New York J. Math. 28 (2022) 1448-1462.

# On the convergence of multiple ergodic means

# Grigori A. Karagulyan, Michael T. Lacey and Vahan A. Martirosyan

Abstract. Consider a sequence of measure preserving transformations  $U=\{U_k:\ k=1,2,...\}$  on a measurable space (X, ). We prove a.e. convergence of the ergodic means

$$\frac{1}{s_1 \cdot 5} \cdot s_n \int_{j_1=0}^{s_E^{*1}} \int_{j_n=0}^{s_E^{*1}} f U_1^{j_1} \cdot 5 U_n^{j_n} x$$
 (0.1)

as  $\min_j s_j \stackrel{\text{\tiny TM}}{\emptyset}$ , for any function  $f_j L \log^{d^*1}(X)$ , where d  $f_j$  n is the rank of the transformations U. The result gives a generalization of a theorem by N. Dunford and A. Zygmund, claiming the convergence of (0.1) in a narrower class of functions  $L \log^{n^*1}(X)$ .

# Contents

| 1.         | Introduction                              | 1448 |
|------------|-------------------------------------------|------|
| 2.         | Proof of Theorem 1.7                      | 1452 |
| 3.         | A discrete maximal inequality             | 1455 |
| 4.         | Proofs of Theorems 1.4 and 1.5            | 1457 |
| 5.         | Sharpness in Theorem 1.5 and an extension | 1460 |
| References |                                           | 1461 |

#### 1. Introduction

Birkho's ergodic theorem is one of the most important and beautiful result of probability theory. The study of ergodic theorems started in 1931 by von Neumann and Birkho, having its origins in statistical mechanics. Recall the denition of the measure-preserving transformation (see [4]).

Received July 30, 2022.

<sup>2010</sup> Mathematics Subject Classication. 37A30, 37A46, 42B25.

Key words and phrases. Ergodic theorems, strong maximal function, multiple ergodic sums. Research of Lacey was supported in part by grant from the US National Science Foundation, DMS-1949206, and the research of Karagulyan was supported by the Science Committee of RA, in the frames of the research project 21AG-1A045.

**Denition 1.1.** Let (X, B,) be a probability space. A mapping  $T: X \to X$  is said to be a measure-preserving transformation if for any measurable set E, B the set  $T^{*1}(E)$  is also measurable and  $(E) = (T^{*1}(E))$ . The combination (X, B, T) is called a measure-preserving system.

**Theorem A** (Birkho). If (X, B, T) is a measure-preserving system, then for any function  $f \in L^1(X)$  the averages

$$\frac{1}{n} \int_{j=0}^{n} f(T^{j}x)$$

There are dierent proofs and various generalizations of this classical theorem. Some of those clearly demonstrate strong link between the Lebesgue dierentiation theory on R<sup>n</sup> and pointwise convergence of dierent type of ergodic averages. The following multiple version of Birkho's theorem, proved by Zygmund [13] and Dunford [2] independently, is an example of such a resemblance. Let  $\Phi: R^+ \stackrel{\mathsf{TM}}{\longrightarrow} R^+$  be non-decreasing function and (X, B, ) be a probability space. Denote by L  $\bigoplus_{\Phi} X$ ) the class of B-measurable functions f on X with  $\Phi(\tilde{\mathfrak{d}}f\tilde{\mathfrak{d}})$ , L¹(T). The class L $_{\Phi}(X)$  corresponding to a function

$$\Phi(t) = t (1 + (\max\{0, \log t\})^n), \quad n \neq 1, \tag{1.1}$$

will be denoted by  $L \log^n L(X)$ . Clearly this class of function is strongly included in  $L^1(X)$ .

**Theorem B** (Dunford-Zygmund). Let  $U_1, ..., U_n$  be measure-preserving one-to-one transformations of a probability space (X, B, ). Then for any function  $f \in L$   $\log^{n+1} L(X)$  the averages

$$\frac{1}{s_1 \cdot 5 \cdot s_n} \int_{j_1 = 0}^{s_E^{*1}} 5 \int_{j_n = 0}^{s_E^{*1}} f U_1^{j_1} \cdot 5 U_n^{j_n} x$$
 (1.2)

converge a.e. as  $\min_i s_i \stackrel{\mathsf{TM}}{=} \emptyset$ .

This result has been generalized for general contraction operators on  $L^1$ , considering those instead of the operators  $f \in \mathfrak{f} \cup L$  generated by the measure-preserving transformations  $U_k$  (Dunford-Schwartz [3], Fava [5]). Hagelstein and Stokolos in [10] proved the sharpness of the class of functions  $L \log^{n+1} L(X)$  in the context of Theorem B. Namely,

**Theorem C** (Hagelstein-Stokolos). Suppose a collection of invertible commuting measure-preserving transformations  $U = \{U_k : k = 1, 2, ..., n\}$  is non-periodic, that is for any non-trivial collection of integers  $p_k$ , Z, k = 1, 2, ..., n we have

$$\{U_1^{1p} \mathring{y} ... \mathring{y} U_n^{p} (x) = x\} = 0.$$

If  $\Phi(t) = o(t \log^{n+1} t)$  as  $t \neq \emptyset$ , then there exists a function  $f \in L_{\Phi}(X)$  such that averages (1.2) unboundedly diverge a.e..

**Denition 1.2.** A set of invertible commuting measure-preserving (ICMP) transformations  $U = \{U_k : k = 1, 2, ..., n\}$  is said to be *dependent* if there is a non-trivial collection of integers  $p_k$ , Z, k = 1, 2, ..., n, such that

$$(U_1^{p_1} \circ ... \circ U_n^{p_n})(x) = x \tag{1.3}$$

almost everywhere on X. If there is no such a collection of integers  $p_k$ , then we say U is *independent*. The *rank of* U denoted by rank(U) will be called the largest integer r for which there is an independent subset of cardinality r in U.

