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Abstract— Many robots move through the world by
composing locomotion primitives like steps and turns. To
do so well, robots need not have primitives that make
intuitive sense to humans. This becomes of paramount
importance when robots are damaged and no longer
move as designed. Here we propose a goal function we
call “coverage”, that represents the usefulness of a library
of locomotion primitives in a manner agnostic to the
particulars of the primitives themselves. We demonstrate
the ability to optimize coverage on both simulated and
physical robots, and show that coverage can be rapidly
recovered after injury. This suggests that by optimizing
for coverage, robots can sustain their ability to navigate
through the world even in the face of significant mechan-
ical failures. The benefits of this approach are enhanced
by sample-efficient, data-driven approaches to system
identification that can rapidly inform the optimization
of primitives. We found that the number of degrees of
freedom improved the rate of recovery of our simulated
robots, a rare result in the fields of gait optimization
and reinforcement learning. We showed that a robot with
limbs made of tree branches (for which no CAD model or
first principles model was available) is able to quickly find
an effective high-coverage library of motion primitives.
The optimized primitives are entirely non-obvious to a
human observer, and thus are unlikely to be attainable
through manual tuning.

I. INTRODUCTION

One of the most common sub-problems in modern
robotics is path-planning, and the choice of path is
usually framed as a precise or approximate optimal
control problem. When restricted to mobile robots
moving through many practical environments, the path
planning problem enjoys an additional important sym-
metry. Given the configuration of the robot body, the
short-horizon movements it can execute are the same at
nearly every point in space. This allows short time hori-
zon primitives to be optimized offline and pre-cached,
later to be composed sequentially to produce solutions
to the full path planning problem. For example, a

humanoid robot such as ATLAS can execute the same
walking steps at any point on flat, unobstructed ground.
To plan the motions of the robot walking through a
building, one can sequence primitives for generating
a collection of steps in the correct order instead of
solving the full high-dimensional planning problem.

Unfortunately, the primitives seen in such library-
based plans are usually created by hand, and generated
with constraints that help reduce the complexity of an
individual planning problem. For example, a common
choice for 2D motion, dating back to the turtle robots of
the 1950s [1], is to have linear translation and turning
in place as primitives. However, this particular choice
for generating movements is entirely arbitrary. A given
robot may be far more efficient moving diagonally or
turning while moving on an arc. The ability to optimize
for a library of useful primitives can come to have
critical importance when a robot is damaged, and the
choice of best available primitives might no longer
correspond to any motion obvious to a human operator.

Here we present a method to optimize an entire
primitive library concurrently so as to achieve the
ability to efficiently plan over the space of body mo-
tions with that library. By optimizing for the coverage
goal function we define, the library selected will be
able to express desired short-horizon plans through
composition of primitives from the library.

One approach for approximate optimal planning is
to construct a state lattice [2, 3] – a discrete collection
of states that can be generated by a library of prim-
itives. Planning consists of sequencing primitives to
travel along the lattice to approximate the total desired
motion. Such previous work on state lattices suggests
that a good collection of primitives are:

• complete – the space of desirable motions is
densely populated

• fast-to-compute – the robot is able to select and
use primitives in real time

• path optimal – each individual primitive should
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be similar to a globally optimal path available
between its start and end states.

When generating primitives, one has a variety of op-
tions to chose from [4, 5, 6, 7, 8]. Strategies can include
learning from demonstration as well as prioritizing spa-
tial properties of the output trajectories of the system.
Large primitive libraries are often winnowed down to
save run time or increase the planning update rate. Our
work can be viewed (in part) as a means for generating
very small, very expressive libraries of primitives.

Our work can also be seen as a way to relax the
standard assumption used in optimizing gaits, namely
pre-specifying the direction [9, 10] or turn rate of
motion [11, 12] over a single cycle. We observe that
most of the value a primitive has is not intrinsic, but
rather in its contribution to support other compositions
of primitives available to a planner and the overall
needs of the planning task. We thus provide a way to
evaluate libraries of primitives rather than their indi-
vidual characteristics. Primitives that have negligible
exploration value in isolation may be critical to more
densely maneuvering through space. We demonstrate
how our coverage measure values such primitives rather
than discards them.

