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Abst rac t

The monotone min imal  perfect hash function (MMPHF)  problem is the following indexing problem.
Given a set S  =  fs1 ; : : : ; sn g of n distinct keys from a universe U of size u, create a data structure D  that
answers the following query:

(
rank of q in S
arbitrary answer

q 2  S
otherwise.

Solutions to the MMPHF problem are in widespread use in both theory and practice.

The best upper bound known for the problem encodes D  in O(n log log log u) bits and performs queries in
O(log u) time. It has been an open problem to either improve the space upper bound or to show that this
somewhat odd looking bound is tight.

In this paper, we show the latter: any data structure (deterministic or randomized) for monotone minimal
perfect hashing of any collection of n elements from a universe of size u requires
(n  log log log u) expected bits to answer every query correctly.

We achieve our lower bound by dening a graph G  where the nodes are the possible u       inputs and where two
nodes are adjacent if they cannot share the same D .  The size of D  is then lower bounded by the log of the
chromatic number of G .  Finally, we show that the fractional chromatic number (and hence the chromatic
number) of G  is lower bounded by 2
( n  log log log u ) .

1 Intro duction

The monotone minimal perfect hash function (MMPHF) problem is the following indexing problem. Given a
set S  =  fs1; : : : ; sng of n distinct keys from a universe U of size u, create a data structure D  that answers the
following query:

(
rank of q in S
arbitrary answer

q 2  S
otherwise.

The name MMPHF comes from interpreting the data structure D  as a hash function: given a sorted array A  =
[a1; : : : ; an], D  is hashing each ai to its position i. The hash function is minimal, meaning it maps n items to n
distinct positions, and monotone, meaning ai <  aj  i D (a i )  <  D(a j ) .

It may seem strange at rst glance that D  is permitted to return arbitrary answers on negative queries. A
key insight, however, is that this relaxation allows for asymptotic improvements in space eciency: whereas the
set S  would require
(n log(u=n)) bits to encode, Belazzougui, Boldi, Pagh and Vigna [BBPV09] show that it is possible to construct
an MMPHF D  using as few as O(n log log log u) bits, while supporting O(log u)-time queries.

The remarkable space eciency of MMPHF makes it useful for a variety of practical applications (e.g., in
security [BCO11], key-value stores [LFAK11]  and information retrieval [Nav14]). A  high-performance
implementation can be found in the Sux4J library [BV08, BBPV11]. MMPHF has also been widely used in

�A full version of the paper is available at: https://arxiv.org/abs/2207.10556.
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the theory community for the design of space-ecient combinatorial pattern-matching algorithms (see, e.g.,
[BN14, GNP20, Bel14, BN15, CFP+ 15, BCKM20, BGMP16, GOR10]).

Despite the widespread use of MMPHF, it remains an open question [BBPV09, Bol15, D+ 18] to determine
the optimal bounds for solving this problem. The best lower bound achieved so far [BBPV11, D+ 18] is
(n) bits (which follows immediately from the same lower bound for minimal perfect hashing [Meh82]). Even
disregarding applications (and the running time to answer queries), the information-theoretic question as to how
many bits a MMPHF requires has been posed as a problem of independent combinatorial interest [D+ 18].

O u r  result. We fully settle this question by establishing the following result:

Theorem 1 (Formalized in Theorem 2). Any data structure (deterministic or randomized) for monotone
minimal perfect hashing of any collection of n elements from a universe of size u requires
(n log log log u) expected bits to answer every query correctly. The lower bound holds whenever u is at least
n1+1=     log n  and at most exp (exp(poly(n))).

Thus, surprisingly, the O(n log log log u) bound achieved by [BBPV09] is asymptotically optimal. The
boundary conditions on u in Theorem 1 are also natural in the following sense. There are two trivial solutions for
MMPHF. One encodes the input set S  in O(u) bits and the other builds a perfect hash table from elements of S  to
their rank in O(n log n) space. When u is very small, say, u =  O(n), the rst solution uses O(u) =  o(n log log log u) bits.
And when u is very large, that is when u is even beyond exp(exp(poly(n))), then the O(n log n)-bit solution uses
o(n log log log u) bits. (See also the variable-size bucketing reduction of [BBPV11] which reduces the universe size
from u to u=n). Our lower bound in Theorem 1 covers almost the entire range in between.

The lower bound achieved by Theorem 1 is remarkably general: it applies independently of the running time
of the data structure; and it applies even to randomized data structures that are permitted to store their random
bits for free.

O u r  techniques. The most intuitive approach toward proving a lower bound of d bits on the size of an
MMPHF is to encode a d-bit string into the state of the data structure. This approach is already hindered by the
fact that MMPHFs only support positive queries, however. If the user already knows which elements are in the
input, then the MMPHF encodes no interesting information |  but if the user only has partial information about
the input, then the user can only get useful information from a small portion of possible MMPHF queries. The
previous
(n) lower bound of [Meh82, BBPV11, D+ 18] addresses this as follows: consider any bit-string x  2  f0; 1gd and dene:

S ( x )  : =  f3; 6; : : : ; 3dg [  f3 i  +  1 j i  2  [d]; xi =  1g [  f3 i       1 j i  2  [d]; xi =  0g:

For every i  2  [d], rstly, 3i belongs to S ( x )  and thus is a positive query, and secondly, Rank(3 i )  =  2 (i      1 ) + x i .  This
allows us to recover x  from any MMPHF for S (x),  proving a lower bound of d =
(n) bits for MMPHF on size-n subsets of universe [3n +  1]. This approach, however, seems to be stuck at proving
any ! (n )  lower bound as these \direct encodings" ignore the delicate interaction between dierent elements in the
input set1.

To  get around these obstacles, we take a dierent approach to proving Theorem 1. We construct a \conict
graph" G  whose vertices are the possible inputs to an MMPHF problem for a xed n and u. Two vertices are
adjacent in G  if they cannot have the same MMPHF index, that is, if the vertices share an element but with a
dierent rank. Any MMPHF induces a proper coloring of this graph, where the color of a vertex corresponds to its
MMPHF representation. As a result, the chromatic number of the conict graph is a lower bound on how many
dierent MMPHF representations we must have, implying that some input must have a representation of size at
least log (G)  bits. This reduces our task to combinatorial problem of lower bounding (G).2

The problem of bounding chromatic number of graphs dened over these types of set-systems has a rich history
in the discrete math literature; see, e.g. [EH66, FHRT92, DLR95, ST11]. For instance, Erdo}s and Hajnal [EH66]

1 Any lower bound of d bits for a data structure immediately implies an encoding of d-bit strings in the state of the data structure
by just assigning one bit-string to each state. This means that there is never a formal proof that one cannot encode a bit-string in a
data structure and still prove a lower bound.

2 Slightly more care must be taken when bounding the expected size of a MMP H F  that is permitted to take dierent sizes on
dierent inputs.
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study shift-graphs that have vertices corresponding to n-element subsets of [u] and edges between vertices
(a1; a2; : : : ; an) and (a2; : : : ; an; an+1) for all a1 <  a2 <  : : : <  an +1 . They prove that the chromatic number of
the shift-graph is (1 +  o(1))  log(n 1) (u), namely, the (n   1)-th iterated logarithm of u. The shift-graph is a
subgraph of our conict graph. Thus, by taking u =  2  (n), i.e., the tower of twos of height (n), we can have (G)  =
2 ! ( n ) ,  and thus prove an ! (n )  lower bound for MMPHF on n-subsets of (extremely large) universes of size u =
2  (n). This is the starting point of our approach. We now need to dramatically decrease the size of the universe,
while also dramatically increasing the bound on the chromatic number by considering the conict graph itself, and
not only its shift-subgraph.

To  lower bound the chromatic number of the conict graph, we consider the relaxation of this problem via
fractional colorings (see Section 2.2). Given that this latter problem can be formulated as a linear program
(LP) ,  a natural way for proving a lower bound on its value is to exhibit a feasible dual solution instead3. This
corresponds to the following problem: exhibit a distribution on vertices of the graph so that for any independent
set, the probability that a vertex sampled from the distribution belongs to the independent set is bounded by p;
this then implies that the fractional chromatic number (and in turn the chromatic number) are lower bounded by
1=p. The main technical novelty of our work lies in the introduction of a highly non-trivial such distribution and the
analysis of this probability bound for each independent set (we postpone the overview of this part to Section 4.1 after
we setup the required background). This allows us to lower bound the (fractional) chromatic number of the conict-
graph by
(n log n) when the universe is of size u =  22 p o l y ( n )  

which gives an
(n log log log u) lower bound for MMPHF on such universes.

