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On the convergence of multiple
ergodic means

Grigori A. Karagulyan, Michael T.  Lacey
and Vahan A. Martirosyan

Abst r act.  Consider a sequence of measure preserving transformations U =
{Uk :  k =  1, 2,…} on a measurable space (X, ). We prove a.e. convergence of
the ergodic means

s *1 s *1

5 f  Uj1 5 U j n  x (0.1)
1 n j1 =0          jn =0

as minj sj  ™ Ø ,  for any function f  ¸  L  logd*1(X), where d f  n is the rank of the
transformations U. The result gives a generalization of a theorem by N.
Dunford and A. Zygmund, claiming the convergence of (0.1) in a narrower
class of functions L  logn*1(X).
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1. Introduction

Birkho’s ergodic theorem is one of the most important and beautiful result of
probability theory. The study of ergodic theorems started in 1931 by von
Neumann and Birkho, having its origins in statistical mechanics. Recall the
denition of the measure-preserving transformation (see [4]).
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Denition 1.1. Let (X , B, ) be a probability space. A  mapping T  :  X  ™ X  is said
to be a measure-preserving transformation if for any measurable set E  ¸  B  the
set T *1 (E) is also measurable and (E) =  (T*1(E)). The combination
(X, B, , T) is called a measure-preserving system.

Theorem A  (Birkho). If (X , B, , T) is a measure-preserving system, then for
any function f  ¸  L1 (X) the averages

n*1

f (T j x )
j = 0

converge almost everywhere to a T-invariant function f  as n ™ Ø.

There are dierent proofs and various generalizations of this classical the-
orem. Some of those clearly demonstrate strong link between the Lebesgue
dierentiation theory on R n  and pointwise convergence of dierent type of er-
godic averages. The following multiple version of Birkho’s theorem, proved by
Zygmund [13] and Dunford [2] independently, is an example of such a re-
semblance. Let Φ :  R +  ™ R+  be non-decreasing function and (X , B, ) be a
probability space. Denote by L  (X) the class of B-measurable functions f  on X
with Φ(ðfð) ¸  L1(T). The class LΦ (X) corresponding to a function

Φ(t) =  t (1 +  (max{0, log t})n) , n g  1, (1.1)
will be denoted by L logn L(X). Clearly this class of function is strongly included
in L1(X).

Theorem B (Dunford-Zygmund). Let U1,… , Un be measure-preserving one-to-
one transformations of a probability space (X, B, ). Then for any function f  ¸  L
logn*1 L(X ) the averages

s1 *1 sn *1

s1 5 s n  j 1 =0 
5

j n = 0  
f  U1

1 5 U n
n  x (1.2)

converge a.e. as minj sj  ™ Ø.

This result has been generalized for general contraction operators on L1, con-
sidering those instead of the operators f  ™ fýUk generated by the measure-
preserving transformations U (Dunford-Schwartz [3], Fava [5]). Hagelstein
and Stokolos in [10] proved the sharpness of the class of functions L  logn*1 L(X )
in the context of Theorem B. Namely,

Theorem C (Hagelstein-Stokolos). Suppose a collection of invertible commuting
measure-preserving transformations U  =  {Uk :  k =  1, 2,… , n} is non-periodic,
that is for any non-trivial collection of integers pk ¸  Z ,  k =  1, 2,… , n we have

{U1
1ý… ýUn

n (x) =  x} =  0.

If Φ(t) =  o(t logn*1 t) as t ™ Ø,  then there exists a function f  ¸  LΦ(X) such that
averages (1.2) unboundedly diverge a.e..
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Denition 1.2. A  set of invertible commuting measure-preserving (ICMP)
transformations U  =  {Uk :  k =  1, 2,… , n} is said to be dependent if there is a
non-trivial collection of integers pk ¸  Z ,  k =  1, 2,… , n, such that

(U1
1ý… ýUn

n )(x) =  x (1.3)

almost everywhere on X .  If there is no such a collection of integers pk, then we
say U  is independent. The rank of U  denoted by rank(U) will be called the
largest integer r for which there is an independent subset of cardinality r in U.