Using our approach is nearly paradigmatically op-
posite to traditional behavior learning in robotics. We
allow for the optimizer to “ask” the robot what ways
are convenient to move, rather than dictating how the
robot should move a-priori. A subsequent advantage is
that mechanical designers can rethink common design
criteria for locomotors. Typically robots acting on a
planar workspace are designed to have at least one
mode by which gaits translate the system without
rotating it. This preference may simply be the result
of an anthropocentric bias. It is how humans move
to avoid disorientation and dizziness, but it is not a
universal requirement for effective locomotion. The
coverage measure, being devoid of such biases, allows
a broader range of robot mechanisms to score highly.
Crucially, it can also potentially allow broken robots
to recover their ability to plan motions by rapidly
regenerating a primitive library while damaged.

A. Overview of this paper

Below we briefly review Lie groups in §II, so as
to use them to represent the composition of primitive
libraries as a sequence of group actions acting on a Lie
group of body locations. Using this representation, we
define coverage in §III and provide examples of how
it can be computed on the rigid body groups SE(2)
and SE(3). In §IV we use this coverage to discuss

a collection of toy systems whose locomotion ability
becomes easy to appreciate through our approach. We
translate this framework of primitive optimization to
the world of gait driven systems in §V. There we pay
special attention to highly damped systems, where the
task of chaining primitives can be greatly simplified.
We present coverage optimization of gait libraries for
some Purcell swimmer models in §VII. Using coverage
as a tool, in §VIII we investigate the ability of the
Purcell swimmer to recover from joint locking failures.
Finally, we emphasize the ability of the optimization to
work on unintuitive robots, even when we do not spec-
ify the robot kinematics, mass distribution, or material
properties. We demonstrate with a robot whose limbs
are made of tree branches, and which gained the ability
to navigate on the floor with less than eleven minutes
of hardware-in-the-loop optimization for coverage.

II. EXPRESSING MOTION THROUGH THE SPACE OF

DISCRETE ACTIONS

To represent motion, we assumed that the configu-
ration space Q of our moving robot could be factored
as a product of a shape R and a (generalized) position
G. This generalized position is a Lie group, typically
a sub-group of the rigid body motions SE(3). In this
work, we restricted our attention to motion in the
ground plane, SE(2). We produced motion using (pe-
riodic) gaits, which we take to mean periodic changes
in shape that produce a predictable body motion. For-
mally, a gait b is a function γb : S1 → R that produces a
body motion Mb ∈ G. A stride consisting of a left step
followed by a right step is an example of a gait cycle of
human walking. Given a finite selection of gaits and a
means for switching between them, a planner can pro-
duce any motion that corresponds to a word composed
of the group elements (letters) those gaits generate.
For example, with gaits γa and γb, and provided any
sequence is allowed, one can produce the motions
(I,Ma,Mb,M

2
a ,MaMb,M

2
b ,MbMa,M

3
a , . . .). Figure

1 provides a visualization of what this representation
looks like for motion planning in a planar workspace.

In this paper, we restricted our discussion to prim-
itive libraries consisting of single cycles of different
gaits as the primitives and assumed the gaits are con-
nected in internal state at their start and end configura-
tion. This is not generally the case, and receives more
careful treatment in §V.

III. SPECIFYING THE LOSS FUNCTION

As conventionally practiced, a motion planner is
given some parameters x, a means to generate motions
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Fig. 1. Illustration of composing gait cycles. Here, the two group
actions (MA,MB) are applied in various orders and combinations.
An n-step finite horizon planner considers words, a concatenation
of group action letters, of length n. For a two letter action library,
n step planners consider 2n paths (trees in the left panel). We
illustrated a possible case of such motions. By assuming that the
robot is oriented tangent to the direction of motion, the resulting
motions can be represented by their projection on the translational
plane (right panel).

