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Abstract
Significant theoretical work has established that in specific regimes, neural networks trained by
gradient descent behave like kernel methods. However, in practice, it is known that neural networks
strongly outperform their associated kernels. In this work, we explain this gap by demonstrating
that there is a large class of functions which cannot be efficiently learned by kernel methods but can
be easily learned with gradient descent on a two layer neural network outside the kernel regime by
learning representations that are relevant to the target task. We also demonstrate that these
representations allow for efficient transfer learning, which is impossible in the kernel regime.

Specifically, we consider the problem of learning polynomials which depend on only a few
relevant directions, i.e. of the form f ? ( x )  =  g(U x) where U : Rd  !  R r  with d  r. When the
degree of f ?  is p, it is known that n  dp samples are necessary to learn f ?  in the kernel regime.
Our primary result is that gradient descent learns a representation of the data which depends only on
the directions relevant to f ? .  This results in an improved sample complexity of n  d2r +  drp.
Furthermore, in a transfer learning setup where the data distributions in the source and target domain
share the same representation U but have different polynomial heads we show that a popular heuristic
for transfer learning has a target sample complexity independent of d.
Keywords: neural network, gradient descent, representation learning, transfer learning, kernel

1. Introduction

Crucial to the practical success of deep learning is the ability of gradient-based algorithms to learn
good feature representations from the training data and learn simple functions on top of these rep-
resentations. Despite significant progress towards a theoretical foundation for neural networks, a
robust understanding of this unique representation learning capability of gradient descent methods
has remained elusive. A  major challenge is that due to the highly nonconvex loss landscape, es-
tablishing convergence to a global optimum that achieves near zero training loss is challenging.
Furthermore, due to the overparameterized nature of modern neural nets (containing many more
parameters than training data) the training landscape has many global optima. In fact, there are
many global optima with poor generalization performance (Zhang et al., 2016; Liu et al., 2020).
This paper thus focuses on answering this intriguing question:

How do gradient-based methods learn feature representations and why do these
representations allow for efficient generalization and transfer learning?

© 2022 A. Damian, J.D. Lee & M. Soltanolkotabi.
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The most prominent contemporary approach to understanding neural networks is the lineariza-
tion or neural tangent kernel (NTK) (Soltanolkotabi et al., 2018; Jacot et al., 2018) technique. The
premise of the linearization method is that the dynamics of gradient descent are well-approximated
by gradient descent on a linear regression instance with fixed feature representation. Using this lin-
earization technique, it is possible to prove convergence to a zero training loss point (Soltanolkotabi et
al., 2018; Du et al., 2018b, 2019a). However, this technique often requires unrealistic hyper-
parameter choices (e.g. small learning rate, large initialization, or wide networks) that does not
allow the features to evolve across the iterations and thus the generalization error with this tech-
nique cannot be better than that of a kernel method. Indeed, precise lower bounds show that the
NTK solutions do not generalize better than the polynomial kernel (Ghorbani et al., 2019a). As a
result this regime of training is also sometimes referred to as the lazy regime Chizat et al. (2019).1 In
practice, neural networks far outperform their corresponding induced kernels (Arora et al., 2019a).
Therefore, understanding the representation learning of neural networks beyond the lazy regime is of
fundamental importance.

In this paper, we initiate the study of the representation learning of neural networks beyond
this NTK/linear/lazy regime. To this aim, we consider the problem of learning polynomials with
low-dimensional latent representation of the form f ( x )  =  g(U x), where U maps from d to r
dimensions with d  r  with g a multivariate polynomial of degree p. This is a natural choice as
the failure of the NTK solution is in part due to its inability to learn data-dependent feature
representations that adapt to the intrinsic low latent dimensionality of the ground truth function.
Existing analysis based on the NTK regime provably require n  dp samples (Ghorbani et al.,
2019a) to learn any degree p polynomial, even if they only depend on a few relevant directions. In
contrast we show that gradient descent from random initialization only requires n  d2 +r p samples,
breaking the sample complexity barrier dictated by NTK proof techniques. More specifically, our
contributions are as follows:

1. Feature Learning: When the target function f ?  =  g(U x) only depends on the projection of x
onto a hidden subspace span(U ), we show that gradient descent learns features that span
span(U ). Leveraging these features, gradient descent can reach vanishing training loss with a
very small network which guarantees good generalization performance. See Section 5.1.

2. Improved Sample Complexity: Using classical generalization theory, we demonstrate that
when f ?  : Rd  !  R  is a polynomial of degree p which depends on r  relevant dimensions
(Assumption 1), gradient descent on a two layer neural network learns f ?  with only n  d2r
+  drp samples. This contrasts with the lower bound for random features/NTK methods which
require dp samples to learn any degree p polynomial. See Theorem 1.

3. Transfer learning: We show that when the target task ground truth is ftarget (x) =  g~(U x),
then by simply retraining the network head, gradient descent learns ftarget with only N   r
target samples and width m  r  , which is independent of the ambient dimension d. In
contrast, learning from scratch would require N   dOmega(p) target samples.

4. Lower Bound: Finally, we show a lower bound that demonstrates our non-degeneracy as-
sumption (Assumption 2) is strictly necessary. Without the non-degeneracy, there is a family

1. See Section 4 for a more in depth discussion of this literature and other related work.
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of polynomials which depend on single relevant dimensions (i.e. of the form f ? (x)  =  g(ux))
which cannot be learned with fewer than n  dp=2 by any gradient descent based learner.

2. Setup

2.1. Input Distribution and Target Function

In this paper we focus on learning a target function f ? (x)  : Rd  !  R  over the input distribution
D  : =  N (0; Id ). We assume that f ?  is a degree p polynomial, normalized so that ExD [f ? (x)2 ]  =  1: We
will attempt to learn f ?  given n i.i.d. datapoints fxi ; yi gi2[n]  with

x i   D; yi =  f ? (x i )  +  i and i   f  &;&g

where &2 controls the strength of the label noise.
In order to make the problem of learning f ?  tractable, additional assumptions are necessary.

The set of degree p polynomials in d dimensions span a linear subspace of L 2 (D )  of dimension
(dp). Learning arbitrary degree p polynomials therefore requires n & dp samples. We follow Chen
and Meka (2020); Chen et al. (2020b) in assuming that the ground truth f ?  has a special low
dimensional latent structure. Specifically, we assume that f ?  only depends on a small number of
relevant dimensions and that the expected Hessian is non degenerate. We show in Theorem 2 that
this non degeneracy assumption is strictly necessary to avoid sample complexity d
(p) .

Assumption 1 There exists a function g : R r  !  R  and linearly independent vectors u1; : : : ; ur
such that for all x  2  Rd ,

f ? (x)  =  g(hx; u1i; : : : ; hx; ur i):

We will call S ? : =  span(u1; : : : ; ur) the principal subspace of f ? . We will also denote by ? : =  S ?

the orthogonal projection onto S ? .

Note that Assumption 1 guarantees that for any x, span(r2 f ? (x))   S ? . In particular, if we
denote the average Hessian by H  : =  E x D [ r 2 f ? (x ) ] ,  we have that span(H )  S ? so that H  has rank at
most r. The following non-degeneracy assumption states that H  has rank exactly r.

Assumption 2 H  : =  E x D [ r 2 f ? (x ) ]  has rank r, i.e. span(H ) =  S ?.

We will also denote the normalized condition number of H  by  : =  kH
r
k .

2.2. The Network and Loss

Let (x)  =  ReLU(x)  =  max(0; x), let a 2  Rm , W 2  Rmd, b 2  Rm , and let  =  (a; W; b). We
define the neural network f  by

f ( x )  =  aT (W x +  b) =  
X

a j ( w j   x  +  bj ); j = 1

where m denotes the width of the network. We use a symmetric initialization, so that f 0 (x )  =  0
(Chizat and Bach, 2018a). Explicitly, we will assume that m is an even number and that

aj =   am j ; wj =  wm j and bj =  bm j 8j  2  [m=2]:
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We will use the following initialization:

aj  f  1; 1g; wj  N  0; 
d

Id and bj =  0:

We note that while we focus on such symmetric initialization for clarity of exposition, our results
also hold with small random initialization that is not necessarily symmetric. This holds by simple
modifications in the proof accounting for the small nonzero output of the network at initialization.
We will also denote the empirical and population losses by L ( )  and L D ( )  respectively:

L ( )  =  
1 X

( f ( x i )  yi )2

i = 1

h i
and L D ( )  =  E x D      ( f ( x )       f  (x) )  :

2.3. Notation

We use . ; O ( ) ;
()  to denote quantities that are related by absolute constants and we treat p;& =
O(1). We use O;
 to hide additional dependencies on polylog(mnd). We denote the L 1 (D )  and
L 2 (D )  losses of a function f  by Ex;y j f (x)  yj and Ex;y ( f ( x )  y)2 respectively where x   D, y
=  f ? (x)  +  , and   f&g.

3. Main Results

Before we formally state our main result let us specify the exact form of gradient-based training we
use in our theory.

Input: Learning rates t, weight decay t, number of steps T
preprocess data

1 n yi, 1 n yi x i
yi yi    x i  for i  =  1; : : : ; n

end
W (1) W (0) 

1 [ r W  L ( )  +  1W ] re-
initialize bj   N (0; 1)
for t =  2 to T do

a(t) a(t 1) 
t [ r a L ( ( t  1) ) +  ta(t 1)] end

return Prediction function x  !   +    x  +  aT (W x +  b)
Algorithm 1: Gradient-based training

With this algorithm in place, we are now ready to state our main result.