Working with fractional colorings, beside being an immensely helpful analytical tool, has several additional
benets for us. Firstly, unlike standard (integral) colorings, fractional colorings admit a natural direct product
property over a certain union of graphs; this allows us to extend the lower bound for MMPHF from universes of
size doubly exponential in n (which are admittedly not the most interesting setting of parameters), all the way
down to universes of size n1+o(1) . Secondly, unlike the (integral) chromatic number, which yields a lower bound
only on the space of deterministic MMPHFs, we show that lower bounding the fractional chromatic number allows us
to prove a lower bound even for randomized MMPHFs that have access to their randomness for free. We believe this
technique, namely, dening a proper conict graph and bounding its fractional coloring by exhibiting a feasible dual
solution, may be applicable to many other data structure problems and is therefore interesting in its own right.

2 Preliminaries

Notation. For any integer t >  s >  1, we let [t] : =  f1; : : : ; tg and let [s : t] =  fs; : : : ; tg. For a tuple
(X1 ; : : : ; Xt ), we further dene X < i  : =  (X1 ; : : : ; X i  1) and X  i  : =  (X1 ; : : : ; Xi  1 ; Xi +1 ; : : : ; Xt ).

2.1 Problem Denit ion and Model of Computation For any integer n; u >  1, we let D(n; u) be an
MMPHF indexing algorithm for size-n subsets of [u]. That is, if S n ; u  =  f S   [u] s.t. jS j =  ng then for all S
2  Sm ; u ,  D ( S )  is the MMPHF index for S .

For any xed choice of random bits r, we use D r  to denote the resulting MMPHF with random bits r. Note that
for any xed choice of r, D r  is deterministic. For any S  2  S n ; u  and randomness r, dene dr (S )  as the size in bits of
the MMPHF index D r ( S ) .  Dene:

d(n; u) : =  max E [dr (S )] :
n ; u

When n and u are clear, we drop them and refer simply to D  and d.
In this denition of size, we are not charging the algorithm for storing its randomness. In other words, the

algorithm has access to a tape of random bits chosen independent of the input that it can use for both creating the
index as well as answering the queries. Furthermore, we also allow the algorithm unbounded computation time4.
Thus, the only measure of interest for us is the size of the index. Finally, any deterministic MMPHF in this

3 This is an inherently dierent technique than the one used in [EH66] for the shift-graph, as it is known that the fractional
chromatic number of the shift-graph is O (1)  (see, e.g. [ST11]).

4 In this (non-uniform) information-theoretical setting, one can remove random bits entirely by increasing the space with
O(log n  +  log log u) bits (see, e.g., Newman’s Theorem in communication complexity [New91]), but this extra O(log log u) is in
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f I

max
v

 1

model is simply a randomized MMPHF that ignores its random bits and thus we will only focus on randomized
MMPHFs from now on.

2.2 Fractional Colorings A  key tool that we use in establishing our lower bound is the notion of a fractional
coloring of a graph. We now review the basics of fractional colorings, which we need in our proofs. The results
mentioned in this subsection are all standard; see, e.g. [SU11] (we present self-contained proofs of these results in
Appendix A  for completeness).

Let G  =  (V ; E ) be any undirected graph. A  proper coloring of G  is any assignment of colors to vertices of G
so that no edge is monochromatic. The chromatic number (G)  is the minimum number of colors in any proper
coloring of G.

Let I ( G )   2V denote the set of all independent sets in G, and for any vertex v 2  V , dene I (G; v )  as the set
of all independent sets that contain the vertex v. A  fractional coloring of G  is any assignment of x  2  [0; 1]I (G)  to
the independent sets of G  satisfying the following constraint:

for every vertex v 2  V :      
X

x I  >  1:
I 2 I ( G ; v )

The value jxj of a fractional coloring x  is given by 
P

I 2 I ( G ; v )  x I .  The fractional chromatic number f  (G)  is
the minimum value of any fractional coloring of G. This quantity can be formalized as a linear program (LP) :

(2.1)  (G)  : = min
X  

x
x 2 [ 0 ; 1 ] I ( G )  

I 2 I ( G )

subject to
X  

x I  >  1     8v 2  V:
v 2 I ( G ; v )

Any proper coloring of G  with k colors induces a solution x  of value k to this L P,  where x I  is set to 1 for
the independent sets I  that correspond to (whole) color classes in the coloring. Thus the L P  given by Eq (2.1) is
indeed a relaxation of the original coloring problem.

Fac t  2.1. For any graph G,  f  (G)  6  (G).

It is worth mentioning that at the same time (G)  =  O(log jV (G)j)  f  (G)  using the standard randomized
rounding argument (we do not use this direction explicitly in our paper).

A  primal-dual analysis of the fractional-chromatic-number L P  implies the following results. These results are
standard but we provide proofs in Appendix A  for completeness.

Proposition 2.2. Let G1 =  (V1 ; E1 ) and G2 =  (V2 ; E2 ) be arbitrary graphs. Dene G1 _  G2 as a graph on
vertices V1  V2 and dene an edge between vertices (v1; v2) and (w1; w2) whenever (v1; w1) is an edge in G1 or (v2; w2)
is an edge in G2 . Then, f  (G1 _  G2 ) =  f  (G1 )  f  (G2 ).

Proposition 2.2 allows us to determine f  of a product of several graphs by focusing on each individual graph
separately.

Proposition 2.3. For any graph G  =  (V ; E ),

f  (G)  =  
distribution  on V

min Pr (v 2  I ) :
I 2 I ( G )

Proposition 2.3 provides us with a tool to lower bound f  by nding a suitable distribution on the vertices so
that no independent set has a signicant probability of containing a vertex sampled from this distribution.

3 A  Lower B o u n d  for M M P H F  via Fractional  Colorings

We can now formally state the main theorem of this paper.

general unavoidable (see, e.g. [HT01] and references therein), and can be prohibitive for us when u is suciently large. Hence, we
still explicitly account for randomized data structures in our lower bound.
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Theorem 2 (Formalization of Theorem 1). For any n; u 2  N +  such that n  2
p

l o g  n  6  u 6  2 n n 2 + n  
, and for any

MMPHF algorithm D(n; u),
d(n; u) =
(n log log log u):

The rest of the paper presents the proof of Theorem 2. We spend the rest of the section reframing the theorem
in terms of the fractional chromatic number of a certain graph associated with the MMPHF problem. We will
then show how to lower bound the fractional chromatic number in the next section.

3.1 Con i c t  G r a p h  and its Fractional  Chromatic Numb er Let m >  1 be an integer and dene M

: =  2 m m 2 + m  
. Dene the graph G(m) : =  (V (m); E (m)) as:

• The vertex set is V (m) =  S m ; M  , that is, the size-m subsets of [M]. We denote each vertex v 2  V (M ) by
the m-tuple v : =  (v1; : : : ; vm) where 0 <  v1 <  v2 <   <  vm 6  M.

• The edge set E (m)  is dened as follows. Let v =  (v1; : : : ; vm) and w =  (w1; : : : ; wm) be any two vertices in V
(M ). Then, there is an edge (v; w) 2  G(m) i there exists some pair of indexes i  =  j  2  [m] such that vi =  wj .

We refer to G(m) as the conict graph of m. The following lemma claries our interest in this graph by showing that
fractional chromatic number of G(m) can be used to lower bound size of any MMPHF (for certain parameters of
input).

Lemma 3.1. Let m >  1 be an integer and let M =  2 m m 2 + m  
. For any MMPHF D(m; M ),

d(m; M ) >  (log f  (G(m))      2)=2:

Proof. Consider any two vertices v; w 2  G(m). If there is an edge between v and w, then there exists an element
z =  vi =  wj ; i =  j .  Therefore for every choice of randomness r, D r (v )  =  Dr (w ),  because query z must return i  on
D r (v )  and j  on Dr (w ).  This implies that for every r, the set of vertices v with the same D r (v )  form an
independent set in G(m) (and the collection of these sets is a coloring of G(m)). We use I r  to denote these
independent sets in G(m) for this choice of r.