Remark 1.3. Note that according to our denition, the independence of U  re-
quires the failure of (1.3) on a set of positive measure for any non-trivial col-
lection of integers {pk}, while the condition of non-periodicity in Theorem C  is
a stronger version of independence, since in this case the failure of (1.3) is
required almost everywhere.

The main result of the present paper provides a generalization of Theorem B.
Namely, it says that in fact a.e. convergence of averages (1.2) holds in a larger
class of functions L  logd*1 L  — L  logn*1 L, where d =  rank(U) f  n. First we
prove the following weak type maximal inequality, where Lognt denotes the
function in (1.1), i.e.

Logn(t) =  t (1 +  (max{0, log t})n) .

Theorem 1.4. Let U  =  {U :  k =  1, 2,… , n} be a set of ICMP transformations
of rank d. Then, for any function f  ¸  L  logd*1 L(X ) and  >  0, we have

s1 *1 sn *1

Tx ¸  X  :  sup 5 f  (U 1 ý 5 ýU n )(x) >  U
sj g0     1         n k1 =0         kn =0

f C ( U ) ˚  Logd*1 0
ðfð

1, (1.4)
X

where C(U) is a constant depending only on U .

As a corollary of (1.4) we obtain the following.

Theorem 1.5. Let U  =  {U :  k =  1, 2,… , n} be a set of ICMP transformations
of rank d. Then, for any function f  ¸  L  logd*1 L(X ) the averages (1.2) converge
almost everywhere as min sk ™ Ø.

Remark 1.6. We will see in the last section that the class L  logd*1 L(X ) of the
functions in Theorem 1.5 is optimal. More precisely, if the corresponding in-
dependent subset of cardinality d =  rank(U) in U  is "strongly independent"
(i.e. non-periodic), then under the condition Φ(t) =  o(t logd*1 t) there exists a
function f  ¸  LΦ(X) with a.e. diverging averages (1.2). In fact, the proof of this
optimality immediately follows from Theorem C. We will just need to apply a
simple lemma proved in Section 5 (Lemma 5.1).
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The inequality (1.4) will be deduced from a maximal inequality on Rn . Let
A  :  R n  ™ Rd  be a linear operator given by the matrix

A  =  {akj :  1 f  j  f  n, 1 f  k f  d} (1.5)

of size d ×  n (d-rows and n-columns). We consider the maximal function

MA f(x) =  sup 
ðRð 

˚
R 

ðf(x +  A   t)ðdt, x ¸  Rd , (1.6)

where sup is taken over all n-dimensional symmetric intervals
R =  t =  (t1,… , tn) ¸  R n  :  tj  ¸  [*rj , rj ], j  =  1, 2,… , n

 
ˇ  Rn .

Denote by rankA the rank of the matrix A.

Theorem 1.7. Let A  be the matrix (1.5) and r =  rankA. Then for any function
f  ¸  L(log+ L)r*1(Rd ) the bound

ð{x ¸  R d  :  MA f(x) >  )}ð f  C (A) ˚ Logr*1 0
ðfð

1, (1.7)
R d

holds, where C(A) is a constant, depending only the matrix A .

Remark 1.8. Observe that if n =  d =  r and A  is the identity matrix of size n,
then (1.6) gives the well-known strong maximal function on Rn , correspond-
ingly, (1.7) becomes the weak type inequality due to M. de Guzman [6] (see also
[7]). Moreover, inequality (1.7) holds even if A  is a general invertible matrix
and it follows from Guzman’s inequality of [6], simply using the equivalence of
rectangular and parallelepiped dierentiation bases on Rn . Our proof of the full
version of inequality (1.7) is a reduction of the general case to the case of
invertible A.

Remark 1.9. Note that papers [2] and [13] suggest dierent proofs of Theorem B.
The proof of [2] is straightforward and the convergence of averages (1.2) was
established only for the functions in Lp , 1 <  p <  Ø ,  while Zygmund [13] pro-
vides an inequality, which is the analogue of a similar inequality for the strong
maximal function, originally proved in [9]. The latter is the weaker version of
Guzman’s inequality of [6] .

