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Abstract
Heavy Ball (HB) nowadays is one of the most
popular momentum methods in non-convex op-
timization. It has been widely observed that in-
corporating the Heavy Ball dynamic in gradient-
based methods accelerates the training process
of modern machine learning models. However,
the progress on establishing its theoretical foun-
dation of acceleration is apparently far behind
its empirical success. Existing provable accel-
eration results are of the quadratic or close-to-
quadratic functions, as the current techniques of
showing HB’s acceleration are limited to the case
when the Hessian is fixed. In this work, we de-
velop some new techniques that help show accel-
eration beyond quadratics, which is achieved by
analyzing how the change of the Hessian at two
consecutive time points affects the convergence
speed. Based on our technical results, a class of
Polyak-Łojasiewicz (PL) optimization problems
for which provable acceleration can be achieved
via HB is identified. Moreover, our analysis
demonstrates a benefit of adaptively setting the
momentum parameter.

1. Introduction
Heavy Ball (a.k.a. Polyak’s momentum) (Polyak, 1964)
has become a dominant momentum method in various
machine learning applications, see e.g., (He et al., 2016;
Krizhevsky et al., 2012;Wilson et al., 2017). Many recently
proposed algorithms incorporate Heavy Ball momentum in
lieu of Nesterov’s momentum (Nesterov, 2013), e.g., Adam
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Algorithm 1 Heavy Ball (Equivalent Version 1)
1: Required: the step size η and the momentum parameter βt ∈

[0, 1]
2: Init: w0 = w−1 ∈ Rd

3: for t = 0 to T do
4: Given current iterate wt, compute gradient ∇f(wt).
5: Update iterate wt+1 = wt − η∇f(wt) + βt(wt −wt−1).
6: end for

(Kingma&Ba, 2015), AMSGrad (Reddi et al., 2018), and a
normalized momentummethod (Cutkosky &Mehta, 2021),
to name just a few. Despite its success in practice, theo-
retical results of acceleration via Heavy Ball are sparse in
the literature. Indeed, the strongly convex quadratic prob-
lems seem to be one of very few cases for which an ac-
celeration via HB is shown (e.g., Lessard et al. (2016);
Ghadimi et al. (2015); Loizou & Richtárik (2020); Paquette
& Paquette (2021); Can et al. (2019); Scieur & Pedregosa
(2020); Flammarion & Bach (2015); Diakonikolas & Jor-
dan (2019); Shi et al. (2021); Wang & Abernethy (2018);
Wang et al. (2020); Liu et al. (2020); Xiong et al. (2020);
Jain et al. (2018)). Recently, (Wang et al., 2021b) provably
show that HB converges faster than vanilla gradient descent
(GD) for training an over-parametrized ReLU network and
a deep linear network. They show an accelerated linear
rate that has a square root dependency on the conditional
number of a certain Gram matrix, which improves the lin-
ear rate of GD for those problems. They develop a mod-
ular analysis of acceleration when the HB dynamic meets
certain conditions. The conditions essentially require that
an underlying Gram matrix or the Hessian does not devi-
ate too much from that at the beginning. Therefore, their
theorem might not be applied to the case when the iterate
does move far away from the initial point. This limitation
to acceleration, to our knowledge, appears in all the related
works of the discrete-time HB. What is lacking in the HB
literature is a provable acceleration when the Hessian can
deviate significantly from that at the beginning during the
optimization process.

This work aims at filling the gap. We develop a techni-
cal result that proves acceleration of HB when the Hessian
can change substantially under certain conditions. Specif-
ically, our analysis shows that HB has acceleration com-
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pared to GD for a class of Polyak-Łojasiewicz problems
when the non-convexity is averaged-out (to be elaborated
soon). The PL condition (Polyak, 1963; Karimi et al.,
2016) is sufficient to show a global linear convergence
rate for GD without the need of assuming strong convex-
ity. The notion of PL has been discovered in various non-
convex problems over the past few years, e.g., comput-
ing the Wasserstein-barycenter of Gaussian distributions
(Altschuler et al., 2021), minimizing aWasserstein distance
using point clouds (Merigot et al., 2021), training over-
parametrized neural networks with smooth activation func-
tions (Oymak & Soltanolkotabi, 2019; Liu et al., 2021), and
sparse optimization on a certain measure (Chizat, 2021).
However, as far as we are aware, momentum methods (not
necessarily HB) haven’t been shown to converge faster than
GD under PL in discrete time. Indeed, Kulakova et al.
(2018) show a global linear convergence of the discrete-
time HB under PL, but the rate is not better than that of
GD, c.f., (Karimi et al., 2016). While in continuous time,
some linear rates of HB under PL are established, e.g., (Au-
jol et al., 2020; Apidopoulos et al., 2021), it is not clear if
the rates do show a benefit of the use of HB compared to
GD, and is neither clear if the result can be carried over in
the discrete time. In convex optimization, it is known that
Nesterov’s momentum and HB share the same ODE in con-
tinuous time (Shi et al., 2021). Yet, the acceleration disap-
pears when one discretizes the dynamic of HB and bounds
the discretization error. To our knowledge, provably show-
ing any benefit of discrete-time momentum under PL is still
an open problem in optimization.

In this paper, we show that the discrete-time HB has an
accelerated linear rate under PL when the non-convexity is
averaged-out. To explain this notion further, we need to
introduce a quantity called average Hessian.

Definition 1. Letw∗ ∈ Rd be a global minimizer of a twice
differentiable function f(w) : Rd → R. We define the
average Hessian of f(·) at w ∈ Rd to be:

Hf (w) :=

∫ 1

0

∇2f(θw + (1− θ)w∗)dθ. (1)

We say that the non-convexity of f(·) between w and w∗ is
averaged-out with parameter λ∗ when the smallest eigen-
value of the average Hessian satisfies λmin(Hf (w)) ≥
λ∗ > 0. For brevity, we sometimes say f(·) satisfies λ∗-
AVERAGE OUT at w.

From (1), it should be clear that the average Hessian at w is
the average Hessian between the line segment that connects
w and a global optimal point w∗.

To get a flavor of our main result, we give an informal the-
oretical statement as follows.

Theorem 1. (Informal version of Theorem 3) Denote
w∗ a global minimizer of f(·). Suppose f(·) is twice
differentiable, satisfies µ-PL, has L-Lipschitz gradi-
ent and Hessian. Apply HB to solve minw f(w). As-
sume that λmin(Hf (wt))-AVERAGE OUT holds for all
t. Then, there exists a time t0 = Θ̃(Lµ ) such that for
all T > t0, the iterate wT of HB satisfies

∥wT−w∗∥ = O

(
T−1∏
t=t0

(
1−Θ

(
1
√
κt

)))
∥wt0−w∗∥,

where κt :=
L

λmin(Hf (wt))
is the condition number of

the average Hessian at wt.

To summarize, our contributions in this paper include:

• We develop an analysis of showing acceleration via
HB beyond the quadratic problems, which can be of
independent interest. Our theoretical results reveal a
way to check if incorporating the dynamic of momen-
tum helps converge faster than GD under PL. Our the-
oretical results will also show a benefit of adaptively
setting the momentum parameter.

• We show that λ∗-AVERAGE OUT implies PL. We pro-
vide some concrete examples for which λ∗-AVERAGE
OUT holds.

2. Preliminaries
Notations: We use βtId ∈ Rd×d to denote a diagonal ma-
trix on which each of its diagonal elements is βt. We will
have ∥M∥2 represent the spectral norm of a matrixM , i.e.,
∥M∥2 =

√
λmax(MM∗), where λmax(·) is the largest

eigenvalue of the underlying matrix, and M∗ is the con-
jugate transpose of the matrix M . We use ∥v∥2 as the l2
norm of a vector v. The notation Diag(· · · ) in this paper
represents a block-diagonal matrix that puts its arguments
on the main diagonal.

Definitions: A function f(·) is L-smooth if it has Lips-
chitz gradients, i.e., ∥∇f(x) − ∇f(y)∥∗ ≤ L∥x − y∥ for
any x, y. In this paper, we consider l2 norm so that the
dual norm is itself. A function f(·) is ν-strongly convex
if f(x) ≥ f(y) + ⟨∇f(y), x − y⟩ + ν

2∥x − y∥2 for any
x, y. When f(·) is twice differentiable, the ν-strong con-
vexity is equivalent to the condition that the smallest eigen-
value of Hessian satisfies λmin(∇2f(·)) ≥ ν > 0. A func-
tion f(·) is µ-Polyak-Łojasiewicz condition (µ-PL) at w, if
∥∇f(w)∥2 ≥ 2µ(f(w) − minw f(w)). Observe that if µ-
PL holds for all the points in the domain of f(·), then all the
stationary points are global minimizers of f(·). However,
different from strongly convex functions, a PL-function
does not necessarily have a unique global minimizer (Api-
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dopoulos et al., 2021). An example is f(w) = 1
2w

⊤Aw,
where A = A⊤ ≽ 0, which has argmin f(w) = Ker(A).
It is known that µ-strongly convex implies µ-PL (Karimi
et al., 2016).

2.1. Prior analysis of acceleration via HB

Algorithm 1 shows Heavy Ball, which has another equiva-
lent version presented in the appendix (Algorithm 2). Our
presentations of HB cover the case of HB with a constant
momentum parameter, i.e., when βt = β, which was stud-
ied in all the aforementioned works of HB.

The HB dynamic can be written as

wt+1 = wt − η(∇f(wt)−∇f(w∗)) + βt(wt − wt−1)

= wt − η

(∫ 1

0

∇2f(θwt + (1− θ)w∗)dθ

)
︸ ︷︷ ︸

=Hf (wt)

(wt − w∗)

+ βt(wt − wt−1),
(2)

where in the first equality we denoted w∗ an optimal point
and used ∇f(w∗) = 0, and in the second equality, we
used the fundamental theorem of calculus, i.e., ∇f(wt) −
∇f(w∗) =

(∫ 1

0
∇2f(θwt + (1− θ)w∗)dθ

)
(wt − w∗).

Equation (2) can be further rewritten as[
wt+1 − w∗
wt − w∗

]
=

[
Id − ηHt + βtId −βtId

Id 0d

]
︸ ︷︷ ︸

:=At

[
wt − w∗

wt−1 − w∗

]
,

(3)

where we defined Ht := Hf (wt) for brevity.

The most well-known acceleration result of HB is about
applying HB with a constant β for solving the strongly con-
vex quadratic problems,minw∈Rd

1
2w

⊤Mw+ b⊤w, where
M ∈ Rd×d is a positive-definite matrix that has the largest
eigenvalue λmax(M) = L and the smallest eigenvalue
λmin(M) = ν > 0. Let Ht ← M and βt ← β in (3)
and recursively expand the equation from time t back to
time 0. We have[

wt − w∗
wt−1 − w∗

]
= At

[
w0 − w∗
w−1 − w∗

]
, (4)

where A :=

[
Id − ηM + βId −βId

Id 0d

]
∈ R2d×2d and At

is its tth matrix power. To get the convergence rate from
(4), there are two approaches in the literature, which are
described in details in the following.

Prior approach 1 (bounding the spectral radius): To
upper-bound the convergence rate of the distance ∥wt −
w∗∥2 in (4), it suffices to bound the spectral norm ∥At∥2.

Traditional analysis uses the spectral radius of A to approx-
imate the spectral norm ∥At∥2, see e.g., (Polyak, 1964;
Lessard et al., 2016; Recht, 2018; Mitliagkas, 2019; Ochs
et al., 2015). The spectral radius of a square (not nec-
essarily symmetric) matrix A ∈ R2d×2d is defined as
ρ(A) := maxi∈[2d] |λi(A)|, where λi(·) is the ith (possibly
complex) eigenvalue. By choosing the step size η and the
momentum parameter β appropriately, the spectral radius
of A in (4) is ρ(A) = 1 − c 1√

κ
for some constant c > 0,

where κ := L
ν is the condition number. Then, by Gelfand’s

formula (Gelfand, 1941), one has for any square matrix B,

(Gelfand’s formula) ∥Bk∥2 = (ρ(B) + ϵk)
k
, (5)

for some sequence {ϵk} that converges to 0 when k → ∞.
Hence the spectral norm ∥At∥2 can be approximated by the
spectral radius raised to t, i.e., (ρ(A))t, in the sense that

∥At∥2 =
((

1− c 1√
κ

)
+ ϵt

)t
. This suggests that asymp-

totically the convergence rate of HB is an accelerated linear
rateO

(
1−Θ

(
1√
κ

))
, which is better than that of GD, i.e.,

O
(
1−Θ

(
1
κ

))
. The weakness of this approach is that the

convergence rate is not quantifiable at a finite t, because
one generally cannot control the convergence rate ϵt in the
Gelfand’s formula. On the other hand, one might suggest
bounding the spectral norm ∥A∥2, since ∥At∥2 ≤ ∥A∥t2. In
Appendix A, we show that 1 ≤ ∥A∥2 for any β ∈ [0, 1] and
any step size η ≤ 1

L , which implies that a convergence rate
of HB cannot be obtained via this way.

