
A Portable Sparse Solver Framework for Large

Matrices on Heterogeneous Architectures

Fazlay Rabbi∗, Christopher S. Daley‡, Ümit V. Çatalyürek†, Hasan Metin Aktulga∗

∗Computer Science & Engineering, Michigan State University
‡ Lawrence Berkeley National Laboratory

†Amazon Web Services§ and School of Computational Science & Engineering, Georgia Institute of Technology

rabbimd@msu.edu, csdaley@lbl.gov, umit@gatech.edu, hma@msu.edu

Abstract—Programming applications on heterogeneous sys-
tems with hardware accelerators is challenging due to the disjoint
address spaces between the host (CPU) and the device (GPU).
The limited device memory further exacerbates the challenges
as most data-intensive applications will not fit in the limited
device memory. CUDA Unified Memory (UM) was introduced to
mitigate such challenges. UM improves GPU programmability
by supporting oversubscription, on-demand paging, and migra-
tion. However, when the working set of an application exceeds
the device memory capacity, the resulting data movement can
cause significant performance losses. We propose a tiling-based
task-parallel framework, named DeepSparseGPU, to accelerate
sparse eigensolvers on GPUs by minimizing data movement
between the host and device. To this end, we tile all operations
in a sparse solver and express the entire computation as a
directed acyclic graph (DAG). We design and develop a memory
manager (MM) to execute larger inputs that do not fit into
GPU memory. MM keeps track of the data on CPU and GPU,
and automatically moves data between them as needed. We
use OpenMP target offload in our implementation to achieve
portability beyond NVIDIA hardware. Performance evaluations
show that DeepSparseGPU transfers 1.39x-2.18x less host to
device (H2D) and device to host (D2H) data, while executing
up to 2.93x faster than the UM-based baseline version.

Index Terms—sparse solvers, task parallelism, performance
optimization, directive-based GPU programming, performance
portability.

I. INTRODUCTION

Graphics Processing Units (GPUs) have been employed in

more than a quarter of TOP500 [28] supercomputers due to

their massive peak performance and power efficiency. GPUs

have been used to accelerate applications in various domains,

such as graph analytics, machine learning, computational

finance, climate modeling, multimedia. Given NVIDIA’s dom-

inance in GPU computing, most GPU acceleration efforts to

date have focused on CUDA, which is an NVIDIA-hardware

specific programming model. Considering the increasing num-

ber of computing systems with GPUs from different vendors,

choosing a portable programming model that allows appli-

cations to adapt to the diversity in heterogeneous comput-

ing is crucial from software maintenance and sustainability

perspectives. OpenMP 4.5+ and OpenACC have emerged as

portable directive-based programming models to provide a

§This publication describes work performed at the Georgia Institute of
Technology and is not associated with Amazon.

unified programming model for CPUs and GPUs. Higher-

level abstraction adopted in these directive-based programming

models yields application portability and developer produc-

tivity. Recent studies show that OpenMP and OpenACC are

robust and able to provide good performance on different

hardware [8], [12], [27].

Regardless of whether an application uses a device-specific

(e.g., CUDA) or a portable (e.g., OpenMP) programming

model, the amount of data moved between CPU and GPU

is a key concern in heterogeneous systems due to the wide

gap between computational performance and data movement.

For best performance, programmers have to explicitly control

the data movement between the host and the device, but

this comes at the expense of programmer productivity. As a

general solution, Unified Virtual Memory (UVM) has become

available since CUDA 8.0 and the Pascal architecture (2016).

The key idea behind UVM is that programmers no longer need

to think about GPU and CPU memory as two distinct memory

spaces. Instead, UVM creates a pool of managed memory

that is shared between the CPU and GPU, and is accessible

from both with memory pages being migrated on-demand by

the CUDA runtime system automatically. Even though UVM

dramatically reduces developer effort in regards to managing

data movement, it can cause a significant hit in performance.

While the size of data needed by scientific applications and

machine learning/data analytics workloads increase at a rapid

pace, the memory available on GPUs increase at a much more

modest pace. For example, NVIDIA’s Tesla V100 “Volta”

GPUs have only 16 GBs of device memory available; one

could have up to 80 GBs of memory on the newest generation

NVIDIA A100s, but even 80 GBs is not enough for all

application use cases. To illustrate this issue, take for instance

the Many Fermion Dynamics - nuclei (MFDn) code, which

is a quantum many-body code based on the configuration

interaction model. MFDn is a total memory-bound application,

i.e., scientific studies using this code typically utilize all

memory (DRAM) space available, thus easily exceeding the

total device memory available [2], [23]. When an application’s

working set size exceeds the device memory size, the resulting

data movement becomes a critical design and performance

bottleneck [32].

In this paper, we present a tiling-based task-parallel sparse

linear algebra framework, named DeepSparseGPU, which

aims to make it easy to develop sparse solvers for large prob-

lems on GPU-accelerated architectures. Due to the irregular

data access patterns and low arithmetic intensities associated

with sparse matrix computations, achieving a high percentage

of the peak processor performance, especially on GPUs, is

challenging. These challenges are further exacerbated due to

the increasing number of hardware accelerators by different

vendors (i.e., NVIDIA, AMD, Intel, etc.). The main goal

of the DeepSparseGPU framework is therefore to ease the

development of performant and portable sparse solvers. Hence,

building upon the DeepSparse framework [1] which runs on

CPUs, DeepSparseGPU leverages OpenMP’s target offload

functionality. As we aim to optimize DeepSparseGPU for

GPUs, several changes were made to the original DeepSparse

framework, especially to support applications with memory

requirements that exceed the available device memory capac-

ity. We adopt the same task-based tiling approach which serves

the double purpose of enabling data locality optimizations and

facilitates the management of application data so that it can

be processed in batches that fit into the device memory. For

this, DeepSparseGPU automatically generates and expresses

the entire computation as a task dependency graph (TDG),

which is then executed using OpenMP’s tasking and target

offloading functionalities.

A memory manager developed as a part of DeepSparseGPU

keeps track of the data residing on host and device memories,

and automatically migrates data between the two whenever

needed. Given the data dependencies between computational

tasks, DeepSparseGPU employs a topological-sorting based

heuristic to minimize the data movement and increase appli-

cation performance.

The paper is organized as follows. In Section II, we describe

the related work on efforts to manage the GPU memory effi-

ciently in different application domains, application experience

using directive-based programming models, and accelerating

LOBPCG solver using GPUs. In Section III, we describe

both the design of our proposed tile-based framework and the

main data structures used in our memory manager with an

illustrative example. In Section IV, we present performance

results obtained on the Cori-GPU platform. Finally, Section V

summarizes our conclusions and plans for future work.

II. RELATED WORK AND OUR CONTRIBUTION

Given the importance of sparse solvers in scientific com-

puting and machine learning, several optimization techniques

have been proposed for sparse matrix-vector multiplication

(SpMV) on GPUs [6], [7], [14], [31]. However, the perfor-

mance of SpMV is bounded by memory bandwidth [29].