Theorem 1 Consider the data model, network and loss per Section 2 and train the network via
Algorithm 1 with parameters 1 =  O( d), 1 =   1, and t =  ; t =   for t  2. Further-more, assume n
(d2 2r) and d
(r3=2). Then, there exists  such that if  is sufficiently small, T =  (  1 1) and (T )  denotes the final
iterate of Algorithm 1, we have that the excess population loss in L 1 (D )  is bounded with probability
at least 0:99 by

r
p

 
2p

r  
p

 
2p

!
Ex;y j f ( T ) (x )  yj &  O

n
+

m
+  

n1=4 :

4



1
n

i2[N ]

R E P R E S E N TAT I O N L E A R N I N G WITH GD

It is useful to note that the use of  in the algorithm corresponds to the common practice of
weight decay and its value is chosen in such a way that a(T )   Ba , i.e. to solve a constrained
minimization problem (see Section 5.1). In practice, one simply tunes the hyperparameter  in order to
achieve the desired tradeoff between training and test loss.

An intriguing aspect of the above result is that despite the fact that f ?  may be of arbitrarily high
degree, learning f ?  requires only n & drp +  d2r samples and only requires a very small network
with m & rp. We note that our dependence on the latent dimension r  is near optimal as the minimax
sample complexity even when the principal subspace S ? is known is (rp).

We show in Theorem 3 that by resampling the data after the first step, the sample complexity can
be further reduced to d2r +  rp, dropping a factor of d from the second term. The extra factor of d
results from the dependence between the data used in the first and second stages and we believe that
a more careful analysis could remove this additional factor.

We contrast Theorem 1 with the following lower bound for learning a function class which
satisfies Assumption 1 with r  =  1 but does not satisfy Assumption 2.

Theorem 2 For any p  0, there exists a function class F p  of polynomials of degree p, each of which
depends on a single relevant dimension, such that any correlational statistical query learner using q
queries requires a tolerance  of at most

logp=4 (qd)
dp=4

in order to output a function f  2  F p  with L 2 (D )  loss at most 1.

Using the heuristic   p  , which represents the expected scale of the concentration error, we
get the immediate corollary that violating Assumption 2 allows us to construct a function class
which any neural network with polynomially many parameters trained for polynomially many steps
of gradient descent cannot learn without at least n & dp=2 samples. We emphasize that this is only a
heuristic argument as concentration errors are random rather than adversarial.

On the other hand, Theorem 1 shows that incorporating Assumption 2 allows gradient descent
to efficiently learn polynomials of arbitrarily high degree with only d2 samples.

The difference in sample complexity between Theorem 1 and Theorem 2 is that in Theorem 1,
our non-degeneracy assumption (Assumption 2) allows the network f  to extract useful features that

aid robust learning and allowed learning high degree polynomials with n & d2 samples. Theorem 2
shows that violating this assumption allows us to construct a function class which cannot be learned
without d
(p) samples, demonstrating the necessity of Assumption 2.

The fact that the network f  extracts useful features not only allows it to learn f ?  efficiently, but
also allows for efficient transfer learning. In particular, Theorem 3 shows that we can efficiently
learn any target polynomial g? (x) that depends on the same relevant dimensions as f ?  with sample
complexity independent of d by simply truncating and retraining the head of the network:

Theorem 3 Let g? (x) be a degree p polynomial with ED [g? (x)2 ] =  1 and g (x) =  g(? x) for all x
2  Rd . Let D N  =  f(xi ; yi )g be a second dataset with yi =  g (xi ) +  i . We retrain the last
layer of the network f  in Theorem 1 with gradient descent with learning rate  and weight decay , i.e.
we will use the function class:

ga(x) =  aT (W (1) x +  b)

5
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where W (1) is the second iterate of Algorithm 1 on the pre-training dataset. Assume that d =
(r3=2). Then there exists  such that if the network is pretrained on n
(d2 2r) datapoints from f ?  and  is sufficiently small, the excess population loss in L 1 (D )  after T =  (  1

1) steps
is bounded with probability at least 0:99 by

s                 !
p 2p

Ex;y jga( T ) (x) yj &  O
min(m; N )

 +  
N 1=4 :

Learning g?(x) therefore only requires N; m & rp, which is independent of the ambient dimension d.
We note that this is minimax optimal for learning arbitrary degree p polynomials even when the
hidden subspace S ? is known. Theorem 3 also shows that n  d2r pre-training samples are
necessary for gradient descent to learn the subspace S ? from the pre-training data.

4. Related work

A  growing body of recent work show the connection between gradient descent on the full network
and the Neural Tangent Kernel (NTK) Jacot et al. (2018); Oymak and Soltanolkotabi (2019, 2020);
Du et al. (2019b); Arora et al. (2019b); Du et al. (2018a); Lee et al. (2019). Using this technique one
can prove concrete results about neural network training (Li and Liang, 2018; Du et al., 2018a, 2019b;
Allen-Zhu et al., 2018; Zou et al., 2018) and generalization (Arora et al., 2019b; Oymak et al.,
2019; Allen-Zhu et al., 2019; Cao and Gu, 2019; Oymak et al., 2021) in the kernel regime. The key idea
is that for a large enough initialization, it suffices to consider a linearization of the neural network
around the origin. This allows connecting the analysis of neural networks with the well-studied
theory of kernel methods. This is also sometimes referred to as lazy training, as with such an
initialization the parameters of the neural networks stay close to the parameters at initialization and
these results can only show that neural networks are as powerful as shallow learners such as kernels.
There is however growing evidence that this NTK-style analysis might not be sufficient to
completely explain the success of neural networks in practice. The papers Chizat et al. (2019);
Woodworth et al. (2019) provides empirical evidence that by choosing a smaller initialization the
test error of the neural network decreases. A  similar performance gap between the performance of
the NTK and neural networks has been observed in Ghorbani et al. (2020). This NTK-style analysis
however does not yield satisfactory results in the setting studied in this paper. In particular for
learning the polynomials of the form we study in this paper, Ghorbani et al. (2019b) demonstrates
that one needs at least dp samples in the kernel regime. In contrast, our results only require on the
order of d2 samples.

Leveraging the fact that linearized models are not feature learners, Ghorbani et al. (2019b) and
Wei et al. (2019) showed precise upper and lower bounds on the sample complexity of NTK meth-
ods. They showed that because NTK is unable to learn new features, learning any polynomial in
dimension d of degree p requires n =  (dp) samples, which gives no improvement over polynomial
kernels. On the empirical front, the NTK linearization analysis is also lacking. Arora et al. (2019a)
demonstrated that the kernel predictor loses more than 20% in test accuracy relative to a deep net-
work trained with SGD and state-of-art regularization on CIFAR-10. Our work is motivated by the
contrast between these negative theoretical results for linearized NTK models and the spectacular
empirical performance of deep learning.

The gap between such shallow learners and the full neural network has been established in the-
ory (Wei et al., 2019; Allen-Zhu and Li,  2020, 2019; Yehudai and Shamir, 2019b; Ghorbani et al.,
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2019a; Woodworth et al., 2020; Dyer and Gur-Ari, 2019; Du and Lee, 2018) and observed in prac-
tice (Arora et al., 2019a; Lee et al., 2019; Chizat and Bach, 2018a). There is an emerging literature on
learning beyond the lazy/NTK regime in the small initialization setting. The papers L i  et al.
(2018); Stoger and Soltanolkotabi (2021) shows that for the problem of low-rank reconstruction in a
non-lazy regime with small random initialization gradient descent finds globally optimal solutions
with good generalization capability. This is carried out by utilizing a spectral bias phenomena ex-
hibited by the early stages of gradient descent from small random initialization that puts the iterates on
the trajectory towards generalizable models. For the problem of tensor decomposition it has also
been shown that gradient descent with small initialization is able to leverage low-rank structure (Wang
et al., 2020). In L i  et al. (2020), it has been shown that neural networks with orthogonal weights
can be learned via SGD and outperform any kernel method. One crucial element in their analysis
is that the early stage of the training is connected with learning the first and second mo-ment of the
data. Higher-order approximations of the training dynamics (Bai and Lee, 2020; Bai et al., 2020)
and the Neural Tangent Hierarchy (Huang and Yau, 2019) have also been recently pro-posed towards
closing this gap. None of the above papers, however, focus on learning polynomial representations
efficiently via neural networks as carried out in this paper.

Another line of work focuses on learning single activations such as the ReLU function. In this
context (Yehudai and Shamir, 2019a) shows that it is hard to learn a single ReLU activation via
stochastic gradient descent with random features where as learning such activations is possible in a
non-NTK regime (Soltanolkotabi, 2017; Goel et al., 2017, 2019) again highlighting this impor-tant
gap. In related work where the label also only depends on a single relevant direction (Daniely and
Malach, 2020), the authors show that in the context of learning the parity function, gradient descent
is able to efficiently learn the planted set. However, this is a result of the unbalanced data distribution
which skews the gradient towards the planted set. In contrast, we consider isotropic Gaussian data
so that no information can be extracted from the data distribution itself and features must be
extracted from higher order correlations between the data and the labels. Chen and Meka (2020) also
studied the problem of learning polynomials of few relevant dimensions. They provide an algorithm
that learns polynomials of degree p in d dimensions that depends on r  hidden dimen-sions with n &
C (r; p)d samples where C (r; p) is an unspecified function of r; p which is likely exponential in r.
However, their algorithm is not a variant of gradient descent, and requires a clever spectral
initialization. On the other hand, this work focuses on the ability of gradient descent to
automatically extract hidden features and learn representations from the data.

