergence rate, resulting in the O(1/ϵ8) sample complex-
ity and O(1/ϵ4) communication complexity for nonconvex
problems. As for the recent work (Wang et al., 2021), they
viewed the model personalization problem in Federated
Learning as a model-agnostic meta-learning problem, and
then utilized SCGD to solve this problem, rather than SGD
as (Huang et al., 2021). As such, the sample and communi-

cation complexities are improved to O(1/ϵ5) and O(1/ϵ3),
respectively. However, this method has a limitation. It re-
quires to maintain an inner state ut for each task. As a
result, it is not applicable to large-scale settings due to the
large memory complexity.

3. Local Stochastic Compositional Gradient
Descent with Momentum

In this section, we present the algorithmic details of local
stochastic compositional gradient descent with momentum,
its convergence rate, as well as its application to federated
model-agnostic meta-learning.

Algorithm 1 Local-SCGDM

Input: η > 0, β > 0, γ > 0, α > 0, p > 1, x(k)
0 = x0

1: for t = 0, · · · , T − 1 do
2: if t == 0 then
3: u

(k)
1 = g(k)(x

(k)
0 ; ξ

(k)
0 ),

4: z
(k)
0 = ∇g(k)(x

(k)
0 ; ξ

(k)
0 )T∇gf

(k)(u
(k)
1 ; ζ

(k)
0 ),

5: m
(k)
1 = z

(k)
0 ,

6: else
7: u

(k)
t+1 = (1− γη)u

(k)
t + γηg(k)(x

(k)
t ; ξ

(k)
t ),

8: z
(k)
t = ∇g(k)(x

(k)
t ; ξ

(k)
t )T∇gf

(k)(u
(k)
t+1; ζ

(k)
t ),

9: m
(k)
t+1 = (1− αη)m

(k)
t + αηz

(k)
t ,

10: end if
11: x

(k)
t+1 = x

(k)
t − βηm

(k)
t+1,

12: if mod(t+ 1, p) == 0 then
13: u

(k)
t+1 = ūt+1 ≜ 1

K

∑K
k′=1 u

(k′)
t+1 ,

14: m
(k)
t+1 = m̄t+1 ≜ 1

K

∑K
k′=1 m

(k′)
t+1 ,

15: x
(k)
t+1 = x̄t+1 ≜ 1

K

∑K
k′=1 x

(k′)
t+1 ,

16: end if
17: end for

3.1. Local Stochastic Compositional Gradient Descent
with Momentum

The key idea of our proposed local stochastic compositional
gradient descent with momentum (Local-SCGDM) method
is to utilize momentum SCGD to update model parameters
on each device for multiple iterations, and then the commu-
nication is conducted between devices and the central server.
The detail of Local-SCGDM is presented in Algorithm 1.
Specifically, in the first iteration, each device utilizes the
standard stochastic gradient descent method to update the
model parameter, which can be found in Lines 3-5 of Al-
gorithm 1. In other iterations, each worker computes the
momentum m

(k)
t+1 for the stochastic compositional gradient

∇g(k)(x
(k)
t ; ξ

(k)
t )T∇gf

(k)(u
(k)
t+1; ζ

(k)
t ) to update the model

parameter x(k)
t+1, which can be found in Lines 7-9 of Algo-

rithm 1. Here, since the moving average strategy is used
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for the update of u(k)
t+1 and m

(k)
t+1, their coefficients should

satisfy 0 < γη < 1 and 0 < αη < 1. Following the
scheme of Federated Learning, at every p iterations, all de-
vices perform communication with the central server. Here,
the communication period p is greater than 1 such that the
number of communication rounds is reduced to T/p. It is
worth noting that Local-SCGDM communicates the model
parameter x(k)

t+1, momentum m
(k)
t+1, and inner-level function

estimator u(k)
t+1 with the central server, which is inspired by

our theoretical analysis. Additionally, the standard momen-
tum local SGD (Yu et al., 2019a) also requires to communi-
cate momentum. Thus, the communication strategy in our
method is reasonable.

To sum up, we developed a novel Local-SCGDM method
for solving the federated compositional optimization prob-
lem in Eq. (1). To the best of our knowledge, this is the
first work applying the momentum technique to the fed-
erated compositional optimization problem for improving
its efficiency. Importantly, our method discloses what vari-
ables should be communicated, which has been ignored in
existing literature.

3.2. Convergence Rate

Before presenting the convergence rate of our proposed
Local-SCGDM, we first introduce the following assump-
tions that are widely used in existing stochastic composi-
tional optimization methods.
Assumption 3.1. (Smoothness) For any k ∈ {1, 2, · · · ,K},
the function g(k)(·) is Lg-Lipschitz smooth and the func-
tion f (k)(·) is Lf -Lipschitz smooth, i.e., for any x1, x2 ∈
dom g(k), and any y1, y2 ∈ dom f (k), there exist Lg > 0
and Lf > 0 such that

∥∇g(k)(x1)−∇g(k)(x2)∥ ≤ Lg∥x1 − x2∥,
∥∇f (k)(y1)−∇f (k)(y2)∥ ≤ Lf∥y1 − y2∥.

(3)

Assumption 3.2. (Bounded gradient) For any k ∈
{1, 2, · · · ,K}, the function g(k)(·) is Cg-Lipschitz con-
tinuous and the function f (k)(·) is Cf -Lipschitz continu-
ous where Cg > 0 and Cf > 0. Additionally, for any
x ∈ dom g(k) and y ∈ dom f (k), the second moments of
∇f (k)(y; ζ) and ∇g(k)(x; ξ) are bounded as follows:

Eξ[∥∇g(k)(x; ξ)∥2] ≤ C2
g ,

Eζ [∥∇f (k)(y; ζ)∥2] ≤ C2
f .

(4)

Assumption 3.3. (Bounded variance) For any k ∈
{1, 2, · · · ,K}, x ∈ dom g(k), and y ∈ dom f (k), there
exist constant values σf > 0, σg > 0, δg > 0 such that

Eζ [∥∇f (k)(y; ζ)−∇f (k)(y)∥2] ≤ σ2
f ,

Eξ[∥∇g(k)(x; ξ)−∇g(k)(x)∥2] ≤ σ2
g ,

Eξ[∥g(k)(x; ξ)− g(k)(x)∥2] ≤ δ2g .