Remark 1.10. The well known transfer principle of Calderón [1] enables to re-
duce certain ergodic maximal inequalities to maximal inequalities in harmonic
analysis. A  version of Calderón’s principle in higher dimension was suggested
in [11], where only non-periodic collections of measure-preserving transfor-
mations were considered. In fact, our proof of Theorem 1.4 is an extension of
this higher dimensional principle to arbitrary collections of measure-preserving
transformations.

The authors are grateful to the unknown referee for valuable remarks.
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2. Proof of Theorem 1.7

We will use the following equivalent form of the maximal function (1.6)
r1 rn

MU f(x) =  sup 2nr1 5 r n  
˚

*r 1  

5 ˚
* r n  

ðf(x + t1u1 + 5 + tn un )ðdt1 5 d tn ,  (2.1)

where the vector set U  =  {uk, k =  1, 2,… , n} is formed by the columns of the
matrix (1.5). So the rank of vectors U  coincides with the rank of the matrix A.
Once again note that that if the collection of vectors are independent, i.e. the
matrix A  is invertible, then inequality (1.7) is known, and we are going to
reduce the general case to the case of invertible A. We need several lemmas,
concerning parallelepipeds in R d  and associated measures.

For a vector x =  (x1, … , xd) ¸  R d  we denote ðxð =  (x2 +  … +  x2)1_2. Given
a set of vectors V  ˇ  R d  we denote by span(V) the linear space generated by V
(sometimes this Euclidean space will be denoted by R V ) .  The notation ðEð will
stand for the Lebesgue measure of a set E  in an Euclidean space.

Denition 2.1. Let U  =  {u :  k =  1, 2,… , n} ˇ  R d  be a set of unit vectors.
Call a parallelepiped in R d  a set of the form

R =  x ¸  R d  :  x =  t1u1 +  … +  tnun, tj  ¸  [*rj , rj ] . (2.2)

The family of all parallelepipeds (2.2) generated by a xed set of vectors U  will
be denoted by PU .

Note that parallepipeds can have dierent representations (2.2). Clearly the
arithmetic sum of two parallelepipeds R, Q

R +  Q =  {x +  t :  x ¸  R, t ¸  Q}

is again a parallelepiped. For two parallelepipeds R and Q we write Q ˙  R if
there is a parallelepiped R¤ such that Q =  R +  R¤.

Lemma 2.2. If U  =  {uk :  k =  1, 2,… , n} is a basis set of vectors in R n  and
R ¸  P U  has a representation (2.2), then

{x ¸  R n  :  ðxð f  1} ˇ  
minj rj  

 R, (2.3)

where C(U) is a constant, depending only on the set of vectors U .

Proof. For any j  =  1, 2,… , n we consider hyperplanes Γ j  and Γ j  in R n  dened

Γ j  =  {x =  t1u1 +  … +  tnun :  tj  =  ±rj ,  ti ¸  R ,  i ‘ j }

and let Sj be the closed strip domain lying between the hyperplanes Γ j  . We

have R =  ª j S j .  Denote by hj  the distance of the hyperplanes Γ j  and Γ j  from
the origin. It is clear that

{x ¸  R n  :  ðxð f  min hj } ˇ  R. (2.4)



1 C(U)

k

j‘ a

l
É

m

ON T H E  CONVERGENCE OF MULTIPLE ERGODIC MEANS 1453

One can also check that cj  =  hj _rj are constants, depending only on U. Denote
C(U) =  (minj cj )*1 . From (2.4) we obtain

{x ¸  R n  :  ðxð f  1} ˇ  
minj hj  

 R ˇ  
minj rj  

 R

and so (2.3).

A version of the following lemma in the case of d =  2 was proved by Guzmán-
Welland in [8] (see also [7], chap. 6, Lemma 2.1).

Lemma 2.3 (Guzmán-Welland). Let U  =  {u :  k =  1, 2,… , n} be a set of unit
vectors in Rd .  Then for any parallelepiped R ¸  P U  there exist a subset V  ˇ  U  of
independent vectors and a parallelepiped Q ¸  P V such that

rank(V) =  rank(U), (2.5)
Q ˙  R, (2.6)
R ˇ  C(U)  Q, (2.7)

where C(U) is a constant depending only on the set of vectors U .