There is also a line of work Mei et al. (2018); Chizat and Bach (2018b); Mei et al. (2019);
Javanmard et al. (2020); Sirignano and Spiliopoulos (2020); Wei et al. (2019), which is concerned
with the mean-field analysis of neural networks. The insight is that for sufficiently large width the
training dynamics of the neural network can be coupled with the evolution of a probability
distribution described by a PDE. These papers use a smaller initialization than in the NTK-regime
and, hence, the parameters can move away from the initialization. However, these results do not
provide explicit convergence rates and require an unrealistically large width of the neural network.
To the extent of our knowledge such an analysis technique has not been used to show efficient
learning of polynomial representations using neural networks as carried out in this paper.

A  concurrent line of work studied the feature learning ability of gradient descent in the mean
field regime with data sampled from the boolean cube (Abbe et al., 2022). The authors identified a
necessary and sufficient condition for learning with sample complexity linear in d, dubbed the
merged staircase property, in the special case when the hidden weights of the two layer neural

7
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network are initialized at 0. However, the zero initialization hinders the feature learning ability of
the network. For example, the boolean function XOR violates the merged staircase property,
however noisy XOR is known to be learnable by two layer neural networks with sample complexity
linear in d (Bai and Lee, 2020; Chen et al., 2020a). In this work we study the impact that the nonzero
initialization of the hidden weights has on the feature learning ability of neural networks.

5. Proof Sketches

5.1. Proof of Theorems 1 and 3

The proofs of Theorems 1 and 3 are essentially identical so we will focus on Theorem 1. We begin by
noting that the symmetric initialization implies that f ( x )  =  0 for all x  2  Rd . This implies that the
population gradient of each feature wj can be written as

r w j  L D ( )  =  E x D  2(f (x)  f ? ( x ) ) r w j  f ( x )
 
=   2 E x D [ f ? ( x ) r w j  f(x)]:

Using the chain rule, we can further expand this as

 2 E x D [ f ? ( x ) r w j  f (x) ]  =   2aj Ex [f ? (x)x1wj x0 ]:

The main computation that drives Theorems 1 and 3 is that for any unit vector w 2  Rd , the ex-
pression Ex [f ? (x)x1w x0 ] has a natural series expansion in powers of w, which can be computed
explicitly in terms of the Hermite expansions of f ?  and 0. Explicitly, if C k  =  E x [ r k f ? ( x ) ]  is a
symmetric k tensor denoting the expected kth derivative of f ?  and ck are the Hermite coefficients of
0(x) =  1x0,

p 1

Ex [f ? (x)x1w x+ b0 ] = ck + 1 Ck + 1 (w
k ) +  ck +2 wCk (w
k ) k = 0

=
H w

+  
1

[c C  (w; w) +  c w C (w; w)] + 
1

[] + : : : (1)
| {z } | {z } | {z }

O(d     1 = 2 )                                       O(d     1 )                                       O(d     3 = 2 )

where we note that C2  =  E x [ r 2 f ? (x ) ]  =  H .  We emphasize that because w is a unit vector, its
inner product with any fixed unit vector is of order d 1=2 so temporarily ignoring factors of r,
Ck + 1 (w
k ); Ck (w
k ) =  O(d     k  

). Therefore Equation (1) is an asymptotic series in d 1=2. As k increases, each term in
Equation (1) reveals more information about f ? . However, this information
is also better hidden. A  standard concentration argument shows that extracting information from the
C k  term in this series requires n  dk samples. This paper focuses on the first term in this expansion, p

2  
,

which requires n  d2 samples to isolate. We directly truncate this series expansion:

Lemma 4 With high probability over the random initialization,
 
r w j

L D ( )  =   2aj 
H

2 
+  O

 

d
r

:
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Note that the remainder term, of order d 1, contains all higher order terms in the series expansion.
Recall that H  =  E x D [ r 2 f ? ( x ) ]  is the average Hessian of f ?  with respect to D. Because f ?

depends only on the subspace S ?, this implies that up to higher order terms, the population gradient
at initialization already points each feature vector wj towards the principal subspace S?. In addition,
Assumption 2 guarantees that the gradients at initialization span the principal subspace S ?.

However, it is also important to note that the population gradient is bounded by r w j  L D ( )  =  O(d
1=2) and we only have access to the empirical gradient r w  L ( ) .  As mentioned above, ex-tracting
the necessary subspace information from r w j  L D ( )  to learn f ?  therefore requires n & d2 samples,
which is the dominant term in our final sample complexity result.

Once we show that the gradient at initialization contains all the relevant features, we note that
after the first step of gradient descent,

W (1) =  W (0) 
1 [ r W  L( ( 0 ) )  +  1 

1W ] =   1 r W  L((0 ) ) :

After the first step, the model therefore resembles a random feature model with random features
fH w gw 2 S d      1       S ? . Previous results have shown that in these linearized regimes, e.g. random
feature models/NTK, learning degree p polynomials requires n & d samples and width m & d . As
our “random features” are now constrained to the hidden subspace S ?, which has dimension r, we
should expect that our sample complexity improves to n & rp.

The remainder of Algorithm 1 runs ridge regression on the network head a with fixed features
x  !  (W (1) x +  b). We can directly analyze the generalization of this algorithm using standard
techniques from Rademacher complexity. In particular, a high level sketch of the remainder of the
proof goes as follows:

1. (Section A.2): We use the features from Lemma 4 to construct a vector a? 2  Rm  such that

L(a?; W (1) ; b)  1 and ka?k =  O
rp2p 

:

2. (Section A.3): We show the equivalence between ridge regression and norm constrained linear
regression implies the existence of  >  0 such that the T th iterate a(T ) satisfies

L(a(T ) ; W (1) ; b)  1 and ka(T )k  ka?k:

3. (Section A.3): A  standard Rademacher generalization bound for two layer neural networks
bounds the population risk Ex;y j f ( T ) (x )  yj by the empirical risk 1 n j f ( T ) (x i )  yij
and ka(T )k which are small from step 2.

5.2. Proof of Theorem 2

Statistical query learners are a family of learners that can query values q(x; y) and receive outputs q̂
with jq̂ Ex;y [q(x; y)]j   where  denotes the query tolerance (Goel et al., 2020; Diakonikolas et al.,
2020). An important class of statistical query learners is that of correlational/inner product statistical
queries (CSQ) of the form q(x; y) =  yh(x). This includes a wide class of algorithms including
gradient descent with square loss. For example from Section 5.1, for a two layer neural network we
have

r w j  L D ( )  =  Ex;y [yh(x)] where h(x) =   2aj x1wj x+b j 0 :

9
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In order to prove Theorem 2, we must construct a function class F p  such that inner product
queries of the form Ex;y [yh(x)] provide little to no information about the target function. The
standard approach is to construct a function class with small pairwise correlations, i.e. for f  =  g 2
Fp , jEx [f (x)g (x)]j   (Goel et al., 2020; Diakonikolas et al., 2020). The number of functions in the
function class F p  and the size of the pairwise correlations  directly imply a correlational statistical
query lower bound:

Lemma 5 (Modified from Theorem 2 in Szorenyi (2009)) Let F  be a class of functions and D
be a data distribution such that

Ex D [f (x)2 ]  =  1 and jExD [f (x)g (x)]j   8f  =  g 2  F :

Then any correlational statistical query learner requires at least j F j ( 2  )  queries of tolerance  to
output a function in F  with L 2 (D )  loss at most 2 2.

To construct Fp ,  we begin by showing that there are a large number of approximately orthogonal
unit vectors in S d 1:

Lemma 6 There exists an absolute constant c such that for any  >  0, there exists a set S  of 1 ec2d

unit vectors such that for any v; w 2  S  such that v =  w, we have jv  wj  .

The proof bounds the probability that randomly sampled unit vectors have a large inner product and
existence then follows from the probabalistic method. Therefore for any m, we can find m unit
vectors in Rd  such that their pairwise inner products are all bounded by d 1=2      log m. We combine
this with the fact that if fu (x)  =  

H
e k (ux)  where H ek  denotes the kth Hermite polynomial,

E x D  [fu (x)fv (x)]  =  (u  v)k :

Therefore ju  vj  d 1=2p
log

 
m implies jEx D [fu (x)fv (x)]j   d k=2(log m)k=2. Theorem 2 then

directly follows from Lemma 5 (see Appendix D for a more detailed proof).

6. Experiments

6.1. Sample Complexity

In this section we present a toy example that clearly demonstrates the gap between kernel methods
and gradient descent on two layer networks. For u 2  S d 1, consider the target function

fu (x)  =  g(u  x ) where g(x) =  
H e

2
(x) 

+  
H e

2
(x)

; (2)

which satisfies Ex D [f ? (x)2 ]  =  1. Note that f ?  only depends on the projection of x  onto a single
relevant direction, u. We show in Section 5.1 that gradient descent is capable of isolating the
subspace spanned by u and then fitting a one dimensional random feature model to g, and that this
entire process requires n  d2 samples to generalize.