Prior approach 2 (bounding the matrix-power-vector
product):

Noting that controlling the size of the matrix-power-vector

product
∥∥∥∥At

[
w0 − w∗
w−1 − w∗

]∥∥∥∥
2

is sufficient for controlling the

convergence rate of the distance in (4), Wang et al. (2021b)
show that by choosing the step size η =

cη
L and the mo-

mentum parameter β =
(
1− c 1√

κ

)2
for some constant cη

and c > 0 appropriately, one has
∥∥∥∥At

[
w0 − w∗
w−1 − w∗

]∥∥∥∥
2

≤

4
√
κ
(
1− 1

2
√
κ

)t
∥w0 − w∗∥, which is a non-asymptotic

accelerated linear rate and hence avoids the concern of the
first approach.

3. Analysis
The goal of this section is to develop an analysis that en-
ables showing acceleration beyond the quadratic problems.
But to get the ball rolling, we start by discussing some
technical difficulties of reaching the goal using the prior
approaches.
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Class of problems Convergence rate Ref.

Strongly convex quadratic
(
1−Θ

(
1√
κ

))T

[1]

L-smooth ν-strongly convex †
(
1−Θ

(
ν
L

))T [2]
L-smooth convex O

(
L
T

)
[3]

L-smooth µ-PL
(
1−Θ

(
µ
L

))T [4]

Over-parametrized NN ‡
(
1−Θ

(
1√
κ0

))T

[5]

Table 1. Existing results of the discrete-time HB convergence in
terms of the optimality gap f(wT ) − minw f(w). References:
[1] Theorem 9 in (Polyak, 1964) and Theorem 7 in (Wang et al.,
2021b) . [2] Theorem 3 in (Kulakova et al., 2018). † It is also
known that a local acceleration happens when the iterate is suffi-
ciently close to the global optimal point w∗ under an additional
assumption that f(·) is twice-differentiable, see e.g., Theorem 8
in (Wang et al., 2021b). [3] Theorem 2 in (Ghadimi et al., 2015)
and Theorem 9 in (Wang et al., 2021a). [4] Theorem 3 in (Ku-
lakova et al., 2018). [5] Theorem 9-10 in (Wang et al., 2021b).
‡ Here κ0 is the condition number of the neural tangent kernel
matrix of an over-parametrized neural network at initialization.

3.1. Why do prior approaches of showing acceleration
fail for non-quadratic problems?

Recall we have the HB dynamic for minimizing a general
twice differentiable function shown on (3). Recursively ex-
panding (3), one gets[

wT − w∗
wT−1 − w∗

]
=

(
T∏

t=0

At

)[
w0 − w∗
w−1 − w∗

]
, (6)

where
∏T

t=0 At := ATAT−1 · · ·A1A0. Therefore, a way
to control the distance between wT and w∗ is to control
the size of the spectral norm ∥

∏T
t=0 At∥2. The spectral

radius approach would compute the spectral radius ρ(At)
and then invoke the Gelfand’s formula (5) (with k = 1) for
each step t, i.e., ∥A1

t∥2 = (ρ(At) + ϵt,1)
1, where ϵt,1 is the

approximation error. Then, one might hope ∥
∏T

t=0 At∥2 or∏T
t=0 ∥At∥2 could be approximated by

∏T
t=0 ρ(At) well.

The issue is that for a small k, e.g., k = 1, ϵt,k in the
Gelfand’s formula can be large, which makes the spectral
radius a poor estimate of the spectral norm. Indeed, it is
easy to cook up an example based on the matrix At in (3).
Let d = 1 (one-dimensional), ηHt = 0.1, and β = 0.9. We
have

At =

[
1− 0.1 + 0.9 −0.9

1 0

]
. (7)

For this example, the spectral radius ρ(At) = 0.9487 and
the spectral norm ∥At∥2 = 2.21. So the approximation
error is ϵt,1 = 2.21−0.9487 u 1.25, which implies that the
product

∏T
t=0 ρ(At) can not be guaranteed to approximate

the spectral norm arbitrarily well. This example also shows
that the spectral norm ∥At∥2 is not useful for analyzing the

convergence rate, since it is larger than 1 (see Appendix A
for more discussions). To show a convergence, we need to
identity a quantity that is relevant to the convergence rate
of the distance and has a non-trivial upper bound which is
smaller than 1. One might consider bounding the spectral
norm of the matrix product in (6) directly, i.e., bounding
∥
∏T

t=0 At∥2. The issue is that the matrix product
∏T

t=0 At

does not have a simple analytical form.

Regarding the approach of Wang et al. (2021b), we have
mentioned its limitation in the introduction when dealing
with the case that the Hessian changes significantly. We ex-
pound this further in Appendix A. To summarize, the limi-
tations of the previous techniques cause obstacles to analyz-
ing HB when the Hessian changes a lot during the update.
A new analysis is needed.

3.2. New analysis

Before showing our approach, we need the following tech-
nical result from (Wang et al., 2021b). The lemma below
shows that while the non-symmetric matrix A does not
have an eigen-decomposition in reals, it has an decompo-
sition in the complex field when the momentum parameter
is larger than a threshold. Moreover, the spectral norm of
the diagonal matrix is

√
β. The full version of Lemma 1

and its proof is in Appendix B.

Lemma 1. (short version) (Lemma 6 in (Wang et al.,
2021b)) Consider a matrix

A :=

[
(1 + β)Id −H −βId

Id 0

]
∈ R2d×2d, (8)

where H ∈ Rd×d is a symmetric matrix and has eigenval-
ues λ1 ≥ λ2 ≥ · · · ≥ λi ≥ · · · ≥ λd. Suppose β satisfies
1 ≥ β >

(
1−
√
λi

)2
for all i ∈ [d]. Then, we have A is di-

agonalizable with respect to the complex field C in C2d×2d:

(spectral decomposition) A = PDP−1 (9)

for some matrix P = Ũ P̃Q, where Ũ and P̃ are some
unitary matrices, Q = Diag(Q1, . . . , Qd) ∈ C2d×2d is
a block diagonal matrix, and D ∈ C2d×2d is a diago-
nal matrix. Furthermore, the diagonal matrix D satisfies
∥D∥2 =

√
β.

Now we are ready to describe our approach. Recall the
dynamic (3) and the definition of the average Hessian Ht

defined in (1). Using Lemma 1 with H ← ηHt, we know
the matrix At in the dynamic (3) has a decomposition in
the complex field, At = PtDtP

−1
t , whereDt is a diagonal

matrix whose spectral norm is ∥Dt∥2 =
√
βt. Denote ξt :=

wt−w∗. One can recursively expand the dynamic (3) from
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T + 1 back to time t0 < T + 1 as follows.[
ξT+1

ξT

]
= ATAT−1 · · ·At0

[
ξt0

ξt0−1

]
=
(
PTDTP

−1
T

) (
PT−1DT−1P

−1
T−1

) (
PT−2DT−2P

−1
T−2

)
· · ·
(
Pt0Dt0P

−1
t0

) [ ξt0
ξt0−1

]
,

= PT

(
DTP

−1
T PT−1

)︸ ︷︷ ︸
:=ΨT

(
DT−1P

−1
T−1PT−2

)︸ ︷︷ ︸
:=ΨT−1

· · ·

·
(
DT−2P

−1
T−2PT−3

)︸ ︷︷ ︸
:=ΨT−2

· · ·
(
Dt0+1P

−1
t0+1Pt0

)︸ ︷︷ ︸
:=Ψt0

Dt0P
−1
t0

[
ξt0

ξt0−1

]
.

(10)

Hence, one has∥∥∥∥[ξT+1

ξT

]∥∥∥∥
2

≤ ∥PT ∥2

 T∏
t=t0+1

∥DtP
−1
t Pt−1∥2︸ ︷︷ ︸

:=∥Ψt∥2


× ∥Dt0P

−1
t0 ∥2

∥∥∥∥[ ξt0
ξt0−1

]∥∥∥∥
2

. (11)

From (11), we see that the distance can be bounded as
∥ξT ∥ = O(

∏T
t=t0+1 ∥Ψt∥2)∥ξt0∥, where we define:

Definition 2.

(instantaneous rate at t) ∥Ψt∥2 := ∥DtP
−1
t Pt−1∥2.

The instantaneous rate is determined by the interplay be-
tween eigenvectors of the average Hessians Ht and Ht−1

at the two consecutive time points. By Lemma 1, we know

∥Ψt∥2 := ∥DtP
−1
t Pt−1∥2 ≤

√
βt∥P−1

t Pt−1∥2. (12)

Therefore, to upper-bound the instantaneous rate, it suf-
fices to upper-bound ∥P−1

t Pt−1∥2, which arises from the
change of the eigen-space of the average Hessian. Our key
finding is that ∥P−1

t Pt−1∥2 admits a simple closed-form
expression, which can be used to derive an upper bound of
the instantaneous rate. In the following lemma, we denote
the eigenvalues of the average Hessian Ht in the dynamic
(3) as λt,1 ≥ λt,2 ≥ · · · ≥ λt,d.
Lemma 2. (short version) Assume we have 1 ≥ βt > (1−√

ηλt,i)
2 for all i ∈ [d]. Then, the instantaneous rate

∥Ψt∥2 at t satisfies:

(I) If λt,i ≥ λt−1,i, then

∥Ψt∥2 ≤
√
βt × extra factor 1, (13)

where the extra factor 1 is(
max
i∈[d]

√
1 +

ηλt,i − ηλt−1,i

(1 +
√
βt)2 − ηλt,i

+ 1{βt ̸= βt−1}ϕt,i

)
︸ ︷︷ ︸

extra factor 1

.

(14)

(II) If λt−1,i ≥ λt,i, then

∥Ψt∥2 ≤
√
βt × extra factor 2, (15)

where the extra factor 2 is(
max
i∈[d]

√
1 +

ηλt−1,i − ηλt,i

ηλt,i − (1−
√
βt)2

+ 1{βt ̸= βt−1}ϕt,i

)
︸ ︷︷ ︸

extra factor 2

.

(16)
The term ϕt,i in (14) and (16) has an upper-bound which is
a function of |βt−1 − βt|, defined in the full version.

The full version of Lemma 2 and its proof is in Appendix C.
Lemma 2 hints at what the optimal momentum parameter
is. It says that as long as βt is larger than the threshold
maxi∈[d](1−

√
ηλt,i)

2, the instantaneous rate is the square
root of the parameter

√
βt modulo an extra factor. So the

momentum parameter should not be set far larger than the
threshold. The extra factors in the lemma are due to bound-
ing ∥P−1

t Pt−1∥2, and we would like the extra factors to be
as small as possible to obtain an accelerated linear rate. To
see this, consider setting η = Θ

(
1
L

)
. Then, we will have

√
βt = 1 − Θ

(
1√
κt

)
, where κt :=

L
λmin(Ht)

is the condi-
tion number of Ht. That is, the instantaneous rate ∥Ψt∥2
will be

∥Ψt∥2 =
(
1−Θ

(
1√
κt

))
× extra factor 1 or 2. (17)

Hence if the extra factors decay fast enough over time so
that they are approximately 1 after some number of itera-
tions t0, then for all t ≥ t0 the instantaneous rate ∥Ψt∥2
will be an accelerated linear rate ∥Ψt∥2 = 1−Θ

(
1√
κt

)
.

Observe that the extra factors (14) and (16) have the term
|λt,i − λt−1,i|, which is resulted from the change of the
average Hessian. In the rest of this subsection, we discuss
how to bound this term, as it will help upper-bound the ex-
tra factors and consequently the instantaneous rate ∥Ψt∥2.
We start by connecting the difference |λt,i−λt−1,i| and the
distance between wt and wt−1.

Lemma 3. Suppose that the Hessian of f(·) is LH -
Lipschitz, i.e., ∥∇2f(x) − ∇2f(y)∥2 ≤ LH∥x − y∥2, for
any pair of x, y. Then, |λt,i−λt−1,i| ≤ LH∥wt−wt−1∥2.

The proof of Lemma 3 is in Appendix D. Lemma 3 sug-
gests that it suffices to bound the distance ∥wt − wt−1∥2
in order to control the extra factors. The strategy now
is to show that the distance ∥wt − wt−1∥2 decays expo-
nentially fast so that the instantaneous rate (17) becomes
∥Ψt∥2 = 1−Θ

(
1√
κt

)
after some point t0. Kulakova et al.