Proof. Suppose that R ¸  P U  is the parallelepiped (2.2). Without loss of gener-
ality we can suppose that

r1 g  r2 g  … g  rn. (2.8)
Denote

V  =  {uk :  uk Ì  span{u1,… , uk*1}} ˇ  U.
One can easily check that the vectors of V  are independent and rank(V) =
rank(U). One can split the set of vectors U  into groups

U j  =  {uk :  k ¸  (kj*1, kj ]}, j  =  1, 2,… , s,
0 =  k0 <  k1 <  … <  ks =  n,

such that

V  =  
˝

U 2 i + 1 ,
ig0

Considering the parallelepipeds

U2 j  ˇ  span r
˝

U 2 i * 1 s .
p i=1 q

h kj i
Rj =  x ¸  R d  :  x = tkuk, tk ¸  [*rk, rk] ¸  P U j  ,

j                            
k=kj * 1 +1                                                  

k
we can write

R =  R1 +  R2 +  … +  Rs.
Then the parallelepiped

Q =
É

R2j*1
j : 2 j * 1 f s
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satises (2.5) and (2.6). If x ¸  R2j , then
k2j

ðxð f rj  f  nrk2j*1 . (2.9)
i=k2 j *1 +1

Let Y j  be the subspace of R d  generated by the independent vectors äi f j U2i * 1 .
One can check

Ri ˇ  Y j , i =  1, 2, … , 2j.
Thus, applying Lemma 2.2 for the space Y j ,  as well as (2.8), (2.9), we conclude

1 R2j ˇ  {x ¸  Y j  :  ðxð f  1} ˇ  C(U) (R1 +  R3 +  … +  R2j*1)
2j *1 2j *1

ˇ  
C(U) 

 Q
k2j *1

Thus we get R2j ˇ  nC(U)  Q and therefore

R ˇ  n2C(U)Q.

This gives us (2.7), completing the proof of lemma.

Given a set of unit vectors U  =  {uk :  k =  1, 2,… , n} ˇ  Rd , let R U  be the sub-
space of R  generated by the vectors U. We associate with a parallelepiped (2.2) a
probability measure R supported on R as follows. First, for each j  we con-sider
a probability measure j  uniformly distributed on the one dimensional
parallelepiped {tuj :  t ¸  [*rj , rj ]}. The convolution of singular measures j  is
the measure R dened on the Lebesgue measurable sets of E  ˇ  R U  by

R(E) =  ˚ … ˚ 1E(v1 +  … +  vn)d1(v1)…dn(vn). (2.10)
R U               R U

One can check that R is well-dened for any Lebesgue measurable set E ˇ  R U .
Denote by f R  the density function of measure R with respect to the Lebesgue
measure on R U .  Observe that if U  is independent, then

fR (x) =  <

ð
R

ð

*1
if x ¸  R,
if x ¸  R U  ä R. (2.11)

Lemma 2.4. Let U  ˇ  R d  be a set of arbitrary unit vectors and R ¸  PU .  Then
there exists a set of independent vectors V  ˇ  U  such that rank(V) =  rank(U)
and there is a parallelepiped R¤ ¸  P V such that

R f  C(U)  R¤. (2.12)
Proof. Applying Lemma 2.3 in the Euclidean space R U ,  we nd a set of in-
dependent vectors V  ˇ  U, rank(V) =  rank(U) and a parallelepiped Q ¸  P V
satisfying the conditions of lemma. Since Q ˙  R, we have R =  Q +  H  for some
parallelepiped H  in R U .  We can write

R(E) =  ˚ ˚ 1E(v +  v¤)dQ(v)dH(v¤) R U        R U
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=  ˚ ˚ 1E(v +  v¤)fQ(v)dvdH(v¤) R U

R U

=  
ðQð 

˚
R U  

˚
R U  

1E(v +  v¤)1Q(v)dvdH(v¤)

ðEð
ðQð

This clearly implies
æfRæØ f  æfQæØ =  ðQð*1. (2.13)

Denote R¤ =  C(U)Q, where C(U) is the constant in (2.7). From (2.7) and (2.11)
we have

R ˇ  R¤,

æfR¤æØ =  ðR¤ð*1 =  (C(U)ðQð)*1 . (2.14)

Combining (2.13) and (2.14) we get the pointwise bound f R  f  C(U)fR ¤ , which
implies (2.12).