On the other hand, existing works Ghorbani et al. (2019b, 2020) have shown that n  dp

samples are strictly necessary in order to learn f ?  in the NTK or random features regime.
 
The

theory predicts that with n <  d2 samples, kernel regression will return the 0 predictor and with d2

<  n <  dp samples, kernel regression will return 2 H e2(u  x), incurring a L 2 (D )  loss of 2 .
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Figure 1: Sample Complexity: The x  axis plots logd(n) and the y axis plots the excess risk in
L  (D )  for each of three methods: Algorithm 1, random features, and the neural tangent
kernel. The top dashed horizontal line is at L 2  =  1, which corresponds to outputting
the zero predictor. The middle horizontal line is at L 2  =  1 and corresponds to learning
the optimal quadratic predictor 1 H e2 (x1 ). Due to its improved sample efficiency, Al-
gorithm 1 easily achieves near zero excess risk despite the relatively high degree of f ? ,
while random features and the neural tangent kernel are only able to learn the optimal
quadratic predictor. See Section 6 for additional experimental details.

We empirically verify these predictions. We take d =  10 and p =  4 and consider the function
f ?  (x)  =  

H
e 2 (x 1 )  +  H e 4 (x 1 ) .  We use label noise 2 =  1 and attempt to learn f ?  using Algorithm 1,

a random feature model, and a linearized NTK model. All  experiments are conducted on a two
layer neural network with widths m =  100 and m =  1000. For each value of n, the weight decay
parameter  is tuned on a holdout set of size 105 and test accuracies are reported over a separate test set
of size 105. Errors bars reflect the mean and standard deviation over 10 random seeds.

We note that while Algorithm 1 easily converged to vanishing excess risk, even at width m =
100, both the random features model and the neural tangent kernel model only managed to fit the

quadratic term 1 H e2(u  x), as predicted by the theory in Ghorbani et al. (2019b, 2020).
The key to learning a function of the form f ?  is to use the fact that the 1 H e2(u  x )  component

of fu  gives enough information to identify u. Afterwards, any random feature or kernel method can
efficiently fit any sufficiently smooth univariate function g : R  !  R  ontop of u  x. Our analysis
in Section 5.1 shows that this is exactly the way that Algorithm 1 learns f ?  and this is reflected by
the steep and sudden drop from trivial risk (L2  =  1) to vanishing excess risk without plateauing at
L 2  =  0:5 in Figure 1.

6.2. Transfer Learning

The proof of Theorem 1 involves showing that Algorithm 1 learns features corresponding to S ? (see
Section 5.1) and the proof of Theorem 3 shows that this implies efficient transfer learning. We again
verify this empirically. We consider the function:

ftarget (x) =  gtarget(u  x ) where
H e (x)

target p!

11
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Note that this was exactly the hard example in Theorem 2 that was unlearnable without n & d 2

samples by a correlational statistical query learner (and in particular, gradient-based learners).
We pretrain with n samples on the f ? (x)  from Section 6.1, then train the output layer using N

samples from ftarget. As in Section 6.1, we use a label noise strength of 2 =  1. We pick p =  3 so
that random feature methods or the neural tangent kernel will require at least n & d samples to learn
f ? .

We note that in Figure 2, when n =  d0; d1, fine tuning on N  target samples gives trivial risk
until N  & d3, which is to be expected of a kernel method with no prior information. However, for n
d2 pretraining samples, we can fine tune on just N  =  O(1) target samples to reach nontrivial loss and
the loss decays rapidly as a function of N . This experiment therefore fully supports the conclusion
of Theorem 3.

Excess risk as a function of n Excess risk as a function of N

1.0 1.0

0.8 0.8

0.6

0.4

0.2

0.0
0

N =  d0

N =  d1

N =  d2

N =  d3

N =  d4

1       2 3 4 5 6
logd (n) (pretraining samples)

0.6

0.4

0.2

0.0
0.0

n =  d0

n =  d1

n =  d2

n =  d3

n =  d4

n =  d5

n =  d6

0.5 1.0       1.5 2.0 2.5 3.0 3.5 4.0
logd (N) (target samples)

Figure 2: Transfer Learning: The x  axes plot logd(n) and logd(N ) respectively. We note that with
little pretraining (log (n) =  0; 1), Algorithm 1 is unable to extract a robust representation
that enables transfer. For n  d2, we observe that finetuning the representation from
Algorithm 1 gives nontrivial loss even for N  =  O(1), as predicted by Theorem 3. See
Section 6 for additional experimental details.

7. Discussion and Future Work

In this work we provide a clear separation between gradient-based training and kernel methods.
We show that there is a large family of degree p polynomials which are efficiently learnable by
gradient descent with n  d2 samples, in contrast to the lower bound of dp for random feature/NTK
analysis. The main idea driving both our sample complexity result (Theorem 1) and our transfer
learning result (Theorem 3) is that gradient descent learns useful representations of the data.

One promising direction for future work is tightening the dimension dependence of our upper
bound. In particular, our n  d2 sample complexity is driven by the difficult in learning from a
degree 2 Hermite polynomial. However, our lower bound for such functions (Theorem 2) only rules
out learning with n  d samples. In this situation the lower bound is tight as Chen et al. (2020b) show
that sparse degree 2 polynomials can be efficiently learned with n  d samples.

Another promising direction from future work is generalizing our result to the situation in which
the hidden layer and the output layer are trained together. This introduces dependencies between

12
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the hidden and output layers which are difficult to control. However, such analysis may lead to a
better understanding of learning order and inductive bias in deep learning.
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Appendix A. Proofs

We define  =  C  log(nmd) for a sufficiently large constant C.  Throughout the appendix we will
use e  to track failure probabilities of various lemmas and theorems.

Definition 7 (High probability events) We say that an event A  happens with high probability if it
happens with probability at least 1      poly(n; m; d)e  where poly(n; m; d) does not depend on C.

Note that high probability events are closed under taking union bounds over sets of size poly(n; m; d).
We will assume throughout that   cd for a sufficiently small absolute constant c.

The following lemma bounds kxi k and is a direct corollary of Lemma 27:

Lemma 8 With high probability, kxik2 2  2 ; 2d for i  =  1; : : : ; n.

All remaining proofs will be conditioned on this high probability event.

A.1. Hermite Expansions

A.1.1. H E R M I T E E X PA N S I O N OF

Let (x)  : =  ReLU(x)  =  max(0; x). Then the Hermite expansion of (x)  is 
(x)

=  p
2  

+  
x  

+  p
2  k1 

k!2k(2k 1)
H e2k (x):

Let ck denote the Hermite coefficients of , i.e. (x)  = k0 k! H ek (x).  Note that

0(x) =  
k0 

c
k!

1 H e k (x)  =  
1 

+
1

 
 k0 

k!2
(
(2k 

+
 1

) H e2k +1 (x):

A.1.2. H E R M I T E E X PA N S I O N OF f ?

Let the Hermite expansion of f ?  be

f ? (x)  
=

 
X  hCk ; H ek (x)i

k = 0

where C k  2  (Rd )
k is the symmetric k-

tensor defined by C k

: =  E x [ r k f ? (x ) ] :

Note that

r f ? ( x )
 
=

 
p 1 C k + 1 (H e k (x) )  

2

Rd : 
k = 0

Lemma 9 (Parseval’s Identity)

1 =  Ex [f ? (x)2 ] =  
X  kCk kF :
k = 0

Note that as an immediate consequence of Lemma 9, kCk kF  k!. In addition, Assumption 1
guarantees that C k  x
k     =  C k  (? x)
k .
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A.1.3. C O N C E N T R AT I N G ;

Lemma 10 Let  =  n  
P

i = 1  yi and  =  n  
P

i = 1  yi xi . Then, with high probability,

p p+1

j C0 j .
n

and kC1 k .
n

:

Proof Let F (x1 ; : : : ; xn ) =  1 P
i = 1  f ? (x i )  C0 . Note that

Ex1 ;:::;xn [F (x)2 ] =  
n 

Var(f ? (x))  
n

:

The bound on j C0 j therefore immediately follows from Lemma 30 applied to F .  The bound on
k C1 k is a special case of Lemma 32 with (x)  =  x.

A.1.4. H E R M I T E E X PA N D I N G T H E F E AT U R E S

Note that by the scale invariance of (x)  =  ReLU(x),  Algorithm 1 does not depend on kwj k for j
=  1; : : : ; m. Therefore we can assume WLOG that kwj k =  1 for j  =  1; : : : ; m and wj  Unif (S d

1). For the remainder of the appendix we will assume that kwj k =  1.

Definition 11 We define f ? (x)  : =  f ? (x)     x.

The functions g(w) and gn(w) capture the features that can be learned after one step of gradient
descent:

Definition 12 For kwk =  1, we define

g(w) : =  Ex [f ? (x)x0 (w  x)] and gn(w) : =  
1 X

f ? ( x i )  +  ixi
0(w  xi ):  i = 1

We note that w(1) =  21aj gn(wj ) and g(w) =  Ex [gn (w)]. In fact, Corollary 34 shows that with
probability at least 1 4ne ,

r
p+1sup kg(w) g (w)k . :

w

Lemma 13 With high probability,

g(w) =  p
2  

+  O

r
d p + 1

r
r 2  

!

n                d2

Proof By Stein’s lemma and the orthogonality of Hermite polynomials,

g (x) =  Ex [f ? (x)x0 (w  x)]

=  Ex [r f ? (x) 0 (w  x )  +  wf ?(x)00(w  x)]
p 1 ck +1 E x [ r k + 1 f ? (x ) ] ( w
k ) p     ck +2 E x [ r k f ? (x ) ] (w
k ) 

k = 0
k!                                 

k = 0
k!