On the other hand, by Proposition 2.3, there exists a distribution  on V (m) such that 
(3.2)  (G(m)) = min Pr (v 2  I ) :

I 2 I ( G ( m ) )

Let us x  that distribution. Under this distribution, by the denition of d,

d =  d(m; M ) =  
v  

max 
)  

E[dr (v)] >  
v

E
 
E [dr (v)] =  E

v
E

 
[dr (v)] :

An averaging argument now implies that there exists a choice r  of random bits such that
h i

v
E

     
dr (v) 6  d:

By Markov’s inequality, with probability at least 1=2, for v  , we have that dr  
(v) 6  2d.

Recall that D r  
(v) corresponds to an independent set in I r  . Moreover, there can be at most 22d+1   2

independent sets I  in I r  such that for all v 2  I ,  dr (v) 6  2d; this is because there are at most 22d+1      2 choices for D r

(v) across all v 2  V (m) that can use up to 2d bits in their index (as the number of non-empty binary strings of
length at most 2d is 22d+1   2). Since a random v   belongs to one of these 22d+1   2 independent sets with
probability at least half, we necessarily have some independent set I  2  I r  where

Pr (v 2  I )  >  
2  (22d+1      2) 

>  
22d+2

 :

Plugging in this bound in Eq (3.2), we have,

f  (G(m)) 6  22d+2;

which implies that d >  (log f  (G(m)      2)=2, concluding the proof.
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Lemma 3.1 reduces our task of proving Theorem 2 to establishing a lower bound on (G(m)). This will be
accomplished by the following lemma, which we prove in Section 4.

Lemma 3.2. There is an absolute constant  >  0 such that for every suciently large m >  1,

f  (G(m)) >  mm :

By plugging in the lower bound of f  (G(m)) from Lemma 3.2 inside Lemma 3.1, we get that for any

suciently large n >  1 and universe size u =  2 n n 2 + n  
, the lower bound on the MMPHF problem is

(n log n) =
(n log log log u) as log n =  (log log log u) here.

Thus Lemmas 3.1 and 3.2 can be combined to prove Theorem 2 modulo a serious caveat: the lower bound
only holds for instances of the problem wherein the universe size is larger than doubly exponential in n, which is
admittedly not the most interesting setting of the parameters. In the next subsection, we use a simple graph
product argument (plus Proposition 2.2) to extend this lower bound to the whole range of parameters u considered by
Theorem 2.

3.2 E x t e n d i n g  the M M P H F  Lower B o u n d  to Small Universes For every integers m; ‘ >  1, dene
G(m; ‘) =  (V (m; ‘); E (m; ‘)) as the ‘-oset conict graph where the vertex set V (m; ‘) is the set of all size-m

subsets of [ ‘ + 1  : M + ‘ ]  for M : =  2 m m 2 + m  
dened earlier, and the edge set E (m; ‘ )  is dened as in normal conict graphs.

(Thus G(m; 0) =  G(m).)
Furthermore, for every integer m; k >  1, we dene the k-fold conict graph, denoted by Gk (m), as the

graph:
Gk (m) =  (V k (m); E k (m)) : =  G(m; 0) _  G(m; M ) _  G(m; 2M ) _   _  G(m; (k      1)M );

where ‘_’ denotes the graph product in Proposition 2.2. The direct interpretation of the nodes of V k (m) is a
product of tuples from disjoint ranges, but we can also interpret it as a single tuple of length k  m. This way,
Gk (m) is a subset of the conict graph on km-size subsets of [kM] and it makes sense to compute D(v )  for any v 2  V
k (m).

Therefore, by Lemma 3.1, we again have a lower bound of
(log f  (Gk (m))) for MMPHF on tuples of length n =  km from a universe of size u =  kM.

By Proposition 2.2, combined with Lemma 3.2, we have,

log f  (Gk (m)) =  
X

l o g  f  (G(m; i      1)) =  k  log f  (G(m)) >
(k  m  log m) =
(n log m); i = 1

where the second equality is because f  (G(m; i  1)) =  f  (G(m)) for all i  2  [k], as these graphs are all isomorphic to
each other. Consider a choice of

m =  (log log n)1=6     and k =  n=(log log n)1=6;

which in turn gives us

u =  k  2 m m 2 + m  
 k  22 m 3  

=  
(log log n)1=6  22

p
l o g

 
l o g

 
n  

 n  2
p

lo g  n :

By the above equation, we have a lower bound of
(n log log log u) for MMPHF given that in this case, log m =  (log log log u). Thus, so far, we have proven

Theorem 2 on both its boundary cases, namely, when u =  n  2 log n  and when u =  2 n n 2 + n  
. The proof can now

be extended to the full range of the parameters in the middle by re-parameterizing k appropriately; see Appendix
B  for the complete argument.

We conclude that in order to nish the proof of Theorem 2, we need only establish Lemma 3.2.

4 Fractional Chromatic Numb er of Con i c t  Graphs

In this section, we establish a lower bound on the fractional chromatic number of the conict graph G(m) for any
(large enough) m >  1, and thereby prove Lemma 3.2.
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f
 1

Proposition 2.3 gives us a clear path for proving the lower bound on f  (G(m)) in Lemma 3.2: we can design a
distribution  on vertices of V (m) and then, for every independent set I  2  I (G(m)),  we can upper bound the
probability that v sampled from  belongs to I .  As f  in Proposition 2.3 is maximum over all possible
distributions, our distribution provides a lower bound for f  (G(m)).

To  continue, we need the following interpretation of the (maximal) independent sets in G(m).

Observation 4.1. Any maximal independent set I  in G(m) can be uniquely identied by a function f I  : [M] !  [m]
such that for every vertex v =  (v1; : : : ; vm) 2  V (m), we have f I (v i )  =  i .

Proof. Consider any two vertices v; w 2  I .  Since there is no edge between v =  (v1; : : : ; vm) and w =  (w1; : : : ; wm) in
G(m), whenever vi =  wj , we necessarily have that i  =  j .  Thus, any element of e 2  [M] can only appear in a single
index ie 2  [m] throughout all vertices v 2  I  (or does not appear at all in v). We can thus dene f I (e )  to be ie, giving
us a functin f I  with the desired property.

We now show that f I  uniquely identies I .  Dene I 0 as set of vertices v =  (v1; : : : ; vm) 2  V (m) satisfying f I (v i )
=  i  for all i  2  [m]. I 0 is an independent set satisfying I   I 0. Since I  is assumed to be maximal, it follows that I  =  I 0,
meaning that we recover I  from f I .

Observation 4.1 allows us to reduce Lemma 3.2 to the following lemma about m-tuples of increasing integers.
Proving Lemma 4.2 is the main technical contribution of our work.

Lemma 4.2. There is an absolute constant  >  0 such that for any suciently large m >  1 and M =  2 m m 2 + m  
, the

following is true. There exists a distribution on m-tuples of increasing numbers X 1  <   <  X m  from [M] such that
for any function f  : [M] !  [m],

Pr (8i 2  [m] : f ( X  )  =  i )  6  m m :
( X 1 ; : : : ; X m )

Before proving Lemma 4.2, we show how it implies Lemma 3.2.

Proof of Lemma 3.2 (assuming Lemma 4.2). Any choice of (X1 ; : : : ; Xm ) in Lemma 4.2 can be mapped to a
unique vertex v 2  G(m) and vice versa. Thus, (X1 ; : : : ; Xm ) induces a distribution  on vertices V (m): sample
(X1 ; : : : ; Xm ) and return the vertex v =  (v1; : : : ; vm) where vi =  X i  for all i  2  [m]. Moreover, for any maximal
independent set I  2  I ( G ) ,  by Observation 4.1, the vertex corresponding to (X1 ; : : : ; Xm ) belongs to I  i f I ( X i )  =  i  for
all i  2  [m]. Thus,

Pr (v 2  I )  = Pr (8i 2  [m] : f ( X  )  =  i )  6  m m :
( X 1 ; : : : ; X m )

As every independent set of G(m) is a subset of some maximal independent set, the upper bound continues to
hold for every independent set in G(m).

By Proposition 2.3,

concluding the proof.