Proof of Theorem 1.7. Observe that the integral in (2.1) may be written as a
convolution of measure (2.10) with the function f .  Namely, we have

r1 rn

˚ … ˚ ðf(x +  t1u1 +  … +  tnun)ðdt1 …dtn
*r1              *rn

=  ˚ ðf(x +  v)ðdR(v). (2.15)
R d

Applying Lemma 2.4, for any parallelepiped R ¸  P      we nd an independent
vector set V  ˇ  U  with rank(V) =  rank(U) and a parallelepiped R¤ ¸  P V such
that (2.12) holds. Thus the last integral in (2.15) may be estimated as follows:

˚ f (x +  v)dR(v) f  C (U) ˚ f (x +  v)dR¤(v) f  C (U)MV f(x).
R d

R d

This implies
MU f(x) f  C(U) max MV f(x),

where the maximum is taken over all the subsets V  ˇ  U  of independent vectors
such that rank(V) =  rank(U). For each such V  the operator M V  satises the
bound (1.7) and the number of all collections V  is constant, depending only on n
and so on U. Thus we get (1.7).

3. A  discrete maximal inequality

We will need a discrete version of inequality (1.7). Let  :  Z d  ™ R  be a d-
dimensional sequence and let A  =  {akj :  1 f  j  f  n, 1 f  k f  d} be an integer
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matrix. Consider the maximal operator
s1 *1 sn *1

D  (n) =  sup … (n +  A   k)
s j ¸ N  1         n k1 =0       kn =0

s*1

=  sup (n +  A   k), n ¸  Nd.
s j ¸ N  1         n k= 0

From Theorem 1.7 we easily obtain the following.

Corollary 3.1. For any integer matrix A  of rank(A) =  r we have the bound

#{n ¸  Z d  :  DA (n) >  } f  C(A) 
É  

Logr*1 H
ð(n)ð

I .
n ¸ Z d

Proof. Given multiple sequence (m) consider the function

f(x) = (m1 +  "1,… , mn +  "n), if [x] =  m, m ¸  Zd , (3.1)
"j =0,1,*1

on Rd , where [x] =  ([x1],… , [xd]) denotes the coordinate wise integer part of
the vector x =  (x1, … , xd). Clearly there is a constant  =  (A) <  1 such that

A (Δ) ˇ  (*1, 1)d, where Δ =  [0, )n, (3.2)

Using (3.1), (3.2), one can check that

(n +  A   k) f  f (x +  A   t) if t ¸  k  +  Δ, [x] =  n.

Thus we obtain
s*1 s*1

(n +  A   k) f ˚ ðf(x +  A   t)ðdt
k= 0                                          k= 0                k+Δ

f  
ðΔð 

˚
R 

ðf(x +  A   t)ðdt,

for any x with [x] =  n, where

R =  {t ¸  R n  :  tj  ¸  [*1, sj ], j  =  1,… , n}.

This implies
DA (n) f  C(A)MA f(x) if [x] =  n ¸  Z d

and so

#{n ¸  Z +  :  DA (n) >  } f  ð{x ¸  R d  :  MA f(x) >  _C(A)}ð

f  C (A) ˚Logr*1 0
ðfð

1 R d

f  C(A) 
É  

Logr*1 H
ð(n)ð

I .
n ¸ Z d

This completes the proof.
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4. Proofs of Theorems 1.4 and 1.5

Proof of 1.4. Since rank(U) =  d, without loss of generality we can suppose
that U1,… , Ud are independent and

Uk =  U1
1,k ý 5 ýUd

d ,k , d <  k f  n, (4.1)

where lk g  1 and aj,k are some integers. First we suppose that lk =  1. Thus we

can write
f  (U1

1 ý 5 ýUn
n )(x)