C1  w(C0 ) C2 w X  c2k C2k (w
2k 1) X  c2k+2 C2k (w
2k ) 2                      2                    2 k2

(2k 1)!
k1

(2k)!
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Note that these sums are finite as C k  =  0 for k >  p. Next, by Lemma 46 we have the high
probability bounds,

Ck + 1 (w

k )
F  

.  

s
r b 2  ck 

.  

r
r 3

for k  3

wCk (w

k )
F  

.
r b k  ck 

.  

r
r 2

for k  2:

Applying these bounds term by term and using Lemma 10 to bound jC0 j and kC1 k gives
the desired result.

Corollary 14 With high probability,

gn(w) =  p
2  

+  O

r
d p + 1

r
r 2  

!

n                d2

Corollary 15 With high probability,
r  

2
r

p+1
kgn(w)k .

d 
+

n
:

Furthermore, it will become necessary to bound terms of the form gn(w)  x i .  Note that gn(w)
and x i  are dependent random variables. The following lemma handles this dependence.

Lemma 16 Let w  S d 1 and assume n  d2p. Then with high probability,

max kg (w)  x  k  

r
3  

:
j 2[n]

Proof We can decompose

jgn(w)  x j j   jg(w)  x j j  +  j[g(w) gn(w)]  xj j:

For the first term, note that g(w) and x j  are independent so g(w)  x j   N (0; kg(w)k2) so with
high probability,

r  
3

r
p+2

jg(w)  xi j   kg(w)k 2 .
d 

+
n

:

Next,

[g(w) gn(w)]  x i

h i h i
=  x j                    f  (x i )x i  (w  x i )       g(w)      +        f  (x j )kxj k  (w  x j )       g(w) :

i = j

Note that in the first term, the x j  and the sum are independent. Therefore by Corollary 34 the first
term is bounded with high probability by O d p + 2         . In addition, by Lemma 30, the second term
is bounded by O

p=2 d
 
which completes the proof.
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A.2. Random Feature Approximation

A.2.1. U N I VA R I AT E  R A N D O M F E AT U R E  A P P ROX I M AT I O N

This section shows that after we reinitialize the biases we can use random features to transform the
activation (x)  =  ReLU(x)  into (x)  =  xp which is more natural for learning polynomials.

Lemma 17 Let a  Unif (f 1; 1g), and b  Unif ([ 1; 1]). Then for any k  0 there exists
vk(a; b) such that for jxj  1,

E[vk (a; b)(ax +  b)] =  x k and sup jvk(a; b)j .  1:
a;b

Proof First, for k =  0 we can take v0(a; b) : =  6b. Then,

E[v0(a; b)(ax +  b)] =  
3 

Z 1 
b[(x +  b) +  (  x  +  b)]db

Z 1 Z 1
=                b(x +  b)db +         b( x  +  b)db

 x x

=  1

and supa;b jv0(a; b)j =  6. Next, for k =  1 we can take v1(a; b) : =  2a. Then,

E[v1(a; b)(ax +  b)] =  
1 

Z 1 
[(x +  b) (  x  +  b)]db

Z 1 Z 1
=               (x  +  b)db          (  x  +  b)db

 x x

=  x

and we have supa;b jv1(a; b)j =  2. Next, note that by integration by parts we have for any function
f ,

E[2(1 a)f 00(b)(ax +  b)] =  
Z 1 

f 00(b)( x  +  b)db

=  f 0(1)( x  +  1) 
Z 1 

f 0(b)
x

=  f ( x )  +  f 0(1)( x  +  1) f (1)

=  f ( x )  +  [f 0(1) f (1)] f 0(1)x:

Therefore for k  2 if f ( x )  =  x k  and

vk(a; b) : =  2(1 a)f 00(b) [f 0(1) f (1)]v0(a; b) +  f 0(1)v1(a; b)

we have

E[vk (a; b)(ax +  b) =  x k and sup jvk(a; b)j .  1:
a;b
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Corollary 18 Let a  Unif (f 1; 1g), and b  N (0; 1). Then for any k  0 there exists vk(a; b) such
that for jxj  1,

E[vk (a; b)(ax +  b)] =  x k and sup jvk(a; b)j .  1:
a;b

Proof Let vk be the function constructed in Lemma 17 and let

vk(a; b) =  1jbj1 
v

2(b)
)

2

where (b) : =  p
2  

denotes the density of b. Then,

Z
Ea;b [vk (a; b)(ax +  b)] =  Ea  vk (a; b)(ax +  b)(b)db b

=  Ea;bUnif ([ 1;1])[vk(a; b)(ax +  b)] =

x k

and

sup jvk(a; b)j = sup
vk(a; b)

 
.  1:

a;b a;b2[ 1;1]

A.2.2. M U LT I VA R I A B L E  R A N D O M F E AT U R E  A P P ROX I M AT I O N

Definition 19 For kwk =  1, we define

r(w) : =  gn(w)   H
w 

:

q   Recall that
Corollary 14 shows that with high probability, kr(w)k .  O d +        r        .

Lemma 20 With high probability over the data fxi gi2[n] ,  we have for j   4p,

h i r
p+1

r  
2

Ew      k r(w)k .
n

+
d3 : h

i
Proof We can decompose r(w) =  [gn(w) g(w)] +  g(w)   p

2       
and note that

Ew  

h
k? r(w)kj

i1=j 
 Ew  

h
k?[gn(w) g(w)]kj

i1=j 
+  Ew  

"
? g(w)   p

2

j
#1=j

"
j
#1=j r

p+1  
!

 Ew      g(w)  
2 

+  O
n

:
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 h i
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2
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Recall that

g(w)   H
w

C1  w(C0 ) X  c2k C2k (w
2k 1) X  c2k+2 C2k (w
2k ) 2                      2               k2

(2k 1)!
k1

(2k)!

Therefore,

? H w X  c2k C2k (w
2k 1) ?

X  c2k+2 C2k (w
2k ) dp+1  2 k2

(2k 1)!                      
k1

(2k)!

n

We can bound the j th moment term by term. We have by Corollary 39 and Lemma 43 that for
k  2,

 1=j
s

2 k      1
 

r

Ew  C2k (w
2k 1) .

d2k 1     . d3

and for k  1,
 1=j  1     1

Ew      k?wkC2k (w
2k ) .  Ew  k?wk 2 j Ew  C2k (w
2k )

r
r r

r d
  

d2k

.
d3 :

We can now show that the random features gn(w) are sufficiently expressive to allow us to
efficiently represent any polynomial of degree p restricted to the principal subspace S ?.

Lemma 21 For any k  p, there exists an absolute constant C  such that if n  C d2 r2 p+1 and
d  Cr3=2,

 h i
Mat E  (  gn (w)) % (rd ) Sym k (S ? )

where Sym k (S ? )  denotes the orthogonal projection onto symmetric k tensors restricted to S ?.

Proof Note that because every vector in span Mat E  (?gn(w))
2k is a vectorized symmetric
k tensor, it suffices to show that

Ew [(?gn(w))
2k](T ; T ) & (rd2 ) k

for all symmetric k tensor T with kT kF =  1. Recall that gn(w) =  H w   +  r(w). Therefore by the
binomial theorem,

D
T; (?gn(w))



k
E 

=  

*

T ; p
2

k
+  

+  (w)

24



k

D E 2

2

4 1 H w
3

5

2
X 4 4i

kX 2

F

h
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1
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^

* +2 3

. E T; p4 5

*
H w

+ 2

4 5
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2

5
X
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n d

4
p

2
k

2
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where j(w)j .  
P

i = 1  T
 

(H w )
k  i

F  k
?r(w)ki: Therefore by Young’s inequality, *

k
+ 2

E T ; (?gn(w))
k  E

2
T; p

2
     E[(w)2]:

Next by Cauchy-Schwarz,
k     

r h i h i
E[(w) ] .              Ew      kT ((H w)
k  i )kF      Ew      k?r(w)k

i = 1
 r

. Ew      T (H w )
k  i  Ew      k?r(w)k :
i = 1

Let T be the symmetric k tensor defined by T (v ; : : : ; v )  =  T (H v ; : : : ; Hv ). Then by Lemma 47,

E T ((H w )
k  i )

2 
 
 

min (H )2i  E T (w

k  i )
2

d i  
H w

k      2

min (H )2 2 2
3

k

=  (rd2 )i E T; p
2

:

Therefore,
2 *

k
+ 2

3  
k     p+1 2 i  

Ew [(w) ] .  E

T;     p                                  (rd )                 +  3 :
i = 1

Because we assumed n  C d2 r2 p+1 and d  C r3=2 for a sufficiently large constant C ,  we have
2 * +  3

Ew [(w)2] .  
1 

E 4  T;
H w

5 :