Since sparse matrix-matrix multiplication (SpMM) has a much

higher arithmetic intensity than SpMV and can efficiently

leverage the performance benefits of GPUs, SpMM-based

solvers have recently drawn significant interest in scientific

computing in the form of block linear solvers and eigen-

solvers [2]. As such several groups have studied the optimiza-

tion of the SpMM kernel on GPUs [5], [15], [26], [30]. On

the solver side, Anzt et. al [5] optimize the performance of

SpMM using ELLPACK format [4] and compare the perfor-

mance of their implementation with the multithreaded CPU

implementation of LOBPCG provided in the BLOPEX [20]

package. Dziekonski et. al [13] implement LOBPCG method

to find eigenvalues in electromagnetics analysis. They use an

inexact nullspace filtering approach in their implementation.

As can be seen, most prior work on accelerating iterative

solvers for GPUs has focused only on optimizing the Sp-

MV/SpMM kernels with a few exceptions. In this work, we

present a holistic framework that includes all computational

kernels required for block eigensolvers (LOBPCG is used

as a case study). Another distinguishing aspect of our work

compared to the work reviewed above is the support we

provide for applications with memory demands significantly

larger than the available device memory capacity.

In addition to the support for large applications, we adopt

a directive-based programming model to achieve portability.

OpenMP and OpenACC have recently emerged as directive-

based programming models to accelerate applications on

GPUs. Several existing work studied the efficacy of the GPU

offload support in OpenMP and/or OpenACC in the context

of individual kernels [8], [12], [27], mini-applications [21]

or proxy applications [9]. In this regard, our evaluation of

OpenMP’s offloading support in the context of a real eigen-

solver applied to matrices from several domains also consti-

tutes a niche. In doing so, for the benefit of the community, we

also discuss the compiler support issues we faced, as OpenMP

offloading implementations are constantly evolving and are

advertised as having only partial support in different compilers.

In evaluating DeepSparseGPU, we compare against a base-

line Unified Virtual Memory (UVM) implementation using

GPU-accelerated cuSPARSE and cuBLAS library kernels.

UVM was introduced to provide a single, unified virtual

address space to applications for accessing CPU and GPU

memory. Data can be automatically migrated at an individual

page level between host memory and device memory. As

we aim to do for sparse solvers, UVM greatly simplifies

general-purpose GPU programming because the same pointer

to data can be used on both the host and the device side.

The current data communication strategy in UVM is full page

migration. Oversubscription of GPU memory and system-

wide automatic memory operations are enabled by full-page

migration [17], [32]. There are some performance risks in

UVM regarding large page migration. NVIDIA evaluated

UVM performance using the PGI OpenACC compiler in [11]

by creating UVM versions of OpenACC applications in the

SPEC ACCEL 1.2 benchmark suite. They found that the UVM

versions ran at 95% of the performance of the original explicit

data management versions when running the applications on

the Piz-Daint supercomputer. Our work also compares UVM

against explicit data management and considers problems

whose memory requirements significantly exceed the device’s

memory capacity. The performance of oversubscribing UM is

evaluated in [18]. The authors find that UM can be up to 2x

slower than explicit data management in several applications

on an x86+V100 system.

Consequently, our contributions can be summarized as fol-

lows:

• We demonstrate that a complex block eigensolver can

be implemented efficiently using OpenMP target offload

directives by minimizing data movement between CPU

and GPU. We obtain up to 2.93x speedup and up to 2.18x

less data transfer between CPU and GPU over a well-

optimized UVM based implementation.

• We designed and developed a Memory Manager (MM)

that automatically keeps track of data on both CPUs

and GPUs, and migrates it whenever needed. Memory

manager helps to execute problem sizes that exceed

device memory.

• We use topological sort on the DAG to get a custom

schedule of the computing tasks. Empirically, we find that

topological sort helps minimize data movement compared

to the pain baseline schedule.

• We share and discuss our experiences and issues that

we faced during the development process so that the

community could benefit from it.

III. DEEPSPARSEGPU OVERVIEW

Figure 1 illustrates the architectural overview of the

DeepSparseGPU framework. DeepSparseGPU consists of two

major components: i) Primitive Conversion Unit (PCU), which

provides a front-end to domain scientists to express their

application, such as the LOBPCG solver, at a high-level and

generates the task dependency graph (TDG); and ii) Task

Executor (TE), which receives a DAG from the PCU and

performs a topological sort on the DAG to get a task schedule.

The task executor then launches proper kernels that correspond

to computational nodes in the TDG according to the task

schedule.

Out

Data

Out

Data

In

Data

In

Data

Out

Data

Out

Data

In

Data

In

Data

SpMM dot

SM 0

Out

Data

Out

Data

In

Data

In

Data

Out

Data

Out

Data

In

Data

In

Data

SpMM dot

SM 2

Out

Data

Out

Data

In

Data

In

Data

Out

Data

Out

Data

In

Data

In

Data

SpMM dot

SM 1

GPU

Kernel Launcher

[task, numTask] = topologicalSort(DAG)

do{

for(i = 0 to numTask)

{

taskinfo = extractTaskInfo(task[i])

operands = memoryManger(taskinfo)

kernel(operands);

}

} while(!converged)

Task Identifier (TI)

do {
SpMM(Hpsi, H, psi)

dot(E, psi, psi)
daxpy(Epsi, E, psi)
daxpy(R, Hpsi,Epsi)

dot(W,Tinv, R)
dot(Wmat, W, W)

dsyevd(S, Wmat).
..
} while(!converged)

TDG Generator

Primitive Conversion Unit (PCU)

Memory Manager

Device Memory

Host Memory
Tile DB

D2H H2D

Task Executor

Fig. 1: Schematic overview of DeepSparseGPU framework.

A. Primitive Conversion Unit (PCU)

The Primitive Conversion Unit (PCU) is composed of two

parts: i) Task Identifier and ii) Task Dependency Graph (TDG)

Generator.

1) Task Identifier (TI): DeepSparseGPU provides an appli-

cation programming interface (API) for developers, which is

a combination of the GraphBLAS interface [16] for sparse

matrix related operations, the BLAS/LAPACK interface [3],

[22] for vector and occasional dense matrix related compu-

tations and custom kernels. While the GraphBLAS interface

is implemented as tiled operations in the DeepSparseGPU li-

brary, optimized BLAS/LAPACK libraries (which are typically

available on HPC systems; otherwise needs to be provided by

the user) are used for dense vector and matrix operations. As

DeepSparse [1] and DeepSparseGPU are used to implement

new solvers, we extend the library with support for necessary

operations not found in GraphBLAS, BLAS or LAPACK.

Through this interface, developer can express their algorithms

at a high level without having to worry about architectural de-

tails (e.g., memory hierarchy) or parallelization considerations

(e.g., determining the tiles, tasks resulting from tiling and their

scheduling).

Task identifier parses the given application code to identify

the specific BLAS/LAPACK and GraphBLAS function calls

and the input/output of each function call. It then passes this

information to the local task dependency graph generator. The

parsed data is maintained in TI as an unordered map of (Key,

Value) pairs in a data structure named ParserMap. Each

Key is defined by three pieces of information: The operation

code (opCode), the operation id (id) to distinguish between

multiple calls to the same function in different parts of the

code, and a relative ordering info (timestamp) used to infer

the input/output dependencies between different operations.

ParserMap uses two helper data structures called Keywords

and idTracker to uniquely identify all kernels in a given solver

code. The Value object corresponding to each Key stores the

input and output variable information along with their sizes for

that function call.