 (G(m)) > min Pr (v 2  I ) >  mm ;
I 2 I ( G ( m ) )

The rest of the section proves Lemma 4.2. We start with a high-level overview in Section 4.1. We then dene
the distribution that we will use for the proof of Lemma 4.2 (Section 4) and analyze it to establish Lemma 4.2
(Section 4.3). The probability distribution that we construct in these sections should be viewed intuitively as a
\hard" input distribution on inputs to the MMPHF problem (in the spirit of Yao’s minimax principle).

4.1 A  H i g h - L eve l  Overview of the Proof The proof of Lemma 4.2 is quite dense and requires both a highly
delicate probability distribution and several intricate technical arguments. Thus, before getting into the details of
this proof, we provide a (very) high-level overview of the logic behind it. In order to convey the intuition, we omit
many details from this subsection, instead limiting ourselves to an informal discussion.

The distribution in Lemma 4.2 is roughly as follows: we start with a \window" Win1 which is the interval
[1 : M], and then sample X 1  uniformly at random from Win1. We then pick window Win2 to be [X 1  + 1  : X 1  + w2 ]
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for an integer w2 >  1 chosen randomly from a carefully designed distribution. Similarly to before, X 2  will be
chosen uniformly from Win2. We continue like this by picking a new window Wini =  [ X i  1 + 1  : X i  1 + w i ]  for each i  2
[m] by sampling each wi from a distribution that is constructed based on (w1; : : : ; wi 1), and then sampling X i
from Wini. Note that, by design, we will satisfy X 1  <  X 2  <  : : : <  X m .

The key property that this distribution achieves can be explained informally as follows. For any index i  2  [m],
there is a recursive partitioning of the window Wini into \dense" and \sparse" intervals, where an interval I   Wini is
dense (with respect to the function f  and the index i )  if at least an
(1=m) fraction of entries j  2  I  satisfy f ( j )  =  i, and otherwise I  is sparse. The central property that our
distribution ensures is that, if the random choice of X i  places it in a dense interval, then (with very high
probability) the nal window Winm will itself end up being dense (i.e., for at least a 2=m fraction of j  2  Winm, f ( j )  =
i).

Establishing this property is quite challenging and involves dening the distribution of wi’s in a highly non-
uniform manner (in terms of their values); this is also the source of the doubly exponential dependence of range M
on the number of indices m. We postpone the details on how this property can be achieved to the actual proof and
focus on why it is a useful property for us.

The analysis of the distribution now uses the property in a potential-function style argument. For each X i ,  it
is either sampled from a sparse interval or a dense one. If X i  is sampled from a sparse interval I ,  then no matter
the past iterations, the probability that f ( X i )  =  i  is at most (2=m), since at most (2=m) fraction of I  can have
value f ( j )  =  i  by the denition of it being sparse. On the other hand, if X i  is chosen from a dense interval, then
at least a (2=m) fraction of entries of Winm should be mapped to i  by f  as well (by our property). Seeing Winm
as a potential function now, we have that this latter step can only happen for (m=2) iterations i  2  [m]|indeed,
each time that this happens for some i, we commit some (2=m) fraction of indices j  2  Winm to having f ( j )  =  i,
and these sets indices must be disjoint. As a result, we have that at least (m=2) iterations i  2  [m] sample X i
from a sparse interval. Thus,

Pr ( f ( X 1 )  =  1; : : : ; f (Xm ) =  m) 6  
Y  

P r ( f ( X i )  =  i  j f ( X 1 )  =  1; : : : ; f (Xi  1) =  ( i       1))
i :  X  chosen from
a sparse interval

m=2
6  O

m
=  m

( m ) ;

as desired for the proof of Lemma 4.2.
The main challenge in formalizing the above argument is the design and analysis of the distribution so that

the property discussed above holds. Note also that the property cannot hold deterministically|another challenge
is to show that it holds with such high probability that the risk of the property ever failing (across the entire
construction) can be ignored.

4.2 T h e  H a r d  I n p u t  Distr ibut ion in  Lemma 4.2 The distribution is dened as follows.

( i )  Let k =  mm, S0 =  k m +1 , and X 0  =  0.

( i i )  For i  =  1 to m:

(a) Sample two random numbers Yi from [2S i      1  ] and Z i  from [k      1] uniformly at random.

(b) Dene the random variables of iteration i  as:

X i  =  X i  1 +  Yi and S i  =  S i  1      km i + 1   Z i :

( i i i )  Return (X1 ; : : : ; Xm ) as the resulting random variables.

To  avoid ambiguity, we use lower case letters (si ; xi ; yi ; zi ) to denote realizations of random variables
(S i ; X i ; Y i ; Z i )  for i  2  [m].

We have the following basic observation on the range of numbers created in this distribution.
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Observation 4.3. Every choice of (X1 ; : : : ; Xm ) and (S1 ; : : : ; Sm ) satisfy the following properties:

( i )  \Monotonicity": for all i  2  [m], X i  >  X i  1 and S i  6  S i  1      mm (and S i ; X i  are integers).

( i i )  \Boundedness": for every i  2  [m], X m  6  X i  +  (m      i )   2 S i      and S m  >  S i       km i + 1  >  0.

Proof. Monotonicity of X i ’s  holds as Yi’s are positive. Monotonicity for Si ’s holds because Zi ’s are positive and
k m i + 1  >  k m m + 1  >  k =  mm, meaning that we always have S i  6  S i  1      mm.

For part (i i),  we have,

X m  =  X i  +  
X  

Yj  6  X i  +  
X  

2 S j      1  6  X i  +  (m      i )   2 S i  ;
j = i + 1 j = i + 1

which proves the boundedness of X i ’s.  For Si ’s,

(as 
P

j = i
1  k j  6  

P
j = i  k j  =  k i + 1   (k      1) 1)

m m  1

S m  =  S i   k m j + 1   Z j  >  S i       km  (k      1) k j  >  S i       km i + 1 :
j = i + 1 j = i

Finally, by this bound, we have S m  >  S0      k m + 1  >  0 as S0 =  k m +1 .

When discussing (X1 ; : : : ; Xm ), we will also need some further denitions:

• For any realization (s < i ; x < i ) ,  we dene the window of iteration i  2  [m], Wini : =  Wini (s< i ; x< i ) ,  as the
support of the random variable X i  conditioned on (s < i ; x < i ) ,  i.e.,

Wini : =  Wini (s< i ; x< i )  =  [x i  1 +  1 : x i  1 +  2s i      1  ]:

Notice that jWini (s<i ; x<i )j =  2s i      1  and Wini is determined by (s < i ; x < i ) .

• Similarly, for any xed choice of (s < i ; x < i ) ,  consider the following numbers:

(4.3) wi ; j  : =  2s i      1  j k ( m      i + 1 )
for all j  2  f0; : : : ; kg:

This way, jWini + 1 (s< i ; x< i ) j  is chosen uniformly at random from fwi;1 ; : : : ; wi;k  1g (depending solely on the
choice of Z i  2  [k   1] which also determines S i ) .  Moreover, the ratio of wi ; j  and wi ; j + 1  is xed for any j
2  f0; : : : ; k      1g and we dene this quantity as

(4.4) r i  : =  2 k m      i + 1  
=  

wi ; j for any j  2  f0; : : : ; k      1g:
i ; j + 1

Observation 4.4. For any xed (s < i ; x < i ) ,  the supports of random variables jWini+1j ; : : : ; jWinmj are subsets of
the interval [2m       w i ; Z i + 1  : w i ; Z i  ].

Proof. By denition,
jWini+1j =  2 S i  =  2 S i      1  k m      i + 1 Z i  =  w i ; Z i  :

Moreover, by Observation 4.3, for any j  2  f i  +  1; : : : ; mg, we have jWinj j 6  jWini+1j. Thus each of these windows
can have length at most w i ; Z i  , proving the upper bound side.

For the lower bound, for any j  2  f i  +  1; : : : ; mg, we have,

(by parts ( i) ; ( i i )  of Observation 4.3)

This concludes the proof.

jWinj j >  jWinmj =  2 S m      1  >  2 S i  k m      i + 1 + m m

=  2 m m  
 2 S i   2 k m      i + 1  

=  2 m m  
 w i ; Z i   r i  

1 =  2 m m  
 wi ; Z i + 1 :
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We need one nal denition for now:

• For the function f  : [M] !  [m], we dene the density of index i  2  [m] in f  over a window Win, denoted by
density f  (Win; i), as

density f  (Win; i) : =  
j f j  2  Win : f ( j

)
 =  igj

;

namely, the fraction of entries of the window that are equal to i.