(2018) show that for minimizing functions satisfying µ-PL
and L-smooth via HB, the distance ∥wt − wt−1∥2 decays
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at an linear rate 1 − Θ
(
µ
L

)
when the momentum param-

eter is a constant, i.e., βt = β, and satisfies a constraint.
Specifically, Kulakova et al. (2018) construct the following
Lyapunov function:

V̄t := f(wt)−minw f(w)+
L(1−cη)

2cη
∥wt−wt−1∥2, (18)

where η =
cη
L for some cη ∈ (0, 1) is the step size of HB

and L is the smoothness constant. Kulakova et al. (2018)
show that the Lyapunov function decays at an linear rate,
i.e., V̄t =

(
1−Θ

(
µ
L

))
V̄t−1, when the momentum parame-

ter satisfies β ≤
√(

1− cη c̃µ
L

)
(1− cη) for some constant

c̃ ∈ (0, 1], which implies that the distance between the iter-
ates at two consecutive time points shrinks linearly towards
0 in the sense that ∥wt−wt−1∥2 =

(
1−Θ

(
µ
L

))t
V̄0. Here

we show a similar result under a less restricted constraint
on the momentum parameter. Moreover, our result allows
the value of the momentum parameter to change during the
update. We construct the following Lyapunov function:

Vt := f(wt)−minw f(w) + θ∥wt − wt−1∥2, (19)

where θ > 0 is a constant to be determined in Theorem 2.

Theorem 2. Let θ = 2
(

L
4

(
1 + 1

cη

)
− cµµ

)
> 0 for any

cη ∈ (0, 1] and any cµ ∈ (0, 1
4 ]. Set the step size η =

cη
L

and set the momentum parameter βt so that for all t, βt ≤√(
1− c̃c2η

µ
L

)(
1− cµµ

L
4

(
1+ 1

cη

)
+ θ

2

)
for some constant c̃ ∈

(0, 1]. Then, HB has

Vt ≤
(
1− c̃c2η

µ

L

)t
V0 =

(
1−Θ

(µ
L

))t
V0, (20)

where the Lyapunov function Vt is defined on (19).

Theorem 2 shows that the optimality gap converges at a lin-
ear rate 1−Θ

(
µ
L

)
. It also shows that the distance between

the two consecutive iterates shrinks fast. Our main theorem
in the next subsection will use Theorem 2 to upper-bound
the extra factor in Lemma 2. The proof of Theorem 2 is
deferred to Appendix E.

3.3. Main theorem

Our main theorem (Theorem 3) will assume the following:
Assumption ♣: The function f(·) satisfies µ-PL, is twice
differentiable, L-smooth, and has LH -Lipschitz Hessian.

Theorem 3. Suppose assumption ♣ holds and that
λmin(Ht)-AVERAGE OUT w.r.t. w∗ holds for all t. Let

θ := 2
(

L
4

(
1 + 1

cη

)
− cµµ

)
> 0, where cµ ∈

(0, 1
4 ]. Set the step size η =

cη
L for any constant

cη ∈ (0, 1] and set the momentum parameter βt =(
1− c

√
ηλmin(Ht)

)2
for some c ∈ (0, 1) satisfying βt ≤

√(
1− c̃c2η

µ
L

)(
1− cµµ

L
4

(
1+ 1

cη

)
+ θ

2

)
for some constant c̃ ∈

(0, 1]. Then, for all t, the iterate wt of HB satisfies (20),
i.e., the Lyapunov function Vt decays linearly for all t. Fur-
thermore, there exists a time t0 = Θ̃

(
L
µ

)
such that for all

t ≥ t0, the instantaneous rate ∥Ψt∥2 at t is

∥Ψt∥2 = 1−
c
√
cη

2

1
√
κt

= 1−Θ

(
1
√
κt

)
, (21)

where κt :=
L

λmin(Ht)
. Consequently,

∥wT+1−w∗∥ = O

(
T∏

t=t0

(
1−Θ

(
1
√
κt

)))
∥wt0−w∗∥.

The proof of Theorem 3 is given in Appendix F, which is
built on the results developed in the previous subsection.
Theorem 3 shows that HB has a provable advantage over
GD even when the optimization landscape is non-convex,
as long as the average Hessian towards w∗ is positive defi-
nite. In the next section we will give some examples where
the averaged-out condition holds. But at this moment, let
us elaborate on our theoretical statement of acceleration by
making a detailed comparison between GD and HB. Ob-
serve that the dynamic of the distance due to GD can be
written as

wt+1 − w∗ = wt − η∇f(wt)− w∗

= (Id − ηHt) (wt − w∗), (22)

where Ht is the average Hessian towards w∗ defined in (1)
and we used the fundamental theorem of calculus in the
second equality as (2). Then, choosing the step size η =

cη
L

for some cη , we have from (22),

∥wt+1−w∗∥2 =
(
1−Θ

(
λmin(Ht)

L

))
∥wt−w∗∥2. (23)

The inequality (23) shows that the instantaneous rate of GD
at t is 1−Θ

(
λmin(Ht)

L

)
. On the other hand, GD under PL

is known (Karimi et al., 2017) to have

f(wt)− f(w∗) =
(
1−Θ

(
µ
L

))t
(f(w0)− f(w∗)) . (24)

Comparing (23) and (24) of GD to (20) and (21) of HB in
Theorem 3, we can conclude that both GD and HB are guar-
anteed to converge at the rate 1 − Θ

(
µ
L

)
for all t. On the

other hand, after certain number of iterations t0 = Θ̃
(

L
µ

)
,

where the notation Θ̃(·) hides a logarithmic factor 1 that
depends on LH , V0, θ, and other parameters, HB has the

instantaneous rate 1− Θ

(√
λmin(Ht)

L

)
= 1 − Θ

(
1√
κt

)
,

1The logarithmic factor is shown on (103) in Appendix F.
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which is better than 1 − Θ
(

λmin(Ht)
L

)
= 1 − Θ

(
1
κt

)
of

GD.

The reader would notice that for the acceleration result to

be meaningful, we need 1−Θ
(√

λmin(Ht)
L

)
< 1−Θ

(
µ
L

)
.

Hence it is desired to have λmin(Ht) ≥ λ∗ > 0, ∀t and that
λ∗ = Θ(µ), which is actually problem-dependent. But we
will discuss this in the next subsection and will show that
all the examples given in the last part of this paper have the
desired property.

Let us emphasize that the parameters c and cη , which
appear in the instantaneous rate on (21), can indeed be
any independent universal constant in (0, 1). Since The-
orem 3 indicates setting the momentum parameter βt =

(1 − c
√
cη

√
λmin(Ht)

L )2 for any c ∈ (0, 1) and cη ∈ (0, 1],
we need to check if the choice of βt satisfies the upper-

bound constraint, i.e., check if
(
1− c

√
cη

√
λmin(Ht)

L

)2

≤√(
1− c̃c2η

µ
L

)(
1− cµµ

L
4 (1+ 1

cη
)+ θ

2

)
. To show this, it suf-

fices to show(
1− c

√
cη

λmin(Ht)
L

)2
≤
(
1− c̃c2η

µ
L

) (
1− 4cµµ

L

)
. (25)

Let λ∗ be the constant such that λmin(Ht) ≥ λ∗ >
0, ∀t. Then, (25) holds if 1 − c

√
cη

λ∗
L ≤ 1 − c̃c2η

µ
L and

1 − c
√
cη

λ∗
L ≤ 1 − 4cµ

µ
L . Define the ratio r = λ∗

µ . Then,
the constraint is equivalent to

c̃ ≤ cc
−3/2
η r and cµ ≤

c
√
cηr

4 . (26)

The condition on (26) can be easily met. For example, we
can choose c = 0.9 and cη = 1.0 so that they are universal
constants and do not depend on other problem parameters.
Under this choice, the condition (26) becomes c̃ ≤ 0.9r and
cµ ≤ 0.225r, which we can easily satisfy. It is noted that
the parameter c̃ and cµ only affects the number of iterations
spent in the burn-in stage. In summary, c ∈ (0, 1) and
cη ∈ (0, 1] in the theorem can be independent universal
constants, while c̃ and cµ in Theorem 2 for the burn-in stage
might depend on the ratio r = λ∗

µ under the mild condition
(26).

The presence of the burn-in stage before exhibiting an ac-
celerated linear rate is standard for HB, c.f., Polyak (1964);
Lessard et al. (2016). Kulakova et al. (2018) provides a
concrete example that shows HB could have a peak ef-
fect during the initial stage and hence prevents from ob-
taining an accelerated linear rate in the first few itera-
tions. Indeed the acceleration results (of other problems)
in Wang et al. (2021b) all have the form ∥wt − w∗∥ ≤
C
√
κ
(
1−Θ

(
1√
κ

))t
∥w0 −w∗∥, for some constant C ≥

1. The upper-bound of the convergence rate is smaller
than the initial distance only after certain number of it-
erations. We also remark that if one wants to relate the
distance ∥wt0 − w∗∥ in Theorem 3 to the initial distance
∥w0 − w∗∥, then one can use the fact the Lyapunov func-
tion Vt decays exponentially and the triangular inequality
to show that ∥wt0 − w∗∥ is within a constant multiple of
∥w0−w∗∥ in the worst case. Furthermore, as µ-PL implies
the quadratic growth condition with the same constant, i.e.,
µ
2 ∥wt0 − w∗∥2 ≤ f(wt0)− f(w∗) (see e.g., (Karimi et al.,
2016)), one can also derive a bound on ∥wt0−w∗∥ by using
the quadratic growth condition and the fact that Vt decays
exponentially.

Finally we remark that Theorem 3 also finds that the
momentum parameter should be set adaptively. It
basically says that if the momentum parameter is

βt =
(
1−Θ

(
1√
κt

))2
, then the instantaneous rate is

1 − Θ
(

1√
κt

)
after some number of iterations, assuming

all the constraints are satisfied. Let λ∗ = mint λmin(Ht)
and κ := L/λ∗. It implies that the instantaneous rate can
be much smaller than 1 − Θ

(
1√
κ

)
since κ ≥ κt. In other

words, there is an advantage when the momentum param-
eter is set adaptively and appropriately over the iterations.
Nevertheless, for the completeness, we present the follow-
ing corollary for the case when a constant value of β is
used.

Corollary 1. (Constant β) Suppose assumption ♣ holds.
Denote κ := L

λ∗
for some constant λ∗ > 0. Let θ

be that in Theorem 3. Set the step size η =
cη
L for

any constant cη ∈ (0, 1] and set the momentum param-

eter β =
(
1− c

√
cη√
κ

)2
for some c ∈ (0, 1) satisfying

β ≤
√(

1− c̃c2η
µ
L

) (
1− 4cµ

µ
L

)
for some constant c̃ ∈

(0, 1] and cµ ∈ (0, 1
4 ]. Then, (20) holds for all t. Fur-

thermore, if HB satisfies λ∗-AVERAGE OUT w.r.t. w∗ for
all t, then there exists a time t0 = Θ̃

(
L
µ

)
such that

for all t ≥ t0, the instantaneous rate ∥Ψt∥2 at t is

∥Ψt∥2 = 1 − c
√
cη
2

1√
κ

= 1 − Θ
(

1√
κ

)
. Consequently,

∥wT+1 − w∗∥ = O

((
1−Θ

(
1√
κ

))T−t0
)
∥wt0 − w∗∥.

We conclude this subsection by pointing out that our pre-
sentation of the theoretical results aims at showing accel-
eration of HB can be achieved under various choices of
the parameters. One can, for example, simply set the
step size as η = 1

L and set the momentum parameter as

βt =
(
1− 0.9 1√

κt

)2
or a constant β =

(
1− 0.9 1√

κ

)2
in

HB (which corresponds to c = 0.9 2 and cη = 1). Under

2The parameter c cannot be set to 1, because our proof in Ap-
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this choice of the parameters, HB exhibits acceleration after
t0 = Θ̃

(
L
µ

)
as guaranteed by Theorem 3 or Corollary 1.

3.4. AVERAGE OUT implies PL

In the subsection, we show that if AVERAGE OUT holds at
a point w then PL also holds at w.

Theorem 4. Assume f(·) is L-smooth and twice differen-
tiable. Consider a point w ∈ Rd. Suppose there exists
a global optimal point w∗ of f(·) such that the condition
λ∗-AVERAGE OUT w.r.t. w∗ holds at w. Then, f(·) satisfies
µ-PL with parameter µ =

λ2
∗
L at w.