Remark 1.3. Note that according to our denition, the independence of U requires the failure of (1.3) on a set of positive measure for any non-trivial collection of integers  $\{p_k\}$ , while the condition of non-periodicity in Theorem C is a stronger version of independence, since in this case the failure of (1.3) is required almost everywhere.

The main result of the present paper provides a generalization of Theorem B. Namely, it says that in fact a.e. convergence of averages (1.2) holds in a larger class of functions  $L \log^{d^*1} L - L \log^{n^*1} L$ , where d = rank(U) f n. First we prove the following weak type maximal inequality, where  $Log_n t$  denotes the function in (1.1), i.e.

$$Log_n(t) = t(1 + (max{0, log t})^n).$$

**Theorem 1.4.** Let  $U = \{U_k : k = 1, 2, ..., n\}$  be a set of ICMP transformations of rank d. Then, for any function f,  $L \log^{d^*1} L(X)$  and > 0, we have

Tx, X: 
$$\sup_{s_{j}g_{0}} \frac{1}{s_{1}...s_{n}} \sum_{k_{1}=0}^{s_{\underline{f}}^{*1}} \sum_{k_{n}=0}^{s_{\underline{f}}^{*1}} \int_{k_{n}=0}^{f} (U_{1}^{k_{1}} \acute{y} 5 \acute{y} U_{n}^{k_{n}})(x) ; V$$

$$fC(U) \sum_{x} Log_{d*1} 0 \xrightarrow{\tilde{O}f\tilde{O}} 1, \qquad (1.4)$$

where C(U) is a constant depending only on U.

As a corollary of (1.4) we obtain the following.

**Theorem 1.5.** Let  $U = \{U_k : k = 1, 2, ..., n\}$  be a set of ICMP transformations of rank d. Then, for any function f,  $L \log^{d^*1} L(X)$  the averages (1.2) converge almost everywhere as min  $s_k \stackrel{\text{TM}}{=} \emptyset$ .

Remark 1.6. We will see in the last section that the class L  $\log^{d^*1} L(X)$  of the functions in Theorem 1.5 is optimal. More precisely, if the corresponding independent subset of cardinality  $d = \operatorname{rank}(U)$  in U is "strongly independent" (i.e. non-periodic), then under the condition  $\Phi(t) = \operatorname{o}(t \log^{d^*1} t)$  there exists a function  $f \in L_{\Phi}(X)$  with a.e. diverging averages (1.2). In fact, the proof of this optimality immediately follows from Theorem C. We will just need to apply a simple lemma proved in Section 5 (Lemma 5.1).

The inequality (1.4) will be deduced from a maximal inequality on  $R^n$ . Let  $A: R^n \to R^d$  be a linear operator given by the matrix

$$A = \{a_{ki}: 1f j f n, 1f kf d\}$$
 (1.5)

of size  $d \times n$  (d-rows and n-columns). We consider the maximal function

$$M_A f(\mathbf{x}) = \sup_{R} \frac{1}{\partial R \partial} \hat{\mathbf{g}}_{R} \partial f(\mathbf{x} + A \mathbf{t}) \partial d\mathbf{t}, \quad \mathbf{x} , R^d,$$
 (1.6)

where sup is taken over all n-dimensional symmetric intervals

$$R = \mathbf{t} = (t_1, ..., t_n)$$
,  $R^n : t_i$ ,  $[*r_i, r_i]$ ,  $j = 1, 2, ..., n \in \mathbb{R}^n$ .

Denote by rankA the rank of the matrix A.

**Theorem 1.7.** Let A be the matrix (1.5) and r = rankA. Then for any function  $f \cdot L(log^+ L)^{r+1}(R^d)$  the bound

$$\tilde{\mathfrak{d}}\{x, \mathbb{R}^d : M_{\mathbb{A}}f(x) > \}\tilde{\mathfrak{d}}f C(A)^\circ \operatorname{Log}_{r^*1} 0 \xrightarrow{\tilde{\mathfrak{d}}f\tilde{\mathfrak{d}}} 1,$$
 (1.7)

holds, where C(A) is a constant, depending only the matrix A.

Remark 1.8. Observe that if n = d = r and A is the identity matrix of size n, then (1.6) gives the well-known strong maximal function on  $R^n$ , correspondingly, (1.7) becomes the weak type inequality due to M. de Guzman [6] (see also [7]). Moreover, inequality (1.7) holds even if A is a general invertible matrix and it follows from Guzman's inequality of [6], simply using the equivalence of rectangular and parallelepiped dierentiation bases on  $R^n$ . Our proof of the full version of inequality (1.7) is a reduction of the general case to the case of invertible A.

Remark 1.9. Note that papers [2] and [13] suggest dierent proofs of Theorem B. The proof of [2] is straightforward and the convergence of averages (1.2) was established only for the functions in  $L^p$ , 1 , while Zygmund [13] provides an inequality, which is the analogue of a similar inequality for the strong maximal function, originally proved in [9]. The latter is the weaker version of Guzman's inequality of [6] .

Remark 1.10. The well known transfer principle of Calderón [1] enables to reduce certain ergodic maximal inequalities to maximal inequalities in harmonic analysis. A version of Calderón's principle in higher dimension was suggested in [11], where only non-periodic collections of measure-preserving transformations were considered. In fact, our proof of Theorem 1.4 is an extension of this higher dimensional principle to arbitrary collections of measure-preserving transformations.