Observation 4.5. For any choice of ( s < i ; x < i ) ,  we have,

P r ( f ( X i )  =  i  j s < i ; x < i )  =  densityf  (Wini (s< i ; x< i ); i):

Proof. Conditioned on (s < i ; x < i ) ,  X i  is chosen uniformly at random from Wini (s< i ; x< i ) .  The observation therefore
follows from the denition of density f  (Wini (s< i ; x< i ); i):

4.3 Analysis of the H a r d  Distr ibut ion {  Proof of Lemma 4.2 We prove Lemma 4.2 by individually
considering each iteration in the distribution.

Lemma 4.6. For any iteration i  2  [m   1] and conditioned on any choice of ( s < i ; x < i ) ,  at least one of the
following two conditions is true:

( i )  P r ( f ( X i )  =  i  j s < i ; x < i )  6  
101

or ( i i )  Pr densityf  (Winm; i) <  
2 

j s < i ; x < i

 
<  

k1=3 :

The guarantee in Lemma 4.6 does not apply to the last iteration (omitted for technical reasons).
The main bulk of this section is to prove Lemma 4.6. We then show at the end of the section that this lemma

easily implies Lemma 4.2. To  continue, we need some denitions.

Denit ion 4.7. The window-tree of iteration i  2  [m] for ( s < i ; x < i ) ,  denoted by Ti : =  T (s < i ; x < i ) ,  is the
following rooted tree with k +  1 levels (the root is at level 0):

( i )  Every non-leaf node  of the tree has r i  many child-nodes.

( i i )  Every node  at a level ‘  2  f0; : : : ; kg is associated with a window Win() of length wi; ‘ .

( i i i )  The root r  is associated with the window Win(r ) : =  Wini (s< i ; x< i ) .  The windows associated with child-
nodes of a node  at level ‘  partition Win() of length wi ; ‘  into equal-size windows of length wi ; ‘+ 1  (recall
that  has r i  =  wi ; ‘=wi ; ‘+1  child-nodes). Moreover, the left most child-node receives the window in the
partition with the smallest starting point, the next child-node on the right receives the next window with
smallest part, and so on.

(iv) The density of a node  with respect to any function f  : [M] !  [m] is dened as

density f  ()  : =  density f  (Win(); i):

One way we use the window-tree in our analysis is to consider the process of sampling X i  (which is uniform
over Wini (s< i ; x< i )  at this stage) as traversing the window-tree via a root-to-leaf path. This is formalized in the
following observation.

Observation 4.8. The distribution of X i  conditioned on ( s < i ; x < i )  can be alternatively seen as: ( i )  Sample a
root-to-leaf path 0; 1; : : : ; k where 0 is the root of Ti and where each ‘ + 1  is a child-node of ‘  chosen uniformly at
random; then, ( i i )  sample X i  uniformly at random from Win(k ). We refer to 0; : : : ; k as the sampling path of
X i .

Proof. X i  is distributed uniformly over Wini and leaf-nodes of Ti form an equipartition of Wini.
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In addition, we dene a pruning procedure for any window-tree T as follows.

Denit ion 4.9. Fix a function f  : [M] !  [m] and a window-tree Ti for some i  2  [m]. We say that a node  2  Ti is
sparse i

density f  ()  6  
m 

:

Consider the following procedure for pruning Ti: Start from the root down to the leaf-nodes and prune any sparse
node, as well as the whole subtree rooted at that node. We refer to a sparse node that was pruned on its own (i.e., any
node that is sparse and has no sparse ancestors) as a direct ly  pruned node and to other pruned nodes as
indirect ly  pruned.

Finally, for ‘  2  f0; : : : ; kg, dene p ‘  as the fraction of directly pruned nodes at level ‘  of the tree over all
level-‘ nodes that are not indirectly pruned.

It is worth noting that pruning is deterministic conditioned on (s < i ; x < i ) .
With these denitions, we can now start proving Lemma 4.6. This will be done by considering some dierent cases

handled by the following claims. The rst (and easiest) case is when most nodes of the window-tree are pruned, in
which case we achieve property ( i )  of Lemma 4.6.

Claim 4.10 (Case I: \Many Directly Pruned Nodes"). Suppose

Y
( 1       p ‘ ) 6  

1 
:

‘ = 0

Then, for any choice of ( s < i ; x < i ) ,

P r ( f ( X i )  =  i  j s < i ; x < i )  6  
101

:
i

Proof. Let Wrem denote the subset of Wini that remains after removing windows of all pruned leaf-nodes from
Wini. We have that

jWremj =  
#  leaf-nodes of T

n
that are not pruned 

 jWinij =  
‘= 0

(1       p ‘ )   jWinij 6  
jWinij ;

where the second equality is because at each level ‘  of the tree, the number of not pruned nodes drops by a factor
of (1      p ‘ )  by the denition of p‘ .

Let DP  denote the set of all nodes in the tree Ti that were directly pruned. Note that the windows Win()
for  2  DP  partition Wini n Wrem. This implies that

(by the denition of densityf  ()  function) !

density f  (Wini ; i) =  
jWinij 

jWremj  densityf  (Wrem; i) +  
2 DP  

densityf  ()   jWin()j (as

density f  ()  6  100=m by the denition of sparsity, and density f  (Wrem; i) 6  1)

6  
jWinij 

jWremj +  
2 DP      

m 
 jWin()j

(as jW j = jWin j 6  1=m as established above, and jWin()j 6  jWin j)

6  
1 

+  
100 

=  
101

:

By Observation 4.5, we have,

P r ( f ( X i )  =  i  j s < i ; x < i )  =  density (Wini ; i) 6  
101

;
i

concluding the proof.
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We now consider the complementary case, while also taking the randomness of Z i  into account. Recall that
Z i  is uniform over [k 1] and that jWini+1j =  wi ; Z  . For any xed realization zi of Z i ,  recall the sampling-path-
based process of sampling X i  outlined in Observation 4.8. Consider the rst zi vertices in this path, namely,
0; : : : ; zi  1 that start from the root and end at a level zi       1 node of Ti .

Dene E (s< i ; x < i ; z i ; X i )  to be the event that none of the nodes in 0; : : : ; z  1 are pruned. Event
E (s< i ; x < i ; z i ; X i )  depends only on the choice of X i  (to traverse the root-to-leaf path), and is conditioned on
s < i ; x < i  (which determine the window-tree Ti ) and zi (which determines the level of the tree that we focus on). To
avoid clutter, when it is clear from the context, we refer to this event simply by Ei .

We partition the remaining cases based on whether or not the event Ei happens.

Claim 4.11 (Case I I:  \ A  Pruned Node on the Sampling Path"). F ix any choice of zi  and (s < i ; x < i ) .  In the case
that the event Ei does not happen, we have,

P r ( f ( X i )  =  i  j s< i ; x < i ; z i ; E (s< i ; x < i ; z i ; X i ) )  6  
100

:
i

Proof. After conditioning on (s< i ; x< i ; z i ) ,  the event Ei is only a function of the sampling process of X i  outlined in
Observation 4.8. Assuming Ei does not happen, we know that there exists a unique node j  on the path 0; : : : ; z

1 such that j  is sparse and is directly pruned. By additionally conditioning on the subpath 0; : : : ; j , we have that X i
is chosen uniformly at random from Win(j ) at this point. Thus,

P r ( f ( X i )  =  i  j s< i ; x< i ; z i ; E i )
i

(as these subpaths partition all possible choices for Ei to not happen)

=  
X X

P r ( f ( X i )  =  i  ^  (0; : : : ; j ) is on the sampling path j s< i ; x< i ; z i ; E i )
j = 0  ( 0 ; : : : ; j ) :  

i  
j  is

directly pruned

(as X i  is chosen uniformly from Win(j ) under these conditions)

=  
z i  1 X

Pr((0 ; : : : ; j ) is on the sampling path j s< i ; x< i ; z i ; E i )   
jft 2  Win(j ) : f (t)  =  igj 

j = 0

( 0 ; : : : ; j ) :  
i j

j  is directly pruned

(by the denition of densityf  )

=  
X X

Pr((0 ; : : : ; j ) is on the sampling path j s< i ; x< i ; z i ; E i )   density (Win(j ); i) j = 0

( 0 ; : : : ; j ) :  
i

j  is directly pruned

(as j  needs to be sparse to be directly pruned)

6  
X X

Pr((0 ; : : : ; j ) is on the sampling path j s< i ; x< i ; z i ; E i )   
100

:
j = 0  ( 0 ; : : : ; j ) :  

i  
j  is

directly pruned

This can now be further upper bounded by 100=m as the probability terms are summing over all disjoint events
that can lead to Ei (conditioned on this event) and thus add up to one.