Proof. If λ∗-AVERAGE OUT w.r.t. w∗ holds at w, then

∥∇f(w)∥
∥w−w∗∥ =

∥(
∫ 1
0
∇2f((1−θ)w+θw∗)dθ)(w−w∗)∥

∥w−w∗∥ ≥ λ∗,

(27)
where the equality uses ∇f(w∗) = 0 and the funda-
mental theorem of calculus, and the inequality is due to
∥Hf (w)v∥2 ≥ λmin(Hf (w))∥v∥2 for any v ∈ Rd and the
assumption that AVERAGE OUT λ∗ holds. Combining this
and the smoothness, we have

f(w) ≤ f(w∗) +
L
2 ∥w − w∗∥2 ≤ f(w∗) +

L
2λ2

∗
∥∇f(w)∥2,

(28)

where the last inequality uses (27). This shows f(·) satis-
fies µ-PL with parameter µ =

λ2
∗
L at w.

We remark that in the lemma λ∗ ≥ λ2
∗
L = µ since L ≥ λ∗.

4. Examples of AVERAGE OUT

4.1. Example 1

If a twice differentiable function f(·) is ν-strongly con-
vex, then evidently the smallest eigenvalue of the average
Hessian is at least ν. Thus, λ∗-AVERAGE OUT holds with
λ∗ = ν.

4.2. Example 2

Consider minimizing

f(w) := w2 + α sin2(w), (29)

where α > 0 is a problem parameter. The function f(w)
was considered in Karimi et al. (2017), where the authors
claim that it satisfies PL. Figure 1 plots the function and

pendix F shows that the logarithmic factor in t0 = Θ̃
(

L
µ

)
de-

pends on how close c to 1 is. More precisely, as c approaches
1, the denominator terms in the extra factors shown in Lemma 2
could become zero.

Figure 1. (Left) function value f(w) = w2 + 4sin2(w) v.s. w.
(Right) function value f(wt) v.s. iteration t of solvingminw f(w)
by GD and HB. Both algorithms were initialized at w = −5.

compares HB to GD for minimizing f(w) in (29). One
can see from the sub-figure on the left that the function is
non-convex, but the average Hessian towards the optimal
point appears to be positive definite — the non-convexity
could be averaged out, which suggests that HB can con-
verge faster than GD according to our main theorem. The
sub-figure on the right confirms this empirically, while the
following lemma provably shows that the AVERAGE OUT
condition indeed holds.

Lemma 4. Let α ∈ (1, 4.34]. The function f(w) in (29) is
twice differentiable and has L = 2 + 2α-Lipschitz, LH =
4α-Lipschitz Hessian, and its global optimal point is w∗ =
0. Furthermore, it is non-convex but satisfies µ-PL with

µ =
(2+ sin(2w)

w α)
2

2+2α ≥ (2−0.46α)2

2+2α at any w and the average

Hessian isHf (w) = 2 + sin(2w)
w α > 0, where | sin(2w)

w | ≤
0.46. Therefore, the condition λ∗-AVERAGE OUT w.r.t. w∗
holds with λ∗ = 2− 0.46α.

The proof of Lemma 4 is available in Appendix G. Com-
bining Lemma 4 and Corollary 1, one can show that HB
for optimizing (29) has an instantaneous rate 1 − Θ

(
1√
κ

)
at all t ≥ t0 for some number t0, where κ = (2+2α)2

(2−0.46α)2 .
It is noted that Lemma 4 also shows that λ∗ = Θ(µ). So
the accelerated linear rate 1 − Θ

(
1√
κ

)
in the proposition

is considered to be better than 1−Θ
(
µ
L

)
.

We can generalize the above case to a broader class of prob-
lems as follows.

Lemma 5. Consider solving

minw∈Rd F (w) := minw∈Rd f(w) + g(w).

Suppose the function F (w) satisfies assumption ♣. Denote
w∗ a global minimizer of F (w). Assume that f(w) is 2λ∗-
strongly convex for some λ∗ > 0. If the average Hessian of
the possibly non-convex g(w) between w and w∗ satisfies
λmin(Hg(w)) ≥ −λ∗. Then, F (·) satisfies λ∗-AVERAGE
OUT w.r.t. w∗.

The lemmas says that if a possibly non-convex function
F (·) can be decomposed into a strongly convex part and
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(a) Average Hessian (b) Obj. value vs. t

Figure 2. Subfigure (a): Average Hessian Hf (u) between u and
w∗ = 1, where layer N = {2, 3, 5, 10, 20}. A pattern is that
adding more layer causes the need of iterate u to be more closer
to w∗ to have λmin(Hf (u)) sufficiently bounded away from 0.
Subfigure (b): Solving (30) with N = 2 by GD and HB. Both
algorithms were initialized at u = 10−21 ∈ R4

+ and the target is
w∗ = [12, 6, 4, 3]⊤, following the setup of Gissin et al. (2020).

a possibly non-convex part, and if the average Hessian
towards w∗ of the non-convex part is not too negative-
definite, then AVERAGE OUT holds.

4.3. Example 3

Following Gissin et al. (2020); Gidel et al. (2019), we con-
sider minimizing the following non-convex function:

f(u) =
1

N2
∥u⊙N − w∗∥2, (30)

where w∗ ∈ Rd
+, N is a positive integer, and the notation

u⊙N ∈ Rd represents a vector whose ith element is (ui)
N .

The N -layer diagonal network u⊙N has been a subject for
studying incremental learning of GD (Gissin et al., 2020)
and the interaction between the scale of the initialization
and generalization (Woodworth et al., 2020). On the ap-
plied side, using the diagonal network helps achieve sparse
recovery without the need of tuning regularization parame-
ters under certain conditions (Vaškevičius et al., 2019). It
is noted that for N = 2, the set of global optimal points
of (30) is U := {û ∈ Rd : ûi = ±√w∗,i}. The follow-
ing lemma shows that the PL condition and AVERAGE OUT
hold locally (but not globally).

Lemma 6. (N = 2). The function f(u) in (30) is
twice differentiable. It is L = 3R2-smooth and has
LH = 6R-Lipschitz Hessian in the ball {u : ∥u∥∞ ≤
R} for any finite R > 0. Furthermore, f(u) is µ-PL
with µ = 2mini∈[d](ui)

2 at u, and the average Hessian
Hf (u) between u and û ∈ U satisfies λmin(Hf (u)) =
mini∈[d]

(
(ui)

2 + uiûi

)
.

Let
√
w∗ be the element-wise square root of w∗, which is

one of the global minimizers. Then, Lemma 6 suggests that
for all u ∈ Rd

+, the non-convexity w.r.t.
√
w∗ is averaged-

out (and also PL holds). Similar argument can be applied

to any other global optimal points û ∈ U in the sense that
there exists a region where all the points inside the region
satisfy PL and the non-convexity w.r.t. the corresponding
global optimal point is averaged-out. Lemma 6 implies that
PL and AVERAGE OUT hold at all the points except those
in V := {u ∈ Rd : ∃i ∈ [d], s.t. ui = 0}.

Lemma 7. Let the initial point u0 = α1 ∈ Rd
+,

where α satisfies 0 < α < mini∈[d]
√
w∗,i. Denote

L := 6maxi∈[d] w∗,i. Let η =
cη
L , where cη ∈ (0, 1],

and βt ≤
√
(1− 2c2η c̃α

2

L )
(
1− 4cµ

2α2

L

)
for any c̃ ∈ (0, 1]

and cµ ∈ (0, 1
4 ]. Then, for minimizing (30), the iterate ut

generated by HB satisfies 0 < α < ut,i <
√

2w∗,i − α2

for all t and all i ∈ [d].

Lemma 7 shows that HB always stays away from the points
in V under certain conditions of the step size and the mo-
mentum parameter when initialized properly, and hence
it remains in a region where PL and AVERAGE OUT hold.
Therefore, our main theorem and the corollary can apply.
The proof of Lemma 6 and Lemma 7 is in Appendix H,
where we have more discussions. For the case of N > 2,
we also show that the PL condition holds locally in Ap-
pendix H.1. However, the average HessianHf (u) does not
have a simple analytical form. With the computer-aid anal-
ysis, we plot the average Hessian towardsw∗ for some num-
ber of layers N when the target is w∗ = 1 in Sub-figure (a)
of Figure 2. Sub-figure (b) of the same figure shows HB
converges significantly faster than GD empirically.
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Can, B., Gürbüzbalaban, M., and Zhu, L. Accelerated
linear convergence of stochastic momentum methods in
wasserstein distances. ICML, 2019.

Chizat, L. Sparse optimization on measures with over-
parameterized gradient descent. Mathematical Program-
ming, 2021.

Cutkosky, A. and Mehta, H. High-probability bounds
for non-convex stochastic optimization with heavy tails.
NeurIPS, 2021.

Diakonikolas, J. and Jordan, M. I. Generalized
momentum-based methods: A hamiltonian perspective.
arXiv:1906.00436, 2019.

Flammarion, N. and Bach, F. From averaging to accelera-
tion, there is only a step-size. COLT, 2015.

Gelfand, I. Normierte ringe. Mat. Sbornik, 1941.

Ghadimi, E., Feyzmahdavian, H. R., and Johansson, M.
Global convergence of the heavy-ball method for convex
optimization. ECC, 2015.

Gidel, G., Bach, F., and Lacoste-Julien, S. Implicit regu-
larization of discrete gradient dynamics in linear neural
networks. NeurIPS, 2019.

Gissin, D., Shalev-Shwartz, S., and Daniely, A. The im-
plicit bias of depth: How incremental learning drives
generalization. ICLR, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2016.

Hu, B. Ece 598: (lecture 2) Unifying the analysis in con-
trol and optimization via semidefinite programs. 2020.
URL https://binhu7.github.io/courses/
ECE598/Fall2020/files/LectureNote2_
SDPLTI.pdf.

Hu, B. and Lessard, L. Dissipativity theory for nesterovs
accelerated method. ICML, 2017.

Jain, P., Kakade, S. M., Kidambi, R., Netrapalli, P., and
Sidford, A. Accelerating stochastic gradient descent for
least squares regression. COLT, 2018.

Karimi, H., Nutini, J., and Schmidt, M. Linear conver-
gence of gradient and proximal-gradient methods under
the polyak-lojasiewicz condition. ECML, 2016.

Karimi, H., Nutini, J., and Schmidt, M. Linear convergence
under the polyak-ojasiewicz inequality. 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. ICLR, 2015.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
NeurIPS, 2012.

Kulakova, A., Danilova, M., and Polyak, B. Non-monotone
behavior of the heavy ball method. arXiv:1811.00658,
2018.

Lessard, L., Recht, B., and Packard, A. Analysis and de-
sign of optimization algorithms via integral quadratic
constraints. SIAM Journal on Optimization, 2016.

Liu, C., Zhu, L., and Belkin, M. Loss landscapes and op-
timization in over-parameterized non-linear systems and
neural networks. 2021.

Liu, Y., Gao, Y., and Yin, W. An improved analysis of
stochastic gradient descent with momentum. NeurIPS,
2020.
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Algorithm 2 Heavy Ball (Equivalent Version 2)
1: Required: the step size η and the momentum parameter βt.
2: Init: w0 ∈ Rd and m−1 = 0 ∈ Rd.
3: for t = 0 to T do
4: Given current iterate wt, compute gradient ∇f(wt).
5: Update momentum mt = βtmt−1 +∇f(wt).
6: Update iterate wt+1 = wt − ηmt.
7: end for

A. More discussions about prior works of HB

A.1. Spectral norm of At in (3) satisfies ∥At∥2 ≥ 1

Let us recall the definition At :=

[
Id − ηHt + βId −βId

Id 0d

]
in HB’s dynamic (3). We have Lemma 8 below, which shows

that the spectral norm of At is not less than 1. This implies that the spectral norm ∥At∥2 is not a useful quantity to look at
when we try to derive the convergence rate of HB.

Lemma 8. The spectral norm satisfies ∥At∥2 ≥ 1 for any step size η ≤ 1
L and any momentum parameter β ∈ [0, 1].

Proof. For brevity, in this proof we suppress the subscript t, i.e., we write A :=

[
Id − ηH + βId −βId

Id 0d

]
.

Let UDiag([λ1, . . . , λd])U
⊤ be the eigen-decomposition of ηH , where λ1, . . . , λd are the eigenvalues of ηH . Observe

that each λi satisfies λi ≤ 1 since η ≤ 1
L .

We have

A =

[
U 0
0 U

] [
(1 + β)Id −Diag([λ1, . . . , λd]) −βId

Id 0

] [
U⊤ 0
0 U⊤

]
. (31)

Let Ũ :=

[
U 0
0 U

]
. Then, after applying some permutation matrix P̃ , the matrix A can be further written as

A = Ũ P̃ΣP̃T Ũ⊤, (32)

where Σ is a block diagonal matrix consisting of d 2-by-2 matrices Σ̃i :=

[
1 + β − λi −β

1 0

]
.