The authors are grateful to the unknown referee for valuable remarks.

#### 2. Proof of Theorem 1.7

We will use the following equivalent form of the maximal function (1.6)

$$M_{U}f(\mathbf{x}) = \sup_{r_{k}>0} \frac{1}{2^{n}r_{1} \cdot 5 \cdot r_{n}} \cdot \int_{r_{1}}^{r_{1}} \cdot 5 \cdot \int_{r_{n}}^{r_{n}} \cdot \delta f(\mathbf{x} + t_{1}\mathbf{u}_{1} + 5 + t_{n}\mathbf{u}_{n}) \cdot \delta dt_{1} \cdot 5 \cdot dt_{n}, \quad (2.1)$$

where the vector set  $U = \{u_k, k = 1, 2, ..., n\}$  is formed by the columns of the matrix (1.5). So the rank of vectors U coincides with the rank of the matrix A. Once again note that that if the collection of vectors are independent, i.e. the matrix A is invertible, then inequality (1.7) is known, and we are going to reduce the general case to the case of invertible A. We need several lemmas, concerning parallelepipeds in  $R^d$  and associated measures.

For a vector  $\mathbf{x} = (x_1, ..., x_d)$ ,  $R^d$  we denote  $\partial \mathbf{x} \partial = (x_1^2 + ... + x_d^2)^{1-2}$ . Given a set of vectors  $V \in R^d$  we denote by span(V) the linear space generated by V (sometimes this Euclidean space will be denoted by  $R_V$ ). The notation  $\partial E \partial W$  stand for the Lebesgue measure of a set E in an Euclidean space.

$$R = \mathbf{x}, R^{d} : \mathbf{x} = t_{1}\mathbf{u}_{1} + ... + t_{n}\mathbf{u}_{n}, t_{j}, [*r_{j}, r_{j}].$$
 (2.2)

The family of all parallelepipeds (2.2) generated by a xed set of vectors U will be denoted by  $P_{\rm U}$ .

Note that parallepipeds can have dierent representations (2.2). Clearly the arithmetic sum of two parallelepipeds R, Q

$$R + Q = \{x + t : x, R, t, Q\}$$

is again a parallelepiped. For two parallelepipeds R and Q we write Q  $\dot{}$  R if there is a parallelepiped R<sup> $\mu$ </sup> such that Q = R + R<sup> $\mu$ </sup>.

**Lemma 2.2.** If  $U = \{u_k : k = 1, 2, ..., n\}$  is a basis set of vectors in  $R^n$  and R,  $P_U$  has a representation (2.2), then

$$\{x \in \mathbb{R}^n : \tilde{o}x\tilde{o}f \ 1\} \stackrel{\sim}{=} \frac{C(U)}{\min_i r_i} R,$$
 (2.3)

where C(U) is a constant, depending only on the set of vectors U.

**Proof.** For any j = 1, 2, ..., n we consider hyperplanes  $\Gamma_j^+$  and  $\Gamma_j^*$  in  $\mathbb{R}^n$  dened

$$\Gamma_{j}^{\pm} = \{ \mathbf{x} = t_{1}\mathbf{u}_{1} + ... + t_{n}\mathbf{u}_{n} : t_{j} = \pm r_{j}, t_{i}, R, i'j \}$$

and let  $S_j$  be the closed strip domain lying between the hyperplanes  $\Gamma_j^{\pm}$ . We have  $R = {}^a{}_j S_j$ . Denote by  $h_j$  the distance of the hyperplanes  $\Gamma_j^{\pm}$  and  $\Gamma_j^{*}$  from the origin. It is clear that

$$\{\mathbf{x} \ , \ \mathsf{R}^n : \ \mathsf{\tilde{O}} \mathbf{x} \mathsf{\tilde{O}} \ \mathsf{f} \ \min_{j} \mathsf{h}_j\} \ \tilde{\mathsf{R}}.$$
 (2.4)

One can also check that  $c_j = h_j r_j$  are constants, depending only on U. Denote  $C(U) = (\min_i c_i)^{*1}$ . From (2.4) we obtain

$$\{\mathbf{x}, \mathbf{R}^n : \tilde{\mathbf{o}} \mathbf{x} \tilde{\mathbf{o}} \mathbf{f} \mathbf{1}\} \tilde{\mathbf{m}} \frac{1}{\min_i h_i} \mathbf{R} \tilde{\mathbf{m}} \frac{\mathbf{C}(\mathbf{U})}{\min_i r_i} \mathbf{R}$$

and so (2.3).

A version of the following lemma in the case of d = 2 was proved by Guzmán-Welland in [8] (see also [7], chap. 6, Lemma 2.1).

**Lemma 2.3** (Guzmán-Welland). Let  $U = \{u_k : k = 1, 2, ..., n\}$  be a set of unit vectors in  $R^d$ . Then for any parallelepiped R,  $P_U$  there exist a subset  $V \circ U$  of independent vectors and a parallelepiped Q,  $P \circ S$  such that

$$rank(V) = rank(U), (2.5)$$

$$R \cdot C(U) Q,$$
 (2.7)

where C(U) is a constant depending only on the set of vectors U.