=  f  (Uk1 +a1,d+1 kd+1 +5+a1,n kn ý 5 ýUkd +ad ,d +1 kd +1 +5+ad ,n kn )(x)

=  (x , A  k), (4.2)

where
(x, n) =  f  

 
(U1

1 ý 5 ýUd
d )(x), n

=  (n1,… , nd) ¸  Zd ,

and
‘1      0

A  =  
r
p0     0

is a matrix of size d ×  n. Let

5      0     a1,d+1      5      a1,n
5      0     a2,d+1      5      a2,n
5 …  s
… 1     ad,d+1 … ad,nq

s*1

fM (x, n) =  
1
max s1 5 s n  k= 0  

ð(x, n +  A   k)ð, (4.3)

where M ¸  N and denote

E(x) =  {n :  1 f  nj f  N :  fM (x, n) >  },

E(n) =  {x :  f <  (x, n) >  }, n ¸  Zd ,
E  =  {(x, n) :  1 f  nj f  N, f <  (x, n) >  } =  ä x ¸ X E(x )

=  ä1 fn j fN E(n). (4.4)

Taking into account (4.2), observe that inequality (1.4) is the same as

lim (E(0)) f  C(U) ˚ Logd*1 0
ðfð

1. (4.5)
X

In (4.3) the coordinates of A   k  may vary in the interval [*R, R], where R =
R(A, M) is a constant depending only on the matrix A  and the integer M. From
Corollary 3.1 it follows that

#(E(x)) f  C(A)
É

Logr*1 H
ð(x, n)ð

I for all x ¸  X.
1 f n j f N + R
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Then, since Uk are measure-preserving, the sets E(n) have equal measures for
dierent n ¸  Z  . Thus from (4.4) we obtain

(E(0)) =  1  É
(E(n)) =  1 ˚  # (E(x))

1 f n j f N                                              X

C(A) É ð(x,n)ð r*1
1 f n j f N + R      X

=  
C(A)(N +  R)d 

˚  Logr*1 0
ðfð

1.
X

Fixing M and letting N ™ Ø,  we get

ðE(0)ð f  C (A) ˚  Logr*1 0
ðfð

1,
X

which implies (4.5). The general case lk g  1 can be easily deduced from the
case of lk =  1. Fix an integer vector r  =  (rd+1,… , rn), 0 f  rj  <  lj , and denote

by Qs1,…,sd 
f (x )  the sum of functions

óf U1
1 …Un

n x  ó,

over the integer vectors k  =  (k1,… , kn), satisfying

1 f  kj  <  sj ,      1 <  j  f  n,                                                     (4.6)

kj =  kj l j  +  rj ,      kj  ¸  Z ,       d <  j  f  n.                             (4.7)

Under the conditions (4.7) we can write

f  U1
1 …Un

n x  =  f  U1
1 …Ud

d Ud+1 …Un
n x (4.8)

where
f (x )  =  f  Ud+1 …Un x  ,

Uj =  Uj , d <  j  f  n.

From (4.1) it follows that

Uk =  Ua1,k ý… ýUad,k , d <  k f  n, (4.9)

Denote by (s, r) the number of integer vectors k  =  (k1,… , kn), satisfying (4.6)
and (4.7). According to (4.8) and (4.9) we can say that

Qs1,…,sn 
f (x )

(s, r)
(4.10)

are certain ergodic averages, obeying the case of lk =  1 in (4.1). Thus we con-
clude that the averages (4.10) satisfy the weak estimate (1.4) for all vectors r.



1
s … s

É É
ó

k
1

k
n ó

1

r

r

=
r

r

f .

˚ Log 0
"

1 <  ".

m
1

m …m
É É j

1
j
n

n m

n m

n

"
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On the other hand, taking into account (s, r) f  s1 … sn, we have

s1 *1 sn *1

… f  (U 1ý… ýU n )(x)
1 n k1 =0 kn =0

=  s1 … sn 

É
Qs1 ,… , sn  

f (x )

É  (s, r) Qs1,…,sn f ( x )  r

s1 … sn (s, r)
É  Qs1,…,sn 

f (x )

r (s, r)

Thus, since the averages (4.10) satisfy the weak estimate (1.4) and the number of
dierent vectors r  =  ld+1 … ln is a constant depending on U  only, we obtain (1.4)
in full generality. The theorem is proved.