(5)

Additionally, following existing stochastic compositional
optimization methods, we denote F (k)(x) ≜ f (k)(g(k)(x))

and F (x) = 1
K

∑K
k=1 F

(k)(x) which is LF -smooth with
LF = C2

gLf + CfLg. Then, we provide the convergence
rate for Algorithm 1 in the following theorem.
Theorem 3.4. Suppose Assumption 3.1-3.3 hold, if α <

1
η , γ < 1

η , β ≤
√

1
8

/(
C4

gL
2
f

γ2 +
C4

gL
2
f

γ +
L2

F

α2

)
, η ≤

min{1, 1
2β(C2

gLf+CfLg)
}, p ≤ 1

4βη
√

6C2
fL

2
g+16C4

gL
2
f

, Algo-

rithm 1 has the following convergence rate:

1

T

T−1∑
t=0

E[∥∇F (x̄t)∥2] ≤
2(F (x0)− F (x∗))

βηT

+
6(C2

gσ
2
f + C2

gL
2
fδ

2 + C2
fσ

2
g)

αηT
+

4C2
gL

2
gδ

2

γηT

+ 2γηC2
gL

2
fδ

2
g + 2αη(C2

gσ
2
f + C2

fσ
2
g) + 2γ2η2C2

gL
2
fδ

2
g

+ 32p2β2η2L2
F (16C

2
gL

2
fδ

2
g + C2

gσ
2
f + 3C2

fσ
2
g) .

(6)
Corollary 3.5. Suppose Assumption 3.1-3.3 hold, by setting
η = T−1/2, p = T 1/4, Algorithm 1 has the following
convergence rate:

1

T

T−1∑
t=0

E[∥∇F (x̄t)∥2] ≤
2(F (x0)− F (x∗))

β
√
T

+
6(C2

gσ
2
f + C2

gL
2
fδ

2 + C2
fσ

2
g)

α
√
T

+
4C2

gL
2
gδ

2

γ
√
T

+
2γC2

gL
2
fδ

2
g√

T
+

2α(C2
gσ

2
f + C2

fσ
2
g)√

T
+

2γ2C2
gL

2
fδ

2
g

T

+
32β2L2

F (16C
2
gL

2
fδ

2
g + C2

gσ
2
f + 3C2

fσ
2
g)√

T
.

(7)
Remark 3.6. The hyperparameters α, γ, β in Corollary 3.5
are some constant values. They do not affect the order of
the convergence rate. For instance, when setting α = 1
and γ = 1, we have β = 1√

16C4
gL

2
f+8L2

F

. Algorithm 1 still

enjoys the O( 1√
T
) convergence rate.

Remark 3.7. According to Corollary 3.5, to make
1
T

∑T−1
t=0 ∥∇F (x̄t)∥ ≤ ϵ, T should be as large as O(1/ϵ4).

Because the batch size of our method is just O(1), the
sample complexity is O(1/ϵ4), which is much better than
O(1/ϵ8) (Huang et al., 2021) and O(1/ϵ5) (Wang et al.,
2021). Additionally, the communication complexity of our
method is T/p = O(1/ϵ3), which can match that in (Wang
et al., 2021) and better than O(1/ϵ4) in (Huang et al., 2021).

3.3. Application: Federated Model-Agnostic
Meta-Learning

In this subsection, we apply our Local-SGDM method to
the federated model-agnostic meta-learning problem.
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Model-agnostic meta-learning (MAML) (Finn et al., 2017)
aims to learn a meta-initialization model that can be easily
adapted to new tasks. In Federated MAML, it is assumed
that each device has a set of tasks and the goal is to learn
a common meta-initialization model by the collaboration
between all devices. Formally, the loss function on each
device is defined as follows:

min
x∈Rd

1

K

K∑
k=1

F (k)(x) ≜
1

K

K∑
k=1

f (k)(g(k)(x)) ,

where g(k)(x) = E
ξ(k)∼D(k)

i,train

[
g(k)(x; ξ(k))

]
= E

ξ(k)∼D(k)
i,train

[
x− λ∇L(k)

i

(
x; ξ(k)

)]
,

f (k)(x) = E
i∼P(k)

task ,ζ(k)∼D(k)
i,test

[
f (k)(y; ζ(k))

]
= E

i∼P(k)
task ,ζ(k)∼D(k)

i,test

[
L(k)
i

(
y; ζ(k)

)]
.

(8)

Here, L(k)
i denotes the loss function for the i-th task on the

k-th device, λ > 0 denotes the step size, P(k)
task represents

the task distribution on the k-th device, D(k)
i,train and D(k)

i,test
represent the training and test set of the i-th task on the k-th
device, respectively. From Eq. (8), it can be observed that
Federated MAML is an federated compositional optimiza-
tion problem. Thus, it can be optimized by our Algorithm 1.

In the following, we demonstrate that Theorem 1 holds for
Federated MAML. Here, we assume the loss function L(k)

i

satisfies the following assumptions, which have been widely
used in existing literature (Wang et al., 2021; Ji et al., 2020).

Assumption 3.8. For any k ∈ {1, 2, · · · ,K}, (x, y) ∈
dom L(k)

i , we have

∥∇L(k)
i (x)−∇L(k)

i (y)∥ ≤ L1∥x− y∥ ,

∥∇2L(k)
i (x)−∇2L(k)

i (y)∥ ≤ L2∥x− y∥ ,

E[∥∇L(k)
i (x; ξ)−∇L(k)

i (x)∥2] ≤ σ2
1 ,

E[∥∇2L(k)
i (x; ξ)−∇2L(k)

i (x)∥2] ≤ σ2
2 ,

∥∇L(k)
i (x)∥ ≤ G ,

(9)

where L1, L2, σ1, σ2, G are all positive constants.

Based on Assumption 3.8, we can get the following lemma
for the properties of function f (k) and g(k) in Eq. (8).

Lemma 3.9. Given Assumption 3.8, we can get

Lf = L1, Lg = λL2,

C2
f = σ2

1 +G2, C2
g = (1 + λL1)

2 + λ2σ2
2 ,

σ2
f = σ2

1 , σ
2
g = λ2σ2

2 , δ
2
g = λ2σ2

1 ,

∥∇F (k)(x)−∇F (k)(y)∥
≤ ((1 + λL1)

2L1 + λGL2)∥x− y∥ .

(10)

From Lemma 3.9, we can conclude that all assumptions in
Theorem 3.4 are satisfied for Federated MAML in Eq. (8).
Thus, the sample complexity and communication complex-
ity of our Local-SCGDM for Federated MAML are O(1/ϵ4)
and O(1/ϵ3), respectively.

4. Proof Sketch
In this section, we present the proof sketch of Theorem 3.4.
The details are deferred to Supplementary Materials.

