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On the convergence of multiple
ergodic means

Grigori A. Karagulyan, Michael T. Lacey
and Vahan A. Martirosyan

Abstract. Considerasequence of measure preserving transformationsU =
{Ue: k= 1,2,..} on ameasurable space (X, ). We prove a.e. convergence of
the ergodic means
o1 g
1 E_E f Uits yin
5 ults Ulrx (0.1)
=0 ja=0

$15 Snj,

asmin;s; ™ @, branyfunctionf | L Iogd*l(X), whered f nistherank of the
transformations U. The result gives a generalization of a theorem by N.
Dunford and A. Zygmund, claiming the convergence of (0.1) in a narrower

class of functions L Iog"*l(X).
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1. Introduction

Birkho's ergodic theorem is one of the most important and beautiful result of
probability theory. The study of ergodic theorems started in 1931 by von
Neumann and Birkho, having its origins in statistical mechanics. Recall the
denition of the measure-preserving transformation (see [4]).
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Denition 1.1. Let (X, B, ) be a probability space. A mapping T : X ™ X is sid
to be a measure-preserving transformation if for any measurable setE , B the
set T"1(E) is also measurable and (E) = (T*1(E)). The combination
(X, B,, T) is called a measure-preserving system.

Theorem A (Birkho). If (X, B,, T) is a measure-preserving system, then for
any function f , L1(X) the averages
gl
f(Tix)
j=0

S|

converge almost everywhere to a T-invariant function frasn ™ @.

There are dierent proofs and various generalizations of this classical the-
orem. Some of those clearly demonstrate strong link between the Lebesgue
dierentiation theory on R" and pointwise convergence of dierent type of er-
godic averages. The following multiple version of Birkho's theorem, proved by
Zygmund [13] and Dunford [2] independently, is an example of such a re-
semblance. Let ® : R* ™ R* be non-decreasing function and (X, B, ) be a
probability space. Denote by L éX) the class of B-measurable functions f on X
with ©(8f8) , L(T). The class Ly (X) corresponding to a function

O(t) = t(1+ (max{0,logt})"), ng 1, (1.1)
will be denoted by L log" L(X). Clearly this class of function is strongly included
in LY(X).

Theorem B (Dunford-Zygmund). Let U4, ..., U, be measure-preserving one-to-
one transformations of a probability space (X, B, ). Then for any functionf | L
log" ' L(X) the averages
SE*l sEf*l ) )

5 f U'5U."x (1.2)
j1=0  j,=0

s15s,

converge a.e. as min; s; ™ @.

This result has been generalized for general contraction operatorson L, con-
sidering those instead of the operators f ™ fyU, generated by the measure-
preserving transformations U, (Dunford-Schwartz [3], Fava [5]). Hagelstein

and Stokolos in [10] proved the sharpness of the class of functions L Iog"*1 L(X)
in the context of Theorem B. Namely,

Theorem C (Hagelstein-Stokolos). Suppose a collection of invertible commuting

measure-preserving transformations U = {U, : k = 1,2,...,n}is non-periodic,

that is for any non-trivial collection of integersp,. , Z, k= 1,2,...,n we have
{U, % ..yU,Mx) = x} = 0.

If O(t) = oft Iog”*1 t) ast ™ @, then there exists a functionf | Lg(X) such that
averages (1.2) unboundedly diverge a.e..
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Denition 1.2. A set of invertible commuting measure-preserving (ICMP)
transformations U = {U, : k = 1,2,...,n}is said to be dependent if there is a
non-trivial collection of integers px , Z, k= 1,2,...,n, such that

(UPty..yUi) (x) = x (1.3)

almost everywhere on X. If there is no such a collection of integers py, then we
say U is independent. The rank of U denoted by rank(U) will be called the
largest integer r for which there is an independent subset of cardinality r in U.

Remark 1.3. Note that according to our denition, the independence of U re-
quires the failure of (1.3) on a set of positive measure for any non-trivial col-
lection of integers {py}, while the condition of non-periodicity in Theorem C is

a stronger version of independence, since in this case the failure of (1.3) is
required almost everywhere.