2) Task Dependency Graph Generator (TDGG): The output

of Task Identifier (TI) is a dependency graph at a very coarse-

level, i.e., at the function call level. Tasks must be generated

at a much finer granularity for efficient parallel execution of

larger problems on the GPU by carefully planning the data

movement between the CPU and GPU. This is accomplished

by the Task Dependency Graph Generator (TDGG), which

goes over the input/output data information generated by TI for

each function call and starts decomposing/tiling these kernels

and data structures.

In DeepSparseGPU, the decomposition into finer granularity

tasks starts with the first function call involving the sparse

matrix (or matrices) in the solver code, which is typically an

SpMV, SpMM, or SpGEMM operation. For example, SpMM

is the main sparse matrix kernel in the LOBPCG solver. We

use compressed sparse row (CSR) matrix format to store

the sparse matrix. First, the TDGG decomposes the sparse

matrix using a 1D decomposition. Then, the main sparse

matrix kernel decomposition induces the decomposition of all

kernels above and below (i.e., the full solver) the sparse matrix

operation. TDGG also generates the dependencies between

individual fine-granularity tasks by examining the function call

putations to the GPU. The nowait clause is used for

asynchronous execution on the GPU. Whenever possible, the

collapse clause is used to merge nested loops to obtain

higher degrees of parallelism in the kernels. All directives use

the depend clause to respect the input/output dependencies

among tasks.

Listing 3: Kernel Launcher skeleton code in OpenMP

1 // main.cpp

2 [task, numTask] = topologicalSort(DAG);

3 #pragma omp parallel

4 {

5 #pragma omp master

6 {

7 while(!converged)

8 {

9 for(i = 0 ; i < numTask ; i++)

10 {

11 // extract task information

12 taskinfo = extractTaskInfo(task[i]);

13 // preparing operands on gpu (or cpu) using

14 // Memory Manager

15 operands = memoryManger(taskinfo);

16 // launch the proper kernel on GPU

17 // (or CPU) based on taskinfo

18 kernel(operands);

19 }

20 }

21 }

22 }

23

24 // an example gpu application kernel, dst = src1 + src2

25 void dmmadd(double *device_memory, int offset1 /*src1*/,

int offset2 /*src2*/, int offset3 /*dst*/, int

blksz, int col)

26 {

27 int sz = blksz * col;

28 #pragma omp target is_device_ptr(device_memory)\

29 depend(in: device_memory[offset1:sz], device_memory[

offset2:sz])\

30 depend(out: device_memory[offset3:sz]) nowait

31 #pragma omp teams distribute parallel for collapse(2)

32 for(int i = 0; i < row ; i++)

33 for(int j = 0 ; j < col ; j++)

34 device_memory[offset3 + i * col + j] =

device_memory[offset1 + i * col + j] +

device_memory[offset2 + i * col + j];

35 }

2) Memory Manager (MM): The memory manager (MM)

is a low-overhead runtime system which is responsible for

keeping track of all data tiles on the host and device memory.

As illustrated in Fig. 1, the KL consults with MM before

launching each kernel on the GPU (or CPU). MM makes

sure that the latest copy of each of the operands of a kernel

is available on GPU (or CPU) before launching the kernel.

MM moves data tiles between host and device automatically

whenever needed and implements a First-In-First-Out (FIFO)

eviction policy to evict blocks when the device memory

becomes full.

Data Structures used in MM: The MM maintains a few

data structures to fulfill its operations. Figure 3 shows the

important data structures that MM maintains to manage all

data tiles between the host and device. The purposes of these

data structures are as follows:

• device memory: This is an array of double-precision

numbers that spans the total available device memory in

our target machine. We reserve a small fraction of the de-

vice memory to store some matrices if the computational

Key Value

<matrix name, tile id> <index, no. of occupied blocks, size, isModified>

Key Value

<# of blocks> <index1, index2, index3, index4, ….…………….….>

<mtx1, 0> <mtx2, 2> <mtx8, 1> <mtx7, 0> <mtx1, 3> <mtx2, 3> <mtx1, 4>

0 1 2 3 4 5 6

device_memory

memory_view

memory_map

freeblock_map

evictionQueue

FIFO Queue
In

<mtx1, 0> <mtx8, 1> <mtx2, 2> <mtx1, 3> <mtx2, 3> <mtx7, 0> <mtx1, 4>

Out

memory blocks on device

Fig. 3: Data structures used in managing tile information in

Memory Manager.

model requires it. The rest of the device memory is allo-

cated as this bigger array. We divide the device memory

array into blocks of memory chunks according to user-

provided computational granularity. If the size of the

device memory array is m bytes and memory granularity

is β bytes, then we divide the full device memory array

into n = dm
β
e memory blocks. We use omp target alloc

function in our OpenMP implementation to allocate the

needed memory on device.

• memory view: This is an array of n elements (<data

structure name, tile id> pair). It contains name and id

of the data tiles stored in the i-th memory block of

device memory array.

• memory map: This is an unordered map that holds

detailed information on the data tiles stored in de-

vice memory in the form of (Key, Value) pairs. The Key

is a <data structure name, tile id> pair so that each tile

of all data structures associated with the computation has

a unique key. The Value is an array of 4 numbers (<index,

of occupied blocks, size, isModified>). The first number

in the Value field is the index of device memory where

the data block (<data structure name, tile id>) is stored

on the device. The second number in the array is the

number of memory blocks occupied on the device by

the stored tile. Depending on the size of the tile, it may

require more than one device memory block for storage.

The third element of the array is the actual size of the

tile that is stored at index location on device memory.

The fourth element of the array indicates whether the tile

data is modified on the device or not. If isModified = 0,

then the matrix tile data is not modified on the device.

If isModified = 1, then it indicates that the matrix tile

data is modified on the device. MM always checks the

isModified field before evicting a matrix tile from the

device memory. If tile data is modified, the MM copies

the latest matrix tile data to the proper host location

before evicting it from the device memory.

• evictionQueue: The MM implements a First-In-First-Out

<A, 0> <0, 2, 8, 1>

<B, 0> <2, 1, 4, 0>

<C, 0> <3, 1, 4, 1>

<B, 1> <4, 1, 4, 0>

<C, 1> <5, 1, 4, 1>

<D, 0> <6, 1, 4, 1>

<A, 0> <A, 0> <B, 0> <C, 0> <B, 1> <C, 1> <D, 0>

0 1 2 3 4 5 6

device_memory

memory_view

memory_map

freeblock_map

evictionQueue

FIFO Queue
In

<A, 0> <B, 0> <C, 0> <B, 1> <C, 1> <D, 0>

Out

<A, 0> <A, 0> <B, 0> <C, 0> <B, 1> <C, 1> <D, 0>

memory blocks on device

0 1 2 3 4 5 6

(a) Device memory becomes full

<B, 0> <2, 1, 4, 0>

<C, 0> <3, 1, 4, 1>

<B, 1> <4, 1, 4, 0>

<C, 1> <5, 1, 4, 1>

<D, 0> <6, 1, 4, 1>

<D, 1> <0, 1, 4, 1>

<D, 1> <FREE> <B, 0> <C, 0> <B, 1> <C, 1> <D, 0>

0 1 2 3 4 5 6

device_memory

memory_view

memory_map

freeblock_map

evictionQueue

FIFO Queue
In

<B, 0> <C, 0> <B, 1> <C, 1> <D, 0> <D, 1>

Out

<D, 1> <FREE> <B, 0> <C, 0> <B, 1> <C, 1> <D, 0>

memory blocks on device

<1> <1>

0 1 2 3 4 5 6

(b) Evicting <A,0> and copying <D,1>

Fig. 4: Illustrative example of how MM works

(FIFO) eviction policy using evictionQueue to execute

larger sparse matrix problems that exceed device memory.