The key idea of our proof is to bound the difference between
momentum and gradients E[∥m(k)

t+1 − ∇F (k)(x
(k)
t )∥2],

the variance of inner function estimator E[∥u(k)
t+1 −

g(k)(x
(k)
t )∥2], as well as the difference between the local

model and the averaged model E[∥x̄t − x
(k)
t ∥2]. Here, we

construct a novel potential function to complete the proof.

It is worth noting that our proof is different from the standard
local stochastic gradient descent with momentum method
(Yu et al., 2019a). Specifically, (Yu et al., 2019a) intro-
duced a virtual variable and then studied the convergence
rate of that virtual variable. On the contrary, our method
directly studies the convergence rate for the original model
parameter. Thus, the proof schema is totally different from
(Yu et al., 2019a). In the following, we have the lemmas
to bound the aforementioned difference. Their proof is
deferred to Supplementary Materials.
Lemma 4.1. Suppose Assumptions 3.1-3.3 hold, and 0 <
αη < 1, we can get

E[∥m(k)
t+1 −∇F (k)(x

(k)
t )∥2]

≤ (1− αη)E[∥m(k)
t −∇F (k)(x

(k)
t−1)∥2]

+ 2αηC2
gL

2
fE[∥u

(k)
t+1 − g(k)(x

(k)
t )∥2]

+
2ηβ2L2

F

α
E[∥m(k)

t ∥2] + 2α2η2(C2
gσ

2
f + C2

fσ
2
g) .

(11)
Lemma 4.2. Suppose Assumptions 3.1-3.3 hold, and 0 <
γη < 1, we can get

E[∥u(k)
t+1 − g(k)(x

(k)
t )∥2] ≤

ηβ2C2
g

γ
E[∥m(k)

t ∥2] + γ2η2δ2g

+ (1− γη)E[∥u(k)
t − g(k)(x

(k)
t−1)∥2] .

(12)
Lemma 4.3. Suppose Assumptions 3.1-3.3 hold, if p ≤

1

4βη
√

6C2
fL

2
g+16C4

gL
2
f

, the consensus error E[∥x̄t − x
(k)
t ∥2]

satisfies

T−1∑
t=0

K∑
k=1

E[∥x̄t − x
(k)
t ∥2] ≤ 256TKp2β2η2C2

gL
2
fδ

2
g

+ 16TKp2β2η2C2
gσ

2
f + 48TKp2β2η2C2

fσ
2
g .

(13)
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With above lemmas, we construct a novel potential function
as follows:

Pt = E[F (x̄t)] +
β

α

1

K

K∑
k=1

E[∥m(k)
t+1 −∇F (k)(x

(k)
t )∥2]

+
2βC2

gL
2
f

γ

1

K

K∑
k=1

E[∥u(k)
t+1 − g(k)(x

(k)
t )∥2] .

(14)
Based on this potential function, we can complete the proof
of Theorem 3.4. Specifically, in the following, we demon-
strate how the potential function evolves in each iteration.

Proof. Due to the smoothness of the loss function F (x̄t+1),
we can get

F (x̄t+1) ≤ F (x̄t)−
βη

2
∥∇F (x̄t)∥2 −

βη

4

1

K

K∑
k=1

∥m(k)
t+1∥2

+
βη

K

K∑
k=1

∥∇F (k)(x
(k)
t )−m

(k)
t+1∥2

+
βηL2

F

K

K∑
k=1

∥x̄t − x
(k)
t ∥2 ,

(15)
where LF = C2

gLf + CfLg. Then, for the potential func-
tion, we can get

Pt+1 − Pt

≤ −βη

2
E[∥∇F (x̄t)∥2] +

βηL2
F

K

K∑
k=1

E[∥x̄t − x
(k)
t ∥2]

+ (
2ηβ3C4

gL
2
f

γ2
+

2η2β3C2
gL

2
fC

2
g

γ

+
2ηβ3L2

F

α2
− βη

4
)
1

K

K∑
k=1

E[∥m(k)
t+1∥2]

+ 2βγη2δ2gC
2
gL

2
f + 2αβη2(C2

gσ
2
f + C2

fσ
2
g)

+ 2βγ2η3δ2gC
2
gL

2
f .

(16)

By setting β ≤
√

1
8

/(
C4

gL
2
f

γ2 +
C4

gL
2
f

γ +
L2

F

α2

)
, we can see

how the potential function evolves across iterations:

Pt+1 − Pt ≤ −βη

2
E[∥∇F (x̄t)∥2]

+
βηL2

F

K

K∑
k=1

E[∥x̄t − x
(k)
t ∥2] + 2βγη2C2

gL
2
fδ

2
g

+ 2αβη2(C2
gσ

2
f + C2

fσ
2
g) + 2βγ2η3C2

gL
2
fδ

2
g .

(17)

Finally, by plugging Lemma 4.3 into this inequality, we
complete the proof.

Figure 1. Fitted curves over an unseen task for our method Local-
SCGDM and other baselines. The randomly selected ground truth
sinusoid curve is y = 5

2
sin(x+ 3

2
∗ π

5
).

5. Numerical Experiments
In this section, we aim to evaluate the acceleration effect
of the proposed algorithm Local-SCGDM with two Model-
Agnostic Meta-Learning (MAML) tasks: the Sinewave Re-
gression task and the Few-Shot Classification task over the
Omniglot dataset. The formulation of the MAML tasks as
compostional optimization problems are detailed in Eq. (8)
All experiments are run over a machine with Intel Xeon
Gold 6248 CPU and 4 Nvidia Tesla V100 GPUs. The code
is written with Pytorch and the Federated Learning environ-
ment is simulated with Pytorch.distributed package.

5.1. Sinewave Regression

Figure 2. Train (Left) and Validation(Right) loss for our method
and baselines.

In the first task, we evaluate our proposed algorithm Local-
SCGDM over a 1-D sinusoid regression problem with vari-
ous baselines: Local-BSGD (Huang et al., 2021) (i.e., Local-
MAML (Finn et al., 2017)), Local-SCGD (Wang et al.,
2017a), and Local-MOML (Wang et al., 2021). Note that
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Figure 3. Different choices of inner state momentum coefficient γ.
The left figure shows the train loss and the right figure shows the
validation loss.

Figure 4. Different choices of the number of local epochs p. The
left figure shows the training loss and the right figure shows the
validation loss.