**Proof.** Suppose that R  $_{\downarrow}$  P  $_{U}$  is the parallelepiped (2.2). Without loss of generality we can suppose that

$$r_1 g r_2 g ... g r_n.$$
 (2.8)

Denote

$$V = \{u_k : u_k \mid span\{u_1, ..., u_{k+1}\}\} \ U.$$

One can easily check that the vectors of V are independent and rank(V) = rank(U). One can split the set of vectors U into groups

$$U_j = \{ \mathbf{u}_k : k_j (k_{j*1}, k_j) \}, \quad j = 1, 2, ..., s,$$
  
 $0 = k_0 < k_1 < ... < k_s = n,$ 

such that

$$V = U_{2i+1}, U_{2j} * span_r U_{2i*1s}.$$
 $p^{i=1} q$ 

Considering the parallelepipeds

$$R_{j} = \begin{cases} h & i \\ \mathbf{x}, & R^{d} : \mathbf{x} = \begin{cases} k^{k_{j}} \\ k = k_{j+1} + 1 \end{cases} t_{k} \mathbf{u}_{k}, t_{k}, [*r_{k}, r_{k}] \begin{cases} r_{k}, r_{k} \\ r_{k}, r_{k} \end{cases} P_{U_{j}},$$

we can write

$$R = R_1 + R_2 + ... + R_s$$
.

Then the parallelepiped

$$Q = \int_{j: 2j*1fs}^{E} R_{2j*1}$$

satises (2.5) and (2.6). If  $\mathbf{x}$ ,  $R_{2i}$ , then

$$\tilde{\mathbf{o}}_{\mathbf{x}}\tilde{\mathbf{o}}_{\mathbf{f}} f r_{j} f n r_{\mathbf{k}_{2j+1}}.$$

$$i = \mathbf{k}_{2j+1} + 1$$
(2.9)

Let  $Y_j$  be the subspace of  $R^d$  generated by the independent vectors  $\ddot{a}_{ifj}U_{2i*1}$ . One can check

$$R_i Y_i$$
,  $i = 1, 2, ..., 2j$ .

Thus, applying Lemma 2.2 for the space Y<sub>i</sub>, as well as (2.8), (2.9), we conclude

$$\begin{split} \frac{1}{nr_{k_{2j^{*1}}}}R_{2j} \ \check{} \ \{\textbf{x} \ , \ Y_{j} \ : \ \tilde{o} \hspace{-0.1cm} \text{w} \tilde{o} \hspace{-0.1cm} f \hspace{-0.1cm} 1\} \ \check{} \ \frac{C(U)}{r_{k_{2j^{*1}}}} (R_{1} + R_{3} + ... + R_{2j^{*1}}) \\ \ \check{} \ \frac{C(U)}{r_{k_{2j^{*1}}}} \hspace{-0.1cm} Q \end{split}$$

Thus we get R<sub>2i</sub> nC(U) Q and therefore

$$R r^2C(U)Q$$
.

This gives us (2.7), completing the proof of lemma.

Given a set of unit vectors  $U = \{ \mathbf{u}_k : k = 1, 2, ..., n \} \ ^{\times} \$ 

$$_{R}(E) =$$
  $^{\circ} \dots _{R_{U}}$   $^{\bullet} \mathbf{1}_{E}(\mathbf{v}_{1} + \dots + \mathbf{v}_{n})d_{1}(\mathbf{v}_{1}) \dots d_{n}(\mathbf{v}_{n}).$  (2.10)

One can check that  $_R$  is well-dened for any Lebesgue measurable set E  $\check{}$   $R_U$ . Denote by  $f_R$  the density function of measure  $_R$  with respect to the Lebesgue measure on  $R_U$ . Observe that if U is independent, then

$$f_{R}(\mathbf{x}) = \langle & \text{if } \mathbf{x}, R, \\ R^{*1} & \text{if } \mathbf{x}, R_{U} \ddot{a} R. \\ \tilde{\sigma} \tilde{\sigma} & 0$$
 (2.11)

**Lemma 2.4.** Let  $U 
ightharpoonup R^d$  be a set of arbitrary unit vectors and  $R 
ightharpoonup P_U$ . Then there exists a set of independent vectors V 
ightharpoonup U such that  $\operatorname{rank}(V) = \operatorname{rank}(U)$  and there is a parallelepiped  $R^{\pi}$ , P 
ightharpoonup v such that

$$_{R}$$
 f C(U)  $_{R^{ij}}$ . (2.12)

**Proof.** Applying Lemma 2.3 in the Euclidean space  $R_U$ , we nd a set of independent vectors  $V \, \check{} \, U$ , rank(V) = rank(U) and a parallelepiped  $Q \, P_V$  satisfying the conditions of lemma. Since  $Q \, R$ , we have R = Q + H for some parallelepiped  $R \, R$ . We can write

$$_{R}(E) = ^{\circ} ^{\circ} \mathbf{1}_{E}(\mathbf{v} + \mathbf{v}^{\mu})d_{Q}(\mathbf{v})d_{H}(\mathbf{v}^{\mu}) R_{U} R_{U}$$

$$= \overset{\circ}{\underset{R_{U}}{\circ}} \mathbf{1}_{E}(\mathbf{v} + \mathbf{v}^{x})f_{Q}(\mathbf{v})d\mathbf{v}d_{H}(\mathbf{v}^{x})R_{U}$$

$$= \frac{1}{\partial Q \tilde{o}} \overset{\circ}{\underset{R_{U}}{\circ}} \mathbf{1}_{E}(\mathbf{v} + \mathbf{v}^{x})\mathbf{1}_{Q}(\mathbf{v})d\mathbf{v}d_{H}(\mathbf{v}^{x})$$

$$f \frac{\partial E \tilde{o}}{\partial Q \tilde{o}}.$$

This clearly implies

$$\operatorname{ext}_{R} \operatorname{ext}_{Q} f \operatorname{ext}_{Q} \operatorname{ext}_{Q} = \operatorname{\tilde{Q}} \operatorname{Q} \operatorname{\tilde{Q}}^{*1}.$$
(2.13)

Denote  $R^{x} = C(U)Q$ , where C(U) is the constant in (2.7). From (2.7) and (2.11) we have

$$R \stackrel{\cdot}{=} R^{\sharp}$$
,  $aothermalfoldsymbol{eqn:equation_state} above the set of the set of$ 

Combining (2.13) and (2.14) we get the pointwise bound  $f_R$  f  $C(U)f_{R^{ij}}$ , which implies (2.12).