M(x) ∈ G, and some loss function which it will min-
imize. Because we did not consider power efficiency
here, we took the loss function

η̃ : G→ R+ (1)

to be purely a function of the endpoint. Including
additional factors in the loss functions for individual
primitives is only a matter of book-keeping, provided
the loss function of the overall path is additive in
those of its constituent primitives. We assumed that
the loss function is written relative to some desired
goal position G of the motion, and defined a relative
(local) loss function using the Lie algebra η(ξ) :=
η̃(exp(ξ)G). We then optimized for the parameters x
of the primitive with respect to the loss function x 7→
η ◦ log(M(x)G−1). Any left invariant distance metric
for SE(2) or SE(3) provides practical implementation
of η̃. Picking such a metric boils down to a choice
of a constant that relates the loss of translation errors
to the loss of orientation errors, and thus this choice
is application specific. In this work, we chose this
parameter to make a half rotation on any axis to be
of equal loss to displacement of a body length.

We set up our optimization as follows: let G :=
{Gi}ni=1 be a set of goal motions and W := {wi}ni=1 ⊂
R+ be a corresponding set of weights. Let M :=
{Mj}mj=1 be a set of achievable motions.

We defined the coverage cost

h(M) :=
∑
i

wi min
j
η ◦ log(MjG

−1
i ). (2)

We further defined hk(M) as the cost of the set of
words of k or fewer elements of M. The coverage
cost is the sum of the costs of the best approximations

Fig. 2. Expressive power of the coverage cost. One has a variety
of choices for placement and weighting of coverage points. We
provided some suggestions for various design goals on the space of
planar rigid body motions. A user can prioritize versatility (panel
A), zero-rotation translation (panel B), or right lateral movement
(panel C). Volumes and planes are suggested regions for the user
to evenly distribute uniformly weighted coverage points Gi.

available for Gi, given the achievable Mj and weighted
by the weights wi for each Gi.

A. Higher order maneuvers

One of the surprising insights of nonlinear control
is that the non-commutativity of control actions can
make reachable the iterated Lie brackets of a control
distribution [13, 14]. The discrete primitive library
equivalent of this insight is the observation that the
commutator word MaMbM

−1
a M−1

b can at times reach
directions that no word of the form Mn

aM
m
b could

reach. Thus, designing hk(·) such that k ≥ 4 allows
these higher-order maneuvers to be included. It is, how-
ever, important to note that the coverage computation
time scales exponentially with k. For this reason, we
used k = 4 in our implementations here.

B. Design choices for coverage points

The coverage cost presented offers a user the ability
to specify both the placement and weighting of cov-
erage points. The selection of the points and weights
can radically change the priorities of the optimizer. A
user prioritizing versatility may want the robot to be
able to reach all parts of its local position space. They
can place a uniformly weighted set of points distributed
evenly within some volume around the identity (non-
)motion (Figure 2 A). Another user may wish to find
a combination of gaits that translate while preserving
orientation. That might correspond to a coverage point
distribution in a thin wedge near the 2D slice of
SE(3) corresponding to no rotation (Figure 2 B). Such
maneuvers might be useful for an inspection robot that
needs to maintain a visual field of view while moving.
If one had a more specific navigational goal, e.g. finding
a way to translate laterally to the right, such a goal can
also be captured (Figure 2 C).
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Fig. 3. Here we describe two mechanical systems that may
appear as unconventional travelers. The two-slider swimmer (left)
can move spheres along prismatic joints. The motion simultaneously
induces a thrust on the system while changing the geometry of drag
forces acting on the system. We plotted the gaits selected for the
two-slider swimmer on the rotational connection vector field [9] of
the two-slider swimmer (middle). This provided insight into how
shape change can influence body velocity. We can see that paths
(shown in red) that start in the corner at the origin, travel along a
shape axis, sweep at a constant radius to another axis, then return
to the origin. The connection vector field aided gait selection of
the two-slider swimmer, which is discussed in §IV-B.1. The three-
branch swimmer (right) has two-joints that can rotate, fixed to
the end of a triangle. Since the shape space of the three-branch
swimmer is not restricted to planar representations, we selected
gaits in a different way.

The wi weighted collection of coverage goal points
Gi can be seen as a discrete approximation to a measure
on the group. Increasing the number of goal points in a
region while keeping the total weight constant implies a
preference for higher resolution in that region. Chang-
ing the weight while keeping the goal points unchanged
implies an increase or decrease in the importance of
approximating those goal motions with the primitive
library.