As MM moves a tile from host to device, it adds the

<data structure name, tile id> of that block to the end

of evictionQueue. MM always tries to evict from the

beginning of evictionQueue.

• freeblock map: This is an unordered map that keeps

track of the free memory blocks on the device memory

array. The Key of the freeblock map is the number of

contiguous free memory blocks on the device memory

array. The Value of the freeblock map is an array of start

indices of free memory blocks on the device memory

array. The MM starts tracking the free memory blocks

once the eviction policy is activated, and MM always tries

to copy a matrix block from the host to the free mem-

ory blocks on the device. This helps minimize memory

fragmentation on the device.

Eviction/Replacement Policy: Data movement between the

host and device becomes the main performance bottleneck

when application working sets exceed the physical memory

capacity of the device. The MM uses a software-managed

First-In-First-Out (FIFO) eviction policy to efficiently manage

data movement between the host and device algorithm. From

the beginning of the execution of the application, MM adds

a matrix block at the end of the evictionQueue whenever

it moves a matrix block from host to device; an eviction

is performed when the device memory becomes full. MM

evicts the front element of the evictionQueue to make space

for newly required data on the device. If the data tile at the

front of evictionQueue is an operand of the current operation,

it is removed from the front and reinserted at the back of

evictionQueue.

List of MM methods: MM has multiple methods to

perform its functionality. These methods are internal to

DeepSparseGPU and are not to be used by a user. Here are

the list of important methods of MM:

• isOnDevice(mtx, tile id): This function returns true if

the tile id-th block of mtx matrix is available on device,

otherwise it returns false.

• copyToDevice(mtx, tile id): This function is used to

copy the tile id-th block of mtx matrix from host to

the suitable available memory blocks on device memory.

It throws an exception if there is not enough space

or any suitable memory blocks on the device. We use

omp target memcpy function to copy data between host

and device in DeepSparseGPU.

• reserveOnDevice(mtx, tile id): This function reserves

spaces for the tile id-th block of mtx on the device. This

function is beneficial when any operation produces new

data. In such cases, we do not need to copy the output

matrix tile from host to device; reserving sufficient device

space for that matrix tile is enough in this case. This

function throws an exception if there is not enough space

or no suitable memory blocks exist on the device.

• copyToHost(mtx, tile id): This function is used to copy

the tile id-th block of mtx matrix from the device to the

host. It throws an exception, if it is unable to copy the

matrix block. We use omp target memcpy function to

copy data between from device to host.

How MM works: We provide an example in Figure 4 to

demonstrate the operations of MM. Let us assume we have

have 4 matrices (A, B, C and D) associated with a computation

and we have a total of 7 memory blocks on the device. Each

matrix is tiled into 2× 1 blocks in this example. Each tile of

matrix A requires 2 memory blocks on the device, whereas

tiles for other matrices require 1 memory block on the device.

Due to the nature of the computation, let us assume that the

order of moving matrix tiles to device is - {<A, 0>, <B, 0>,

<C, 0>, <B, 1>, <C, 1>, <D, 0>, <D, 1>}. As shown

in Figure 4a, device memory becomes full before moving the

last block (<D, 1>) in due to the limited device memory

capacity. Figure 4a shows the status of all the data structures

of MM at this stage and MM activates the eviction policy,

as device memory is full now. The MM needs to move <D,

1> tile to device. In order to do so, MM evicts the front of

evictionQueue which is <A, 0> matrix tile. (<A, 0>) occupies

2 memory blocks on device and <D, 1> requires only 1

memory block to be stored on device. So MM copies <D, 1>

at 0 index of device memory array and adds index 1 in the

freeblock map. MM also updates memory view, map map and

evictionQueue accordingly. As shown in Figure 4a, isModified

= 1 in memory map for <A, 0> which means <A, 0> is

modified on the device. MM copies the latest value of <A, 0>

from device to host before evicting it in Figure 4b. As memory

manager mostly performs insertion and look up operations on

an unordered map, an array or a FIFO queue that typically

take O(1) time on average, it incurs a negligible execution

overhead.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We conducted all of our experiments on the Cori-GPU

testbed at the National Energy Research Scientific Computing

Center (NERSC) [24]. Each compute node has two 20-core

Skylake processors clocked at 2.4 GHz and 8 NVIDIA Tesla

V100 “Volta” GPUs with 16 GB of HBM per GPU. The

V100 GPU model has a peak double-precision performance

of 7.0 TFLOP/s. There is a total of 384 GB DDR4 DRAM

space on each node. The CPUs are connected to the GPUs

via four PCIe 3.0 switches and the GPUs are connected to

each other via NVIDIA’s NVLink 2.0 interconnect. Cori-GPU

provides extensive software environments to compile OpenMP

(and OpenACC) programs. We used the Cray Compiler En-

vironment (CCE) at version 9.1.0 to compile our software.

Our work used the classic CCE compiler as opposed to the

newer LLVM/Clang-based compiler that is also available in

the package. The GPU accelerated cuSPARSE and cuBLAS

libraries provided with CUDA v11.1.1 are used in our baseline

implementation. We used thread affinity to bind threads to

cores and we use 20 CPU threads and 1 GPU (1 CPU socket

+ 1 GPU) for our experiments to avoid NUMA issues. We

take a full Cori-GPU node for our experiments in order to

avoid noisy environment created by sharing the same node

with other users.

1) Benchmark Application: We demonstrate the perfor-

mance of the DeepSparseGPU framework on the LOBPCG

algorithm which is an important eigensolver for large-scale

scientific computing applications [19]. We give the pseudocode

for the LOBPCG solver in Algorithm 1. It involves kernels

with high arithmetic intensities such as SpMM and several

level-3 BLAS kernels. The total memory needed for block

vectors Ψ , R, Q and others can easily exceed the space matrix

Ĥ takes up. Figure 5 shows a sample task dependency graph

for the LOBPCG algorithm for a toy problem generated by

TDGG where the sparse matrix is decomposed into 2 × 1
tiles. Clearly, minimizing the data movement between CPU

and GPU to obtain an efficient LOBPCG implementation is

non-trivial.