Proof of Theorem 1.5. According to Theorem B the averages (1.2) converge
a.e. for any function from L  logn*1 L  and so for any f  ¸  L Ø (X ).  To prove con-
vergence for any f  ¸  L  logd*1 L(T), x " >  0 and choose a function g ¸  L Ø  such
that

ðf *  gð
d*1

X

Applying (1.4), for the averages

m1 *1 mn *1

A  (f )  = … f  U 1 …U n x  1            n
j 1 =0         j n =0

we obtain

 Tx :  lim sup ðA (f )  *  A  (f)ð >  2"U
min nj ™Ø

=   Tx :  lim sup ðA ( f  *  g) *  A  ( f  *  g)ð >  2"U
min nj ™Ø

f   Tx :  sup ðA ( f  *  g) Ý> "U n

f  C (U) ˚  Logd*1 0
ðf *  gð

1 <  C(U)".
X

This implies a.e. convergence of An (f ),  completing the proof of the theorem.
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j
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1
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„
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„
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5. Sharpness in Theorem 1.5 and an extension

Let us show that the class of functions L  logd*1 L(X ) in Theorem 1.5 is op-
timal. Suppose the rank of U  =  {Uk :  k =  1, 2,… , n} is d and {U1,… , Ud} is the
corresponding independent subset U, which is moreover non-periodic. Ac-
cording to Theorem C  for Φ(t) =  o(t logd*1 t) there exists a function f  ¸  LΦ(X)
with a.e. diverging averages

s1 *1 sd *1

… f  U 1 …U d x  . (5.1)
1 d j 1 =0       j d =0

It turns out that for the same function f  we have a.e. divergence of the averages
s1 *1 sn *1

… f  U 1 …U n x  . (5.2)
1 n j 1 =0       j n =0

This immediately follows from the following lemma.

Lemma 5.1. Let U  =  {Uk :  k =  1, 2,… , n} be a set of measure-preserving trans-
formations and d f  n. If averages (5.1) diverge unboundedly a.e, then extended
averages (5.2) also diverge unboundedly a.e.

Proof. Denote by As (f )  and As (f )  the averages (5.1) and (5.2) respectively and
consider the functions

M (f )  =  max A  (f ),
s ¸ Z + , s j g p

Mp (f) =  
s¸

max
gp 

As (f ).

The unbounded divergence of averages (5.1) implies Mp (f) =  Ø  a.e. for any
p >  0. If s =  (s1,… , sd) and s =  (s1,… , sd,… , sn), then we have

A  (f )  g  
As (f ) 

,
d+1 n

and thus, for any p >  0

Mp (f) g  
pn*d 

Mp (f) =  Ø  a.e..

A  set of real numbers
Θ =  {1, 2,… , n} (5.3)

is said to be dependent (with respect to the rational numbers) if there is a non-
trivial collection of integers rk, k =  1, 2,… , n, such that

r11 +  r22 +  … +  rnn =  0 mod 1,

If there are no such integers, then we say that Θ is independent. The rank of a
collection Θ =  {1, 2,… , n} will be called the largest integer d, for which there
is an independent subset of cardinality d in U. Consider the probability space of
Lebesgue measure on T  =  R _ Z  with modulo one addition. Applying Theorem



lim
1 É É
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1.7 and the ergodicity of the rotation mapping x  ™ x  +  for an irrational , we
obtain

Corollary 5.2. If (5.3) is a sequence of rank d, then
1) for any f  ¸  L  logd*1 L(T) the limit below holds a.e.

s1 *1 sn *1

min{sk }™Ø s1 5 s n  k1 =0 
5

k n = 0  
f (

x
 +  k11 +  5  +  knn) =  ˚

T  
f (x)dx , (5.4)

2) for any increasing function Φ :  R +  ™ R+ ,  satisfying Φ(t) =  o(t(log t)d*1),
there exists a function f  ¸  LΦ(T) such that the averages in (5.4) are a.e. divergent
as min{sk} ™ Ø.
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