IV. COVERAGE INVITES NON-TRADITIONAL

MECHANICAL DESIGNS

Here we intentionally designed two robots that move
in unconventional ways. The first cannot translate with-
out rotating. The second has a trilateral symmetry.
Often, roboticists do not consider such systems because
their mobility is non-intuitive. Yet we have shown
below that both systems can move quite effectively in
SE(2).

A. Introducing two new mechanisms

Both of the mechanical system models we present
are swimmers that operate at the limit of low Reynolds
number fluid dynamics [15], where friction dominates
inertia. The motion of these systems is fully dominated
by the drag forces induced by the internal velocities of
the robots shape variables r ∈ R and body velocities
◦
g ∈ TSE(2). The motions of these systems can be
usefully inspected using the tools of [9, 16, 17].

1) Two-slider swimmer model:: The two-slider
swimmer in Figure 3 moves via the prismatic joints
driven by strictly positive displacements r1 and r2. The
viscous force on each sphere is linear in translational
velocity and cubic in rotational velocity. Its full model
is: 3d 0 0

0 3d 0

−dr2 −dr1 d(r1
2 + r2

2) + d3

4

 ◦
g = R(α)

 0 d
−d 0
0 0

 ṙ
(3)

α = −π
2

where R takes input parameters to a rotation about the
origin on SE(2).

2) Three-branch swimmer model:: We also designed
the three-branch swimmer (see Figure 3), another vis-
cous swimmer. two-joints are free to rotate from the
points of the triangle. For biological intuition for how a
system like this might move, a starfish might move like
a pentagonal five-branch system with longer segments
of links at each vertex. The links interact via the slender
body theory of Cox [18], the same that was used for the
swimmer in [16] and paddles in [19]. The drag of the
triangular piece is represented by three static links that
point from the center of the triangle to their respective
attachment points.

B. Hand selecting gaits

1) Gait selection for two-slider swimmer:: By in-
spection of the connection vector field of the rotational
component of the two-slider swimmer (see Figure 3),
we saw that a variety of turning modes could be
excited. Hand-selected gaits all started at the origin
of the base space, travel along the axis of one shape
variable, then translated at a constant radius from the
origin, traveling from one positive end of a shape
axis to the other. Each path was then sent to the
origin via the other shape variable. We can see from
the curl of the vector field that clockwise gaits will
yield positive rotation, and counter-clockwise gaits will
yield negative rotation. The three paths printed in red
represent three magnitudes of turning the system can
choose. The larger the radius, the greater the turn will
be, as explained in Figure 3. Each gait also induces
a translational displacement of the system from its
starting location.

2) Gait selection for three-branch swimmer:: The
three-branch swimmer is less amenable to inspection by
the connection vector field methods since it has a third
shape variable. Reduction methods (such as [20]) can
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Fig. 4. Both systems were able to explore their local environments in a way that is unrestricted to translation in the plane. We plotted
paths to show the number of steps required to arrive at a target pose, omitting visualization of the orientation (θ) component of the full
SE(2) pose. We plotted motions available in 5 steps (1=black, 2=green, 3=blue, 4=magenta, and 5=cyan). At 5 steps (cyan), the system
had a broad variety of poses at its disposal. Both systems appear to be capable of navigating through environments with sparse obstacles.

make such gait analysis useful for more complex Stoke-
sian systems. Geometric gait optimization can also be
employed on this analytical system to obtain a collec-
tion of gaits, maximizing various objective functions
[21]. In this example, our goal is to demonstrate that
sub-optimal behaviors can be interpreted as valuable
through the coverage metric. Therefor, we selected gaits
rather heuristically. Two criteria for selected motions
were to avoid self-intersections and enclose a non-zero
volume in the shape space1. Two links oscillated in
anti-phase, providing a thrust that acts through a line
from the midsection of their attachment points to the
third link’s attachment point. The third link oscillated
out of phase by a quarter cycle. We designed the gaits
as:

rmod(k,3)+1 = sin(ϕ) (4)

rmod(k+1,3)+1 = 1− cos(ϕ) (5)

rmod(k+2,3)+1 = −1 + cos(ϕ) (6)

for ϕ ∈ S1 with gaits γk enumerated k = (1,2,3). These
three gaits generate three group actions, which can also
be run backward in ϕ, generating three inverse group
actions.