**Proof of Theorem 1.7.** Observe that the integral in (2.1) may be written as a convolution of measure (2.10) with the function f. Namely, we have

$$\frac{1}{2^{n}r_{1} \dots r_{n}} \circ \dots \circ \dots \circ \int_{*r_{n}}^{r_{1}} \tilde{\mathfrak{o}}f(\mathbf{x} + t_{1}\mathbf{u}_{1} + \dots + t_{n}\mathbf{u}_{n})\tilde{\mathfrak{o}}dt_{1} \dots dt_{n}$$

$$= \circ \tilde{\mathfrak{o}}f(\mathbf{x} + \mathbf{v})\tilde{\mathfrak{o}}d_{R}(\mathbf{v}). \tag{2.15}$$

Applying Lemma 2.4, for any parallelepiped R  $P_U$  we nd an independent vector set V U with rank(V) = rank(U) and a parallelepiped U V such that (2.12) holds. Thus the last integral in (2.15) may be estimated as follows:

$$^{\circ}f(\mathbf{x} + \mathbf{v})d_{R}(\mathbf{v}) f C(U)^{\circ}$$
  $f(\mathbf{x} + \mathbf{v})d_{R^{\pi}}(\mathbf{v}) f C(U)M_{V}f(\mathbf{x}).$ 

This implies

$$M_U f(\mathbf{x}) f C(U) \max_{V} M_V f(\mathbf{x}),$$

where the maximum is taken over all the subsets  $V \, \check{} \, U$  of independent vectors such that rank(V) = rank(U). For each such V the operator  $M_V$  satises the bound (1.7) and the number of all collections V is constant, depending only on V and so on U. Thus we get (1.7).

# 3. A discrete maximal inequality

We will need a discrete version of inequality (1.7). Let :  $Z^{d} \times R$  be a d-dimensional sequence and let  $A = \{a_{kj} : 1f \ j \ f \ n, 1f \ kf \ d\}$  be an integer

matrix. Consider the maximal operator

$$D_{A}(\mathbf{n}) = \sup_{s_{j}, N} \frac{1}{s_{1} \dots s_{n}} \sum_{k_{1}=0}^{s \not \in *1} \dots s_{k_{n}=0}^{s \not \in *1} (\mathbf{n} + A \mathbf{k})$$

$$= \sup_{s_{j}, N} \frac{1}{s_{1} \dots s_{n}} \sum_{k=0}^{s \not \in *1} (\mathbf{n} + A \mathbf{k}), \qquad \mathbf{n}, N^{d}.$$

From Theorem 1.7 we easily obtain the following.

**Corollary 3.1.** For any integer matrix A of rank(A) = r we have the bound

#{
$$\boldsymbol{n}$$
,  $Z^d$ :  $D_A(\boldsymbol{n}) >$ } f  $C(A)$   $\stackrel{\text{\'e}}{=} Log_{r^*1} H^{\tilde{O}(\boldsymbol{n})\tilde{O}} \stackrel{\text{\'e}}{=} \dots$ 

**Proof.** Given multiple sequence (**m**) consider the function 
$$f(\mathbf{x}) = \bigoplus_{\mathbf{x} = 0,1,*1}^{\mathsf{E}} (m_1 + \mathbf{x}_1, \dots, m_n + \mathbf{x}_n), \text{ if } [\mathbf{x}] = \mathbf{m}, \quad \mathbf{m} \in \mathsf{Z}_d, \tag{3.1}$$

on  $R^d$ , where  $[x] = ([x_1], ..., [x_d])$  denotes the coordinate wise integer part of the vector  $\mathbf{x} = (x_1, ..., x_d)$ . Clearly there is a constant = (A) < 1 such that

$$A(\Delta)$$
 (\*1,1)<sup>d</sup>, where  $\Delta = [0,)^n$ , (3.2)

Using (3.1), (3.2), one can check that

$$(n + A k) f f(x + A t) if t k + \Delta, [x] = n.$$

Thus we obtain

$$\begin{array}{c}
\mathbf{f}^{*1} \\
\mathbf{k} = 0
\end{array}$$

$$\begin{array}{c}
\mathbf{f} \\
\mathbf{f} \\
\mathbf{f} \\
\mathbf{f} \\
\mathbf{f} \\
\mathbf{g} \\
\mathbf{f} \\
\mathbf{g} \\
\mathbf{f} \\
\mathbf{g} \\
\mathbf{g}$$

for any  $\mathbf{x}$  with  $[\mathbf{x}] = \mathbf{n}$ , where

$$R = \{t, R^n : t_i, [*1, s_i], j = 1, ..., n\}.$$

This implies

$$D_A(\mathbf{n}) f C(A) M_A f(\mathbf{x}) if [\mathbf{x}] = \mathbf{n} , Z^d$$

and so

$$\begin{split} \#\{\boldsymbol{n} \ , \ Z_+^d: \ D_A(\boldsymbol{n}) > \}f \ \tilde{o}\{\boldsymbol{x} \ , \ R^d: \ M_Af(\boldsymbol{x}) > \_C(A)\}\tilde{o} \\ f \ C(A) \ ^c Log_{r^*1} \ 0^{\tilde{o}f\tilde{o}}\underbrace{}_{R^d} \\ f \ C(A) \ ^c Log_{r^*1} \ H \underbrace{\tilde{o}(\boldsymbol{n})\tilde{o}}_{\boldsymbol{n} \ Z^d} + . \end{split}$$

This completes the proof.