Local-SCGD is the federated version of SCGD (Wang et al.,
2017a), where we average the model states and inner states
u every p local iterations. The sinusoid regression task aims
to fit a sinusoid function of the form f(x) = Asin(x+ bπ

5 )
where the amplitude A varies within [0.1, 5] and the phase
coefficient b varies within [0, 5]. This task can be effectively
solved via meta learning while simple pre-training over all
of the tasks leads to a degenerated all zero solution.

We follow a similar experimental protocol as in (Wang et al.,
2021): we construct 25 different training tasks by choos-
ing A = {1, 2, 3, 4, 5} and b = {1, 2, 3, 4, 5} and randomly
and evenly distribute them over 5 clients. Then during
training, we randomly sample 3 tasks for every client per
meta-iteration. For each task we choose K = 10 samples of
x ∈ [−5, 5] randomly. At the test time, we sample 600 new
tasks and for each task, the amplitude A and phase coeffi-
cient b are randomly chosen from the whole possible range.
We use a two-layer fully-connected neural network with
40 hidden units and ReLU activation to perform training.
The inner learning rate is 0.001 for all methods. For other
hyper-parameters, we perform grid search for all methods
and choose the setting with the best results. More precisely,
for Local-BSGD (Local-MAML), we choose meta learning
rate 0.01; for Local-SCGD, we choose meta learning rate

Figure 5. Different choices of momentum coefficient α. The left
figure shows the training loss and the right figure shows the valida-
tion loss.

0.01 and the inner state momentum coefficient 0.9 (this al-
gorithm diverges with smaller values); for Local-MOML,
we choose meta learning rate 0.01, inner state momentum
coefficient 0.7; for our Local-SCGDM, we choose η as 1,
meta learning rate coefficient β as 0.01, meta momentum
coefficient α as 0.8 and inner state momentum coefficient
γ as 0.7. We set the number of local epochs as 5 in all
comparison experiments. Finally, for fair comparison of our
algorithm and Local-MOML, we also maintain a separate
inner state ui for each task i for our algorithm.

Training and test loss of our proposed algorithm and base-
lines are summarized in Figure 2. As shown in this figure,
our local-SCGDM outperforms other baselines with a great
margin. This validates the efficacy of using momentum
to accelerate the convergence of MAML in the Federated
Learning setting. Next, Figure 1 shows the fitted sinusoid
of the meta-learned model over an unseen task. As shown
in Figure 1, our algorithm fits the sinusoid curve well. Next,
we present some ablation studies regarding some key hyper-
parameters: inner state coefficient γ in Figure 3, the number
of local epochs p in Figure 4 and the momentum coefficient
α in Figure 5. As shown in Figure 3, smaller γ leads to
faster fitting to the training tasks, however, it overfits the
training data for very small γ, e.g., γ = 0.3, and we get
the best generalization performance at γ = 0.7. As for
the number of local epochs, our Local-SCGDM performs
well in different p values, and it gets both good train and
validation performance when p = 5. For different choices
of momentum coefficient α, our Local-SCGDM gets best
performance both train and validation at value 0.9.

5.2. Few-shot Image Classification

Next, we evaluate our proposed Local-SCGDM with the
few shot image classification task over the Omniglot dataset.
The Omniglot dataset includes 1623 characters from 50 dif-
ferent alphabets and each character consists of 20 samples.
We create the Federated version of the Omniglot dataset.
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Figure 6. Few shot classification results over Omniglot Dataset. The top figures show results of the 5-way-1-shot case and the bottom
figures show the 5-way-5-shot case. We smooth the curves for better visualization.

Firstly, we follow the experimental protocols of Vinyals
et al. (2016) to divide the alphabets to train/validation/test
with 33/5/12, respectively. Then we distribute one alpha-
bet to a client, in other words, we consider 33 clients in
experiments. As in the non-distributed setting, we perform
N -way-K-shot classification, more specifically, for each
task, we randomly sample N characters from the alphabet
over that client and for each character, we sample K samples
for training and 15 samples for validation. We augment the
characters by performing rotation operations (multipliers of
90 degrees). Finally, we use a 4-layer convolutional neural
network where each convolutional layer has 64 filters of
3×3 and it is followed by a batch-normalization layer (Finn
et al., 2017).

In this task, we compare our algorithm with baselines Local-
BSGD (Huang et al., 2021) (i.e., Local-MAML (Finn et al.,
2017)) and Local-SCGD (Wang et al., 2017a). MOML is
ignored due to its requirement of keeping an inner state
for each task which is prohibitive due to large number of
tasks in the Omniglot dataset. For all methods, the inner
learning rate is set as 0.4, for other hyper-parameters, we
perform grid search for each method and choose the setting
with best results. Different sets of hyper-parameters are
used for different cases, e.g., for the 5-way-1-shot case, for
Local-BSGD (Local-MAML), we choose meta learning rate
0.1; for Local-SCGD, we choose meta learning rate 0.1
and inner state momentum coefficient 0.99; for our Local-
SCGDM, we choose η as 1, meta learning rate coefficient β
as 0.1, meta momentum coefficient α as 0.9 and inner state

momentum coefficient γ as 0.99.

The experimental results are summarized in Figure 6, which
includes the 5-way-1-shot and 5-way-5-shot cases, while
the 20-way-1-shot and 20-way-5-shot cases are included in
Supplementary Materials. As shown in these figures, our
algorithm outperforms baselines with a great margin for
both training loss and validation accuracy. This confirms
that our algorithm can effectively accelerate SCGD by using
momentum in federated learning.

6. Conclusion
In this paper, we proposed a novel local stochastic com-
positional gradient descent with momentum method for
federated compositional optimization problems. By intro-
ducing the momentum, our method can improve the sample
complexity significantly compared with existing methods.
Specifically, our method can achieve O(1/ϵ4) sample com-
plexity and O(1/ϵ3) communication complexity. To the
best of our knowledge, this is the first method achieving
such kinds of results. Meanwhile, we proposed a novel
theoretical analysis strategy to establish the convergence
rate. In particular, we developed a novel potential function
and studied how this potential function evolves across it-
erations for establishing the convergence rate. Finally, we
use our method to optimize the federated model-agnostic
meta-learning problem. The extensive experimental results
on benchmark datasets confirm the efficacy of our method.
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A. Supplementary Materials
A.1. More Experiments

In this subsection, we show more experimental results for the federated few-shot classification task over the Omniglot
Dataset. We show results of the 20-way-1-shot and 20-way-5-shot cases in Figure 7.

Figure 7. Few shot classification results over Omniglot Dataset. The top figures show results of 20-way-1-shot and the bottom figures
show the 20-way-5-shot case. We smooth the curves for better visualization.