Each system had six gaits at its disposal. By inspec-
tion of Figure 4, we observe the local planning ability
of the systems, only using the six gaits as possible ac-
tions (letters) of their total motion (word). We highlight
the key takeaway of this section. Behaviors that were

1The scallop theorem [22] ensures that gaits with zero enclosed
volume will achieve zero displacement in the stokes regime

not useful in isolation were critical to providing dense
coverage. Furthermore, these behaviors may lie outside
the scope of typical behaviors that a roboticist may
prescribe for a system.

V. CONNECTING GAIT AND MOTION

The algebraic structure for computing available mo-
tions is straightforward: separate gaits were concate-
nated as a string of group multiplications. What dy-
namical properties were required for such assumptions?
We cover the assumptions we made in this section,
using the language of geometric mechanics. For gen-
eral dynamical systems, combining gaits would require
a transition behavior that matches the internal state
(r, ṙ, p) of the endpoint of one gait and connects it with
the internal state (r, ṙ, p) of the starting point of the next
gait. There exist a class of systems where the matching
requirements are highly relaxed.

A. Planning simplifications in principally kinematic
systems

The class of systems we focused on in this work
inhabit the Stokes regime [23], which encompass the
dynamic qualities of the principally kinematic case cov-
ered in [24]. A well known example of such systems is
low Reynolds number swimmers [25, 26]. However, we
recently accumulated evidence that this theory applies
to multi-legged locomotion [27, 28]. The function A(·)
connects gaits, as body shape loops, to the motion they
induce, called the “holonomy” of the loop.

It is known from Stokes’ Theorem that a closed
loop integral of a vector field is equal to the area
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integral of the volume enclosed by the loop. This is
an approximation of the motion for non-abelian sys-
tems, and careful selection of coordinates can improve
the quality of this approximation [29]. This theorem
extends to higher dimensional spaces, and when it
is a close approximation it provides the flexibility of
inducing equivalent group actions no matter where the
closed loop starts or stops. Furthermore, any path in the
kernel distribution of A(·) can connect such loops to
one-another without introducing an additional motion
in the group. In practice, however, obtaining this kernel
from data requires cumbersome sampling and system
identification.

B. Representational simplifications

Given a gait γb, the body frame motion Mb it
produces could, in principle, be a function of the initial
point in the gait cycle and the speed with which this
cycle is executed. For systems where momentum is
dominated by friction or constraints (Stokesian sys-
tems), this is not the case. In those systems there exists
a map A(r) : r ∈ R 7→ L(Tr, g) taking shapes to
linear maps from shape velocities to the Lie Algebra
g of G. This leads to the “reconstruction equation”
ġ = LgA(r)ṙ where Lg : g = Te → Tg is the
lifted left action of the group element g (commonly
written g−1ġ = A(r)ṙ for matrix Lie groups). Thus,
if two base loops are connected at any point, the
combination of their actions can be represented as a
group multiplication of their respective g elements.

There are infinite ways to take a gait library and
coordinate it into a complete motion planner. Typically
people have a scheme for transitioning between gaits.
The overhead of finding such transitions for systems
with no model can be large.

When selecting a collection of gaits for computing
coverage, we required that each shares a common point
in the base space and thereby allowing gait cycles to
be applied in any order.

VI. SETUP FOR DISCOVERING A HIGH COVERAGE

GAIT LIBRARY

To illustrate our approach on a classical system,
we simultaneously optimized three gaits on Purcell
swimmers to provide coverage of a portion of SE(2)
surrounding the identity using their h4(·) cost.

A. Coverage point selection

This coverage point distribution included equally
weighted points derived from all possible combinations

of the following values, totaling 125 points:

x = [−1,−0.5, 0, 0.5, 1] (7)

y = [−1,−0.5, 0, 0.5, 1] (8)

θ = [−π,−π
2
, 0,

π

2
, π] (9)

where units for translation were body lengths and
units for rotation were in radians. These spanned the
translational bounds of moving by one body length
and the rotation bounds of rotating by a half of a full
rotation.