# 4. Proofs of Theorems 1.4 and 1.5

**Proof of 1.4.** Since rank(U) = d, without loss of generality we can suppose that  $U_1, ..., U_d$  are independent and

$$U_k^{l_k} = U_1^{a_{1,k}} \acute{y} \, 5 \, \acute{y} \, U_d^{a_{0,k}}, \quad d < k \, f \, n,$$
 (4.1)

where  $I_k$  g 1 and  $a_{j,k}$  are some integers. First we suppose that  $I_k$  = 1. Thus we can write

$$f \left( U_{1}^{k_{1}} \circ 5 \circ U_{n}^{k_{n}} \right)(x)$$

$$= f \left( U_{1}^{k_{1} + a_{1,d+1} k_{d+1} + 5 + a_{1,n} k_{n}} \circ 5 \circ U_{d}^{k_{d} + a_{d,d+1} k_{d+1} + 5 + a_{d,n} k_{n}} \right)(x)$$

$$= (x, A k), \tag{4.2}$$

where

$$(x, \mathbf{n}) = f \left( U_{1}^{1} \mathring{\mathbf{n}} \mathring{\mathbf{y}} \, 5 \, \mathring{\mathbf{y}} U_{d}^{d} \mathring{\mathbf{n}} \right) (x), \, \mathbf{n}$$
  
=  $(n_{1}, ..., n_{d}), Z^{d},$ 

and

$$A = \begin{matrix} 1 & 0 & 5 & 0 & a_{1,d+1} & 5 & a_{1,n} \\ r & 1 & 5 & 0 & a_{2,d+1} & 5 & a_{2,n} \\ r & 5 & & & \dots & s \\ p0 & 0 & \dots & 1 & a_{d,d+1} & \dots & a_{d,nq} \end{matrix}$$

is a matrix of size d × n. Let

$$f_{M}^{<}(x, \mathbf{n}) = \max_{1 \neq s_{j} \neq M} \frac{1}{s_{1} + s_{n}} \sum_{k=0}^{s_{n}^{*}} \tilde{\delta}(x, \mathbf{n} + A \mathbf{k}) \tilde{\delta},$$
 (4.3)

where M, N and denote

$$\begin{split} E(x) &= \{ \mathbf{n} : \ 1 \ f \ n_{j} \ f \ N : \ f_{M}(x, \mathbf{n}) > \}, \\ E(\mathbf{n}) &= \{ x : \ f^{<}_{M}(x, \mathbf{n}) > \}, \quad \mathbf{n}_{J} \ Z^{d}, \\ E &= \{ (x, \mathbf{n}) : \ 1 \ f \ n_{j} \ f \ N, \ f^{<}_{M}(x, \mathbf{n}) > \} = \ddot{a}_{x, X} E(x) \\ &= \ddot{a}_{1fn, fN} E(\mathbf{n}). \end{split} \tag{4.4}$$

Taking into account (4.2), observe that inequality (1.4) is the same as

$$\lim_{M^{\text{TM}}\emptyset} (E(\mathbf{0})) f C(U)^{\circ} \log_{d^*1} 0^{\tilde{0}f\tilde{0}} \frac{1}{1}.$$
 (4.5)

In (4.3) the coordinates of A  $\mathbf{k}$  may vary in the interval [\*R, R], where R = R(A, M) is a constant depending only on the matrix A and the integer M. From Corollary 3.1 it follows that

$$\#(E(x)) \text{ f } C(A) \overset{\text{\'e}}{\underset{1 \text{fn}_1 \text{fN+R}}{\text{fN+R}}} \text{Log}_{r^*1} H \overset{\tilde{\mathfrak{O}}(x,\textbf{n})\tilde{\mathfrak{O}}}{\longrightarrow} \text{ for all } x \text{ , } X.$$

Then, since  $U_k$  are measure-preserving, the sets  $E(\mathbf{n})$  have equal measures for dierent  $\mathbf{n}$ , Z .dThus from (4.4) we obtain

$$(E(0)) = \frac{1}{N^{d}} \frac{\acute{E}}{1fn_{j}fN} (E(n)) = \frac{1}{N^{d}} \frac{\#(E(x))}{X}$$

$$f \frac{C(A)}{N^{d}} \frac{\acute{E}}{1fn_{j}fN+R} x Log H \frac{\mathring{O}(x,n)\mathring{O}r^{*1}}{H}$$

$$= \frac{C(A)(N+R)^{d}}{N^{d}} x Log_{r*1} 0 \frac{\mathring{O}ff\mathring{O}}{H} 1.$$

Fixing M and letting N  $^{\text{m}}$  Ø, we get

$$\tilde{d}E(0)\tilde{d}f C(A) \sim \underset{x}{\text{Log}_{r^*1}} 0 \stackrel{\tilde{d}f\tilde{d}}{\longrightarrow} 1,$$

which implies (4.5). The general case  $l_k \ g \ 1$  can be easily deduced from the case of  $l_k = 1$ . Fix an integer vector  $\mathbf{r} = (r_{d+1}, ..., r_n)$ , 0 f  $r_j < l_j$ , and denote

by  $Q_{s_1,\dots,s_d}$  f(x) the sum of functions  $\acute{\mathbf{o}}^f \ \ U_1^{k_1} \dots U_n^{k_n} x \ \ \acute{\mathbf{o}}'$ 

over the integer vectors  $\mathbf{k} = (k_1, ..., k_n)$ , satisfying

$$1 f k_j < s_j, \quad 1 < j f n,$$
 (4.6)

$$k_j = k_j l_j + r_j, k_j$$
, Z, d < j f n. (4.7)