Since Ũ and P̃ are unitary matrices, it does not affect the spectral norm ∥A∥2. That is, ∥A∥2 = ∥Σ∥2. Moreover, as
Σ ∈ R2d×2d is a block diagonal matrix, we have ∥Σ∥2 = maxi∈[d] ∥Σi∥2. Therefore, it suffices to show that the spectral
norm of each sub-matrix Σi ∈ R2×2 satisfies ∥Σi∥2 ≥ 1.

By definition of the spectral norm, we have

∥Σi∥2 =

√
λmax

([
1 + β − λi 1
−β 0

] [
1 + β − λi −β

1 0

])

=

√√√√√√√√λmax


[
(1 + β − λi)

2 + 1 −β(1 + β − λi)
−β(1 + β − λi) β2

]
︸ ︷︷ ︸

:=Ri

. (33)

The characteristic polynomial of Ri is x2 −
(
β2 + (1 + β − λi)

2 + 1
)
x + β2((1 + β − λi)

2 + 1) − β2(1 + β − λi)
2,

which has two roots x =
β2+(1+β−λi)

2+1±
√

(β2+(1+β−λi)2+1)2−4β2

2 . To show that the largest root x ≥ 1 for any λi ≤ 1,
it suffices to show that

(
β2 + (1 + β − λi)

2 + 1
)2− 4β2 ≥ 1 for any λi ≤ 1. By simple calculations, it can be shown that

the latter is true. So λmax(Ri) ≥ 1 and hence ∥Σi∥2 ≥ 1. Since this holds for all i, we can conclude that ∥A∥2 ≥ 1.



Provable Acceleration of Heavy Ball beyond Quadratics

A.2. More discussions about Wang et al. (2021b)

Here we discuss the limitation of the approach by Wang et al. (2021b) further. Denote ξt := wt − w∗. The way that Wang
et al. (2021b) proposed is first by rewriting (3) as[

ξt+1

ξt

]
=

[
Id − ηH0 + βId −βId

Id 0d

] [
ξt

ξt−1

]
+

[
φt

0d

]
, (34)

where φt = η (Ht −H0) (wt − w∗). Recursively expanding the above equation leads to[
ξt+1

ξt

]
= At+1

[
ξ0
ξ−1

]
+

t∑
s=0

At−s

[
φs

0

]
. (35)

The first term on the r.h.s. of (35) is the size of the matrix-power-vector product and hence can be bounded as∥∥∥∥At+1

[
w0 − w∗
w−1 − w∗

]∥∥∥∥
2

≤ 4
√
κ
(
1− 1

2
√
κ

)t+1

∥
[
w0 − w∗
w−1 − w∗

]
∥, which decays at an accelerated linear rate. For the sec-

ond term on the r.h.s. of (35), Wang et al. (2021b) show that if φt on (34) is sufficiently small for all t, then the second
term would not be dominant so that an accelerated linear rate of the convergence still holds. However, the constraint only
allows Ht to be a slight deviation from H0, which could be seen from their theorem statements, e.g., Theorem 6 and 8 in
the paper.

A.3. Some clarifications

(Lessard et al., 2016) give a non-convergent example of HB, which is a piecewise linear function satisfies

∇f(w) =


25w, if w < 1,

w + 24, if 1 ≤ w < 2

25w − 24, if w ≥ 2

. (36)

It should be clarified that the divergence is under a specific choice of the momentum parameter and the step size, which
in no way implies that HB would be doomed to diverge for minimizing this function under other configurations of the
parameters. Since the function is strongly convex smooth (but not twice differentiable), by invoking the results of prior
works (Kulakova et al., 2018; Ghadimi et al., 2015; Wang et al., 2021a), one can show that HB converges under appropriate
choices of the momentum parameter and the step size for minimizing this function.

Finally, given a dynamic ξt+1 = Aξt, where A is a fixed real matrix whose spectral radius satisfies ρ(A) < 1, one can
show that there exists a norm ∥ · ∥P = ⟨·, P ·⟩ for some positive definite matrix P such that ∥ξt+1∥P ≤ (ρ(A) + ϵ̄)∥ξt∥P
holds for any ϵ̄ > 0. The caveat is to find the matrix P (which depends on the chosen ϵ̄) to make the norm ∥ · ∥P explicit.
When converting the bound in ∥ · ∥P to that in terms of the l2-norm, one would get ∥ξt+1∥2 ≤ C(ρ(A) + ϵ̄)t∥ξ0∥2, where
C > 0 is a constant that depends on the the condition number of P , which in turn depends on the chosen ϵ̄. We refer the
reader to a lecture note (Hu, 2020) for further details.

B. Proof of Lemma 1
Lemma 1 (Full-version):[Wang et al. (2021b)] Consider a matrix

A :=

[
(1 + β)Id −H −βId

Id 0

]
∈ R2d×2d, (37)

where H ∈ Rd×d is a symmetric matrix and has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λi ≥ · · · ≥ λd. Suppose β satisfies
1 ≥ β >

(
1−
√
λi

)2
for all i ∈ [d]. Then, we have A is diagonalizable with respect to the complex field C in C2d×2d, i.e.,

(spectral decomposition) A = PDP−1 (38)

for some matrix P = Ũ P̃Q, where Ũ and P̃ are some unitary matrices, Q = Diag(Q1, . . . , Qd) ∈ C2d×2d is a block
diagonal matrix, and D ∈ C2d×2d is a diagonal matrix. Specifically, the ith block diagonal of Q is Qi = [qi, q̄i] ∈ C2×2,
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where qi =
[
zi
1

]
and q̄i =

[
z̄i
1

]
are the eigenvectors of Σ̃i :=

[
1 + β − λi −β

1 0

]
∈ R2×2 with corresponding eigenvalues

zi and z̄i respectively. Furthermore, the diagonal matrix D is

D = Diag

([
z1 0
0 z̄1

]
, . . . ,

[
zd 0
0 z̄d

])
∈ C2d×2d (39)

and |zi| =
√
β, which means that the magnitude of each diagonal element on the sub-matrix

[
zi 0
0 z̄i

]
∈ C2×2 is

√
β and

hence ∥D∥2 =
√
β.

Proof. We replicate the proof of Wang et al. (2021b) here for the completeness.

Let UDiag([λ1, . . . , λd])U
⊤ be the eigen-decomposition of H . Then

A =

[
U 0
0 U

] [
(1 + β)Id −Diag([λ1, . . . , λd]) −βId

Id 0

] [
U⊤ 0
0 U⊤

]
. (40)

Let Ũ :=

[
U 0
0 U

]
. Then, after applying some permutation matrix P̃ , the matrix A can be further simplified into

A = Ũ P̃ΣP̃T Ũ⊤, (41)

where Σ is a block diagonal matrix consisting of d 2-by-2 matrices Σ̃i :=

[
1 + β − λi −β

1 0

]
. The characteristic polyno-

mial of Σ̃i is x2 − (1 + β − λi)x + β. Hence it can be shown that when β > (1 −
√
λi)

2 then the roots of polynomial
are conjugate and have magnitude

√
β. These roots are exactly the eigenvalues of Σ̃i ∈ R2×2. On the other hand, the

corresponding eigenvectors qi, q̄i are also conjugate to each other as Σ̃i ∈ R2×2 is a real matrix. As a result, Σ ∈ R2d×2d

admits a block eigen-decomposition as follows,

Σ =Diag(Σ̃i, . . . , Σ̃d)

=Diag(Q1, . . . , Qd)Diag

([
z1 0
0 z̄1

]
, . . . ,

[
zd 0
0 z̄d

])
Diag(Q−1

1 , . . . , Q−1
d ), (42)

where Qi = [qi, q̄i] ∈ C2×2 and zi, z̄i are eigenvalues of Σ̃i :=

[
1 + β − λi −β

1 0

]
, since they are conjugate by the

condition on βi. The eigenvalues satisfy

zi + z̄i = 2ℜzi = 1 + β − λi, (43)

ziz̄i = |zi|2 = β. (44)

On the other hand, the eigenvalue equation Σ̃iqi = ziqi together with (43) implies qi =

[
zi
1

]
. Denote Q :=

Diag(Q1, . . . , Qd) and

D := Diag

([
z1 0
0 z̄1

]
, . . . ,

[
zd 0
0 z̄d

])
. (45)

By combining (41) and (42), we have

A = PDiag

([
z1 0
0 z̄1

]
, . . . ,

[
zd 0
0 z̄d

])
P−1 = PDP−1, (46)

where

P = Ũ P̃Q, (47)

by the fact that P̃−1 = P̃⊤ and Ũ−1 = Ũ⊤.
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C. Proof of Lemma 2
Lemma 2 Assume we have 1 ≥ βt > (1−

√
ηλt,i)

2 for all i ∈ [d]. Then, the instantaneous rate ∥Ψt∥2 at t satisfies:
(I) If λt,i ≥ λt−1,i, then

∥Ψt∥2 =
√
βt ×

(
max
i∈[d]

√
1 +

ηλt,i − ηλt−1,i

(1 +
√
βt)2 − ηλt,i

+ 1{βt ̸= βt−1}ϕt,i

)
︸ ︷︷ ︸

extra factor 1

. (48)

(II) If λt−1,i ≥ λt,i, then

∥Ψt∥2 =
√
βt ×

(
max
i∈[d]

√
1 +

ηλt−1,i − ηλt,i

ηλt,i − (1−
√
βt)2

+ 1{βt ̸= βt−1}ϕt,i

)
︸ ︷︷ ︸

extra factor 2

. (49)

The term ϕt,i in (48) and (49) can be bounded as

ϕt,i ≤ 3

√
|βt−1 − βt|

|4βt − (1 + βt − ηλt,i)2|
+ 3

√√
|βt−1 − βt||ηλt,i − ηλt−1,i|
|4βt − (1 + βt − ηλt,i)2|

. (50)

Proof. By Lemma 1, we have
∥Ψt∥2 := ∥DtP

−1
t Pt−1∥2 ≤

√
βt∥P−1

t Pt−1∥2,

Pt = ŨtP̃tDiag(Qt,1, . . . , Qt,d), where Ũt and P̃t are unitary matrices. Since Ũt and P̃t are unitary matrices, it does not
affect the spectral norm ∥P−1

t Pt−1∥2. So to bound ∥P−1
t Pt−1∥2, it suffices to analyze the spectrum of the matrix product

Diag(Qt,1, . . . , Qt,d)
−1Diag(Qt−1,1, . . . , Qt−1,d), which is block diagonal. The eigenvalues of P−1

t Pt−1 are those of
Diag(Qt,1, . . . , Qt,d)

−1Diag(Qt−1,1, . . . , Qt−1,d).

In the following, we consider a fixed i ∈ [d]. For brevity, in the following we denote

Qt := Qt,i

λt := ηtλt,i (51)
zt := zt,i

z̄t := z̄t,i.

By Lemma 1 (full version) and (43), we have

Qt =

[
zt z̄t
1 1

]
, (52)

ℜzt =
1 + βt − λt

2
, (53)

ℑzt =

√
βt −

(
1 + βt − λt

2

)2

. (54)

These quantities would play an essential role for the remaining calculations. On the other hand,

Gt := Q−1
t Qt−1 =

1

zt − z̄t

[
1 −z̄t
−1 zt

] [
zt−1 z̄t−1

1 1

]
(55)

=
1

zt − z̄t

[
zt−1 − z̄t z̄t−1 − z̄t
−zt−1 + zt −z̄t−1 + zt

]
. (56)
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Recall the definition of the spectral norm, we have ∥Gt∥2 =
√
λmax(GtG∗

t ). Observe that Gt is of the form
[
a b̄
−b −ā

]
,

where

a =
1

2jℑzt
(zt−1 − z̄t), (57)

b =
1

2jℑzt
(zt−1 − zt). (58)

This results in that GtG
∗
t be of the form

[
a′ b̄′

b′ a′

]
, where a′ = |a|2 + |b|2 and b′ = −2āb. Let the eigenvalues of GtG

∗
t be

ξ1 and ξ2, then ξ1 + ξ2 = 2a′, ξ1ξ2 = a′2 − |b′|2. Therefore, it is clear that ξ1 = a′ + |b′|, ξ2 = a′ − |b′|, and

λmax(GtG
∗
t ) = a′ + |b′|. (59)

Our remaining task is to calculate a′ = |a|2 + |b|2 and |b′| = 2|a||b|.