Finally, we have the following case which handles the situation when Ei happens. The following claim is the
heart of the proof.

Claim 4.12 (Case I I I :  \No Pruned Nodes on the Sampling Path"). F ix any choice of zi and (s < i ; x < i ) .  In the
case that the event Ei happens, we have,

 Pr
density f  (Winm; i) <  

m 
j s< i ; x< i ; z i ; E i        <  4      pz i  +  p z i + 1  +  

r i         
:
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Proof. Throughout this proof, we always condition on s< i ; x< i ; z i ;  and Ei =  E (s< i ; x < i ; z i ; X i )  and so may not
mention this explicitly in the probability terms. This is the information we have so far:

• None of the nodes 0; : : : ; z  1 on the sampling path are pruned as we conditioned on the event Ei (although z i

1 is still a random variable and is not xed yet just by these conditions).

• Window Winm is going to have size at least 2 m m  
 wi ; z i + 1  and at most wi ; z i  by Observation 4.4.

• By Observation 4.3,

(by the denition of wi ; z i  =  2 S i  ) X m  6  X i  +  (m      i )   2 S i  =  X i  +  (m      i )   wi ; z i  :

• Winm starts at X m  1 and ends at X m  1 +  jWinmj. We can think of the process of sampling Winm as rst
sampling jWinmj, then sampling the oset Oi ; m  : =  X m  1   X i  = Yj  conditioned on jWinmj, and
then sampling X i  conditioned on Oi;m , and jWinmj.

• We further have that X i  conditioned on Oi ; m  and jWinmj is still uniform over Win(z  1). This is because
jWinmj is only a function of Zi +1 ; : : : ; Zm , and X m  1      X i  is only a function of Yi+1 ; : : : ; Ym 1, while X i  is only
a function of Yi ; nally, Yi is independent of Yi+1; : : : ; Ym and Zi + 1 ; : : : ; Zm  and is chosen uniformly from [2si

1  ] (recall that i  <  m in this lemma).

In the following, we condition on any xed choice of oset oi ; m  for Oi ; m  and on jWinmj. We have already established
that

(4.5) 2 m m  
 wi ; z i + 1  6  jWinmj 6  wi ; z i and oi ; m  6  (m      i )   wi ; z i  :

Moreover, the distribution of Winm conditioned on oi;m; jWinmj (and s< i ; x< i ; z i ; E i  that we always condition
on in this proof), is X i  + o i ; m  for X i  chosen randomly from Win(z  1). Also, given that oi ; m  6  (m  i) wi ; z      while
jWin(z  1)j =  wi;z   1 =  r i   wi;z      and r i  =  2 k m      i + 1  

>  2k as i  6  m, the distribution of X i  and X i  +  oi ; m  are quite
close to each other modulo a negligible factor. Thus, for intuition, we can think of X i  itself as the distribution of
starting point for Winm in this context (although we will of course take this dierence into account explicitly in
the proof). We now use this information to prove the claim. To  simplify the exposition, we are going to separate
the analysis based on level zi  and level z i + 1  of the window-tree.

Analysis on level zi  of the window-tree. Firstly, since jWinmj 6  wi;z  , and each node at level zi of the
window-tree Ti has a window of length wi;z  , we get that Winm intersects with windows of at most two consecutive
nodes at level zi of Ti , which are solely determined by the choice of X i .  We use 1 ( X i )  and 2 ( X i )  to denote these
two nodes with 1 being the one where the starting point of Winm, namely, X i  +  oi;m , lies in, and 2 ( X i )  being the
one containing the endpoint X i  +  oi ;m +  jWinmj (note that it is possible that 2 =  1).

We prove that with high probability, neither of these nodes are pruned. Let us focus on 1 ( X i )  rst (the
analysis is almost identical for 2 ( X i )  and we can then apply a union bound). For any ‘  2  f0; : : : ; k      1g, let P ( ‘ )
(resp. DP ( ‘ ) )  denote the set of pruned (resp. directly pruned) nodes at level ‘  of Ti ; similarly, for a node  2  Ti , let
P ()  (resp. DP ( ) )  denote the set of child-nodes of  that are pruned (resp. directly pruned). For any xed choice of
z i  1 on the sampling path of X i ,

(as 1 is in level zi and P (zi )  is the set of all pruned nodes of this level)

Pr ( 1 (X i )  is pruned j z i  1 ) = Pr 1 ( X i )  =   j z i      1  
i

2 P ( z i )       
i

(by partitioning the nodes in level zi between child-nodes of z i  1 and remaining ones)
= Pr 1 ( X i )  =   j z i      1        + Pr 1 ( X i )  =   j z i      1

2 P ( )       
i

2
i

P ( z i ) n P ( z i      1 )

(4.6) 6  jP (z i  1)j  
r i  

+  (m      i )   
r i  

;
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where the last inequality holds because of the following reasoning. Firstly, the probability that 1 ( X i )  is equal to
any xed node  at level zi  is at most 1=ri . This is because

Pr
 

1 ( X i )  =   j z i      1  

 
=  P r ( X i  +  oi ; m  2  Win() j z i  1 ) 6  

jWin( 
)j 

)j 
=  

r i  
;

because X i  is chosen uniformly from Win(z  1), and jWin()j =  jWin(z  1 )j =ri as  is at level zi .     This
immediately implies the rst term in the RHS of Eq (4.6). For the second term, for 1 ( X )  to intersect with a node
not in the subtree of z   1, we need to have X i  +  oi ; m  2= Win(z  1), while we know X i  2  Win(z  1). As oi ; m  6  (m
i)   wi;z      by Eq (4.5), and any node at level zi  has a window of length wi;z  , we get that there are most (m      i )
choices of  outside child-nodes of z   1 that can also become 1 (X i ) .  The second part of RHS in Eq (4.6) now follows
from this and the upper bound of 1=ri on the probability of each node.

Finally, by taking the expectation over the choice of z i  1,

(by the law of total probability, over the choice of z i  1 in the sampling path)
Pr ( 1 (X i )  is pruned) =      E Pr ( 1 (X i )  is pruned j z   1 )

(by Eq (4.6))

i

6      E  

1  

jP (z i  1)j
 
+  

(m
 
     i )

z i      1 i i

=  pz +  
(m      i)

;
i

where in the nal equality, we used the fact that z   1 is chosen from non-pruned nodes (by conditioning on Ei ), and
thus jP (z   1 )j =ri is the fraction of pruned nodes over all not indirectly pruned nodes at level zi , which by denition
is pz i  .

Doing the same exact analysis, we can bound the probability that 2 ( X i )  is pruned also as

Pr ( 2 (X i )  is pruned) 6  pz +  
(m      i )  +  1

; i

i

where the + 1  term in the RHS compared to the one for 1 comes from the fact that 2 ( X i )  can have (m      i  +  1)
choices outside subtree of z   1 (because we are now considering X i  +  oi ; m  +  jWinmj 6  X i  +  (m   i  +  1)  wi;z
instead). By the union bound on the probabilities for 1 ( X i )  and 2 (X i ) ,

(4.7) Pr (either of 1 ( X i )  or 2 ( X i )  is pruned) 6  2  pz +  2  
m

: i i

Analysis on level zi  +  1 of the window-tree. For the next step, let 1 (Xi ); : : : ; t (X i )  denote the child-nodes
of 1 ( X i )  and 2 ( X i )  such that Win( j (X i ))  is entirely contained in Winm. Again, the choice of 1; : : : ; t is only a
function of X i .  Moreover, since jWinmj >  2m        wi;z  + 1  by Eq (4.5), while the window of each node at level zi  +  1 is
of size wi;z  + 1 ,  we have that t >  2m          2 always. We now bound the probability that each j  is (directly) pruned, for
j  2  [t]. This part of the analysis is quite similar to that of level zi  with only minor changes.