B. Model extraction and motion parametrization

A single iteration of learning involved experimen-
tally running each of the three gaits for 30 noisy cycles,
modeling their dynamics via the framework of [30]. We
parametrized the gaits with a modified version of the
ellipse with bump function parametrization also used in
[30]. The following parametrization p is a modification
that allows the base point, bi, of the three gaits to be
an explicit parameter:

ri(t) :=ci + (bi − ci) cos(Ωt) + ai sin(Ωt)+ (10)
No−2∑
k=0

ui,k w

(
t− k 2π

No

)

w(x) :=

{
1 + cos(xfNo) |xfNo| < π

0 |xfNo| ≥ π
, (11)

with gait parameters

pi = (ci, bi, ai, ui,k). (12)

In this work, we used No = 18 and f = 3, totaling 16
bumps. Two bumps were elided (k = 17, 18) via this
representation such that base point b is left unshifted.

VII. FINDING COVERAGE WITH PURCELL

SWIMMERS

Our first investigation was to see how well Purcell
swimmers can optimize three gaits simultaneously for
the uniformly distributed set of coverage points of
§VI-A. We observed how the ability to optimize these
gaits changed as we added joints to the swimmer. We
started with two joints (the two-joint Purcell swimmer)
and built our way up to eight joints. We repeated the
optimization process 30 times for each swimmer.

At the beginning of each optimization, a random
joint was stimulated with a sine wave. The stimulated
joint was distinct for each gait. The only exception to
this was that for the two-joint Purcell swimmer, a gait
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had to be repeated since there were three initial gaits
and only two joints. The swimmers used 30 cycles at
each gait to build a model. Then, the swimmers used the
models provided by [30] to predict how changing the
parametrization of their three gaits could be combined
to optimize a 4-step plan over the coverage points
provided2. An iteration of the optimization involved
stepping along the policy gradient of three gaits (step
size computed via [30]) and simultaneously updating
the three gaits. The results are recorded in Figure 5.

We ended the optimization after 30 iterations. The
test showed that the swimmers were able to use the
coverage metric to consistently find a gait library for
local motion planning. Having two joints was sufficient
for finding a gait library, but having three joints pre-
sented a notable improvement in coverage. This jump in
performance was less surprising after considering that
the third joint allowed the swimmer to become fully
actuated (when in non-singular configurations) with
respect to SE(2). After the third joint was added, the
convergent behavior of the swimmers was consistently
within the performance noise window of adding another
joint, i.e. the marginal benefit of adding a joint was
small.

The convergence rate of the swimmers improved
when adding the third and fourth joints. For all swim-
mers containing 3 or more joints, the standard deviation
of performance reached h = 0.4 by the tenth trial.
Here, we calculated h as the average normed distance
to a coverage point. Converging at this expedient rate
required exactly 900 cycles of robot data. If we ran
physical robots at 3Hz, the optimizations would have
converged after collecting just five minutes of experi-
mental data, even on the eight-joint swimmers.

VIII. INVESTIGATING THE ABILITY OF THE

PURCELL SWIMMER TO RECOVER FROM JOINT

LOCKING

In trials 30-60 of Figure 5, we tested the ability of
the Purcell swimmer to recover from simulated damage.
We took the optimal collection of gaits from the first
30 trials and found the joint that used the highest
amplitude behavior. We locked this joint at its value
taken at the base point of the parametrization. We then
used this damaged optimal policy from the first 30 trials
to start a on optimization leaving the damaged joints
locked.

The two-joint swimmer was unable to move as a
result of the injury. The three-joint swimmer was able

2Using 4 steps allowed us to include knowledge of the commu-
tator motions noted in §III-A.

to partially recover. It was equipped with two functional
joints, yet was did not achieve the coverage scores of
the un-injured two-joint Purcell swimmer. The four-
joint swimmers were notably better at finding high
coverage libraries during recovery than the three-joint
swimmers and remained within the standard deviation
of performance of the five-joint swimmers. The top
row of Figure 6 details one optimization process for
a swimmer with three joints. It is clear that before
injury, the swimmer was able to achieve local poses.
The injury greatly handicapped this ability, even with
the opportunity to recover. Likewise, the bottom row
of Figure 6 details one optimization process for the
swimmer with four joints. Before injury, the four joint
swimmer also found a useful gait library. The injury
clearly hindered its ability to move, but given the
opportunity to recover, the four joint swimmer found a
new collection of behaviors with good coverage.