The main result of the present paper provides a generalization of Theorem B.
Namely, it says that in fact a.e. convergence of averages (1.2) holds in a larger

class of functions L Iogd*l L —L Iogn*1 L, whered = rank(U) f n. First we
prove the following weak type maximal inequality, where Log,t denotes the
functionin (1.1), i.e.

Log,(t) = t(1+ (max{0, logt})").

Theorem 1.4. LetU = {U, : k= 1,2,..,n}be aset of ICMP transformations
of rank d. Then, for any functionf | L Iogd*1 L(X) and > 0, we have

SE*l sE'*l
. k1 211 kn
Tx , X : sup 5 f(URy5Syur)(x) > U
sjg0 S1..5n k0 k,=0¢ ! ¢
ofo
fC(U)° Logg+10—1, (1.4)

X

where C(U) is a constant depending only on U.
As a corollary of (1.4) we obtain the following.

Theorem 1.5. LetU = {U, : k= 1,2,..,n} be a set of ICMP transformations

of rank d. Then, for any function f | L Iogd*1 L(X) the averages (1.2) converge
almost everywhere as mins, ™ @.

Remark 1.6. We will see in the last section that the class L Iogd*1 L(X) of the
functions in Theorem 1.5 is optimal. More precisely, if the corresponding in-
dependent subset of cardinality d = rank(U) in U is "strongly independent"

(i.e. non-periodic), then under the condition ®(t) = o(t Iogd*1 t) there exists a
function f | Lg(X) with a.e. diverging averages (1.2). In fact, the proof of this
optimality immediately follows from Theorem C. We will just need to apply a
simple lemma proved in Section 5 (Lemma 5.1).
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The inequality (1.4) will be deduced from a maximal inequality on R". Let
A : R" ™ Rd be a linear operator given by the matrix

A={ag: 1fjfn 1f kf d} (1.5)

of size d x n (d-rows and n-columns). We consider the maximal function
Maf(x) = sup 1. of(x+ A t)ddt, x, Rd, (1.6)
r ORO .

where sup is taken over all n-dimensional symmetric intervals
R=1t= (tl,...,tn) R RN : tj_, [*rj, rj], j = 1,2, o, N Y RM.

Denote by rankA the rank of the matrix A.

Theorem 1.7. Let A be the matrix (1.5) and r = rankA. Then for any function
f . L(log" L)""1(RY) the bound
d . ofd
Ofx, R9: Mpf(x)> )of C(A) Log,x1 0—1, (1.7)
Rd

holds, where C(A) is a constant, depending only the matrix A.

Remark 1.8. Observe that if n = d = r and A is the identity matrix of size n,
then (1.6) gives the well-known strong maximal function on R", correspond-
ingly, (1.7) becomes the weak type inequality due to M. de Guzman [6] (see also
[7]). Moreover, inequality (1.7) holds even if A is a general invertible matrix
and it follows from Guzman’s inequality of [6], simply using the equivalence of
rectangular and parallelepiped dierentiation bases on R". Our proof of the full
version of inequality (1.7) is a reduction of the general case to the case of
invertible A.

Remark 1.9. Note that papers [2] and [13] suggest dierent proofs of Theorem B.
The proof of [2] is straightforward and the convergence of averages (1.2) was
established only for the functions in LP, 1 < p < @, while Zygmund [13] pro-
vides an inequality, which is the analogue of a similar inequality for the strong
maximal function, originally proved in [9]. The latter is the weaker version of
Guzman'’s inequality of [6] .

Remark 1.10. The well known transfer principle of Calderdn [1] enables to re-
duce certain ergodic maximal inequalities to maximal inequalities in harmonic
analysis. A version of Calderén’s principle in higher dimension was suggested
in [11], where only non-periodic collections of measure-preserving transfor-
mations were considered. In fact, our proof of Theorem 1.4 is an extension of
this higher dimensional principle to arbitrary collections of measure-preserving
transformations.