For any choice of 1 ( X i )  and 2 (X i ) ,

(because Winm  Win(1) [  Win(2) and thus j  has no choice outside child-nodes of 1 or 2)

P r ( j ( X i )  is directly pruned j 1; 2) = P r ( j ( X i )  =   j 1; 2) i

2             i

DP ( 1 ) [ DP ( 2 )
 (4.8)

6 jDP (1 )j +  jDP (2 )j     ;
i

where we are again going to argue that the probability that j ( X i )  is equal to any xed node  is at most 1=ri
conditioned on the choice of 1 and 2. For j ( X i )  to be equal to a node  we need to have that X i  +
oi ; m  +  ( j    1)  wi ; z i + 1  2  Win(); this is because j ( X i )  appears after ( j    1) nodes of level zi  +  1 that
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r i

are fully inside Winm and each such window has length wi;z  + 1  (note that this is a necessary but not a sucient
condition). Thus,

P r ( j ( X i )  =   j 1; 2) 6  P r ( X i  +  oi ; m  +  ( j       1)  wi;z  + 1  2  Win() j 1; 2) 6  
jWin()j 

=  
1 

; i i

i ; z i i

where the last inequality is because conditioned on Winm intersecting with 1; 2, X i  is chosen uniformly at
random from a window of length wi;z      (equal to length of Win(1) and Win(2)); the nal equality also uses that jWin()j
=  wi ; z i + 1  =  wi ; z i  =ri . Hence, we get Eq (4.8).

We can now deduce that

E  [ #  of 1 (Xi ); : : : ; t (X i )  that are directly pruned] i

(by the law of total probability over the choices of 1; 2)
=  

 
E  

2
 E  [ #  of 1 (Xi ); : : : ; t (X i )  that are directly pruned j 1; 2]

(4.9) =  
 
E  

2  
[jDP (1 )j +  jDP (2 )j]  

r i  
;

where the last inequality is by Eq (4.8).
Let P (zi )  denote the set of not pruned nodes in level zi  and let P (zi )  denote the set of nodes in level zi

whose parents are not pruned. Since we are conditioning on Ei, we know that X i  is uniformly random from the
interval [ 2 P ( z  )Win(). It follows that X m  1 =  X i  +  oi ; m  is uniformly random in a range whose size is also ‘
= 2 P ( z

i
)  jWin()j. Thus, for any level-zi node , we have that

Pr[1 =  ] =  P r [ X m  1 2  Win()] 6  
jWin()j 

=  
wi ; z i      =  

jP 
1 

i )j
:

Summing over the level-(zi +  1) nodes that are directly pruned, we have that

E jDP (1 )j =
X

Pr[1 is the parent of ] 6  
j
D

P (z i  +  1)j 
6  

j
D

P (z i  +  1)j
; 2 DP ( z i + 1 )

i i

using the upper bound established above on the probability that 1 is any xed node. Note that
jDP (z i  +  1)j

z i + 1 r i   jP (zi )j

i.e., the number of directly pruned nodes in level zi +  1 divided by the number of nodes with not pruned parents.
Therefore, E jDP (1 )j 6  r i   pz + 1 .  By the same reasoning (but applied to 2, which contains the endpoint of X m ) ,
we have that E jDP (2 )j 6  r i   pz i + 1 .

Thus, we can use Eq (4.9) to conclude that

E  [ #  of 1 (Xi ); : : : ; t (X i )  that are directly pruned] 6  2pz i + 1   t: i

By Markov’s inequality,

(4.10) Pr (more than t=2 of 1 (Xi ); : : : ; t (X i )  are directly pruned) 6  4  pz i + 1 :  i

Finally, by considering the possibility that at least one of 1 or 2 could be pruned also we have,

Pr (more than t=2 of 1; : : : ; t are pruned) i

(4.11)

by Eq (4.7) and Eq (4.10).

6  Pr (more than t=2 of 1 (Xi ); : : : ; t (X i )  are directly pruned) i

+  Pr(either of 1 or 2 are pruned) 6

4pz i + 1  +  2pzi  +  
2m

;
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Conc lud ing  the proof. Let us now condition on the event that at least t=2 of nodes 1; : : : ; t are not
pruned, namely, the complement of the event in Eq (4.11). Given that Winm can have non-empty intersection
with at most two other level-(zi + 1 )  nodes beside 1; : : : ; t, and that non-pruned nodes are all dense, conditioned on
the above event, we have,

density f  (Winm; i) >  
(t=2) 

 
100=m 

>  
100 

>  
2 

;

as t >  2 m m  
     2  1. Thus, by Eq (4.11), we have,

Pr density (Winm; i) 6  
2 

 
6  2pzi  +  4  p z i + 1  +  

2m 
<  4 pzi  +  p z i + 1  +  

m
; i

concluding the proof.

Claims 4.10 to 4.12 now cover all possible cases and allow us to prove Lemma 4.6.

Proof of Lemma 4.6. F ix  the tree Ti and consider its pruning process. If 
Q k        (1   p ‘ )  6  1=m, we achieve the rst

condition of the lemma by Claim 4.10 and are thus done. Now consider the complement case. In this case, we have,
1 

<  
Y

( 1       p ‘ )  6  exp          
X

p ‘ ;
‘ = 0 ‘ = 0

which implies that 
P k p ‘  6  ln m. Recall that the choice of Z i  in the distribution is uniform over [k 1] regardless

of conditioning on (s < i ; x < i ) .  Since Z i  is chosen uniformly from [k      1], we have,

E  [pZ i  +  p Z i + 1 ]  6  
k      1 

 
‘ = 1  

p ‘  +  
k      1 

 
‘ = 2  

p ‘  6  
k     

 
1 

‘ = 0  

p ‘  6  
(kl     1)

:

By Markov bound, we have,

Pr p Z i  +  p Z i + 1  >  
4  

1=2      

 
 
k1=3 

:

We can now condition on any choice zi of Z i  such that pz +  pz + 1  6  (4 ln m)=k1=2. At this point, either event Ei
does not happen, in which case, by Claim 4.11, we again obtain condition ( i )  of the lemma; or the event Ei
happens, which by Claim 4.12 and the choice of r i  in Eq (4.4) implies

Pr densityf  (Winm; i) 6  
2 

j s < i ; x < i

 
6  4  

4 
 
ln m 

+  
2 

m 
i  

 
 
k

1 
3 ;

as i  6  m   1 and thus m=2k m      i      
6  m=2k  1=k1=3, as k =  mm. Taking the union bound over the above two

events, we also obtain condition ( i i )  of the lemma.

Finally, we use this lemma to conclude the proof of Lemma 4.2.

Proof of Lemma 4.2. Let T1; T2  [m] denote, respectively, the iterations in which condition ( i )  or condition ( i i )  of
Lemma 4.6 happens. Note that T1 and T2 are random variables over the randomness of Si ’s and Xi ’s.  We rst claim
that with high probability jT2j <  m=2. This is because for any iteration i  2  T2 and any choice of ( s < i ; x < i )  of prior
iterations, by Lemma 4.6,

Pr densityf  (Winm; i) 6  
2 

j s < i ; x < i

 
6  

k1=3 :

A  union bound on at most m choices for indices on T2 then implies that with probability at least 1      m=k1=3, we
have density f  (Winm; i) >  m  for all i  2  T2. But then conditioned on this event, the size of T2 cannot be m=2 or
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larger as otherwise Winm contains m=2 disjoint sets each of which contains than a 2=m fraction of the window,
which is a contradiction. Thus,

(as k =  mm ) Pr(jT2j >  m=2) 6  
k1=3  

k1=4 :

We condition on the complement of this event in the following, namely, that jT2j <  m=2. Let i1; : : : ; im=2
denote the rst m=2 indices of T1 which by the conditioning on the size of T2 is well dened. We have,

Pr(for all j  2  [m=2]: f ( X i j  )  =  i j )  =  
Y      

Pr
 

f ( X i j  )  =  i j  j f ( X i 1  )  =  i1 ; : : : ; f (X i j      1  )  =  i j

1
 
j 2[m=2]

(since these are type ( i )  iterations and we can apply condition ( i )  of Lemma 4.6)

6
101 m=2 

:

Putting these two together, combined with the value of k =  mm, implies that,

Pr (8i 2  [m] : f ( X  )  =  i )  6
1     

+  
101 m=2 

6  m m ;
( X 1 ; : : : ; X m )

for some constant  >  0 (taking  =  1=100 certainly suces). This concludes the proof.
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Appendix
A Proofs of Standard Results in  Fractional  Color ing

We prove Propositions 2.2 and 2.3 here for completeness. These proofs are standard; see, e.g. [SU11]. We start
by presenting the dual view of fractional colorings that is the key to these proofs.