We interpret these results as follows. After damage,
the two-joint swimmer was left with one joint and
was unable to move, possibly a consequence of the
scallop theorem in Stokesian systems [22]. The three-
joint swimmer recovered poorly, and did not come to
match the performance of the undamaged two-joint
swimmer. This may suggest that the injury resulted in
a body geometry that was less amendable to producing
good coverage than the conventional two-joint Purcell
swimmer. As we added more joints, the redundancy of
joints both minimized the dynamical impact of injury
and provided a larger space of solutions for recovery.
The boxplots in Figure 5 suggest that at around five or
six joints, the coverage performance of the swimmer
becomes robust to the locking of a single joint.

Since all recovery processes took the same amount of
time, we have a rare result: adding actuated degrees of
freedom improved our convergence and recovery rates.
Adding more freedom typically involves a substantial
increase in sampling requirements, both lengthening the
convergence process and making it less certain. In this
example, convergence rate either improved or stayed
approximately the same as joints were added. Here,
combining the methods of [30] and the coverage metric
allowed redundancy in the internal state to be an asset
for behavior optimization rather than a liability.

IX. IMPLEMENTATION ON HARDWARE

Here we communicate the general and noise-robust
qualities of our approach by optimizing coverage on
real hardware with an unknown model. We did not have
explicit knowledge of the kinematics, mass distribution,
or material properties of this system when running the
modeling and optimization algorithms.
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Fig. 5. Purcell swimmers of varying complexity, such as the eight-joint (pictured bottom left) were optimized for three gaits that maximize
coverage. See §VI-A and §VI-B for details on the setup of the experiment. We plotted the mean (top, solid lines) and standard deviation
(transparent bands) over 30 separate simulations of the average distance of goal motions to the nearest available motion, denoted h. We can
see how h changes across trials and the number of joints used by the swimmer (2=blue, 3=green, 4=red, 5=cyan, 6=magenta, 7=yellow,
8=black). At iteration 30 (marked by a vertical grey line), we plotted how well the swimmers adapt to having the maximal amplitude
joint locked. We also observed how the quality of the coverage of the library varies by the number of joints used by the swimmer (bottom
right) before (blue box plots) and after (green box plots) joint locking.

A. Methods on hardware

Inspired by the hardware used in [31], we foraged
for tree branches. We gathered these and sectioned the
branches into robot appendages of a useable size. We
then constructed a robot by fixing tree branches to
the endpoints of a chain of three Robotis Dynamixel
RX-64 actuators in modular cages. We equipped the
robot with 3 markers for our motion capture system
(Qualisys Oqus 6 camera system); this provided us a
observation of the position and orientation of the robot.
We connected the robot to a computer (Intel Xeon
CPU E3-1246 v3 running at 3.50GHz) running the gait

modeling and optimization algorithms. This connection
used a CAT5 cable with 3 conductor pairs for power
and one pair for RS-485 serial communications. To
build a physics model centered at a given gait, we
collect 20 cycles of noisy input data on the robot and
fit a regression informed by physics and geometry [30].
We then compared the outcomes of two different opti-
mizations for the (x, y, θ) outcomes of a gait or gaits,
taking the position of the robot prior to application of
a gait cycle as the origin.

We performed two gait optimization experiments:

(1) Find one gait to move forward without turning:
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Fig. 6. This provides a detailed look at two optimization process for a three-joint and four-joint swimmer in the study summarized in
Figure 5. We plotted the 4 step horizon (1=black, 2=green, 3=blue, 4=magenta) at various trials on the plane (left in each section) and
on SE(2) (right in each section). For reference, we plotted the unit volume in SE(2) (gray box) over which the coverage points were
uniformly distributed. For the three-joint swimmer, we showed the optimal policy before injury in trial 22 (top right), the consequence of
a locked joint (grey dot) on the optimal policy in trial 30 (top middle), and the optimal policy recovered while the joint remains locked
in trial 52 (bottom right). The three-joint swimmer was strongly impeded in its ability to recover a high coverage collection of gaits
post-injury. For the four-joint swimmer, we showed the optimal policy before injury in trial 17 (top right), the consequence of a locked
joint (grey dot) on the optimal policy in trial 30 (top middle), and the optimal policy recovered while the joint remains locked in trial 54
(bottom right). The four-joint swimmer was not impeded in its ability to recover a high coverage collection of gaits post-injury.