The authors are grateful to the unknown referee for valuable remarks.
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2. Proof of Theorem 1.7

We will use the following equivalent form of the maximal function (1.6)
rn 0
Myf(x) = sup =~ 5°  &f(x+tyus+5+t u,)ddt, 5dt,, (2.1)
>0 213 Iy A
where the vector set U = {u, k = 1,2,...,n}is formed by the columns of the
matrix (1.5). So the rank of vectors U coincides with the rank of the matrix A.
Once again note that that if the collection of vectors are independent, i.e. the
matrix A is invertible, then inequality (1.7) is known, and we are going to
reduce the general case to the case of invertible A. We need several lemmas,
concerning parallelepipeds in R and associated measures.
For a vector X = (xq,..,Xg) , RY we denote &d = (le + ot xzd)l—z. Given

a set of vectors V * RY we denote by span(V) the linear space generated by V
(sometimes this Euclidean space will be denoted by Ry ). The notation dEJ will
stand for the Lebesgue measure of a set E in an Euclidean space.

Denition 2.1. Let U = {u & k =1,2,..,n} ~ RY be a set of unit vectors.
Call a parallelepiped in R9 a set of the form

R= x, RY: x=tjug+ ..+ tou,, tj, [*rj,rj] . (2.2)

The family of all parallelepipeds (2.2) generated by a xed set of vectors U will
be denoted by Py;.

Note that parallepipeds can have dierent representations (2.2). Clearly the
arithmetic sum of two parallelepipeds R, Q
R+Q={x+t: x, R, t, Q}
is again a parallelepiped. For two parallelepipeds R and Q we write Q ~ R if
there is a parallelepiped R* such that Q = R + R%.

Lemma 2.2. IfU = {u, : k = 1,2,..,n}is a basis set of vectors in R" and
R, Py has a representation (2.2), then
C(V)

mlnj I"j

{x . R": &3f 1}° R, (2.3)

where C(U) is a constant, depending only on the set of vectors U.

Proof. Foranyj = 1,2,...,n we consider hyperplanes I'J.+ and I'J.* in R" dened
rji = {X=tiug+ .+ toun s = £, 4, R0 )

and let S; be the closed strip domain lying between the hyperplanes rji. We

have R = 2;S;. Denote by h; the distance of the hyperplanes FJ.+ and FJ.* from
the origin. It is clear that

{x, R": ®»df mjinhj}” R. (2.4)
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One can also check that ¢; = h;_rj are constants, depending only on U. Denote
C(U) = (min; ¢;)"L. From (2.4) we obtain
1 R C(U)

min; hj min; r;

{x, R": &3f 1} "

and so (2.3).

Aversion of the following lemmain the case of d = 2 was proved by Guzman-
Welland in [8] (see also [7], chap. 6, Lemma 2.1).

Lemma 2.3 (Guzman-Welland). Let U = {uk : k=1,2,..,n} be a set of unit
vectors in R9. Then for any parallelepiped R , P, there exist a subsetV ~ U of
independent vectors and a parallelepiped Q , Pv such that

rank(V) = rank(U), (2.5)
Q' R, (2.6)
RY C(U) Q, (2.7)

where C(U) is a constant depending only on the set of vectors U.

Proof. Suppose that R, Py is the parallelepiped (2.2). Without loss of gener-
ality we can suppose that
rhgryg ..g ry. (2.8)
Denote
V = {ug: ugl span{uy,..,u1}} " U.

One can easily check that the vectors of V are independent and rank(V) =
rank(U). One can split the set of vectors U into groups

Uj=A{ue: k, (ke k1L 7 =125,

0= k0< k1< e < ks= n,

such that
« g a
V= Uji+1, Uy 7 spany Ujixis.
ig0 pi=t q
Considering the parallelepipeds
h i i
Rj= x, Rd: x= teu, e, [*riord L Py,
! kekjep+1 r
j k

we can write
R=R;+ R+ ...+ R..
Then the parallelepiped E
Q= Raj*1
j:2j*1fs
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satises (2.5) and (2.6). If x, Ry, then

2
odf r;f ] (2.9)

i=kyjx1+1

Let Y; be the subspace of Rd generated by the independent vectors difjUgixq.
One can check

RivYJ‘, i=1,2,...,2j.
Thus, applying Lemma 2.2 for the space Y;, as well as (2.8), (2.9), we conclude
1 . . C(U
sz {XJ YJ : 0df 1} ( )(R1+ R3+ et RZj*l)
nrk2j*1 rij*l
. C(U
(V) Q
Fkyjey
Thus we get Ry;* nC(U) Q and therefore
R~ n2Cc(U)Q.