Under the conditions (4.7) we can write

$$f \ U_1^{k_1} ... U_n^{k_n} x = f_n \ U_1^{k_1} ... U_d^{k_d} U_{d+1}^{k_{d+1}} ... U_n^{k_n} x$$
 (4.8)

where

$$f(x) = f U_{d+1}^{r_{d+1}} ... U_{n}^{r_{n}} x$$
,  
 $U_{j} = U_{j}^{l_{j}}, d < j f n.$ 

From (4.1) it follows that

$$U_k = U_1^{a_{1,k}} \circ ... \circ U_d^{a_{d,k}}, \quad d < k f n,$$
 (4.9)

Denote by  $(\mathbf{s}, \mathbf{r})$  the number of integer vectors  $\mathbf{k} = (k_1, ..., k_n)$ , satisfying (4.6) and (4.7). According to (4.8) and (4.9) we can say that

$$Q_{S_1,\dots,S_n}^{\mathbf{r}}f(\mathbf{x})$$

$$(\mathbf{s},\mathbf{r})$$
(4.10)

are certain ergodic averages, obeying the case of  $l_k = 1$  in (4.1). Thus we conclude that the averages (4.10) satisfy the weak estimate (1.4) for all vectors r.

On the other hand, taking into account (s, r) f  $s_1 \dots s_n$ , we have

$$\frac{1}{s_{1} \dots s_{n}} \int_{k_{1}=0}^{s_{\underline{f}}^{*1}} \dots \int_{k_{n}=0}^{s_{\underline{f}}^{*1}} \left( U_{1}^{k_{1}} \circ \dots \circ U_{n}^{k_{n}} \right) (x) dx 
= \frac{1}{s_{1} \dots s_{n}} \int_{r}^{c} Q_{s_{1}, \dots, s_{n}}^{r} f(x) dx 
= \frac{\dot{f}}{s_{1} \dots s_{n}} \int_{r}^{c} Q_{s_{1}, \dots, s_{n}}^{r} f(x) dx 
= \frac{\dot{f}}{s_{1} \dots s_{n}} \frac{(s, r)}{(s, r)} \frac{Q_{s_{1}, \dots, s_{n}}^{r} f(x)}{(s, r)}.$$

Thus, since the averages (4.10) satisfy the weak estimate (1.4) and the number of dierent vectors  $\mathbf{r} = I_{d+1} \dots I_n$  is a constant depending on U only, we obtain (1.4) in full generality. The theorem is proved.

**Proof of Theorem 1.5.** According to Theorem B the averages (1.2) converge a.e. for any function from L  $\log^{n+1}$  L and so for any f \_ L $^{\emptyset}(X)$ . To prove convergence for any f \_ L  $\log^{d+1}$  L(T), x " > 0 and choose a function g \_ L $^{\emptyset}$  such that

$$\int_{0}^{\infty} Log_{d*1} 0 \frac{\tilde{o}f * g\tilde{o}}{"} 1 < ".$$

Applying (1.4), for the averages

$$A_{\mathbf{m}}(f) = \frac{1}{m_{j_1=0}m} \int_{j_n=0}^{m_{\underline{b}}^{*1}} f U^{1} ... U^{\frac{1}{p}} x^{1} \int_{n}^{n} f$$

we obtain

This implies a.e. convergence of  $A_n(f)$ , completing the proof of the theorem.

# 5. Sharpness in Theorem 1.5 and an extension

Let us show that the class of functions L  $\log^{d^*1} L(X)$  in Theorem 1.5 is optimal. Suppose the rank of U =  $\{U_k: k=1,2,...,n\}$  is d and  $\{U_1,...,U_d\}$  is the corresponding independent subset U, which is moreover non-periodic. According to Theorem C for  $\Phi(t) = o(t \log^{d^*1} t)$  there exists a function f \_, L $_{\Phi}(X)$  with a.e. diverging averages

$$\frac{1}{s_1 \dots s_d} \int_{j_1=0}^{s_{\underline{f}}^{*1}} \dots \int_{j_d=0}^{s_{\underline{f}}^{*1}} U_1^{j_1} \dots U_d^{j_d} x . \qquad (5.1)$$

It turns out that for the same function f we have a.e. divergence of the averages

$$\frac{1}{s_1 \dots s_n} \int_{j_1=0}^{s_1 + 1} \int_{j_2=0}^{s_1 + 1} \int_{j_2=0}^{s_2 + 1} \int_{j_2=0$$

This immediately follows from the following lemma.

**Lemma 5.1.** Let  $U = \{U_k : k = 1, 2, ..., n\}$  be a set of measure-preserving transformations and d f n. If averages (5.1) diverge unboundedly a.e, then extended averages (5.2) also diverge unboundedly a.e.

**Proof.** Denote by  $A_s(f)$  and  $A_s(f)$  the averages (5.1) and (5.2) respectively and consider the functions

$$M_{p}(f) = \max_{s, Z_{s0}, s_{j}gp} A_{s}(f), \quad M_{p}(f) = \max_{s, Z_{+}^{n}, s_{j}gp} A_{s}(f).$$

The unbounded divergence of averages (5.1) implies  $M_p(f) = \emptyset$  a.e. for any p > 0. If  $\mathbf{s} = (s_1, \dots, s_d)$  and  $\mathbf{s} = (s_1, \dots, s_d, \dots, s_n)$ , then we have

$$A_{s}(f) g \frac{A_{s}(f)}{S_{d+1} \dots S_{n}}$$

and thus, for any p > 0

$$M_p(f) g \frac{1}{p^{n*d}} M_p(f) = \emptyset$$
 a.e..