Algorithm 1: LOBPCG Algorithm (for simplicity,

without a preconditioner) used to solve ĤΨ = EΨ

Input: Ĥ , matrix of dimensions N ×N

Input: Ψ0, a block of vectors of dimensions of N ×m

Output: Ψ and E such that ‖ĤΨ − ΨE‖F is small,

and ΨTΨ = Im
1 Orthonormalize the columns of Ψ0

2 P0 ← 0
3 for i = 0, 1, . . . , until convergence do

4 Ei = ΨT
i ĤΨi

5 Ri ← ĤΨi − ΨiEi

6 Apply the Rayleigh–Ritz procedure on

span{Ψi, Ri, Pi}

7 Ψi+1 ← argmin
S∈span{Ψi.Ri,Pi}, STS=Im

trace(ST ĤS)

8 Pi+1 ← Ψi+1 − Ψi

9 Check convergence

10 end

11 Ψ ← Ψi+1

_lambda

XY,0,1 XY,1,1

CONSTRUCTGA1

_X,0

XTY,0,0,1

XY,0,2

XTY,0,0,9

XY,0,10

_AX,0

SUB,0,1

XTY,0,0,4

XTY,0,0,6

XY,0,11

_P,0

GET,0,2

_AP,0

GET,0,3

_X,1

XTY,1,1,1

XY,1,2

XTY,1,1,9

XY,1,10

_AX,1

SUB,1,1

XTY,1,1,4

XTY,1,1,6

XY,1,11

_P,1

GET,1,2

_AP,1

GET,1,3

MULT,0

GET,0,1

MULT,1

GET,1,1

RESET,RN

RNRED,RNBUF

COL,0,0 COL,1,1

SQRT,RN

RESET,actMask

CONV,actMask

UPDATE,0,1 UPDATE,1,1

UPDATE,0,2 UPDATE,1,2UPDATE,0,3 UPDATE,1,3

SUB,0,2 SUB,1,2

RED,temp2BUF,0

XTY,0,0,2

XY,0,3

XTY,1,1,2

XY,1,3

RED,RBRBUF,0

CHOL,RBR

INV,RBR

DLACPY,0,1 DLACPY,1,1

memcpy,actR

SPMM,0 SPMM,1

XTY,0,0,5

XTY,0,0,10

XY,0,6

XTY,1,1,5

XTY,1,1,10

XY,1,6

SETZERO,0,1

XTY,0,0,7

XY,0,8

SETZERO,1,1

XTY,1,1,7

XY,1,8

XTY,0,0,3

XY,0,4

XTY,1,1,3

XY,1,4

RED,PBPBUF,0

CHOL,PBP

INV,PBP

XY,0,5 XY,1,5

DLACPY,0,2 DLACPY,1,2

XTY,0,0,8

XY,0,7

XTY,1,1,8

XY,1,7

DLACPY,0,3 DLACPY,1,3

XY,0,9 XY,1,9

RED,XARBUF,0

CONSTRUCTGA2

RED,RARBUF,0

TRANS,RAR

SPEUPDATE,RAR

RED,XAPBUF,0

RED,RAPBUF,0

RED,PAPBUF,0

SPEUPDATE,PAP

EIGEN

RED,XBPBUF,0

CONSTRUCTGB

RED,RBPBUF,0

ADD,0,1 ADD,1,1

ADD,0,3 ADD,1,3

ADD,0,2 ADD,1,2

ADD,0,4 ADD,1,4

Fig. 5: A sample task graph for the LOBPCG algorithm using

a small sparse matrix.

2) Dataset: We selected 11 square matrices with varying

sizes, sparsity patterns, and domains from the SuiteSparse

Matrix Collection in addition to the Nm7 matrix, which is

from a nuclear shell model code (see Tab. II and III) [10].

Matrices in Table II are used to evaluate bigger problem sizes

that do not fit in GPU memory. The bigger problem sizes

range from 32.06 GB to 84.54 GB. Matrices in Table III are

used to evaluate problem sizes that fit in the GPU memory.

The smaller problem sizes range from 2.64 GB to 13.87 GB.

Performance data for LOBPCG is averaged over five iterations.

3) Baseline Implementation: We compare the performance

of DeepSparseGPU with a baseline implementation that we

call Libcsr UM, which is an implementation of the LOBPCG

solver using GPU accelerated cuSPARSE and cuBLAS li-

braries for SpMM (with CSR storage of the sparse matrix),

inner product, and linear combination kernels. The application

TABLE II: Matrices used to evaluate problem size > 16 GB.

Matrix #Rows #Non-zeros Problem Size (GB)

Nm7 4,985,944 648,890,590 32.06

nlpkkt200 16,240,000 448,225,632 44.98

nlpkkt240 27,993,600 760,648,352 77.32

it 2004 41,291,594 1,150,725,436 64.18

sk 2005 50,636,154 1,949,412,601 54.38

webbase 2001 118,142,155 1,019,903,190 84.54

TABLE III: Matrices used to evaluate problem size < 16 GB.

Matrix #Rows #Non-zeros Problem Size (GB)

inline 1 503,712 36,816,342 2.64

dielFilterV3real 1,102,824 89,306,020 6.07

Flan 1565 1,564,794 117,406,044 5.22

HV15R 2,017,169 281,419,743 8.29

Bump 2911 2,911,419 127,729,899 8.63

Nm7 4,985,944 648,890,590 13.87

nlpkkt160 8,345,600 229,518,112 12.94

kernels are executed on the GPU using OpenMP directives.

Application kernels include tall skinny matrix operations

such as addition, subtraction, element-wise multiplication, etc.

We use NVIDIA’s unified memory technology (using the

cudaMallocManaged function) in this implementation. As

such, the runtime system automatically takes care of the data

movement between the host and device.

4) Incremental Implementation of DeepSparseGPU: We

incrementally implemented DeepSparseGPU. We imple-

mented two intermediate working versions of our tile-based

DeepSparseGPU framework. We adopted two different data

movement schemes in these two intermediate versions, which

helped us design and develop our memory manager. We

include the performance data from these intermediate versions

to show the margin of improvement using the latest version

of DeepSparseGPU:

• DeepSparse UM: Like DeepSparseGPU, we tile all

computational kernels and express them as DAG in

DeepSparse UM. But instead of using MM, we rely

on using unified memory for automatic data movement

between the host and the device. All associated matri-

ces are allocated using cudaMallocManaged. They

are accessed using is_device_ptr in target offload

pragmas which allows the kernels to treat the data tiles

as device pointers, and the runtime system automatically

makes the data available on the GPU whenever needed.

• DeepSparse MAP: This version relies on OpenMP

map(to: <list>), map(tofrom: <list>)

and map(from: <list>) clauses for transferring

data between host and device. Each offload pragma

moves the necessary data tiles on-the-fly right before

launching its GPU kernel.

B. LOBPCG Evaluation

Our performance comparison criteria include the amount

of Host-to-Device (H2D), Device-to-Host (D2H) data transfer,

and average execution time per iteration among Libcsr UM,

DeepSparse UM, DeepSparse MAP and DeepSparseGPU im-

plementations for the LOBPCG solver. The Memory Manager

quantifies and keeps track of the H2D and D2H data transfer in

the DeepSparseGPU framework. We use the NVIDIA nvprof

profiler tool to measure the amount of H2D and D2H data

transfer while using unified memory. In DeepSparse MAP, we

manually measure the total H2D and D2H data transfer based

on the data mentioned in the map clauses. The performance

of DeepSparseGPU, DeepSparse UM, and DeepSparse MAP

depends on the tile size. Choosing a small tile size creates a

large number of fine granularity tasks. This means we have to

launch more kernels on GPU. There are overheads associated

with launching kernels on GPU. Also, a smaller tile size may

lead to poor H2D and D2H transfer rates. Increasing the tile

size reduces GPU execution overhead as GPU execution heav-

ily depends on data parallelism. Therefore, we use the tile size

as an optimization parameter based on matrix dimensions and

sparsity patterns. We experimented with different tile sizes of

32K, 64K, 128K, and 256K. We report the results of the best-

performing tile size for DeepSparseGPU, DeepSparse UM,

and DeepSparse MAP. In Libcsr UM, we are not required

to tile the input matrices as we used unified memory with

cuSPARSE and CUBLAS library kernels from CUDA and

OpenMP target offloaded application kernels.