Combining everything gives
2  *

k
+ 2

3

E T; (?g(w))
k  E

2
T;

p
2

     E[(w)2 ] 2

3



^ 2

k  
4 

E T; p
2

& d 
k
T

F

 d k
min (H )2k

=  (rd2 ) k :
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Corollary 22 Assume n  C d2 r2 p+1 and d  C r3=2 for a sufficiently large constant C .  Then for any
k  p and any symmetric k tensor T supported on S ?, there exists zT (w) such that

Ew [zT (w)(gn (w)  x)p ] =  hT; x

k i  and we have the bounds

Ew [zT (w)2] .  (rd2)k kT kF and jzT (w)j .  (rd2)k kT kF kgn(w)kk :

Proof Let

zT (w) : =  Vec(T )T Mat(E[gn(w)
2k ])y Vec(gn (w)
k ): Note that Vec(T ) 2  span(Mat(E[g(w)
2k ])) by Lemma 21. Therefore,

Ew [zT (w)(gn (w)  x)k

=  Ew      Vec(T )T Mat(E[gn(w)
2k ])y Vec(g(w)
k ) Vec(gn (w)
k )T  Vec(x
k ) =  hT; x
k i:

For the bounds on z we have

Ew [zT (w)2]

=  Ew [Vec(T )T Mat(E[gn(w)
2k ])y Vec(g(w)
k ) Vec(gn (w)
k )T  Mat(E[g(w)
2k ])y Vec(T )] =  Vec(T )T Mat(E[gn(w)
2k ])y Vec(T )

.  (rd2)k kT kF

and

jzT (w)j =  Vec(T )T Mat(E[gn(w)
2k])y Vec(gn (w)
k )

.  (rd2)k kT kF kgn(w)kk :

Lemma 23 Assume n  C d2 r2 p+1 and d  C r3=2 for a sufficiently large constant C .  Let

1 = C 2 3  , let k  p and let T be a k tensor. Then with high probability, there exists hT (a; w; b)
such that if



n

in n

2

T F

fh T  (x)  : =  Ea;w;b[hT (a; w; b)(w(1)  x  +  b)]

we have

1 X
( f h ( x i )  hT; x

p i)2 .  
1 

i = 1

and the moment bounds

Ew;a;b[hT (a; w; b)2] .  rk 2k 3k kT kF

sup jh (a; w; b)j] .  rk 2k 6kkT k : w
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Proof We define

hT (a; w; b) : =  
vk(a; b)z

k 
(w)

11 kgn (w)k1 
Y

1 j g n ( w ) x i j 1 :  i = 1

where vk(a; b) and zT (w) are constructed in Corollary 18 and Corollary 22 respectively. Recall that
w(1) =  21agn(w). Then for x  2  fx1; : : : ; xng,

fh T  (x)

=  
(21)k Ea;w;b [vk(a; b)zT (w)(21agn(w)  x  +  b)]

n
#!##  

=  Ew      zT (w)

(gn(w)  x)k  +  O jgn(w)  xjk 1 11kgn (w)k1          1jgn (w)xi j1

"
n

i = 1 #

=  hT; x
k i  +  poly(d) Pw[1kgn(w)k  1] +          Pw[j21gn(w)  xi j   1]

i = 1

=  hT; x
k i  +  poly(n; d)e

=  hT; x
k i  +  O 

n

where the second to last line followed from Lemma 16. The first part of the lemma now follows
from a union bound over x1; : : : ; xn. For the bounds on h, we have

Ea;w;b[h(a; w; b)2]
=  

(21)2k Ea;w;b vk(a; b)2zT (w)2 
.

2k (rd2)kkT k2

=  rk 2k 3k kT kF :

and

sup jh(a; w; b)j =  sup
vk(a; b)zT (w)

11 kgn (w)k1

.  1 
k (rd2)k kgn(w)kk kT kF =

2k (rd2)k kT kF

.  rk 2k 6k kT kF :

Corollary 24 Assume n  C d2 r2 p+1 and d  C r3=2 for a sufficiently large constant C  and let 1 =

3 . Then with high probability, there exists h(a; w; b) such that if

fh (x)  : =  Ea;w;b[h(a; w; b)(w(1)  x  +  b)]
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we have

1 X
( f h ( x i )  f ? (x i ))2  .  

1

i = 1

and the moment bounds

Ew;a;b[hT (a; w; b)2] .  rp2p3p

sup jh (a; w; b)j .  rp2p6p: w

Proof We know from Lemma 35 that

f ? (x)  =  
X

h T k ; x
k i  kp

with kTk kF .  r
p      k  

. Let

h(a; w; b) : =  
X

h T k  (a; w; b):
kp

Then n  
P

i = 1 ( f h ( x i )  f ? (x i ))2  .  n  is immediate from Lemma 23 and

Ea;w;b[h(a; w; b)2] .  
X

E a ; w ; b [ h T k  (a; w; b)2] .  
X

r k 2 k 3 k r
p      k  

.  rp2p3p:
kp kp

and

sup jh(a; w; b)j  
X  

sup jhT (a; w; b)j .  
X

r k 2 k 6 k r
p      k  

.  rp2p6p: a;w;b

kp a;w;b kp

complete the proof.

Lemma 25 Assume n  C d2 r2 p+1 , d  C r3=2, and m  rp 2p6p+1 for a sufficiently large
constant C  and let 1 = 3 . Then with high probability, there exists a? 2  Rm  such that if
? =  (a?; W (1); b(1)),

n p 2p 6p+1
( f ? (x i )       f  (x i ) )  .       +

i = 1

p 2p 6p
and ka k .

m
:

Proof Let aj  : =  m h(aj ; wj ; bj ) where h is the function constructed in Lemma 24. Then,

Ei 2 [ n ] [( f ? (x i )  f ? (xi ))2 ] .  E i 2 [ n ] [ ( f ? (x i )  fh (xi ))2 ] +  Ei2 [ n ] [(fh (xi )  f ? (xi ))2 ]

=  E i 2 [ n ] [ ( f ? (x i )  fh (xi ))2 ] +  
n

:
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For j   m=2, let

Z j ( x )  : =  aj (w(1)  x  +  bj ) +  am j (w(1) 
j   x  +  bm j ):

Note that

f ? ( x )  fh (x)  =  
X  

( Z j ( x )  E [Z j (x) ] )
j  2

and the Z j ( x )  are all i.i.d.. Let

Z j ( x )  : =  Zj (x)1
w ( 1 ) x1

1
w ( 1 )  

j x1
:

Then with probability 1   poly(n; m; d)e  we have that Z j ( x i )  =  Z j ( x i )  for i  =  1; : : : ; n.
Therefore,

f ? ( x )  fh (x)  =  
X   

Z j ( x )  E Z j ( x )
 
+  

m
E Z j (x )  E Z j ( x ) :  j

2

For the first term, by Bernstein’s inequality we have with probability at least 1 2e , 
X

Z j ( x )  E [Z j (x) ]  .  

r
Ea;w;b [h(a; w; b)2 ] 

+  
rp2p3p 

.  

r
r p 2 p 6 p + 1

 
:

j  2

The second term is bounded as in the proof of Lemma 23 by poly(n; d)e    1  because P[w(1)  x
>  1]  e  from the choice of 1. Therefore for any fixed x, with high probability we have

f ? ( x )  =  f ? (x)  +  O
1

r
r p 2 p 6 p + 1  

!  
n

m

and the first part of the lemma follows from a union bound.
We will now turn to the bound on ka?k2. Let zi =  (a? )2 +(a? )2. Note that fzi g are pos-

itive, i.i.d., and bounded by O(m 2r2p4p12p). In addition, they have expectation O(m 2rp2p3p).
Therefore by Popoviciu’s inequality they have variance bounded by

O
 
m 1rp2p3pm 2r2p4p12p 

=  O
 
m 3r3p6p15p:

Therefore by Bernstein’s inequality we have that with high probability,

ka?k2 =  E[ka?k2] +  O
1 

r
r 3p 6p 15p r2p3p6p 

!
rp2p6p m

m                    m2                               m
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A.3. Proof of Theorem 1

We will define

L ( ) ( )  : =  
1 X

( f ( x i )  f ? (xi ))2 :
i = 1

to be the empirical L 2  losses with respect to the true labels (recall yi =  f ? (x i )  +  i , i   f  ; g).

Lemma 26 Assume n  C d2 r2 p+1 and d  C r3=2 for a sufficiently large constant C  and let

1 = 3 . Let a? be the vector constructed in the proof of Lemma 25 and let  =  (a?; W (1); b(1)).
Then with high probability,

p 2p 6p+1 r
L ( )  

&
 .

m
+

n
:

Proof Let i  =  f ( x i )  f ? (x i ) .  Then,

n
k +  k2 =  

n
kk2 +  2h; i +  kk2:

First, by Hoeffding’s inequality, we have with high probability,

kk2 
 &2 +  

C&2

n
 
 
=  &2 +  O

r   
:

Similarly, by Hoeffding’s inequality we have with high probability, n h; i  &
q

2 L ( )  =  O
 p

n .

We are now ready to directly prove Theorem 1.
Proof [Proof of Theorem 1] Note that we can assume that there is an absolute constant C  such that n
C d2 r2 p+1 , and m  rp2p6p+1. Otherwise, we can simply take  !  1  and return the zero predictor.