T h e  dual view of fractional colorings. Given that f  (G)  is dened as a solution to an L P,  we can use
duality to also express f  (G)  via the following L P :

(A.1)  (G)  : = max
y2[0;1]V ( G )

X  
yv subject to

v 2 G

X
y v  6  1     8I  

2

 I ( G ) :
v 2 I

This L P  is a fractional relaxation of the clique number of G, namely, the size of the largest clique in G  (since,
in any integral solution to this L P,  the y-values that are 1 must be on the vertices of a clique). Interestingly,
although the chromatic number and clique size are not duals, their relaxations are.

Proposition (Restatement of Proposition 2.2). Let G1 =  (V1 ; E1 ) and G2 =  (V2 ; E2 ) be arbitrary graphs. Dene G1
_ G 2  as a graph on vertices V1 V2 and dene an edge between vertices (v1; v2) and (w1; w2) whenever (v1; w1) is an edge
in G1 or (v2; w2) is an edge in G2 . Then, f  (G1 _  G2 ) =  f  (G1 )  f  (G2 ).

Proof of Proposition 2.2. We rst prove that

(A.2) f  (G1 _  G2 ) >  f  (G1 )  f  (G2 ):

Let y1 2  RV 1      and y2 2  RV 2      be optimal solutions to the dual L P  given by Eq (A.1) for G1 and G2, respectively.
Consider the assignment y 2  RV1 V2  where yu 1 ;u 2  =  y1

1  y2
2 . We clearly have that

X
yu 1 ;u 2  =

X  
y1

1 

!  
X  

y2
2 

!  

=  f  (G1 )  f  (G2 ):
( u 1 ; u 2 ) 2V 1 V 2                                            u 1 2 V 1                                    u 2 2 V 2

We now argue that y is also a valid solution to the dual L P  given by Eq (A.1) for G1 _  G2. F ix  any independent set I
2  I ( G 1  _  G2 ). By the denition of the product, we know that I  can be written as a product set, namely, I  =  I1
I2  for I1  2  I ( G 1 )  and I2  2  I (G 2 ) .  Thus,

X
yu 1 ;u 2

=
( u 1 ; u 2 ) 2 I

X  
yu1  

!  
X  

yu2  

!  

6  1  1 =  1;
u 1 2 I 1                                    u 2 2 I 2

where the inequality is by the constraint of dual L P  for y1 and y2 each. Thus, y is a solution to the dual L P  for
G1 _  G2, proving Eq (A.2).

We now prove that

(A.3) f  (G1 _  G2 ) 6  f  (G1 )  f  (G2 );

using the primal L P  instead. Let x1 2  R I ( G 1 )  and x2 2  R I ( G 2 )  be optimal solutions to primal L P  from Eq (2.1) for
G1 and G2, respectively. Consider the assignment x  2  R I ( G 1 _ G 2 )  where x I  =  x1 x2 , using the fact from the previous
part that I  =  I1   I2  for I1  2  I ( G 1 )  and I2  2  I (G 2 ) .

We again clearly have that
0 1  0 1

X  
x I  =  @     

X
x I 1  

A   @     
X

x I 2  
A  =  f  (G1 )  f  (G2 );

( u 1 ; u 2 ) 2 I ( G 1 _ G 2 ) I
1

2 I ( G
1

) I
2

2 I ( G
2

)
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max
v

 1

         

v

P
v 2 V

v 2

p

so it remains to prove that x  is a valid solution to the primal L P  from Eq (2.1) for G1 _  G2. F ix  any vertex
(u1; u2) 2  V1  V2 and consider all independent sets I1   V1 that contain u1 and I2   V2 that contain u2. Then, I1   I2
is also an independent set in G1 _  G2 that contains (u1; u2). Thus,

0 1  0 1
X

x I  >  @
X

x I 1  
A   @

X
x I 2  

A  >  1  1 =  1;
I 2 I ( G 1 _ G 2 ) : ( u 1 ; u 2 ) 2 I I 1 2 I ( G 1 ; u 1 ) I 2 2 I ( G 2 ; u 2 )

where the inequality is by the constraint of primal L P  from Eq (2.1) for x1 and x2 each. Thus, x  is a solution to
the primal L P  from Eq (2.1) for G1 _  G2, proving Eq (A.3).

Proposition (Restatement of Proposition 2.3). For any graph G  =  (V ; E ),

f  (G)  =  
distribution  on V

min Pr (v 2  I ) :
I 2 I ( G )

Proof of Proposition 2.3. Let  be any distribution on V (G)  and dene b : =  m a x I 2I (G) Pr(v 2  I )  1. Create y 2  RV  ( m )

such that yv =  b  (v) for every vertex v 2  V (m) where (v) is the probability of vertex v under the distribution . We
claim that y is a feasible dual solution in Eq (A.1).

For every independent set I  2  I ( G ) ,
X

y v  =  b  
X

( v )  =  b  Pr (v 2  I )  6  1;
v 2 I v 2 I

by the denition of b. Thus y is a feasible dual solution. Moreover,
X  

yv =  b      
X  

(v) =  b:
v 2 V  ( G ) v 2 V  ( G )

As the dual L P  in Eq (A.1) is a maximization L P,  we have that f  (G)  >  b =  m a x I 2I (G) Pr(v 2  I )  1, for any
distribution  on the vertices.

Conversely, let y be any optimal solution to the dual L P  and let c : = yv . Dene a distribution  on
the vertices V by setting (v) =  yv=c. For any independent set I  2  I ( G ) ,  we have,

Pr (v 2  I )  =  
X

( v )  =  
X

y v = c  6  1=c;
v 2 I v 2 I

where the nal inequality is because y is a feasible dual solution. Thus, there exists a distribution  such that f
(G)  =  c 6  m a x I 2I (G) Pr(v 2  I )  1.

Combining these two parts concludes the proof.

B Cover ing  T h e  Fu l l  Range of the Universe Size

We now generalize the proof of Theorem 2 to the full parameter range specied in the theorem. Consider u and
n satisfying

n22
p

l o g
 
l o g

 
n  

 u  2 n n 2 + n  
:

Notice that, on the lower-bound side, we are actually covering a slightly larger range (and therefore proving a
slightly stronger result) than required to establish Theorem 2.

Set
m =  (log log u)1=6 and     k =  n=m =  n=(log log u)1=6:

Note that the setting of k implicitly requires that (log log u)1=6      n, which follows from the fact that
(log log u)1=6  (n2 +  n)1=6 n.
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The k-fold conict graph Gk (m) has log f  (Gk (m)) =
(n log m) =
(n log log log u) as already argued in Section 3.2. To  complete the proof, we must establish that the graph
Gk (m) has vertices that are subsets of a universe whose size u0

 satises u0
  u. Solving for u0, we have that

u0 =  kM =  
(log log u)1=6  2 m m 2 + m  

 n  22 m 3 = 2  
 n  22

p
l o g

 
l o g

 
u = 2  

:

On the other hand, u  n  22
p

l o g
 
l o g

 
u  

. It follows that

2
p

l o
g

 
l o g

 
u

u
0

  
22

p
l o

g  
l o g

 
u = 2       1;

which completes the proof of Theorem 2 for any choice of u between n  22
p

l o g
 
l o g

 
n  

and 2 n n 2 + n  
.

Finally, we remark that the term 2 n n 2 + n      
in the upper bound is not tight and can be replaced by any other

22 p o l y ( n )  
term; this is simply because for any u =  22 p o l y ( n )  

, log log log u =  (log n) and thus for any larger universe
size u also, we can simply focus on the smallest 2 n n 2 + n  

numbers in the universe and still obtain the same asymptotic

lower bound. The lower bound term is also not tight and can be replaced with n  22( l o g  l o g  n ) "      

for any constant
" 2  (0; 1=2) by the same argument.
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