1) Data Movement between Host and Device: Figure 6

shows the H2D data transferred for all four versions of the

LOBPCG algorithm. LOBPCG is a complex algorithm, as it

has several different kernel types, and its task graph results

in a vast number of tasks to be launched on GPU for each

iteration. As can be seen in Figure 6, DeepSparseGPU always

transfers less data from the host to the device compared to the

other three versions. DeepSparseGPU transfers 1.18x - 1.94x

less H2D data compared to Libcsr UM version except for the

sk 2005 matrix. DeepSparseGPU also transfers 1.25x - 2.59x

less H2D data compared to DeepSparse UM version.

1
6

.3

1
9

.5 5
4

.7

4
3

.3

4
1

.9 6
1

.9

2
4

.4 5
0

.5

9
2

.2

6
6

.6

5
2

.6

1
0

8
.0

9
5

.4

1
3

9
.7

2
5

5
.2

1
9

5
.3

1
2

8
.3

2
7

2
.1

1
9

.2 3
6

.3

1
0

4
.4

5
9

.9

3
9

.6

1
1

6
.9

0.0

50.0

100.0

150.0

200.0

250.0

300.0

Nm7 nlpkkt200 nlpkkt240 it_2004 sk_2005 webbase_2001

H
2

D
 T

ra
n

sf
e

r
(G

B
)

DeepSparseGPU DeepSparse_UM DeepSparse_MAP Libcsr_UM

Fig. 6: Average H2D data transfer per iteration.

Figure 7 shows the D2H data transferred for all four

versions of the LOBPCG algorithm. As can be seen in

Figure 7, DeepSparseGPU always outperforms the other three

versions when it comes to the amount of D2H data transfer.

DeepSparseGPU transfers 1.84x - 2.69x less D2H data com-

pared to Libcsr UM, 2.39x - 3.70x less D2H data compared to

DeepSparse UM and 1.95x - 3.12x less D2H data compared

to DeepSparse MAP. Considering the total amount of data

transfer (H2D + D2H), DeepSparseGPU transfers 1.39x -

2.18x less data compared to Libcsr UM, 1.89x - 2.79x less

data compared to DeepSparse UM and 2.92x - 5.01x less data

compared to DeepSparse MAP.

9
.8 1

7
.6

4
3

.5

2
7

.6

1
4

.5

4
6

.5

2
5

.3

5
3

.3

1
0

3
.9

7
3

.7

5
3

.8

1
2

1
.0

3
0

.6 4
6

.6

8
6

.0

6
3

.4

3
6

.3

9
0

.7

1
8

.1

3
6

.4

1
0

6
.5

6
1

.0

3
9

.1

1
1

9
.6

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

Nm7 nlpkkt200 nlpkkt240 it_2004 sk_2005 webbase_2001

D
2

H
 T

ra
n

sf
e

r
(G

B
)

DeepSparseGPU DeepSparse_UM DeepSparse_MAP Libcsr_UM

Fig. 7: Average D2H data transfer per iteration.

From Figure 6 and 7, we can see that the main reason why

DeepSparseGPU transfers significantly less data is due to the

explicit data management by the Memory Manager based on a

good task scheduling heuristic. The task scheduling heuristic

helps to maximize the utilization of the data while it resides in

GPU memory. DeepSparse MAP is the worst regarding H2D

and D2H data transfer performance among all four versions.

This is expected because DeepSparse MAP moves all inputs

and outputs of a kernel in both H2D and D2H directions during

each kernel launch. Figure 6 and 7 show that the design of

our task scheduling scheme and memory manager is robust

and helps to minimize the data movement between host and

device.

2) Execution Time: As can be seen in Figure 8, the

significant reduction in H2D and D2H data transfer of

DeepSparseGPU over the other three versions leads to a

significant execution time speedups in general. In particular,

DeepSparseGPU achieves 1.21x - 1.38x speedup compared to

Libcsr UM version except for Nm7, nlpkkt200 and sk 2005

matrices. We further investigated the reasons for the slower ex-

ecution of DeepSparseGPU for these matrices. We found that

our CSR format-based custom SpMM runs significantly slower

than the highly optimized cusparseSpMM (a cuSPARSE

library routine) used for SpMM operation in the Libcsr UM

version. To be specific, our custom SpMM routine runs 1.47x

- 2.58x slower in case of these 3 matrices compared to the

cusparseSpMM routine in Libcsr UM.

1
1

.8

1
1

.6

2
7

.2

1
5

.6

1
5

.4 2
3

.4

1
7

.0 2
8

.3

4
8

.1

3
3

.6

2
3

.4

5
6

.5

3
3

.4

5
8

.9

8
7

.6

6
4

.5

4
6

.2

9
7

.7

7
.6 1
0

.5

3
7

.3

2
3

.5

1
2

.5

4
3

.7

0.0

20.0

40.0

60.0

80.0

100.0

120.0

Nm7 nlpkkt200 nlpkkt240 it_2004 sk_2005 webbase_2001

E
xe

cu
ti

o
n

 T
im

e
 (

S
e

c.
)

DeepSparseGPU DeepSparse_UM DeepSparse_MAP Libcsr_UM

Fig. 8: Average execution time per iteration.

We experimented with OpenMP target offload and CUDA

implemented versions of the most expensive kernels. Figure 9

shows the performance comparison between OpenMP target

offload implementation and CUDA implementation (cuBLAS,

cuSPARSE) of the most expensive kernels including inner

product (X ′Y), linear combination (XY), SpMM and column-

wise matrix reduction. The input size of the matrices used in

all of these kernels was less than 16 GB. As we can see,

the CUDA versions of these kernels are 1.67x - 12.79x faster

compared to the OpenMP target offload versions. We use

nvprof to get the execution time of cuBLAS and cuSPARSE

library kernels.

0
.3

4

0
.9

1
.3

1

0
.3

2

0
.0

4

0
.0

7

0
.4

2

0
.1

5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

X'Y XY SpMM Reduction

T
im

e
 (

S
e

c.
)

OpenMP CUDA

Fig. 9: OpenMP vs CUDA execution time comparison for most

expensive kernels.

3) Effect of Pinned Memory: It is important to note that

even if our DeepSparseGPU transfers less H2D and D2H

data, the overall H2D data transfer rate in DeepSparseGPU is

4.49 GB/sec, whereas the average H2D rate is 6.34 GB/sec

in Libcsr UM for all test matrices. The overall D2H data

transfer rates are more striking, Libcsr UM (12.13 GB/sec)

achieves 2.82x higher data transfer rates DeepSparseGPU

(4.29 GB/sec). Despite this lower data transfer rate and the

worse SpMM performance mentioned above, DeepSparseGPU

runs faster than Libcsr UM with the Unified Memory. We had

used pageable memory with DeepSparseGPU for the results

shown in Figure 6, 7 and 8, therefore we also experimented

with pinned memory to achieve a better bandwidth and see

its effect on execution time. Figure 10 shows the execu-

tion time performance comparison of DeepSparseGPU using

pinned memory with the results shown in Figure 8. As can

be seen, we achieve 1.45x - 1.98x execution time speedup

using pinned memory with DeepSparseGPU compared to its

pageable memory version and up to 2.93x speedup compared

to Libcsr UM.