First we have

a′ = |a|2 + |b|2 (57),(58)
=

1

4(ℑzt)2
(2|zt−1|2 + 2|zt|2 − 4ℜztℜzt−1)

(43),(44)
=

2βt + 2βt−1 − (1 + βt − λt)(1 + βt−1 − λt−1)

4βt − (1 + βt − λt)2

=
4βt − (1 + βt − λt)(1 + βt − λt−1)

4βt − (1 + βt − λt)2
+

2(βt−1 − βt)− (βt−1 − βt)(1 + βt − λt)

4βt − (1 + βt − λt)2
. (60)

Second we also have |b′| = 2|a||b| =

√
(ℜzt−1 −ℜzt)4 + 2(ℜzt−1 −ℜzt)2((ℑzt−1)2 + (ℑzt)2) + ((ℑzt)2 − (ℑzt−1)2)2

2(ℑzt)2
. (61)

For ℜzt−1 −ℜzt in (61), we have

ℜzt−1 −ℜzt
(53)
=

(
βt−1 − βt

2
+

λt − λt−1

2

)
. (62)

For (ℑzt−1)
2 + (ℑzt)2 in (61), we have

(ℑzt−1)
2 + (ℑzt)2

(54)
= βt−1 −

(
1 + βt−1 − λt−1

2

)2

+ βt −
(
1 + βt − λt

2

)2

= 2βt −
(
1 + βt − λt

2

)2

−
(
1 + βt − λt−1

2

)2

+ (βt−1 − βt)− 2

(
1 + βt − λt−1

2

)(
βt−1 − βt

2

)
−
(
βt−1 − βt

2

)2

. (63)
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For (ℑzt)2 − (ℑzt−1)
2 in (61), we have

(ℑzt)2 − (ℑzt−1)
2 = βt −

(
1 + βt − λt

2

)2

− βt−1 +

(
1 + βt−1 − λt−1

2

)2

= βt − βt−1 +

(
1 + βt−1 − λt−1

2
+

1 + βt − λt

2

)(
1 + βt−1 − λt−1

2
− 1 + βt − λt

2

)
= βt − βt−1 +

(
1 + βt − λt−1

2
+

1 + βt − λt

2

)(
λt − λt−1 + βt−1 − βt

2

)
+

(
βt−1 − βt

2

)(
βt−1 − βt + λt − λt−1

2

)
= βt − βt−1 +

(
1 + βt − λt−1

2
+

1 + βt − λt

2

)(
λt − λt−1

2

)
+

(
βt−1 − βt

2

)(
2 + βt−1 + βt − 2λt−1

2

)
= (βt − βt−1)

(
1− 2 + βt−1 + βt − 2λt−1

4

)
+

(
1 + βt − λt−1

2
+

1 + βt − λt

2

)(
λt − λt−1

2

)
.

(64)

Combing (61), (62), (63), (64), we obtain

|b′| =
√
(ℜzt−1 −ℜzt)4 + 2(ℜzt−1 −ℜzt)2((ℑzt−1)2 + (ℑzt)2) + ((ℑzt)2 − (ℑzt−1)2)2

=

√
1⃝+ 2⃝

2(ℑzt)2
, (65)

where we defined

1⃝ :=
(

λt−λt−1

2

)4
+ 2

(
λt−λt−1

2

)2(
2βt −

(
1+βt−λt

2

)2
−
(

1+βt−λt−1

2

)2)
+
(

1+βt−λt

2 + 1+βt−λt−1

2

)2 (
λt−λt−1

2

)2
,

(66)
and also defined

2⃝ :=4
(

βt−1−βt

2

)3 (
λt−λt−1

2

)
+ 6

(
βt−1−βt

2

)2 (
λt−λt−1

2

)2
+ 4

(
βt−1−βt

2

)1 (
λt−λt−1

2

)3
+
(

βt−1−βt

2

)4
+ 2

((
βt−1−βt

2

)2
+ 2

(
βt−1−βt

2

)(
λt−λt−1

2

))(
(βt−1 − βt)− 2

(
1+βt−λt−1

2

)(
βt−1−βt

2

)
−
(

βt−1−βt

2

)2)
+ 2

((
βt−1−βt

2

)2
+ 2

(
βt−1−βt

2

)(
λt−λt−1

2

))(
2βt − ( 1+βt−λt

2 )2 − ( 1+βt−λt−1

2 )2
)

+ 2
(

λt−λt−1

2

)2(
(βt−1 − βt)− 2

(
1+βt−λt−1

2

)(
βt−1−βt

2

)
−
(

βt−1−βt

2

)2)
+ 2 (βt − βt−1)

(
1− 2+βt−1+βt−2λt−1

4

)(
1+βt−λt−1

2 + 1+βt−λt

2

)(
λt−λt−1

2

)
+ (βt − βt−1)

2
(
1− 2+βt−1+βt−2λt−1

4

)2
.

(67)
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Let us analyze 1⃝ first. We have

1⃝ =
(

λt−λt−1

2

)4
+ 2

(
λt−λt−1

2

)2(
2βt −

(
1+βt−λt

2

)2
−
(

1+βt−λt−1

2

)2)
+
(

1+βt−λt

2 + 1+βt−λt−1

2

)2 (
λt−λt−1

2

)2
=
(

λt−λt−1

2

)2((
λt−λt−1

2

)2
+ 2

(
2βt −

(
1+βt−λt

2

)2
−
(

1+βt−λt−1

2

)2)
+
(

1+βt−λt

2 + 1+βt−λt−1

2

)2)
=
(

λt−λt−1

2

)2(
4βt +

(
λt−λt−1

2

)2
−
(

1+βt−λt

2

)2
−
(

1+βt−λt−1

2

)2
+ 2

(
1+βt−λt

2

)(
1+βt−λt−1

2

))
=
(

λt−λt−1

2

)2
4βt.

(68)

Let us switch to 2⃝. It is noted that all the terms in 2⃝ have the factor |βt−1 − βt| and hence 2⃝ will disappear when the
momentum parameter is set to a constant value. By using |λt − λt−1| ≤ 1, |βt−1 − βt| ≤ 1, λt ∈ [0, 1], and βt ∈ [0, 1],
we have

2⃝ ≤ 8(βt−1 − βt)
2 + 8|βt−1 − βt||λt − λt−1|. (69)

Using (60), (61), and (68), we can bound ∥Gt∥2 as follows:

∥Gt∥2 =
√
λmax(GtG∗

t ) =
√
a′ + |b′|

=

√√√√√√4βt − (1 + βt − λt)(1 + βt − λt−1)

4βt − (1 + βt − λt)2
+

2(βt−1 − βt)− (βt−1 − βt)(1 + βt − λt)

4βt − (1 + βt − λt)2
+

√(
λt−λt−1

2

)2
4βt + 2⃝

2
(
βt − ( 1+βt−λt

2 )2
) .

(70)

If βt = βt−1 =
√
β, then the above reduces to

∥Gt∥2 =

√
4β − (1 + β − λt)(1 + β − λt−1) + 2|λt − λt−1|

√
β

4β − (1 + β − λt)2
, (71)

which can be simplified as

∥Gt∥2 =
√
Φt :=



√
1 +

λt − λt−1

(1 +
√
β)2 − λt︸ ︷︷ ︸

extra factor

if λt ≥ λt−1

√
1 +

λt−1 − λt

λt − (1−
√
β)2︸ ︷︷ ︸

extra factor

if λt−1 ≥ λt,

(72)

where we denote Φt := 1 + λt−λt−1

(1+
√
β)2−λt

if λt ≥ λt−1, while denote Φt := 1 + λt−1−λt

λt−(1−
√
β)2

if λt−1 ≥ λt.

On the other hand, for the case βt ̸= βt−1, by using
√
y + z ≤ √y +

√
z, we have

∥Gt∥2 ≤

√√√√√Φt +
2(βt−1 − βt)− (βt−1 − βt)(1 + βt − λt)

|4βt − (1 + βt − λt)2|
+

√
2⃝

2

(
βt −

(
1+βt−λt

2

)2)
(69)
≤

√
Φt +

|βt−1 − βt|(1 + 2
√
8− βt + λt) + 2

√
8
√
|βt−1 − βt||λt − λt−1|

|4βt − (1 + βt − λt)2|

≤
√
Φt + 3

√
|βt−1 − βt|

|4βt − (1 + βt − λt)2|
+ 3

√√
|βt−1 − βt||λt − λt−1|
|4βt − (1 + βt − λt)2|

. (73)



Provable Acceleration of Heavy Ball beyond Quadratics

Since the spectral norm of a block diagonal matrix M = diag(M1,M2, . . . ,Md) satisfies ∥M∥2 = maxi∈[d] ∥Mi∥2, we
can now conclude the following two cases.

When βt is a constant for all t, we have

∥P−1
t Pt−1∥2 = ∥Diag(Qt,1, . . . , Qt,d)

−1Diag(Qt−1,1, . . . , Qt−1,d)∥2

(72),(51)
= max

i∈[d]



√
1 +

ηλt,i − ηλt−1,i

(1 +
√
βt)2 − ηλt,i︸ ︷︷ ︸

extra factor

if ηλt,i ≥ ηλt−1,i

√
1 +

ηλt−1,i − ηλt,i

ηλt,i − (1−
√
βt)2︸ ︷︷ ︸

extra factor

if ηλt−1,i ≥ ηλt,i.

(74)

When βt is set adaptively, by (73) and (51), we have

∥P−1
t Pt−1∥2 = ∥Diag(Qt,1, . . . , Qt,d)

−1Diag(Qt−1,1, . . . , Qt−1,d)∥2

≤ maxi∈[d]



√
1 +

ηλt,i − ηλt−1,i

(1 +
√
βt)2 − ηλt,i

+ 3

√
|βt−1 − βt|

|4βt − (1 + βt − ηλt,i)2|
+ 3

√√
|βt−1 − βt||ηλt,i − ηλt−1,i|
|4βt − (1 + βt − ηλt,i)2|︸ ︷︷ ︸

extra factor, if λt,i≥λt−1,i

,

√
1 +

ηλt−1,i − ηλt,i

ηλt,i − (1−
√
βt)2

+ 3

√
|βt−1 − βt|

|4βt − (1 + βt − ηλt,i)2|
+ 3

√√
|βt−1 − βt||ηλt,i − ηλt−1,i|
|4βt − (1 + βt − ηλt,i)2|︸ ︷︷ ︸

extra factor, if λt−1,i≥λt,i

,

(75)

We now have completed the proof.

D. Proof of Lemma 3
Lemma 3 Suppose that the Hessian of f(·) is LH -Lipschitz, i.e., ∥∇2f(x) −∇2f(y)∥2 ≤ LH∥x − y∥2, for any pair of
x, y. Then, |λt,i − λt−1,i| ≤ LH∥wt − wt−1∥2.

Proof.

|λt,i − λt−1,i|
(a)

≤ ∥Ht −Ht−1∥2

= ∥η
∫ 1

0

∇2f
(
(1− τ)wt + τw∗

)
dτ − η

∫ 1

0

∇2f
(
(1− τ)wt−1 + τw∗

)
dτ∥2

(b)

≤ ηLH∥wt − wt−1∥2,

(76)

where (a) is due to Theorem 5 below and (b) is by the assumption that the Hessian is LH -Lipschitz.

Theorem 5 (Theorem 8.1 in (Bhatia, 2007)). Let A and B be Hermitian matrices with eigenvalues λ1(A) ≥ λ2(A) ≥
· · · ≥ λd(A) and λ1(B) ≥ λ2(B) ≥ · · · ≥ λd(B). Then,

max
j∈[d]
|λj(A)− λj(B)| ≤ ∥A−B∥2.

E. Proof of Theorem 2
Theorem 2 Let θ = 2

(
L
4

(
1 + 1

cη

)
− cµµ

)
> 0 for any cη ∈ (0, 1] and any cµ ∈ (0, 1

4 ]. Set the step size η =
cη
L and set

the momentum parameter βt so that for all t, βt ≤
√(

1− c̃c2η
µ
L

)(
1− cµµ

L
4

(
1+ 1

cη

)
+ θ

2

)
for some constant c̃ ∈ (0, 1]. Then,
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HB has
Vt ≤

(
1− c̃c2η

µ

L

)t
V0 =

(
1−Θ

(µ
L

))t
V0, (77)

where the Lyapunov function Vt is defined on (19).