This gives us (2.7), completing the proof of lemma.

Given a set of unit vectorsU = {u,: k= 1,2,...,n} " RY, let Ry be the sub-
space of R dgenerated by the vectors U. We associate with a parallelepiped (2.2) a
probability measure g supported on R as follows. First, for each j we con-sider
a probability measure ; uniformly distributed on the one dimensional
parallelepiped {tu; : t , [*r;, r;]}. The convolution of singular measures ; is

E)

the measure g dened on the Lebesgue measurable setsof E © Ry by

R(E) =" ..° 1e(vy + oo+ vy)dq(vq) ...dp(vy). (2.10)
Ry Ry
One can check that g is well-dened for any Lebesgue measurablesetE ~ Ry.
Denote by fg the density function of measure g with respect to the Lebesgue
measure on Ry. Observe that if U is independent, then

fr(x) = < if x, R,
R " if x, Ry aRr.
53 0

v

(2.11)

Lemma 2.4. Let U RY be a set of arbitrary unit vectors and R , Py. Then
there exists a set of independent vectors V.~ U such that rank(V) = rank(U)
and there is a parallelepiped R® , Pv such that

af C(U) . (2.12)

Proof. Applying Lemma 2.3 in the Euclidean space Ry, we nd a set of in-

dependent vectors V. © U, rank(V) = rank(U) and a parallelepiped Q , Pv
satisfying the conditions of lemma. Since Q° R, we have R = Q + H for some
parallelepiped H in Ryy. We can write

r(E) =" ° 1g(v+ vi)dqa(v)du(vF) Ry Ry
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1e (v + V¥)fq(v)dvdy (v7) Ry

Ry
=L 1 (v vH)lg(v)dvdy (vF)
a8 Ry Ry
‘ OEd
(s 0}
This clearly implies
efpaey f efqeey = 8Q3™. (2.13)

Denote R* = C(U)Q, where C(U) is the constantin (2.7). From (2.7) and (2.11)
we have

R™ RY
®fpeag = OR = (C(U)3QS) . (2.14)
Combining (2.13) and (2.14) we get the pointwise bound fg f C(U)fgx, which

implies (2.12).

Proof of Theorem 1.7. Observe that the integral in (2.1) may be written as a
convolution of measure (2.10) with the function f. Namely, we have

r M

1 - SF(X + tyug + ...+ tou.)ddt, ... dt,
Al C S T
= " 8f(x + v)3dg(v). (2.15)
Rd

Applying Lemma 2.4, for any parallelepiped R , P, we nd an independent
vector set V © U with rank(V) = rank(U) and a parallelepiped R* , Pv such
that (2.12) holds. Thus the last integral in (2.15) may be estimated as follows:

“f(x + v)dg(v) f C(U)~ f(x + v)dge(v) f C(U)Myf(x).
R
This implies

Myf(x) f C(U) m\?x My f(x),

v

where the maximum is taken over all the subsets V * U of independent vectors
such that rank(V) = rank(U). For each such V the operator My satises the

bound (1.7) and the number of all collections V is constant, depending only on n
and so on U. Thus we get (1.7).

3. A discrete maximal inequality

We will need a discrete version of inequality (1.7). Let : Z9 ™ R be a d-
dimensional sequence and letA = {a,;: 1f jf n,1f kf d}beaninteger
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matrix. Consider the maximal operator

1 sE'*l sE’*l
D ,(n) = sup (n+ A k)

$j.N S1ewwSny0 k=0

1
= sup (n+ A k), n, N9
Sj_\N S1 ...5n k=0

From Theorem 1.7 we easily obtain the following.
Corollary 3.1. For any integer matrix A of rank(A) = r we have the bound
E 3(n)3
#{n 79 : Da(n)> }f C(A) Log,«1 H ()—I.—
n,zd

Proof. Given multiple sequence (m) consider the function

f(x) = (my+ ", e,mp+ "), if[xI=m, m, Zg, (3.1)
"=0,1,*1

on RY, where [x] = ([x1], ..., [Xq]) denotes the coordinate wise integer part of
the vector x = (X4, ..., Xq). Clearly there is a constant = (A) < 1 such that

A(A)~ (*1,1)4, whereA = [0,), (3.2)
Using (3.1), (3.2), one can check that
(n+ A k)f f(x+A t)ift, k+ A, [x]=n.