8
.2

7
.2 1

3
.7

9
.9

8
.6 1

4
.9

1
1

.8

1
1

.6 2
7

.2

1
5

.6

1
5

.4 2
3

.4

1
7

.0 2
8

.3

4
8

.1

3
3

.6

2
3

.4

5
6

.5

3
3

.4

5
8

.9

8
7

.6

6
4

.5

4
6

.2

9
7

.7

7
.6 1
0

.5

3
7

.3

2
3

.5

1
2

.5

4
3

.7

0.0

20.0

40.0

60.0

80.0

100.0

120.0

Nm7 nlpkkt200 nlpkkt240 it_2004 sk_2005 webbase_2001

E
xe

cu
ti

o
n

 T
im

e
 (

S
e

c.
)

DeepSparseGPU (Pinned) DeepSparseGPU (Pageable) DeepSparse_UM

DeepSparse_MAP Libcsr_UM

Fig. 10: Performance of DeepSparseGPU using pinned mem-

ory

4) Comparison with a CPU version: Figure 11 shows

the execution time performance comparison between

DeepSparseGPU (using pinned memory) and the baseline

version running on CPU for bigger problem sizes. The CPU

baseline implementation uses thread-parallel Intel MKL

Library calls (including SpMM) with CSR storage of the

sparse matrix. As we can see, DeepSparseGPU is running

slower in comparison. However, it should be noted that even

with the pinned memory optimization above, we get only

about 12 GB/sec bandwidth between the CPU and GPU using

a PCIe express 3.0 interconnect. In contrast, the bandwidth

between the CPU and DRAM is approximately 90 GB/sec.

7
.0

7
.0

1
1

.9

9
.9

6
.0

1
3

.6

8
.2

7
.2

1
3

.7

9
.9

8
.6

1
4

.9
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

Nm7 nlpkkt200 nlpkkt240 it_2004 sk_2005 webbase_2001

E
xe

cu
ti

o
n

 T
im

e
 (

S
e

c.
)

CPU DeepSparseGPU

Fig. 11: CPU vs DeepSparseGPU execution time comparison

(problem size > 16 GB)

Figure 12 shows the theoretical execution time of

DeepSparseGPU with different types of interconnect such

as PCIe-Gen3 (16 GB/Sec), PCIe-Gen4 (32 GB/Sec), PCIe-

Gen5 (64 GB/Sec), and NVLINK-4 (450 GB/Sec) [25]. For

this experiment, we took the total compute time of V100

from Figure 11 and assumed it remains the same for each

configuration. We calculated the data movement time by

dividing the total amount of data transfer in Figure 11 by

80% of the peak per-direction bandwidth for each type of

interconnect and added it to the total compute time to get the

total theoretical execution time. As we can see from Figure 12,

the theoretical execution time with PCIe-Gen3 is still on par

with the CPU time. However, we can see that the theoretical

time of DeepSparseGPU with PCIe-Gen4, PCIe-Gen5 and

NVLINK-4 beat the CPU time.

7
.0

7
.0

1
1

.9

9
.9

6
.0

1
3

.6

8
.2

7
.2

1
3

.7

9
.9

8
.6

1
4

.9

6
.9

6
.4

1
0

.5

7
.1

6
.4

1
3

.3

5
.9

5
.0

6
.6

4
.3

4
.1

9
.0

5
.4

4
.2 4
.8

2
.9 3
.1

6
.9

5
.0

3
.6

3
.1

1
.7 2
.1

5
.1

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

Nm7 nlpkkt200 nlpkkt240 it_2004 sk_2005 webbase_2001

E
xe

cu
ti

o
n

 T
im

e
 (

S
e

c.
)

CPU DeepSparseGPU PCIe-Gen3 PCIe-Gen4 PCIe-Gen5 NVLINK-4

Fig. 12: CPU vs DeepSparseGPU execution time comparison

with different CPU-GPU interconnect

The above simulation indicates that with the availability

of platforms with faster interconnects (some such platforms

currently exist, but those hardware have not been available

for us to experiment with), DeepSparseGPU would have real

merit in accelerating actual machine learning or scientific

computing workloads. Figure 13 which shows the execution

time performance comparison between DeepSparseGPU when

the application working set fits into GPU memory (Table III)

provides further evidence in this direction.

As can be seen, DeepSparseGPU achieves 1.77x - 4.87x

speedup compared to the CPU baseline implementation when

the total memory footprint is less than 16GB, i.e., when data

movement is not a big bottleneck.

0
.3

0
.6 0
.7

1
.1 1

.2

3
.4

1
.7

0
.1 0

.3 0
.3 0

.6

0
.5 0

.7

0
.6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

inline_1 dielFilterV3real Flan_1565 HV15R Bump_2911 Nm7 nlpkkt160

E
xe

cu
ti

o
n

 T
im

e
 (

S
e

c.
)

CPU DeepSparseGPU

Fig. 13: CPU vs DeepSparseGPU execution time comparison

using problem size < 16 GB

V. CONCLUSION AND FUTURE WORK

In this work, we introduced a tiling-based sparse solver

framework for heterogeneous architectures that aims to mini-

mize data transfer between host and device to achieve better

performance. We showed that our framework transfers sig-

nificantly less data between host and device. Our framework

also improves the execution time over the UM-based baseline

implementation using pinned memory. In our future work, we

will focus on improving the efficiency of data transfers in

DeepSparseGPU and optimizing the performance of sparse

matrix kernels. To this end, we plan to design and implement a

DAG partitioner that would help minimize the data movement

between CPU and GPU. We also plan to use 2D decomposition

of the SpMM operation, which would expose more parallelism

in the computation. We also plan to explore and experiment

with CUDA Graphs, which seems a good fit for our design.

ACKNOWLEDGMENT

This work was in part supported by the NSF under awards

CCF-1822932, OAC-1845208 and CCF-1919021, as well as

the US Department of Energy, Office of Science under the

award DE-SC0018083 (NUCLEI SciDAC-4 Collaboration).

This research used resources of the National Energy Research

Scientific Computing Center (NERSC), a U.S. Department

of Energy Office of Science User Facility operated under

Contract No. DE-AC02-05CH11231.

REFERENCES

[1] Md Afibuzzaman, Fazlay Rabbi, M Yusuf Özkaya, Hasan Metin Aktulga,
and Umit V Çatalyürek. Deepsparse: A task-parallel framework for
sparsesolvers on deep memory architectures. In 2019 IEEE 26th

International Conference on High Performance Computing, Data, and

Analytics (HiPC), pages 373–382. IEEE, 2019.

[2] Hasan Metin Aktulga, Aydin Buluç, Samuel Williams, and Chao Yang.
Optimizing sparse matrix-multiple vectors multiplication for nuclear
configuration interaction calculations. In 2014 IEEE 28th International

Parallel and Distributed Processing Symposium, pages 1213–1222.
IEEE, 2014.