Fig. 7. This robot (top right) was built from dynamixel modules and tree branches available nearby (left and middle left). The trajectories
showcase the available 1 to 4 cycle motions of the system (bottom right) from the robot’s origin before (green) and after (blue) the
coverage optimization.



10

We designed a gait optimization to maximize x−y2−θ2
(per cycle) given the coordinates of Figure 7 and units
of body lengths (13m) and radians.
(2) Find three gaits that optimize coverage in a
volume of SE(2): Given the ability to use the 3 gaits
in up to 4 combined cycles, we designed a gait library
optimization to minimize the distance (computed on
the Lie group), from 125 points distributed across
all combinations of coordinates x = [−1,−1

2 , 0,
1
2 , 1],

y = [−1,−1
2 , 0,

1
2 , 1], θ = [−π

2 ,−
π
4 , 0,

π
4 ,

π
2 ]. The gray

volume in Figure 7 contains all of the coverage points.

B. Results on hardware

For the first goal function, we seeded a zero motion
gait oscillating the middle joint with a sinusoidal in-
put. We executed 15 iterations of our data-driven gait
optimization algorithm, each consisting of 20 cycles of
motion. Running at 1

2Hz, each trial took 40 seconds.
After the 8th iteration, the robot was able to travel 40%
of its body length per cycle with a turning rate of 0.10
radians per cycle.

For coverage, we first completed an exploratory sam-
pling of motions (12 cycles). From these 12 different
gaits, we selected the subset of 3, which performed the
best on the coverage metric. After 5 iterations of trials
(60 cycles, 20 for each gait), the system found a more
complementary set of gaits reducing the coverage score
from 0.97 to 0.76.

X. DISCUSSION AND CONCLUSIONS

In this paper, we introduced a new metric for the
optimization of robot motions. This metric involved
calculation of the composition of motions from a small
library of primitives, determining their utility in “cov-
ering” some region of the local body position space,
formulated as a Lie group. What is novel about this
approach is that

• It eliminated human bias from prescribing a lim-
ited set of allowable primitives for a robot.

• It allowed for the use of unconventional robot
designs for navigation.

• It allowed malfunctioning robots to quickly re-
cover the ability to move through space.

We showed the Purcell swimmers’ ability to recover
from injury using the data-driven geometric gait opti-
mizer, guided by the coverage metric. Some interest-
ing trends emerged during these tests. The swimmers
converged to a high coverage gait library (containing
three gaits) despite variation in the number of links
and initial gaits. This suggests insensitivity in the gait
optimization when using the coverage metric.

Furthermore, coverage allowed us to investigate the
role that redundancy might play in the ability of the
swimmers to recover high coverage gait libraries post-
injury. We found that around four degrees of freedom,
the addition of a joint no longer provides a substantial
change in the ability of the swimmer to recover. The
ability to apply this analysis to other robots could help
inform what degree of complexity is appropriate when
designing a robot, and provide a lower bound for how
much recovery can be expected from different amounts
of damage.

Finally, using the coverage optimization on a robot
made of tree branches we were unable to find gaits
that translate without substantial rotation. We were
able, however, to find a useful portfolio of maneuvers
for navigation in 2D. This machine learning task was
solved on a timescale that is competitive with an
implementation of reinforcement learning by Google
[32].

The tree branch robot example speaks to the mor-
phology agnostic properties of data-driven geometric
gait optimization; this robot could be substituted with
robots of many other forms. As long as the system acts
near the Stokesian regime of locomotion, the methods
of [30] assist in building behavioral models that inform
performance improvements. Interfacing the coverage
optimization metric to soft systems (where approaches
to system identification have been developed [33, 34])
could enable more reliable soft robots in hard to model
environments.

Taken together our results give strong evidence that
optimizing for coverage is a means for a robot to gain
the ability to maneuver, and to recover this ability after
being damaged.
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