Proof. From the update of HB, we have following three basic equalities and inequalities:

wt − wt−1 = −η∇f(wt−1) + βt−1(wt−1 − wt−2) (78)

∥wt − wt−1∥2 = η2∥∇f(wt−1)∥2 + β2
t−1∥wt−1 − wt−2∥2 − 2ηβt−1⟨∇f(wt−1), wt−1 − wt−2⟩. (79)

f(wt) ≤ f(wt−1) + ⟨∇f(wt−1), wt − wt−1⟩+
L

2
∥wt − wt−1∥2. (80)

Combining the above three, we get

f(wt) ≤ f(wt−1)− η∥∇f(wt−1)∥2 + βt−1⟨∇f(wt−1), wt−1 − wt−2⟩+
η2L

2
∥∇f(wt−1)∥2

+
Lβ2

t−1

2
∥wt−1 − wt−2∥2 − Lηβt−1⟨∇f(wt−1), wt−1 − wt−2⟩. (81)

Multiplying (79) by θ and adding it to (81), we have

f(wt) + θ∥wt − wt−1∥2 ≤ f(wt−1)− η∥∇f(wt−1)∥2 + βt−1⟨∇f(wt−1), wt−1 − wt−2⟩+
η2L

2
∥∇f(wt−1)∥2

+
Lβ2

t−1

2
∥wt−1 − wt−2∥2 − Lηβt−1⟨∇f(wt−1), wt−1 − wt−2⟩

+ θ
(
η2∥∇f(wt−1)∥2 + β2

t−1∥wt−1 − wt−2∥2 − 2ηβt−1⟨∇f(wt−1), wt−1 − wt−2⟩
)
. (82)

After grouping some terms, we obtain

f(wt) + θ∥wt − wt−1∥2 ≤ f(wt−1) +

(
L

2
+ θ

)
β2
t−1∥wt−1 − wt−2∥2

+

(
η2L

2
− η + θη2

)
∥∇f(wt−1)∥2

+ (1− Lη − θ2η)βt−1⟨∇f(wt−1), wt−1 − wt−2⟩, (83)

which can be further bounded as

f(wt) + θ∥wt − wt−1∥2 ≤ f(wt−1) + (
L

2
+ θ)β2

t−1∥wt−1 − wt−2∥2 + (
η2L

2
− η + θη2)∥∇f(wt−1)∥2

+
cη (1− Lη − θ2η)

L
∥∇f(wt−1)∥2 +

L

4cη
(1− Lη − θ2η)β2

t−1∥wt−1 − wt−2∥2

= f(wt−1)−
c2η
L

(
1

2
+

θ

L

)
∥∇f(wt−1)∥2 +

(
L

4

(
1 +

1

cη

)
+

θ

2

)
β2
t−1∥wt−1 − wt−2∥2,

(84)

where we used ⟨a, b⟩ ≤ ∥a∥∥b∥ ≤ 1
2∥a∥

2 + 1
2∥b∥

2 with a ←
√

2cη
L ∇f(wt−1) and b ← βt−1

√
L
2cη

(wt−1 − wt−2) to

bound the last term on (83), and we get the equality by grouping the common terms and replacing η =
cη
L .

Now subtracting f(w∗) from both sides of (84) and using the PL inequality, i.e., 2µ(f(wt−1)− f(w∗)) ≤ ∥∇f(wt−1)∥2,
we get

f(wt)−f(w∗)+θ∥wt−wt−1∥2 ≤

(
1−

c2ηµ

L

(
1 +

2θ

L

))
(f(wt−1)− f(w∗))+

(
L

4

(
1 +

1

cη

)
+

θ

2

)
β2
t−1∥wt−1−wt−2∥2.

(85)
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To complete the proof, we need to bound the r.h.s. of inequality (85) by(
1− c̃c2η

µ

L

) (
f(wt−1)− f(w∗) + θ∥wt−1 − wt−2∥2

)
,

for some c̃ ∈ (0, 1]. Since −(1 + 2θ
L ) ≤ −c̃, we only need β2

t−1 ≤ (1 − c̃c2η
µ
L )

(
θ

L
4

(
1+ 1

cη

)
+ θ

2

)
=(

1− c̃c2η
µ
L

)(
1− cµµ

L
4

(
1+ 1

cη

)
+ θ

2

)
.

F. Proof of Theorem 3
Theorem 3 Suppose assumption ♣ holds and that λmin(Ht)-AVERAGE OUT w.r.t. w∗ holds for all t. Let θ :=

2
(

L
4

(
1 + 1

cη

)
− cµµ

)
> 0, where cµ ∈ (0, 1

4 ]. Set the step size η =
cη
L for any constant cη ∈ (0, 1] and set the momen-

tum parameter βt =
(
1− c

√
ηλmin(Ht)

)2
for some c ∈ (0, 1) satisfying βt ≤

√(
1− c̃c2η

µ
L

)(
1− cµµ

L
4

(
1+ 1

cη

)
+ θ

2

)
for

some constant c̃ ∈ (0, 1]. Then, for all t, the iterate wt of HB satisfies (20), i.e., the Lyapunov function Vt decays linearly

for all t. Furthermore, there exists a time t0 = Θ̃
(

1
c̃
L
µ

)
such that for all t ≥ t0, the instantaneous rate ∥Ψt∥2 at t is

∥Ψt∥2 = 1−
c
√
cη

2

1
√
κt

= 1−Θ

(
1
√
κt

)
, (86)

where κt :=
L

λmin(Ht)
. Consequently,

∥wT+1 − w∗∥ = O

(
T∏

t=t0

(
1−Θ

(
1
√
κt

)))
∥wt0 − w∗∥.

Proof. Let us first recall that {λt,i}di=1 are the eigenvalues ofHt :=
∫ 1

0
∇2f

(
(1− τ)wt + τw∗

)
dτ in the decreasing order.

Hence, we can write βt = (1 − c
√

ηλt,d)
2 for some c ∈ (0, 1), where λt,d = λmin(Ht) ≥ λ∗ > 0 for some constant

λ∗ > 0.

From Lemma 2, we know the instantaneous rate ∥Ψt∥2 satisfies

∥Ψt∥2 =



(√
βt

)
×

(
max
i∈[d]

√
1 +

ηλt,i − ηλt−1,i

(1 +
√
βt)2 − ηλt,i

+ 1{βt ̸= βt−1}ϕt,i

)
︸ ︷︷ ︸

extra factor 1

, if λt,i ≥ λt−1,i

(√
βt

)
×

(
max
i∈[d]

√
1 +

ηλt−1,i − ηλt,i

ηλt,i − (1−
√
βt)2

+ 1{βt ̸= βt−1}ϕt,i

)
︸ ︷︷ ︸

extra factor 2

, if λt−1,i ≥ λt,i.

(87)

Let us first analyze the denominator of the first term in the extra factors. There are two cases.

• Suppose λt,i ≥ λt−1,i (the first term in the extra factor is
√

1 +
ηλt,i−ηλt−1,i

(1+
√
βt)

2−ηλt,i

) :

We first show that the denominator
(
1 +
√
βt

)2 − ηλt,i is non-zero. If it were zero, then it implies that(
1 +

√
βt

)
=
√

ηλt,i, (88)
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which would contradict to the choice of βt = (1 − c
√
ηλt,d)

2 > (1 −
√

ηλt,i)
2 for all i ∈ [d]. It suffices to assume

that the denominator is lower bounded by a positive number, i.e.,(
1 +

√
βt

)2
− ηλt,i ≥ c0 > 0. (89)

Otherwise, given that λt,i ≥ λt−1,i, we can trivially upper-bound
√

1 +
ηλt,i−ηλt−1,i

(1+
√
βt)

2−ηλt,i

by 1.

• Suppose λt,i ≤ λt−1,i (the first term in the extra factor in
√

1 +
ηλt−1,i−ηλt,i

ηλt,i−(1−
√
βt)

2 ):

We need to lower-bound ηλt,i −
(
1−
√
βt

)2
. We have

ηλt,i −
(
1−

√
βt

)2
= ηλt,i − (1− (1− c

√
ηλt,d))

2 = ηλt,i − c2ηλt,d ≥ ηλt,d(1− c2) := c1 > 0. (90)

So the first term in the extra factor can be bounded as

max

(
max
i∈[d]

√
1 +

ηλt,i − ηλt−1,i

(1 +
√
βt)2 − ηλt,i

,max
i∈[d]

√
1 +

ηλt−1,i − ηλt,i

ηλt,i − (1−
√
βt)2

)
≤ max

i∈[d]

√
1 +

η|λt−1,i − λt,i|
min(c0, c1)

. (91)

Using Lemma 3, we further have

max

(
max
i∈[d]

√
1 +

ηλt,i − ηλt−1,i

(1 +
√
βt)2 − ηλt,i

,max
i∈[d]

√
1 +

ηλt−1,i − ηλt,i

ηλt,i − (1−
√
βt)2

)
≤

√
1 +

ηLH∥wt−1 − wt∥2
min(c0, c1)

. (92)

It is noted that if a constant value of the β is used, e.g., βt = (1 − c
√
ηλ∗)

2 = (1 − c
√
cη√
κ
)2 for some c ∈ (0, 1), where

κ := L
λ∗

, then (92) still holds for some c0, c1 > 0, which can be seen by tracing the derivations in (89) and (90).

Now let us switch to bounding the second term of the extra factors. The second term is zero if the momentum parameter
is set to a constant value during the iterations, e.g., βt = (1 − c

√
ηλ∗)

2 = (1 − c
√
cη√
κ
)2. If the momentum parameter is

set adaptively as βt = (1 − c
√
ηλt,d)

2 for some c ∈ (0, 1), then from Lemma 3 (50) we need to bound the r.h.s. of the
following,

ϕt,i ≤ 3

√
|βt−1 − βt|

|4βt − (1 + βt − ηλt,i)2|
+ 3

√√
|βt−1 − βt||ηλt,i − ηλt−1,i|
|4βt − (1 + βt − ηλt,i)2|

. (93)

From (43) and the proof of Lemma 3 (i.e., (65) - (73)), the term |4βt − (1 + βt − ηλt,i)
2| in r.h.s. of (93) is actually

2 (ℑzt,i)2, i.e., |4βt − (1 + βt − ηλt,i)
2| = 2 (ℑzt,i)2, where zt,i, z̄t,i are eigenvalues of Σ̃t,i :=

[
1 + βt − λi −βt

1 0

]
.

When βt >
(
1−

√
ηλt,d

)2
, the sub-matrix Σ̃i has complex eigenvalues and hence (ℑzi)2 > 0. Since βt = (1−c

√
ηλt,d)

2

for some c ∈ (0, 1), we know
|4βt − (1 + βt − ηλt,i)

2| ≥ c23 > 0 (94)

for some constant c3 > 0. On the other hand, the factor |βt−1 − βt| in r.h.s. of (93) can be bounded as

|βt−1 − βt| =
∣∣∣∣(1− c

√
ηλt−1,d

)2
−
(
1− c

√
ηλt,d

)2∣∣∣∣
=
∣∣∣c(√ηλt,d −

√
ηλt−1,d

)(
2− c

(√
ηλt,d +

√
ηλt−1,d

))∣∣∣
≤ c
√
|ηλt,d − ηλt−1,d|

∣∣∣(2− c
(√

ηλt,d +
√

ηλt−1,d

))∣∣∣
≤ 2c

√
ηLH∥wt − wt−1∥2, (95)

where the last inequality uses Lemma 3.
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Hence by (87), (92)-(95), we get

∥Ψt∥2 ≤√
βt

(√
1 +

ηLH∥wt−1 − wt∥
min(c0, c1)

+ 1[βt ̸= βt−1]

(
3

c3

(√
2c
√
ηLH∥wt − wt−1∥2 +

√√
2c
√
ηLH∥wt − wt−1∥2

)))
.

(96)

The strategy now is to show the following two items hold for all iterations t ≥ t0 for some t0.

• (first item)
√
1 + ηLH∥wt−1−wt∥

min(c0,c1)
≤ 1 + c

4

√
ηλmin(Ht)

• (second item)
(

3
c3

(√
2c
√
ηLH∥wt − wt−1∥2 +

√√
2c
√
ηLH∥wt − wt−1∥2

))
≤ c

4

√
ηλmin(Ht).

The above items would allow us to show that

∥Ψt∥2 ≤
(
1− c

√
ηλmin(Ht)

)(
1 +

c

4

√
ηλmin(Ht) +

c

4

√
ηλmin(Ht)

)
≤ 1− c

2

√
ηλmin(Ht) = 1−Θ

(√
λmin(Ht)

L

)
,

(97)
which is an accelerated linear rate.