[3] Edward Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford,
James Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum,
S Hammerling, Alan McKenney, et al. Lapack users’ guide, vol. 9.
Society for Industrial Mathematics, 39, 1999.

[4] Hartwig Anzt, Stanimire Tomov, and Jack Dongarra. Implementing a
sparse matrix vector product for the sell-c/sell-c-σ formats on nvidia
gpus. University of Tennessee, Tech. Rep. ut-eecs-14-727, 2014.

[5] Hartwig Anzt, Stanimire Tomov, and Jack Dongarra. Accelerating the
lobpcg method on gpus using a blocked sparse matrix vector product. In
Proceedings of the Symposium on High Performance Computing, pages
75–82. Society for Computer Simulation International, 2015.

[6] Nathan Bell and Michael Garland. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In Proceedings of the

conference on high performance computing networking, storage and

analysis, page 18. ACM, 2009.

[7] Jee W Choi, Amik Singh, and Richard W Vuduc. Model-driven
autotuning of sparse matrix-vector multiply on gpus. In ACM sigplan

notices, volume 45, pages 115–126. ACM, 2010.

[8] Christopher Daley, Hadia Ahmed, Samuel Williams, and Nicholas
Wright. A case study of porting hpgmg from cuda to openmp target
offload. In International Workshop on OpenMP, pages 37–51. Springer,
2020.

[9] Joshua Hoke Davis, Christopher Daley, Swaroop Pophale, Thomas
Huber, Sunita Chandrasekaran, and Nicholas J Wright. Performance
assessment of openmp compilers targeting nvidia v100 gpus. arXiv

preprint arXiv:2010.09454, 2020.

[10] Tim Davis, Yifan Hu, and Scott Kolodziej. The suitesparse matrix
collection. http://faculty.cse.tamu.edu/davis/suitesparse.html, 2018.

[11] Sebastien Deldon, James Beyer, and Douglas Miles. OpenACC and
CUDA Unified Memory. In Cray User Group (CUG), May 2018.

[12] Jose Monsalve Diaz, Swaroop Pophale, Kyle Friedline, Oscar Hernan-
dez, David E Bernholdt, and Sunita Chandrasekaran. Evaluating support
for openmp offload features. In Proceedings of the 47th International

Conference on Parallel Processing Companion, pages 1–10, 2018.

[13] A Dziekonski, M Rewienski, Piotr Sypek, A Lamecki, and Michał
Mrozowski. Gpu-accelerated lobpcg method with inexact null-space
filtering for solving generalized eigenvalue problems in computational
electromagnetics analysis with higher-order fem. Communications in

Computational Physics, 22(4):997–1014, 2017.

[14] Michael Garland. Sparse matrix computations on manycore gpu’s. In
Proceedings of the 45th annual Design Automation Conference, pages
2–6. ACM, 2008.

[15] Changwan Hong, Aravind Sukumaran-Rajam, Bortik Bandyopadhyay,
Jinsung Kim, Süreyya Emre Kurt, Israt Nisa, Shivani Sabhlok, Ümit V
Çatalyürek, Srinivasan Parthasarathy, and P Sadayappan. Efficient
sparse-matrix multi-vector product on gpus. In Proceedings of the 27th

International Symposium on High-Performance Parallel and Distributed

Computing, pages 66–79. ACM, 2018.

[16] Jeremy Kepner, David Bade, Aydın Buluç, John Gilbert, Timothy
Mattson, and Henning Meyerhenke. Graphs, matrices, and the graphblas:
Seven good reasons. arXiv preprint arXiv:1504.01039, 2015.

[17] Youngsok Kim, Jaewon Lee, Donggyu Kim, and Jangwoo Kim.
Scalegpu: Gpu architecture for memory-unaware gpu programming.
IEEE Computer Architecture Letters, 13(2):101–104, 2013.

[18] Marcin Knap and Paweł Czarnul. Performance evaluation of unified
memory with prefetching and oversubscription for selected parallel
cuda applications on nvidia pascal and volta gpus. The Journal of

Supercomputing, pages 1–21, 2019.

[19] Andrew V Knyazev. Toward the optimal preconditioned eigensolver:
Locally optimal block preconditioned conjugate gradient method. SIAM

journal on scientific computing, 23(2):517–541, 2001.

[20] Andrew V Knyazev, Merico E Argentati, Ilya Lashuk, and Evgueni E
Ovtchinnikov. Block locally optimal preconditioned eigenvalue xolvers
(blopex) in hypre and petsc. SIAM Journal on Scientific Computing,
29(5):2224–2239, 2007.

[21] V. G. Vergara Larrea, R. Budiardja, R. Gayatri, C. Daley, O. Hernandez,
and W. Joubert. Experiences porting mini-applications to OpenACC and
OpenMP on heterogeneous systems. In Cray User Group (CUG), May
2019.

[22] Chuck L Lawson, Richard J. Hanson, David R Kincaid, and Fred T.
Krogh. Basic linear algebra subprograms for fortran usage. ACM

Transactions on Mathematical Software (TOMS), 5(3):308–323, 1979.
[23] Pieter Maris, H Metin Aktulga, Mark A Caprio, Ümit V Çatalyürek,

Esmond G Ng, Dossay Oryspayev, Hugh Potter, Erik Saule, Masha
Sosonkina, James P Vary, et al. Large-scale ab initio configuration in-
teraction calculations for light nuclei. In Journal of Physics: Conference

Series, volume 403, page 012019. IOP Publishing, 2012.
[24] Cori-gpu system configuration. https://docs-dev.nersc.gov/cgpu/.
[25] Nvlink-4 bandwidth. https://resources.nvidia.com/en-us-grace-cpu/

nvidia-grace-hopper.
[26] Gloria Ortega, Francisco Vázquez, Inmaculada Garcı́a, and Ester M

Garzón. Fastspmm: An efficient library for sparse matrix matrix product
on gpus. The Computer Journal, 57(7):968–979, 2014.

[27] Fazlay Rabbi, Christopher S Daley, Hasan Metin Aktulga, and Nicholas J
Wright. Evaluation of directive-based gpu programming models on
a block eigensolver with consideration of large sparse matrices. In
International Workshop on Accelerator Programming Using Directives,
pages 66–88. Springer, 2019.

[28] Top500 supercomputers. http://www:top500:org.
[29] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:

An insightful visual performance model for floating-point programs and
multicore architectures. Technical report, Lawrence Berkeley National
Lab.(LBNL), Berkeley, CA (United States), 2009.

[30] Carl Yang, Aydın Buluç, and John D Owens. Design principles for
sparse matrix multiplication on the gpu. In European Conference on

Parallel Processing, pages 672–687. Springer, 2018.
[31] Xintian Yang, Srinivasan Parthasarathy, and Ponnuswamy Sadayappan.

Fast sparse matrix-vector multiplication on gpus: implications for graph
mining. Proceedings of the VLDB Endowment, 4(4):231–242, 2011.

[32] Tianhao Zheng, David Nellans, Arslan Zulfiqar, Mark Stephenson, and
Stephen W Keckler. Towards high performance paged memory for gpus.
In 2016 IEEE International Symposium on High Performance Computer

Architecture (HPCA), pages 345–357. IEEE, 2016.