A.2. Proof of Lemma 3.9

Proof. From the definition of g(k), we can get

∥∇g(k)(x)−∇g(k)(y)∥

= ∥I − λ∇2L(k)
i (x)− I + λ∇2L(k)

i (y)∥

= λ∥∇2L(k)
i (x)−∇2L(k)

i (y)∥
≤ λL2∥x− y∥ .

(18)

Thus, Lg = λL2. From the definition of ∇f (k), we can get

∥∇f (k)(x)−∇f (k)(y)∥ = ∥∇L(k)
i (x)−∇L(k)

i (y)∥ ≤ L1∥x− y∥ . (19)

Thus, Lf = L1. Moreover, due to

∥∇g(k)(x)∥ = ∥I − λ∇2L(k)
i (x)∥ ≤ ∥I∥+ ∥λ∇2L(k)

i (x)∥ ≤ 1 + λL1 , (20)

we can get
E[∥∇g(k)(x; ξ)∥2] = E[∥I − λ∇2L(k)

i (x; ξ)∥2]

≤ E[∥I − λ∇2L(k)
i (x) + λ∇2L(k)

i (x)− λ∇2L(k)
i (x; ξ)∥2]

≤ ∥I − λ∇2L(k)
i (x)∥2 + E[∥λ∇2L(k)

i (x)− λ∇2L(k)
i (x; ξ)∥2]

≤ (1 + λL1)
2 + λ2σ2

2 .

(21)
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Thus, C2
g = (1 + λL1)

2 + λ2σ2
2 . In addition, due to ∥∇L(k)

i (y)∥ ≤ G, we can get

E[∥∇f (k)(y; ζ)∥2]

= E[∥∇L(k)
i (y; ζ)−∇L(k)

i (y) +∇L(k)
i (y)∥2]

= E[∥∇L(k)
i (y; ζ)−∇L(k)

i (y)∥2] + ∥∇L(k)
i (y)∥2

≤ σ2
1 +G2 .

(22)

Thus, C2
f = σ2

1 +G2. As for the variance, we can get

E[∥∇f (k)(y; ζ)−∇f (k)(y)∥2]

= E[∥∇L(k)
i (y; ζ)−∇L(k)

i (y)∥2]
≤ σ2

1 = σ2
f ,

E[∥∇g(k)(x; ξ)−∇g(k)(x)∥2]

= E[∥I − λ∇2L(k)
i (x; ξ)− I + λ∇2L(k)

i (x)∥2]

≤ λ2E[∥∇2L(k)
i (x; ξ)−∇2L(k)

i (x)∥2]
≤ λ2σ2

2 = σ2
g ,

E[∥g(k)(x; ξ)− g(k)(x)∥2]

= E[|I − λ∇L(k)
i (x; ξ)− I + λ∇L(k)

i (x)∥2]

≤ λ2E[∥∇L(k)
i (x; ξ)−∇L(k)

i (x)∥2]
≤ λ2σ2

1 = δ2g .

(23)

Finally, as for the smoothness of F (k), we can get

∥∇F (k)(x)−∇F (k)(y)∥

= ∥(I − λ∇2L(k)
i (x))∇L(k)

i (x− λ∇L(k)
i (x))− (I − λ∇2L(k)

i (y))∇L(k)
i (y − λ∇L(k)

i (y))∥

= ∥(I − λ∇2L(k)
i (x))∇L(k)

i (x− λ∇L(k)
i (x))− (I − λ∇2L(k)

i (x))∇L(k)
i (y − λ∇L(k)

i (y))

+ (I − λ∇2L(k)
i (x))∇L(k)

i (y − λ∇L(k)
i (y))− (I − λ∇2L(k)

i (y))∇L(k)
i (y − λ∇L(k)

i (y))∥

≤ ∥(I − λ∇2L(k)
i (x))∇L(k)

i (x− λ∇L(k)
i (x))− (I − λ∇2L(k)

i (x))∇L(k)
i (y − λ∇L(k)

i (y))∥

+ ∥(I − λ∇2L(k)
i (x))∇L(k)

i (y − λ∇L(k)
i (y))− (I − λ∇2L(k)

i (y))∇L(k)
i (y − λ∇L(k)

i (y))∥

≤ (1 + λL1)∥∇L(k)
i (x− λ∇L(k)

i (x))−∇L(k)
i (y − λ∇L(k)

i (y))∥+G∥(I − λ∇2L(k)
i (x))− (I − λ∇2L(k)

i (y))∥

≤ (1 + λL1)L1∥x− λ∇L(k)
i (x)− y + λ∇L(k)

i (y)∥+ λG∥∇2L(k)
i (x)−∇2L(k)

i (y)∥
≤ (1 + λL1)L1(∥x− y∥+ λL1∥x− y∥) + λGL2∥x− y∥
= ((1 + λL1)

2L1 + λGL2)∥x− y∥ .
(24)
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A.3. Proof of Lemma 4.1

Proof. Denoting v
(k)
t = ∇g(k)(x

(k)
t ; ξ

(k)
t ), one can get

E[∥m(k)
t+1 −∇F (k)(x

(k)
t )∥2]

= E[∥(1− αη)(m
(k)
t −∇F (k)(x

(k)
t−1)) + (1− αη)(∇F (k)(x

(k)
t−1)−∇F (k)(x

(k)
t ))

+ αη(z
(k)
t −∇F (k)(x

(k)
t ))∥2]

= E[∥(1− αη)(m
(k)
t −∇F (k)(x

(k)
t−1)) + (1− αη)(∇F (k)(x

(k)
t−1)−∇F (k)(x

(k)
t ))

+ αη((v
(k)
t )T∇gf

(k)(u
(k)
t+1; ζ

(k)
t )− (v

(k)
t )T∇gf

(k)(u
(k)
t+1) + (v

(k)
t )T∇gf

(k)(u
(k)
t+1)− (v

(k)
t )T∇gf

(k)(g(k)(x
(k)
t ))

+ (v
(k)
t )T∇gf

(k)(g(k)(x
(k)
t ))−∇g(k)(x

(k)
t )T∇gf

(k)(g(k)(x
(k)
t )))∥2]

= E[∥(1− αη)(m
(k)
t −∇F (k)(x

(k)
t−1)) + (1− αη)(∇F (k)(x

(k)
t−1)−∇F (k)(x

(k)
t ))

+ αη((v
(k)
t )T∇gf

(k)(u
(k)
t+1)− (v

(k)
t )T∇gf

(k)(g(k)(x
(k)
t )))∥2]