A set of real numbers

$$\Theta = \{1, 2, \dots, n\} \tag{5.3}$$

is said to be *dependent* (with respect to the rational numbers) if there is a non-trivial collection of integers  $r_k$ , k = 1, 2, ..., n, such that

$$r_{11} + r_{22} + ... + r_{nn} = 0$$
 mod 1,

If there are no such integers, then we say that  $\Theta$  is *independent*. The rank of a collection  $\Theta = \{1, 2, ..., n\}$  will be called the largest integer d, for which there is an independent subset of cardinality d in U. Consider the probability space of Lebesgue measure on  $T = R_Z$  with modulo one addition. Applying Theorem

REFERENCES 1461

1.7 and the ergodicity of the rotation mapping  $x \,^{\text{m}} x + \text{for an irrational}$ , we obtain

Corollary 5.2. If (5.3) is a sequence of rank d, then

1) for any f,  $L \log^{d+1} L(T)$  the limit below holds a.e.

$$\lim_{\min\{s_k\}^{\text{TM}}\emptyset} \frac{1}{s_1 \cdot s_n} \int_{k_1 = 0}^{s \not t^{*1}} \int_{k_n = 0}^{s \not t^{*1}} \int_{x}^{s \not t^{*1}} f(x) dx, \qquad (5.4)$$

2) for any increasing function  $\Phi: R^+ \stackrel{\mathsf{TM}}{\longrightarrow} R^+$ , satisfying  $\Phi(t) = o(t(\log t)^{d^*1})$ , there exists a function  $f_+ L_\Phi(T)$  such that the averages in (5.4) are a.e. divergent as  $\min\{s_k\}^{\mathsf{TM}} \emptyset$ .

# References

- [1] Calderón, A.-P. Ergodic theory and translation-invariant operators. *Proc. Nat. Acad. Sci. U.S.A.* **59** (1968), 349–353. MR227354 (37 #2939), Zbl 0185.21806. 1451
- [2] Dunford, Nelson. An individual ergodic theorem for non-commutative transformations, I. Acta Sci. Math. (Szeged) 14 (1951), 1–4. MR42074 (13,49f), Zbl 0044.12501. 1449, 1451
- [3] Dunford, Nelson; Schwartz, Jacob T. Linear operators. Part I. John Wiley & Sons, Inc., New York, 1988. MR1009164 (90g:47001a). 1449
- [4] Einsiedler, Manfred; Ward, Thomas. Ergodic theory with a view towards number theory. Graduate Texts in Mathematics, 259, Springer-Verlag London, Ltd., London, 1984. MR2723325 (2012d:37016). 1448
- [5] Fava, Norberto Angel. Weak type inequalities for product operators. Studia Math. 42 (1972), 271–288. MR308364 (46 #7478), Zbl 0237.47006. 1449
- [6] de GuzmÆn, Miguel. An inequality for the Hardy-Littlewood maximal operator with respect to a product of dierentiation bases. *Studia Math.* 49 (1973/74), 185–194. MR333093 (48 #11418), Zbl 0286.28003. 1451
- [7] de GuzmÆn, Miguel. Dierentiation of integrals in R<sup>n</sup>. Springer-Verlag, Berlin-New York, 1975. MR0457661 (56 #15866), Zbl 0327.26010. 1451, 1453
- [8] de GuzmÆn, Miguel; Welland, Grant V. On the dierentiation of integrals. Rev. Un. Mat. Argentina 25 (1970/71), 253–276. MR318418 (47 #6965), Zbl 0325.28004. 1453
- [9] Jessen, B.; Marcinkiewicz, J.; Zygmund, A. Note on the dierentiability of multiple integrals. Fund. Math. 25 (1935), 235–252. 1451
- [10] Hagelstein, Paul; Stokolos, Alexander. Weak type inequalities for ergodic strong maximal operators. Acta Sci. Math. (Szeged) 76 (2010), no. 3-4, 427–441. MR2789679 (2012c:47028). 1449
- [11] Hagelstein, Paul; Stokolos, Alexander. Transference of weak type bounds of multiparameter ergodic and geometric maximal operators. *Fund. Math.* **218** (2012), no. 3, 269– 284. MR2982778, Zbl 1257.37011. 1451
- [12] Wiener, Norbert. The ergodic theorem. Duke Math. J. 5 (1939), 1–18. MR1546100, Zbl 0021.23501.
- [13] Zygmund, A. An individual ergodic theorem for non-commutative transformations. *Acta Sci. Math. (Szeged)* **14** (1951), 103–110. MR45948, ZbI 0045.06403. 1449, 1451

1462 REFERENCES

- (G. A. Karagulyan) Institute of Mathematics NAS RA, 24/5 Marshal Baghramian ave. Yerevan, 0019, Republic of Armenia, and Faculty of Mathematics and Mechanics, Yerevan State University, Alex Manoogian, 1, Yerevan, 0025, Republic of Armenia g.karagulyan@ysu.am
- (M. T. Lacey) School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA lacey@math.gatech.edu
- (V. A. Martirosyan) Faculty of Mathematics and Mechanics, Yerevan State University, Alex Manoogian, 1, 0025, Yerevan, Armenia vahanmartirosyan2000@gmail.com

This paper is available via http://nyjm.albany.edu/j/2022/28-62.html.