So now let us analyze the number of iterations required for the first item to hold. We have

log

(√
1 +

ηLH∥wt−1 − wt∥
min(c0, c1)

)
≤ 1

2
log

(
1 +

ηLH∥wt−1 − wt∥
min(c0, c1)

)
≤ ηLH∥wt−1 − wt∥

2min(c0, c1)

(a)

≤
ηLH

√(
1− c̃c2η

µ
L

)t
V0

2min(c0, c1)

√
1

θ

(b)

≤ log
(
1 +

c

4

√
ηλmin(Ht)

)
, (98)

where (a) is by Theorem 2 and (b) holds when t = Θ
(

1
c̃c2η

L
µ log

(
L2

HV0

min{c20,c21}θ

))
iterations. For the first term in the second

item, we have

3

c3

(√
2c
√
ηLH∥wt − wt−1∥2

)
≤ c

8

√
ηλmin(Ht) ⇐⇒ ∥wt − wt−1∥2 ≤

(
cc3
√

ηλmin(Ht)

24
√
2c(ηLH)1/4

)4

. (99)

Using Theorem 2 again, we have

∥wt − wt−1∥2 ≤
√(

1− c̃c2η
µ

L

)t
V0

√
1

θ
≤

(
cc3
√
ηλmin(Ht)

24
√
2c(ηLH)1/4

)4

, (100)

where the last inequality holds when t = Θ
(

1
c̃c2η

L
µ log

(
L2L2

HV0

c83λ
4
∗θ

))
. For the second term in the second item, we have

3

c3

√√
2c
√
ηLH∥wt − wt−1∥2 ≤

c

8

√
ηλmin(Ht) ⇐⇒ ∥wt − wt−1∥2 ≤

(
cc3
√

ηλmin(Ht)

24(2c)1/4(ηLH)1/4

)4

. (101)

Using Theorem 2 again, we have

∥wt − wt−1∥2 ≤
√(

1− c̃c2η
µ

L

)t
V0

√
1

θ
≤

(
cc3
√
ηλmin(Ht)

24(2c)1/4(ηLH)1/4

)4

, (102)
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where the last inequality holds when t = Θ
(

1
c̃c2η

L
µ log

(
L2L2

HV0

c83λ
4
∗θ

))
.

So now we can conclude that after t0 = Θ̃
(

L
µ

)
number of iterations, where Θ̃ (·) hides the following logarithmic factor

max

{
log

(
L2
HV0

min{c20, c21}θ

)
, log

(
L2L2

HV0

c83λ
4
∗θ

)}
, (103)

and c0, c1, c3 > 0 are constants defined in (89), (90), (94), the instantaneous rate satisfies ∥Φt∥2 ≤ 1− c
2

√
ηλmin(Ht) =

1− c
√
cη
2

1√
κt

= 1−Θ
(

1√
κt

)
.

G. Proof of Lemma 4 and Lemma 5
Lemma 4 Let α ∈ (1, 4.34]. The function f(w) in (29) is twice differentiable and has L = 2 + 2α-Lipschitz, LH = 4α-
Lipschitz Hessian, and its global optimal point is w∗ = 0. Furthermore, it is non-convex but satisfies µ-PL with µ =
(2+ sin(2w)

w α)
2

2+2α ≥ (2−0.46α)2

2+2α at any w and the average Hessian is Hf (w) = 2 + sin(2w)
w α > 0, where | sin(2w)

w | ≤ 0.46.
Therefore, the condition λ∗-AVERAGE OUT w.r.t. w∗ holds with λ∗ = 2− 0.46α.

Proof. Consider
f(w) = w2 + α sin2(w), (104)

for some constant α ∈ (1, 4.34], whose minimizer is w∗ = 0. Its gradient and Hessian are

∇f(w) = 2w + 2α sin(w) cos(w)

H(w) = 2 + 2α(cos2(w)− sin2(w)). (105)

It is clear thatH(w) < 0 at some w for any α > 1. Also, for any two points x, y, we have |H(x)−H(y)| = |2α(cos(2x)−
cos(2y))| ≤ 4α|x− y|, where we used the mean value theorem. So the function has LH = 4α-Lipschitz Hessian.

Now consider the average Hessian Hf (w) :=
∫ 1

0
H(θw + (1− θ)w∗)dθ. We have∫ 1

0

H(θw + (1− θ)w∗)dθ =

∫ 1

0

(
2 + 2α(cos2(θw)− sin2(θw))

)
dθ = 2 + 2α

∫ 1

0

(cos2(θw)− sin2(θw))dθ

= 2 + 2α

∫ 1

0

cos(2θw)dθ

= 2 +
α

w
sin(2θw)|10 = 2 +

α sin(2w)

w

Lemma 9
> 2− 0.46α > 0. (106)

Also, since the Hessian H(w) can be bounded by 2 + 2α, we know f(·) is 2 + 2α-smooth.

By Lemma 4, we have f(w) is µ−PL at w, where µ =
(2+

α sin(2w)
w )2

2+2α ≥ (2−0.46α)2

2+2α . We now have completed the proof.

Lemma 9. We have g(x) := sin(2x)
x ≥ −0.46.

Proof. We have g′(x) = 0 when 2x = tan(2x). Denote x∗ a critical point so that it satisfies 2x∗ = tan(2x∗). Then

|g(x∗)| =
∣∣∣∣ sin(arctan(2x∗))

x∗

∣∣∣∣ =
∣∣∣∣∣ 2√

(2x∗)2 + 1

∣∣∣∣∣ , (107)

where we used that sin(arctan(2x)) = ± 2x√
(2x)2+1

. We hence know that the absolute value of g(x) at a critical point is

decreasing with |x|. We know g(0) = 2 is the maximal value. With the computer-aided analysis (as there is no simple
closed form), the second extreme value can be approximately lower bounded by g(·) ≥ −0.46.
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Lemma 5 Consider solving
minw∈Rd F (w) := minw∈Rd f(w) + g(w).

Suppose the function F (w) satisfies assumption ♣. Denote w∗ a global minimizer of F (w). Assume that f(w) is 2λ∗-
strongly convex for some λ∗ > 0. If the average Hessian of the possibly non-convex g(w) between w and w∗ satisfies
λmin(Hg(w)) ≥ −λ∗. Then, F (·) satisfies λ∗-AVERAGE OUT w.r.t. w∗.

Proof. The average Hessian of F (w) between w and w∗ is∫ 1

0

HF (θw + (1− θ)w∗)dθ =

∫ 1

0

Hf (θw + (1− θ)w∗)dθ +

∫ 1

0

Hg(θw + (1− θ)w∗)dθ

≥ 2λ∗ +

∫ 1

0

Hg(θw + (1− θ)w∗)dθ

≥ λ∗. (108)

H. Example 3
H.1. Proof of Lemma 6

Lemma 6 (N = 2). The function f(u) in (30) is twice differentiable. It is L = 3R2-smooth and has LH = 6R-Lipschitz
Hessian in the ball {u : ∥u∥∞ ≤ R} for any finite R > 0. Furthermore, f(u) is µ-PL with µ = 2mini∈[d](ui)

2 at u, and
the average Hessian Hf (u) between u and û ∈ U satisfies λmin(Hf (u)) = mini∈[d]

(
(ui)

2 + uiûi

)
.

Proof. Recall the objective is f(u) = 1
N2 ∥u⊙N − w∗∥2. The gradient is ∇f(u) = 2

N

(
u⊙N − w∗

)
⊙ u⊙N−1and the

Hessian is∇2f(u) = Diag
(
2 2N−1

N u⊙2N−2 − 2N−1
N u⊙N−2 ⊙ w∗

)
. We have

∥∇f(u)∥2 = [
2

N

(
u⊙N − w∗

)
⊙ u⊙N−1]⊤[

2

N

(
u⊙N − w∗

)
⊙ u⊙N−1]

=
4

N2

d∑
i=1

(ui)
2(N−1)(uN

i − w∗,i)
2

≥ 4

N2
min
i∈[d]

(ui)
2(N−1)∥u⊙N − w∗∥22 = 4min

i∈[d]
(ui)

2(N−1)f(u). (109)

So it satisfies µ-PL with µ = 2mini∈[d](ui)
2(N−1) at u.

Now let us consider the average Hessian for the case of N = 2. We have ∇2f(u) = Diag(3u⊙2 − w∗). The set of global
optimal points is U := {û ∈ Rd : ûi = ±

√
w∗,i}. So the average Hessian between u and û is

Hf (u) =

∫ 1

0

∇2f(θu+ (1− θ)û)dθ =

∫ 1

0

Diag(3(θu+ (1− θ)û)⊙2 − w∗)dθ

= Diag(u⊙2 + uû+ w∗ − w∗). (110)

It is now clear that the smallest eigenvalue of Hf (u) is mini∈[d]

(
(ui)

2 + uiûi

)
. Hence, it satisfies λ∗-AVERAGE OUT

w.r.t. û with the parameter λ∗ = mini∈[d]

(
(ui)

2 + uiûi

)
if λ∗ > 0.

We have λmax(∇2f(u)) = maxi∈[d] 3u
2
i − w∗,i so that the gradient is L = 3R2-Lipschitz in the ball ∥u∥∞ ≤ R.

Moreover, for u, z in the ball ∥ · ∥∞ ≤ R, we have

∥∇2f(u)−∇2f(z)∥ = ∥Diag(3u⊙2)−Diag(3z⊙2)∥ ≤

√√√√ d∑
i=1

(3u2
i − 3z2i )

2 ≤ 3

√√√√ d∑
i=1

(|ui + zi||ui − zi|)2 ≤ 6R∥u−z∥.

(111)
So the Hessian is LH = 6R-Lipschitz in the ball ∥ · ∥∞ ≤ R.
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H.2. Proof of Lemma 7

Lemma 7 Let the initial point u0 = α1 ∈ Rd
+, where α satisfies 0 < α < mini∈[d]

√
w∗,i. Denote L := 6maxi∈[d] w∗,i.

Let η =
cη
L , where cη ∈ (0, 1], and βt ≤

√
(1− 2c2η c̃α

2

L )
(
1− 4cµ

2α2

L

)
for any c̃ ∈ (0, 1] and cµ ∈ (0, 1

4 ]. Then, for
minimizing (30), the iterate ut generated by HB satisfies 0 < α < ut,i <

√
2w∗,i − α2 for all t and all i ∈ [d].

Proof. We observe that the dynamic of HB for minimizing (30) is

ut+1 = ut ⊙
(
1 + η(w∗ − u⊙2

t )
)
+ β(ut − ut−1), (112)

where ⊙ represents the element-wise product. From the dynamic, we see that the dynamic of each dimension i is the same
as that of applying HB for minimizing fi(ui) :=

1
4 (u

2
i −w∗,i)

2. Therefore, it suffices to fix an i and consider the dynamic
of HB for minimizing

fi(ui) :=
1

4
(u2

i − w∗,i)
2, (113)

where fi(·) : R→ R.

Let us recall the Lyapunov function defined on (19): Vt,i := fi(ut,i) −minui fi(ui) + θ(ut,i − ut−1,i)
2, where we have

fi(ui) = 1
4 (u

⊙2
i − w∗,i)

2 and minui
fi(ui) = 0. We will let L := 6maxi∈[d] w∗,i because we will show that ut,i ≤√

2w∗,i := R and hence by Lemma 6, the function f(·) is 3R2 = 6maxi∈[d] w∗,i-smooth for all {u ∈ Rd : ∥u∥∞ = R}.

Observe that at the beginning, we have

V0,i = fi(u0,i) =
1

4
(α2 − w∗,i)

2 (114)

since by initialization u0,i = u−1,i.

The proof is by induction. Initially t = 0, by Lemma 6, the function value at the iterate ut,i = α > 0 satisfies the PL
condition. Therefore, invoking Theorem 2, we have V1,i < V0,i =

1
4 (α

2 −w∗,i)
2. Since V1,i < V0,i =

1
4 (α

2 −w∗,i)
2, we

know that 0 < α < u1,i <
√

2w∗,i − α2. In other words, based on Lemma 6, the iterate u1,i stays in a region where the
smoothness, PL, and AVERAGE OUT hold.

Now assume that at iteration t, ut,i satisfies 0 < α < ut,i <
√
2w∗,i − α2. Then, by invoking Theorem 2, we have

Vt+1,i ≤ Vt,i, and hence Vt+1,i < V0,i = 1
4 (α

2 − w∗,i)
2, which means that 0 < α < ut+1,i <

√
2w∗,i − α2. This

completes the induction and shows that each ut,i of HB stays away from 0 for all t and all i ∈ [d].

Finally, by Lemma 6, we know the function at any point u such that ui ≥ α, ∀i ∈ [d] satisfies µ = 2α2-PL.

We remark that if initially u0,i = −α < 0, where α < mini
√
w∗,i, then following the proof of Lemma 7, one can show

that ut,i generated by HB with the same condition of η and β satisfies 0 > α > ut,i > −
√
2w∗,i − α2 for all t, which

means that HB stays in a region where the smoothness, PL, and AVERAGE OUT hold according to Lemma 6.