+ α2η2E[∥(v(k)t )T∇gf
(k)(u

(k)
t+1; ζ

(k)
t )− (v

(k)
t )T∇gf

(k)(u
(k)
t+1)

+ (v
(k)
t )T∇gf

(k)(g(k)(x
(k)
t ))−∇g(k)(x

(k)
t )T∇gf

(k)(g(k)(x
(k)
t ))∥2]

≤ (1 + a)(1− αη)2E[∥m(k)
t −∇F (k)(x

(k)
t−1)∥2] + (1 +

1

a
)E[∥(1− αη)(∇F (k)(x

(k)
t−1)−∇F (k)(x

(k)
t ))

+ αη((v
(k)
t )T∇gf

(k)(u
(k)
t+1)− (v

(k)
t )T∇gf

(k)(g(k)(x
(k)
t )))∥2]

+ α2η2E[∥(v(k)t )T∇gf
(k)(u

(k)
t+1; ζ

(k)
t )− (v

(k)
t )T∇gf

(k)(u
(k)
t+1)

+ (v
(k)
t )T∇gf

(k)(g(k)(x
(k)
t ))−∇g(k)(x

(k)
t )T∇gf

(k)(g(k)(x
(k)
t ))∥2]

≤ (1− αη)E[∥m(k)
t −∇F (k)(x

(k)
t−1)∥2] +

2(1− αη)2

αη
E[∥∇F (k)(x

(k)
t−1)−∇F (k)(x

(k)
t )∥2]

+ 2αηE[∥(v(k)t )T∇gf
(k)(u

(k)
t+1)− (v

(k)
t )T∇gf

(k)(g(k)(x
(k)
t ))∥2]

+ α2η2E[∥(v(k)t )T∇gf
(k)(u

(k)
t+1; ζ

(k)
t )− (v

(k)
t )T∇gf

(k)(u
(k)
t+1)

+ (v
(k)
t )T∇gf

(k)(g(k)(x
(k)
t ))−∇g(k)(x

(k)
t )T∇gf

(k)(g(k)(x
(k)
t ))∥2]

≤ (1− αη)E[∥m(k)
t −∇F (k)(x

(k)
t−1)∥2] +

2L2
F

αη
E[∥x(k)

t − x
(k)
t−1∥2]

+ 2αηC2
gL

2
fE[∥u

(k)
t+1 − g(k)(x

(k)
t )∥2] + 2α2η2(C2

gσ
2
f + C2

fσ
2
g)

≤ (1− αη)E[∥m(k)
t −∇F (k)(x

(k)
t−1)∥2] +

2ηβ2L2
F

α
E[∥m(k)

t ∥2]

+ 2αηC2
gL

2
fE[∥u

(k)
t+1 − g(k)(x

(k)
t )∥2] + 2α2η2(C2

gσ
2
f + C2

fσ
2
g) ,

(25)
where the fourth equality follows from E[f (k)(u

(k)
t+1; ζ

(k)
t )] = f (k)(u

(k)
t+1) and E[v(k)t ] = ∇g(k)(x

(k)
t ), the fifth equality

follows from a = αη
1−αη , the second to last step follows from αη < 1 and Assumptions 3.1-3.3.



On the Convergence of Local Stochastic Compositional Gradient Descent with Momentum

A.4. Proof of Lemma 4.2

Proof. Based on the updating rule of u(k)
t+1, one can get

E[∥u(k)
t+1 − g(k)(x

(k)
t )∥2]

= E[∥(1− γη)u
(k)
t + γηg(k)(x

(k)
t ; ξ(k))− g(k)(x

(k)
t )∥2]

= E[∥(1− γη)(u
(k)
t − g(k)(x

(k)
t )) + γη(g(k)(x

(k)
t ; ξ(k))− g(k)(x

(k)
t ))∥2]

= E[∥(1− γη)(u
(k)
t − g(k)(x

(k)
t−1) + g(k)(x

(k)
t−1)− g(k)(x

(k)
t )) + γη(g(k)(x

(k)
t ; ξ(k))− g(k)(x

(k)
t ))∥2]

≤ (1− γη)2E[∥u(k)
t − g(k)(x

(k)
t−1) + g(k)(x

(k)
t−1)− g(k)(x

(k)
t )∥2] + γ2η2δ2g

≤ (1− γη)2(1 +
1

a
)E[∥u(k)

t − g(k)(x
(k)
t−1)∥2] + (1− γη)2(1 + a)E[∥g(k)(x(k)

t−1)− g(k)(x
(k)
t )∥2] + γ2η2δ2g

= (1− γη)E[∥u(k)
t − g(k)(x

(k)
t−1)∥2] +

(1− γη)2

γη
E[∥g(k)(x(k)

t−1)− g(k)(x
(k)
t )∥2] + γ2η2δ2g

≤ (1− γη)E[∥u(k)
t − g(k)(x

(k)
t−1)∥2] +

C2
g

γη
E[∥x(k)

t − x
(k)
t−1∥2] + γ2η2δ2g

≤ (1− γη)E[∥u(k)
t − g(k)(x

(k)
t−1)∥2] +

ηβ2C2
g

γ
E[∥m(k)

t ∥2] + γ2η2δ2g ,

(26)

where the fourth step follows from E[g(k)(x(k)
t ; ξ

(k)
t )] = g(k)(x

(k)
t ) and Assumption 3.3, the sixth step follows from

a = 1−γη
γη , the second to last step follows from γη < 1 and Assumption 3.2.

A.5. Proof of Lemma 4.3

Lemma A.1. Suppose Assumptions 3.1-3.3 hold, the consensus error ∥u(k)
t − ūt∥2 satisfies

t−1∑
t′=stp

K∑
k=1

E[∥u(k)
t′ − ūt′∥2] ≤ 8pKδ2g + 8C2

g

t−1∑
t′=stp

K∑
k=1

E[∥x(k)
t′ − x̄t′∥2] , (27)

where st = ⌊ t
p⌋.