Thus we obtain

g1 g1,
(n+ A k) f Lo sfx+ A t)adt
k=0 k=0 k+A
f %"R 5f(x+ A t)dt,

for any x with [x] = n, where
R={t, R": t;, [*1,5],j=1,..,n}k
This implies
Da(n) f C(A)Mpf(x)if[x] = n, Zd
and so
#{n, Z9: Da(n) > }f 8fx, RY: Mpf(x)> _C(A)}6

ofé
f C(A) Log,+1 0 Amd

E d(n)d
f C(A) Log,+ HL.

n,zd

This completes the proof.
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4. Proofs of Theorems 1.4 and 1.5

Proof of 1.4. Since rank(U) = d, without loss of generality we can suppose
that U4, ..., U4 are independent and

[ Ak vy @,
Ukl= U "y5yu,™, d<kf n, (4.1)
where Iy g 1and a;  are some integers. First we suppose that |, = 1. Thus we

can write
Ky,
f(UstysyU)(x)

ki+ag,ge1kge1+5+ag nkp .

- f (Ul 5y'Uk:+ad,d+1kd+1+5+ad,nkn)(X)
= (x, A k), (4.2)
where
(x,n)=f (U y5yU, %)(x),n
= (nll "'Ind) 5 Zdl
and
1 05 0 ajgs 5 Ain,
A=r0 1 5 0 azgs 5 A2ng
r 5 S
pO o .. 1 ad,d+1 - ad’nq
is a matrix of size d x n. Let
g1
fS(x,n) = max d(x,n+ A k)J, 4.3
Gm) = max o o ) (4.3)

where M , N and denote
E(x)={n: 1f njf N: f,(x,n)>},

E(n) = {x: f<(x,n)>}, n, 29,
E={(x,n): 1f njf N, f* (x,n)>}=4&, xE(x)

= d1¢n,en E(N). (4.4)
Taking into account (4.2), observe that inequality (1.4) is the same as
. . ofo
Imr(}j (E(0)) f C(U)° Logg+1 0 - (4.5)
M™

X

In (4.3) the coordinates of A k may vary in the interval [*R, R], where R =
R(A, M) is a constant depending only on the matrix A and the integer M. From
Corollary 3.1 it follows that
E d(x, n)d
#(E(x)) f C(A) Log HQ forallx , X.
1fn,~fN+R
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Then, since U, are measure-preserving, the sets E(n) have equal measures for
dierentn , Z JdThus from (4.4) we obtain
1 E 1,
(E(0) = ~— (E(n)) = 5
N 1fn;fN N

c(A) E 3(x, n)3 r*1
NG 1fn;fN+R x LOg H——I
C(A)(N + R)4, ofo

= —d LOgr*l 0—1.
N X

# (E(x))
X

f

Fixing M and letting N ™ @, we get
ofd
OE(0)df C(A)° Log;+10 —1,
X
which implies (4.5). The general case |, g 1 can be easily deduced from the

case of Iy = 1. Fix an integer vector r = (rq.1,...,rn), 0 f r; < I;, and denote
r

by Q,, _s,f(x) the sum of functions
o Uit Umx

over the integer vectors k = (ky, ..., k), satisfying

1f kj<s5, 1<jfn, (4.6)
kj= kjlj+rj, ij z, d<J f n. (47)
Under the conditions (4.7) we can write
f UM USx = fo Ul Ukl ulex (4.8)
where ”
fix) =f U;“;ll LU

Uj=U/, d<jfn
From (4.1) it follows that

U= UT™y..yud™, d<kf n, (4.9)

Denote by (s, r) the number of integer vectors k = (kq, ..., ky), satisfying (4.6)
and (4.7). According to (4.8) and (4.9) we can say that

& s F(X)
(4.10)

are certain ergodic averages, obeying the case of I, = 1in (4.1). Thus we con-
clude that the averages (4.10) satisfy the weak estimate (1.4) for all vectors r.
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On the other hand, taking into account (s, r) f s;...s,, we have

* ¥
SE 1 sE 1

fo(UMy . yuR)(x)
¢ 1 n ¢

z

S]_ ...Sn k1:0 kn=0

1 r
f(x
S1eSn | 1080 (x)

E (S, r) Qslt.l.,snf(x) r

S1...5n (s, 1)
E Qg s, f(x)

f -
. (sr)

Thus, since the averages (4.10) satisfy the weak estimate (1.4) and the number of
dierent vectors r = lg,1 ... |, is a constant depending on U only, we obtain (1.4)
in full generality. The theorem is proved.