From Lemma 26 we know that with high probability, there exists a? such that if  =  (a?; W (1); b(1)),

p 2p 6p+1 r
L ( )   .

m
+

n
:

and ka?k2 .  r p 2 p 6 p + 1  
: Therefore by equality of norm constrained linear regression and ridge

regression, there exists  >  0 such that if

a ( 1 )  =  min L(a; W (1) ; b(1) )
 
+  

kak2 
;

L(a(1) ; W (1) ; b(1) )
 
 L(a?; W (1) ; b(1) ) and ka1 k  ka?k:
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Note that we can approximate a ( 1 )  by a(T ) to within arbitrary accuracy within T =  (  1 1)
steps. Let

F  =  f f  : kak2  ka?k; kwjk  1g:

Then with high probability, f(a( T ) ;W ( 1 ) ;b ( 1 ) )  2  F .  In addition, from Lemma 49,

sup 
1 n  

j f (x i )  yij Ex;y j f (x)  yj

 

.  

s
k a

 
k2md 

+  
r

f 2 F i = 1

.
drp2p6p 

:

Therefore,

Ex;y j f ( T ) (x )  yj Ex;y jf ? (x) yj
drp2p6p                rp 2p 6p+1   1=4

n m n

which completes the proof.

Appendix B. Transfer Learning

Proof [Proof of Theorem 3] The proof of Theorem 3 is virtually identical to that of Theorem 1. We
can use Lemma 25 to construct a? such that if ? =  (a?; W (1); b(1)) then with high probability,

p 2p 6p+1 r  p 2p 6p
L (  )  & .

m         
 
+       

n    
 
and     ka k .         

m
:

In addition, there exists  such that if T  (  1 1),

L ( ( T ) )   L ( ? ) and ka(T )k  ka?k:
Now let F  =  f(a;W;b) : kak2

  ka?k . Then by Lemma 48,
s !

Ex;y jga( T ) (x) yj &  O
d
n

r 
+

min(n; m) 
:

Appendix C.  Concentration Lemmas

Lemma 27 (Corollary of Lemma 1 in (?)) Let X   2(d). Then, for any t  0, P[X

d +  2
p

dt +  2t]  exp( t)

P[X   d 2 dt]  exp( t):
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Corollary 28 Let w  N (0; Id ). Then for some constant C ,

P

"
k?wk2 

2  
 

rd
; 

C r
# 

& 1:

Lemma 29 (Corollary 5.35 in Vershynin (2018)) Let X  2  Rn d  with X i j   N (0; 1). Then with
probability at least 1 2e ,

kX k2  
p

n  +  
p

d  +  
p

2:

C.1. Polynomial Concentration

Lemma 30 Let g be a polynomial of degree p. Then there exists an absolute constant Cp  depending
only on p such that for any ,

P[jg(x) E[g(x)]j  
p

E[g (x)2 ] ]   2 exp Cp  min(2; 2=p):

Proof Note that by Lemma 9,

E [ r k g ( x ) ]
H S  

k!:

Therefore by Theorem 1.2 of (Gotze et al., 2019), there exists an absolute constant Cp  such that

P[jg(x) E[g(x)]j  
p

E[g (x)2 ] ]   2 exp Cp  
1
min

p 
2=s

 
=  2 exp Cp  min(2; 2=p):

Lemma 31 Let (x)  2  fx; ReLU(x)g.  There exists an absolute constant C  such that for any
x1; : : : ; xn 2  Rd , there exists N x ;  with jN x j  eC d log(n=) such that for every w 2  S d 1, (w)
2  N x  ,0(w  x i )  =  0((w)  x i )  for i  =  1; : : : ; n and kw (x)k  .

Proof Note that the planes w  x1 =  0; : : : ; w  x n  =  0 divides the sphere S d 1 into at most

i = 0      i      
 .  nd convex regions. For each region there exists an  net of size 3       . Therefore we

can take the union of these nets over each region which has size at most 3n =  eC d log(n=) .

Lemma 32 Let f ( x )  be a polynomial of degree p and let (x)  2  fx; ReLU(x)g.  Then there exists an
absolute constant Cp  depending only on p such that for any  >  0, with probability at least 1

2ne , we have

n r
p+1sup f ( x i ) x i  (w  x i )  E  f ( x ) x  (w  x )    Cp E[g (x) ] :

w 2 S d      1                i = 1
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Proof Note that we may assume   log(2n) otherwise there is nothing to prove. Let C  be a
sufficiently large absolute constant. We fix a truncation radius R  : =  (C )p=2 and WLOG assume that
E[f (x)2 ]  =  1. Let

Y (w) : =  
1 X

f ( x i ) x i
0 ( w   x i )

i = 1

and Y (w) : =  
1 X

f ( x i ) x i
0 ( w   x i )1f j f ( x i ) j R g :  i = 1

First, note that by Lemma 30, with probability at least 1   2e 2, we have jf (x)j   R .  Therefore by
a union bound we have with probability at last 1  2ne 2 we have jf (x i )j   R  for i  =  1; : : : ; n.
Conditioned on this event, Y (w) =  Y (w) uniformly over all w 2  S d 1. Next, we will bound

supw Ex [Y (w)] Ex [Y (w)]:

sup Ex[Y (w)] Ex [Y (w)] =  sup E x  g(x)x0(w  x)1f j g ( x i ) j > R g   E x

jf (x)jkxk1f jg (x i ) j>Rg

 E g(x)2 1=2 E  kxk4 1=4 
P[jg(x )j >  R]1=4

2
p

2d exp(=2)

.
d

:
q

Finally, we concentrate supw Y (w)      Ex [Y (w)]. Let  =        d , let N1=4 be a minimal 1=4-net of S d

1 with jN1=4j  eC d and let N x  be the net defined in Lemma 31 with jN x j  eC d log(n=) and
let (w) be the projection function defined in Lemma 31. Then because Y (w) =  Y ((w)),

                                   sup Y
(w)      Ex [Y (w)]

 sup Y (w) Ex [Y (w)] +  sup Ex[Y (w)] Ex [Y ((w))]
w 2 N  r  !

 sup Y (w) Ex [Y (w)] +  sup kEx[Y (w)] Ex [Y ((w))]k +  O :
w 2 N

Next, because w !  E  [Y (w)] is O(1) Lipschitz (see Section A.1.4), we can bound this by

sup Y (w) Ex [Y (w)]
 
 sup Y (w) Ex [Y (w)] +  O  +  

r
d

!

:
w 2 N

Therefore it remains to bound supw2N 
Y (w) Ex [Y (w)]. First, for fixed w we have

h i h i
Y (w) Ex [Y (w)] =  sup u  Y (w) Ex [Y (w)]  2 sup u  Y (w) Ex [Y (w)] :

u2 S d      1 u2N 1 = 4

Let Z i (w )  : =  g(xi )(u  xi )0(w  x i )1f j g ( x ) j < R g  so that

u  
h
Y (w) Ex [Y (w)]

i  
=  

1 X
Z i ( w )  Ex [Zi (w)]:

i = 1
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Then note that for fixed w, Z i (w )  is R-sub Gaussian so for each u 2  N1=4, with probability 1 2e z

we have

u  
h
Y (w) Ex [Y (w)]

i  
 R

2z
:

so by a union bound we have with probability 1 2eC d log(n=)e z ,

2 sup u  
h
Y (w) Ex [Y (w)]

i  
 2 R

r
2 z

:
u2N 1 = 4 ;w 2N

so setting z =  C d log(n=) +   we have with probability 1 2e,

2 sup u  
h
Y (w) Ex [Y (w)]

i  
.  R

r
d log (n=)  

+

 

:
u2N 1 = 4 ;w 2N

q
Using  = d and putting everything together gives with probability 1 2ne ,

sup kY (w) E[Y (w)]k .  

r
( d l o g

 
n

 
+

 
)p 

.  

r
d p + 1

 
: w

Lemma 33 Let   f  &;&g. Then with high probability,

sup
1

ixi
0(w  x i )  .  &

d
:

i = 1

Proof Note that

sup
1 n  

ixi
0(w  x i )

 
=  sup 

1 n  

i (u  xi )0(w  x i )  : i = 1

i = 1

Next, note that for fixed u; w, i (uxi )0 (w xi ) is &2 sub-Gaussian so for any  >  0, with probability 1
2e ,

1 X
i ( u   xi )0(w  x i )   &

r   
:

i = 1

Therefore,
" #

sup 
1

i (u  xi )0(w  x i )  . sup i (u  xi )0(w  xi )]:
i = 1 u2N 1 = 4 ;w 2N 1 = 4  i = 1

By a union bound, with probability at least 1 2e,

sup
X

i ( u   xi )0(w  xi )]  .  &

r
d log

 
n

 
+

 
 
.  &

r
d

u2N 1 = 4 ;w 2N 1 = 4  i = 1

which completes the proof.
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Corollary 34 With high probability,

r
p+1sup kg(w) g (w)k . :

w

Appendix D. CSQ Lower Bound

Proof [Proof of Lemma 5] The proof is a modified version of the proof in Szorenyi (2009). Let
h; iD denote the L 2  inner product with respect to D. We will show that there are at least two
functions f ; g 2  F  such that for each query hk, jhf ; hk iD j   and jhg; hkiDj  . Therefore,
we can simply respond to each query adversarially with 0 and it is impossible for the learner to
distinguish between f ; g. Note that failing to do so will result in a loss of kf  gk2  2   2. Let the
kth query be hk and let

A k  =  f f  2  F  : hf ; hk iD  g and A k  =  f f  2  F  : hf ; hk iD   g

Then by Cauchy-Schwarz we have

* + 2

A + 2 2  hk; f  f = hf ; g iD  A +  +   A + 2  A +

f 2 A +              
D          f 2 A +        

D          
f ; g 2 A k

which implies

A +   2  
 2 :

Similarly, we have that A k  

 
  

  so the number of functions that are eliminated from the kth query

is at most  
 . We can continue this process for at most jF j (   )  iterations.