Proof. Based on Algorithm 1, one can get

K∑
k=1

∥u(k)
t − ūt∥2

=
K∑

k=1

∥(1− γη)t−stpu(k)
stp + γη

t−1∑
t′=stp

(1− γη)t−1−t′g(k)(x
(k)
t′ ; ξ(k))

−
(
(1− γη)t−stpūstp + γη

t−1∑
t′=stp

(1− γη)t−1−t′ 1

K

K∑
k′=1

g(k)(x
(k′)
t′ ; ξ(k

′))
)
∥2

= γ2η2
K∑

k=1

∥
t−1∑

t′=stp

(1− γη)t−1−t′
(
g(k)(x

(k)
t′ ; ξ(k))− 1

K

K∑
k′=1

g(k
′)(x

(k′)
t′ ; ξ(k

′))
)
∥2 ,

(28)

where the last step holds due to u
(k)
stp = ūstp. Define wt ≜

∑t−1
t′=stp

(1−γη)t−1−t′ =
∑t−1−stp

t′=0 (1−γη)t
′
= 1−(1−γη)t−stp

γη ,
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then one can get

K∑
k=1

∥
t−1∑

t′=stp

(1− γη)t−1−t′
(
g(k)(x

(k)
t′ ; ξ(k))− 1

K

K∑
k′=1

g(k)(x
(k′)
t′ ; ξ(k

′))
)
∥2

= w2
t

K∑
k=1

∥
t−1∑

t′=stp

(1− γη)t−1−t′

wt

(
g(k)(x

(k)
t′ ; ξ(k))− 1

K

K∑
k′=1

g(k
′)(x

(k′)
t′ ; ξ(k

′))
)
∥2

≤ w2
t

K∑
k=1

t−1∑
t′=stp

(1− γη)t−1−t′

wt
∥g(k)(x(k)

t′ ; ξ(k))− 1

K

K∑
k′=1

g(k
′)(x

(k′)
t′ ; ξ(k

′))∥2

≤ 1

γη

K∑
k=1

t−1∑
t′=stp

(1− γη)t−1−t′∥g(k)(x(k)
t′ ; ξ(k))− 1

K

K∑
k′=1

g(k
′)(x

(k′)
t′ ; ξ(k

′))∥2 .

(29)

As a result, one can get

K∑
k=1

E[∥u(k)
t − ūt∥2] ≤ γη

K∑
k=1

t−1∑
t′=stp

(1− γη)t−1−t′E[∥g(k)(x(k)
t′ ; ξ(k))− 1

K

K∑
k′=1

g(k
′)(x

(k′)
t′ ; ξ(k

′))∥2] . (30)

Furthermore, one can bound

K∑
k=1

E[∥g(k)(x(k)
t′ ; ξ(k))− 1

K

K∑
k′=1

g(k
′)(x

(k′)
t′ ; ξ(k

′))∥2]

=
K∑

k=1

E[∥g(k)(x(k)
t′ ; ξ(k))− g(k)(x

(k)
t′ ) + g(k)(x

(k)
t′ )− g(k)(x̄t′)

+
1

K

K∑
k′=1

g(k
′)(x̄t′)−

1

K

K∑
k′=1

g(k
′)(x

(k′)
t′ ) +

1

K

K∑
k′=1

g(k
′)(x

(k′)
t′ )− 1

K

K∑
k′=1

g(k
′)(x

(k′)
t′ ; ξ(k

′))∥2]

≤ 4

K∑
k=1

E[∥g(k)(x(k)
t′ ; ξ(k))− g(k)(x

(k)
t′ )∥2] + 4

K∑
k=1

E[∥g(k)(x(k)
t′ )− g(k)(x̄t′)∥2]

+ 4
K∑

k=1

E[∥ 1

K

K∑
k′=1

g(k
′)(x̄t′)−

1

K

K∑
k′=1

g(k
′)(x

(k′)
t′ )∥2]

+ 4
K∑

k=1

E[∥ 1

K

K∑
k′=1

g(k
′)(x

(k′)
t′ )− 1

K

K∑
k′=1

g(k
′)(x

(k′)
t′ ; ξ(k

′))∥2]

≤ 8Kδ2g + 4C2
g

K∑
k=1

∥x(k)
t′ − x̄t′∥2 + 4C2

g

K∑
k=1

1

K

K∑
k′=1

E[∥x(k′)
t′ − x̄t′∥2]

= 8Kδ2g + 8C2
g

K∑
k=1

E[∥x(k)
t′ − x̄t′∥2] .

(31)
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By combining above two inequalities, one can get

t−1∑
t′=stp

K∑
k=1

E[∥u(k)
t′ − ūt′∥2]

≤ γη
t−1∑

t′=stp

t′−1∑
t′′=stp

(1− γη)t
′−1−t′′

K∑
k=1

E[∥g(k)(x(k)
t′′ ; ξ

(k))− 1

K

K∑
k′=1

g(k
′)(x

(k′)
t′′ ; ξ(k

′))∥2]

= γη
t−1∑

t′=stp

K∑
k=1

E[∥g(k)(x(k)
t′ ; ξ(k))− 1

K

K∑
k′=1

g(k
′)(x

(k′)
t′ ; ξ(k

′))∥2]
t−t′−1∑
t′′=0

(1− γη)t
′′

≤
t−1∑

t′=stp

K∑
k=1

E[∥g(k)(x(k)
t′ ; ξ(k))− 1

K

K∑
k′=1

g(k
′)(x

(k′)
t′ ; ξ(k

′))∥2]

≤ 8pKδ2g + 8C2
g

t−1∑
t′=stp

K∑
k=1

E[∥x(k)
t′ − x̄t′∥2] .

(32)

Lemma A.2. (Lemma 5 (Gao & Huang, 2021)) Suppose Assumptions 3.1-3.3 hold, the consensus error ∥z(k)t+1 − z̄t+1∥2
satisfies

K∑
k=1

∥z(k)t+1 − z̄t+1∥2 ≤ 48C2
fL

2
g

K∑
k=1

∥x(k)
t+1 − x̄t+1∥2 + 16C2

gL
2
f

K∑
k=1

∥u(k)
t+1 − ūt+1∥2 + 8KC2

gσ
2
f + 24KC2

fσ
2
g . (33)

Based on Lemma A.1 and Lemma A.2, we are ready to prove Lemma 4.3.

Proof. Denoting st = ⌊ t
p⌋, based on Algorithm 1, one can get

m
(k)
t − m̄t

=
t−1∑

t′=stp

(1− αη)t
′−stpm(k)

stp + αη
t−1∑

t′=stp

(1− αη)t−1−t′z
(k)
t′

−
t−1∑

t′=stp

(1− αη)t
′−stp

1

K

K∑
k′=1

m(k′)
stp − αη

t−1∑
t′=stp

(1− αη)t−1−t′ z̄t′

= αη
t−1∑

t′=stp

(1− αη)t−1−t′
(
z
(k)
t′ − z̄t′

)
.