Proof of Theorem 1.5. According to Theorem B the averages (1.2) converge
a.e. for any function from L Iogn*1 L and so forany f , L?(X). To prove con-
vergence foranyf | L Iogd ! L(T), x" > 0and choose a functiong , L? such
that

*

1< ",

Logg+1 0
X

Applying (1.4), for the averages

,*1 ,*1
1 E b j
f Ut ulxt oo

A_(f) =
" Mj,=0m j,=0

we obtain

Tx : limsup 6A (f) * A [f)d > 2"U

minn;™@

Tx : limsup 8A (f * g)* A (f* g)d> 2'U

minn;™@

-

Tx : supBA (f * g) Y>"Un
& * gb

f C(U)c Logd*lo
X

1< C(U)".

This implies a.e. convergence of A, (f), completing the proof of the theorem.
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5. Sharpness in Theorem 1.5 and an extension

Let us show that the class of functions L Iogd*1 L(X) in Theorem 1.5 is op-
timal. Suppose therankof U = {U,: k= 1,2,...,n}isd and {Uy4, ..., Ug}is the
corresponding independent subset U, which is moreover non-periodic. Ac-

cording to Theorem C for O(t) = ot Iogd*1 t) there exists a functionf | Lg(X)
with a.e. diverging averages

1 sE*l SE*I

S1 ... Sd i1=0

j1 jd
foult. Ul (5.1)
ja=0
It turns out that for the same function f we have a.e. divergence of the averages
SE*l SE*I _ _
foulz.ulx . (5.2)

S]_ ...Sn J'1=0 jn=0

This immediately follows from the following lemma.

Lemma5.1. LetU = {U,: k= 1,2,..,n}bea set of measure-preserving trans-
formations and d f n. If averages (5.1) diverge unboundedly a.e, then extended
averages (5.2) also diverge unboundedly a.e.

Proof. Denote by Ag(f) and Ag(f) the averages (5.1) and (5.2) respectively and
consider the functions

M (f) = max A (f), M,(f)= max Agl(f).
P s.Zwsjgp S S.zn 58P
The unbounded divergence of averages (5.1) implies My (f) = @ a.e. for any
p>0.1fs= (sy,..,54)and s = (sq,...,54, ..., Sn), then we have

A (f
a g =0
Sd+1 ... Sn

and thus, forany p > 0

1
Mp(f) g pn_*de(f) = ¢ a.e..

A set of real numbers
O={1,2 ,n} (5.3)
is said to be dependent (with respect to the rational numbers) if there is a non-
trivial collection of integers r, k = 1,2, ..., n, such that

i1+ ryp+ ..+ r,=20 mod 1,

If there are no such integers, then we say that O is independent. The rank of a
collection ©® = {4, ,, ..., n} Will be called the largest integer d, for which there
is an independent subset of cardinality d in U. Consider the probability space of
Lebesgue measureon T = R_Z with modulo one addition. Applying Theorem
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and the ergodicity of the rotation mapping x ™ x + for an irrational , we

obtain

Corollary 5.2. If (5.3) is a sequence of rank d, then
1)foranyf , L Iogd ! L(T) the limit below holds a.e.

sé*l sE’*l
5 f( +kig+5 +kyn)=" f(x)dx, (5.4)
k. =0 X T

1
lim ————
min{s, }™®@S1 5 S, k,=0

n

2) for any increasing function ® : R* ™ R*, satisfying ®(t) = o(t(logt)d*1),
there exists a function f | Lg(T) such that the averages in (5.4) are a.e. divergent
as min{s,} ™ @.
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