Proof [Proof of Lemma 6] Let v1; : : : ; vk  S d 1. Then for every pair i  =  j ,  vi  vj  is O(d 1)
subgaussian so for an absolute constant c, with probability 1   2e 2c2d, jvi  vj j  . Therefore with
probability 1 k2e 2c2d >  0 this holds for all i  =  j  so there must exist at least one collection of
such points.

Proof [Proof of Theorem 2] Let S  be the set constructed in Lemma 6. Let

F  =  x  !  
H ep (v  x )  

: v 2  S

and note that for all f  2  F ,  kf kD =  1. Then for v; w 2  S  and v =  w,
H ek (v  x

); 
H ek (w  x )

D
 =  (v  w)k   k :

Therefore, by Lemma 5 we have for any ,

4q  ec2d(2 k )
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In particular if we take  =  
q

log(4q (cd) k = 2 ) we get

2 1 +  logk=2  4q(cd)k=2 logk=2 (qd)
(cd)k

=2                                     dk=2

Appendix E.  Additional Technical Lemmas

For a k tensor T , let Sym(T ) denote the symmetrization of T along all k! permutations of indices.

Lemma 35 There exist T0; : : : ; Tp such that

f ? (x)  =  
X

h T k ; x
k i  kp

and kTk kF .  r
p      k  

for k  p.

Proof Note that from the Taylor series of f ? (x)  we have

r k f ? ( 0 ) X  C j + k (H e j (0) ) X ( 1)j (2j 1)! !C2 j + k ( I
j )  k!             

j p  k
k!j !                

2jp k                            
 k!(2j )!

Therefore,

kTk kF .  
X  

C 2 j + k ( I
j )  .  r

p      k  
: 2jp k

E.1. Gaussian Lemmas

Lemma 36

EwN (0;Id ) [w
2k] =  (2k 1)!! Sym(I
k )

Proof We will show equality for each coordinate. Let i1; : : : ; i2k be an index set and let c1; : : : ; cd be
defined by cj  =  jfk : i k  =  jgj. First we will consider the case there is an odd cj . Then,
EwN (0;Id ) [w
2k ]i1 ;:::;i2k =  0 and (2k 1)!! Sym(I
k ) =  0 because in order for this to
be nonzero there must exist a pairing of i1; : : : ; i2k such the numbers in each pair are identical.

Next, assume that each cj  is even. Then, Ew N (0; I  ) [w
2k ]i1 ;:::;i2k     = (cj    1)!! by the

standard formula for Gaussian moments. Finally, consider

h
(2k 1)!! Sym(I



k )
i

i1 ;:::; i2 k  
=  

(2
k

 1)!! X
1 i 1 = i 2  

1i2
k

     
1
= i 2 k  

:
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Note that by a simple counting argument, the number of permutations such that this product of
indicators is nonzero is exactly k! i = 1

 
(c

c
=2

)
! as you can first order the indices corresponding to

each cj , then split them into groups of two, then shuffle these groups of two. Therefore,

h
(2k 1)!!I k

i

i1 ;:::;i2k  
=  

k!(2k 1)!! 

i = 1  
(cj =2)! 

=  
1 

i = 1

(c j  1)!!2c
j
=2 =  

i = 1

(c j  1)!!

because 
P

j  cj  =  2k, which completes the proof.

Definition 37 Let fhk l g and fh  1g denote the change of basis matrices between Hermite polyno-
mials and monomials, i.e.

H e k (x)  =  
X

h k l x l and x k  =  
X

h k
l  H el (x):

lk                                                    lk

Note that
(

(  1)
k      l  

(k l 1)!!
 k 2 j k l

k
l 0                                              2 - k l and  1         

(
( k       l      1)!!

 k

    
 
2 j k      l

k l                 0                               2 - k      l

Lemma 38 Let T be a symmetric p-tensor and let w  N (0; Id ). Then for k  p,
E kT (w

k )k2 =  
X

( k  2l)!((2l 1)!!)2k 2

kT (I
l )k2 :

2lk

Proof Let T =  
P

i  civi with kvik =  1. Using the change of basis x k  !  
P

l
k  hkl H el (x),

E kT (w

k )k2 =  
X

c i c j  E[(w  vi )k (w  vj )k ](vi  vj )p k

i j

= l!(hkl )2 cici (vi  vj )p k + l

lk                           i j                           
 2

= (k 2l)!((2l 1)!!)2 kT (I
l )k2 :

2lk

Corollary 39 Let T be a symmetric p-tensor with dim(span(T )) =  r. For k  p,

E kT (w
k )k2 .  rb 2 ckT kF :

Proof The proof follows directly from Lemma 38 and the inequality kT (I
l )kF =  kT (span(T ) )kF  kT kF span(T ) F 

=  r l kT kF for 2l  k.
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Corollary 40
1 2e ,

Let T be a symmetric p-tensor with dim(span(T )) =  r. With probability at least

q
kT (w
k )kF .  kT kF rb 2 ck:

Proof Note that F (w) =  T (w
k )2 is a polynomial of degree 2k. For k  p, let Tk be the (k; k) tensor which comes from contracting
the last d k indices of T
 T , i.e.

(Tk )j
1

;:::;jk =  Ti1 ;:::;ik ;ik+1 ;:::;ip T j1 ;:::;jk ;ik+1 ;:::;ip :

Note that F (w ) =  Ew [Tk (w
2k )] and Tk

F 
 kT k2 . Then by Theorem 38,

Ew [F (w)2 ] .  
X

S y m (T k ) ( I l )
2  

.  
X

T ( I l )
4  

 kT k4 r2b k c: lk l k

Therefore by Theorem 30, with probability at least 1   2e , F (w ) .  kT k2 rb 2 ck and taking
square roots completes the proof.

Corollary 41 For k  p,

E kT (w
k )k2  EhT; w
pi2:

Proof This follows immediately from Lemma 38 and (k 2l)!
 

2
l2 

 (p 2l)!
 

2
l2.

Corollary 42 Let w  N (0; Id ). Then,

E[w
2k]  k!Symk (Rd )

where Sym k (R d )  denotes the projection onto symmetric k-tensors.

Proof Considering only the l =  0 term in the above expansion of E[w
2k](T ; T ) gives

E[w
2k](T ; T )  k!kT kF :

Lemma 43 (Theorem 4.3 in (Prato and Tubaro, 2007)) Let f  be a polynomial of degree p. Then



Ew N (0; Id ) [f (w)k ]  Ok;p(1)
 

EwN (0;Id ) [f (w)2 ]k=2 :
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E.2. Sphere Lemmas

Lemma 44 Let   (d). Then,
k  1

E[2k ] = (d +  2j )  =  d(d +  2) (d +  2k 2) =  (dk ):
j = 0

Lemma 45 Let w  S d 1. Then,
h

2 k
i

EwN (0;I

d ) [w2k ]
E(d) [2k ]

Proof This follows from the decomposition w =  w with   (d); w  S d 1 independent.

Corollary 46
1 2e ,

Corollary 47

Let T be a symmetric p-tensor with dim(span(T )) =  r. With probability at least

s
kT (w

k )kF .  kT kF
rb

d

ck 
:

Let w  S d 1. For k  p,

E kT (w
k )k2 .  dp k  EhT; w
pi2:

E.3. Rademacher Complexity Bounds

Lemma 48

Then,

Proof

Let f  =  aT (W ?x +  b) be a two layer neural network. For fixed W; b, Let F

=  f(a;W;b) : kak2
  B a  :

R n (
F

)   

r
B 2 ( kW k

n

 
+

 
kbk2)

:

" " ##

R n ( F )  =  Ex ;       sup
1

i  aT (W xi  +  b)
f 2 F                i

=  
n 

Ex ;       
i      

i (W xi  +  b)

u
2

2
3

t E x ;               i (W xi  +  b)

q                
2

=  p a E x  k(W x1 +  b)k2
r

B 2 ( k W k
F

 
+

 
kbk2)

:
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Lemma 49

Then,

Proof

Let  =  (a; W; b) and let f  =  aT (W x +  b) be a two layer neural network. Let

F  =  f f  : kak2  Ba; kwj k  Bw g:

R n ( F )   2 B a B w

r
m d

:

" " ##

R n ( F )  =  Ex ;       sup
1

i  aT (W xi  +  b)
f 2 F                i

= Ex ;       sup         i (W xi  +  b)
f 2 F i  2      #

 
Ba      

 

m 
Ex ;       sup i (W xi  +  b)

"
f 2 F  

 i #

=  
Ba       m 

Ex ;       sup i (wj   x i  +  bj )
f 2 F i #

 
2Ba     

 

m 
Ex ;       sup i (wj   x i  +  bj )

f 2 F

 
2Ba

p
m 

Ex ;       sup 
X

i ( w j   x i )  f 2 F
i

 2Ba Bw
md

:
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