(34)
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Then, for the consensus error ∥x̄t − x
(k)
t ∥2, one can get

K∑
k=1

E[∥x̄t − x
(k)
t ∥2]

=
K∑

k=1

E[∥x̄stp − βη
t−1∑

t′=stp

m̄t′+1 − (x(k)
stp − βη

t−1∑
t′=stp

m
(k)
t′+1)∥

2]

= β2η2
K∑

k=1

E[∥
t−1∑

t′=stp

(m
(k)
t′+1 − m̄t′+1)∥2]

= α2β2η4
K∑

k=1

E[∥
t−1∑

t′=stp

t′∑
t′′=stp

(1− αη)t
′−t′′

(
z
(k)
t′′ − z̄t′′

)
∥2]

= α2β2η4
K∑

k=1

E[∥
t−1∑

t′=stp

(
z
(k)
t′ − z̄t′

) t−t′∑
t′′=0

(1− αη)t
′′
∥2]

≤ pβ2η2
K∑

k=1

t−1∑
t′=stp

E[∥z(k)t′ − z̄t′∥2]

≤ 48pβ2η2C2
fL

2
g

t−1∑
t′=stp

K∑
k=1

E[∥x(k)
t′ − x̄t′∥2] + 16pβ2η2C2

gL
2
f

t−1∑
t′=stp

K∑
k=1

E[∥u(k)
t′ − ūt′∥2]

+ 8Kp2β2η2C2
gσ

2
f + 24Kp2β2η2C2

fσ
2
g

≤ 48pβ2η2C2
fL

2
g

t−1∑
t′=stp

K∑
k=1

E[∥x(k)
t′ − x̄t′∥2] + 128pβ2η2C4

gL
2
f

t−1∑
t′=stp

K∑
k=1

E[∥x(k)
t′ − x̄t′∥2]

+ 128Kp2β2η2C2
gL

2
fδ

2
g + 8Kp2β2η2C2

gσ
2
f + 24Kp2β2η2C2

fσ
2
g ,

(35)

where the second to last step holds due to Lemma A.2, the last step holds due to Lemma A.1. By summing t from 0 to
T − 1, one can get

T−1∑
t=0

K∑
k=1

E[∥x̄t − x
(k)
t ∥2] ≤ (48p2β2η2C2

fL
2
g + 128p2β2η2C4

gL
2
f )

T−1∑
t=0

K∑
k=1

E[∥x(k)
t − x̄t∥2]

+ 128TKp2β2η2C2
gL

2
fδ

2
g + 8TKp2β2η2C2

gσ
2
f + 24TKp2β2η2C2

fσ
2
g .

(36)

By setting p ≤ 1

4βη
√

6C2
fL

2
g+16C4

gL
2
f

, one can get

T−1∑
t=0

K∑
k=1

E[∥x̄t − x
(k)
t ∥2] ≤ 256TKp2β2η2C2

gL
2
fδ

2
g + 16TKp2β2η2C2

gσ
2
f + 48TKp2β2η2C2

fσ
2
g . (37)

A.6. Proof of Theorem 3.4

Based on aforementioned lemmas, we are ready to prove the convergence of Theorem 3.4.
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Proof. Due to the smoothness of F (x), one can get

F (x̄t+1) ≤ F (x̄t) + ⟨∇F (x̄t), x̄t+1 − x̄t⟩+
LF

2
∥x̄t+1 − x̄t∥2

= F (x̄t)− βη⟨∇F (x̄t),
1

K

K∑
k=1

m
(k)
t+1⟩+

β2η2LF

2
∥ 1

K

K∑
k=1

m
(k)
t+1∥2

≤ F (x̄t)− βη
1

K

K∑
k=1

⟨∇F (x̄t),m
(k)
t+1⟩+

β2η2LF

2

1

K

K∑
k=1

∥m(k)
t+1∥2

≤ F (x̄t)−
βη

2
∥∇F (x̄t)∥2 −

βη

2

1

K

K∑
k=1

∥m(k)
t+1∥2 +

βη

2

1

K

K∑
k=1

∥∇F (x̄t)−m
(k)
t+1∥2 +

β2η2LF

2

1

K

K∑
k=1

∥m(k)
t+1∥2

= F (x̄t)−
βη

2
∥∇F (x̄t)∥2 +

βη

2

1

K

K∑
k=1

∥∇F (k)(x̄t)−m
(k)
t+1∥2 +

(β2η2LF

2
− βη

2

) 1

K

K∑
k=1

∥m(k)
t+1∥2

≤ F (x̄t)−
βη

2
∥∇F (x̄t)∥2 −

βη

4

1

K

K∑
k=1

∥m(k)
t+1∥2 +

βη

2

1

K

K∑
k=1

∥∇F (k)(x̄t)−m
(k)
t+1∥2

≤ F (x̄t)−
βη

2
∥∇F (x̄t)∥2 −

βη

4

1

K

K∑
k=1

∥m(k)
t+1∥2

+
βη

K

K∑
k=1

∥∇F (k)(x̄t)−∇F (k)(x
(k)
t )∥2 + βη

K

K∑
k=1

∥∇F (k)(x
(k)
t )−m

(k)
t+1∥2

≤ F (x̄t)−
βη

2
∥∇F (x̄t)∥2 −

βη

4

1

K

K∑
k=1

∥m(k)
t+1∥2

+
βηL2

F

K

K∑
k=1

∥x̄t − x
(k)
t ∥2 + βη

K

K∑
k=1

∥∇F (k)(x
(k)
t )−m

(k)
t+1∥2 ,

(38)

where the last inequality is due to η ≤ 1
2βLF

. By introducing the potential function

Pt = E[F (x̄t)] +
β

α

1

K
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2
f

γ

1

K
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t )∥2] , (39)

one can get
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(40)

By setting β ≤
√

1
8

/(
C4

gL
2
f

γ2 +
C4

gL
2
f

γ +
L2

F

α2

)
, one can get

Pt+1 − Pt ≤ −βη

2
E[∥∇F (x̄t)∥2] +

βηL2
F

K

K∑
k=1

E[∥x̄t − x
(k)
t ∥2]

+ 2βγη2C2
gL

2
fδ

2
g + 2αβη2(C2

gσ
2
f + C2

fσ
2
g) + 2βγ2η3C2

gL
2
fδ

2
g .

(41)
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By summing t from 0 to T − 1, one can get
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(42)
where the second step holds due to Lemma 4.3, the last step holds due to the definition of the potential function and x∗ is the
optimal solution.

Additionally, when t = 0, one can get
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(43)

where the last step follows from Assumptions 3.2, 3.3. Additionally, one can also get
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Then, it is easy to get
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(45)

By plugging it into Eq. (42), one can get
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