
Towards Finding the Missing Pieces to Teach Secure
Programming Skills to Students

Majed Almansoori
University of Wisconsin - Madison

malmansoori2@wisc.edu

Jessica Lam
University of California, San Diego

jplam@ucsd.edu

Elias Fang
University of California, San Diego

efang@ucsd.edu

Adalbert Gerald Soosai Raj
University of California, San Diego

gerald@eng.ucsd.edu

Rahul Chatterjee
University of Wisconsin - Madison

rahul.chatterjee@wisc.edu

ABSTRACT

Research efforts tried to expose students to security topics early in

the undergraduate CS curriculum. However, such efforts are rarely

adopted in practice and remain less effective when it comes to

writing secure code. In our prior work [18], we identified key issues

with the how students code and grouped them into six themes: (a)

Knowledge of C, (b) Understanding compiler and OS messages, (c)

Utilization of resources, (d) Knowledge of memory, (e) Awareness

of unsafe functions, and (f) Understanding of security topics. In

this work, we aim to understand students’ knowledge about each

theme and how that knowledge affects their secure coding practices.

Thus, we propose a modified SOLO taxonomy for the latter five

themes. We apply the taxonomy to the coding interview data of 21

students from two US R1 universities. Our results suggest that most

students have limited knowledge of each theme. We also show that

scoring low in these themes correlates with why students fail to

write secure code and identify possible vulnerabilities.

CCS CONCEPTS

· Social and professional topics → Computer science educa-

tion; · Security and privacy → Vulnerability management.

KEYWORDS

SOLO taxonomy, Computer systems, Teaching security

ACM Reference Format:

Majed Almansoori, Jessica Lam, Elias Fang, Adalbert Gerald Soosai Raj,

and Rahul Chatterjee. 2023. Towards Finding the Missing Pieces to Teach

Secure Programming Skills to Students. In Proceedings of the 54th ACM

Technical Symposium on Computer Science Education V. 1 (SIGCSE 2023),

March 15ś18, 2023, Toronto, ON, Canada. ACM, New York, NY, USA, 7 pages.

https://doi.org/10.1145/3545945.3569730

1 INTRODUCTION

Our society, its infrastructure, and the economy are increasingly

reliant on software. Therefore, it is important that developers who

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE 2023, March 15ś18, 2023, Toronto, ON, Canada.

© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9431-4/23/03. . . $15.00
https://doi.org/10.1145/3545945.3569730

write and maintain such software are at least aware of basic com-

puter security to ensure that these applications are secure and ro-

bust against malicious attacks. Unfortunately, developers lack basic

security skills [14], and they routinely write vulnerable code [23].

Computer science students in the US can graduate without tak-

ing any security course [2, 22]. To combat the lack of security

knowledge, prior studies have tried to introduce security topics in

students’ early computer science (CS) courses [15, 17, 21, 25], design

security clinics to assess students’ code [6ś8], and develop tools

to teach secure programming feedback [24, 28, 29]. Unfortunately,

undergraduate CS students still lack basic security knowledge, such

as safely reading a string from the standard input. While several

prior works tried to propose a solution to this problem, we took a

step back and tried to better understand the problem itself.

In our prior work [18], we found various knowledge areas that

students lack but are prerequisites for writing secure code. We

grouped our observations into six themes: (a) Knowledge of the

programming language (C, in our case), (b) Understanding compiler

and OS messages, (c) Utilization of resources, (d) Knowledge of

memory, (e) Awareness of unsafe functions, and (f) Understanding

of security topics. Although prior work provided what students

lack, it did not delve into what level of knowledge of these skills is

essential for writing secure code. Understanding this would help

us prioritize the areas that we must teach to our students. Thus, we

ask: How could we categorize and evaluate students’ understanding

of prerequisite knowledge and skills needed to write secure code?

In this paper, we dive deeper into the themes proposed in prior

work. For this, we extend the SOLO taxonomy [12] to assess stu-

dents’ understanding of topics that we believe are necessary for

writing and maintaining secure code. We added four levels of un-

derstanding according to SOLO taxonomy, defined them in the

context of required skills to write secure code (the taxonomy can be

found in the supplementary materials [3]) and used the taxonomy

to explain students’ security mistakes in the code.

We found that most students had a low-level understanding of

the five themes, and that these students failed to write secure code,

showing a correlation between these themes and secure program-

ming. Only a few students showed high-level understanding of

these themes and wrote secure code successfully; these students

generally completed some security course in the past.

We believe that this work will help rethink the computer science

undergraduate course curriculum to focus on the problems we

highlight. Doing so will help students write secure and robust code.

1

SIGCSE 2023, March 15ś18, 2023, Toronto, ON, Canada. Majed Almansoori, Jessica Lam, Elias Fang, Adalbert Gerald Soosai Raj, & Rahul Chatterjee

Theme Observation #

Compiler/OS

messages

- Ignores warnings 4
- Does not understand compiler’s message 8

Resources
- Skims page or documentation 15
- Checks example uses of functions only 10

Memory
- Mentions undefined behavior 7
- Fails or struggles to fix overflow 11

Unsafe

functions

- Used at least one unsafe function 17
- Used safer alternatives for security reasons 5

Security

topics

- Writes insecure code 14
- Suggests wrong mitigation to buffer overflow 11

Figure 1: The number of students (#) per observation. Check

supplementary materials [3] for the full list of codes.

2 RELATED WORK

Teaching students security. Research on teaching security is

growing, especially for students in their early careers. This is impor-

tant because prior work [2] has shown that students may graduate

from the top R1 universities in the US without completing any

security course. We assume that it is likely the same case for other

universities around the world. We believe that students must learn

about some security topics in their required courses to avoid writing

trivial insecure code. However, Taylor and Sakharkar [26] showed

that many textbooks used by database courses in the top 50 U.S.

universities do not discuss the security implications of SQL injec-

tion or ways to defend against the vulnerability. Almansoori et

al. [2] examined the mid-level computer systems course taught at

16 U.S. universities, and showed that unsafe C library functions

(e.g., gets, strcpy, etc.) were used in both student projects and

instructor-provided code snippets. These unsafe functions can lead

to many security vulnerabilities such as buffer overflow. It was also

shown that the textbooks used for these computer systems courses

often do not discuss security at all and sometimes even contained

unsafe functions without providing safer alternatives [4].

Security clinics and interventions. Prior work [19] showed

that it is possible to teach security topics to students as early as

CS1. As a result, several modules were created to teach students

secure coding habits in these introductory courses [16]. Bishop and

Orvis [8] created a security clinic to teach students secure coding

practices beyond their introductory courses, whichwas proven to be

successful in increasing students’ security awareness and reducing

the security issues found in their assignments. However, it was

noted that students often only employed these secure programming

practices when it was required of them in the assignment, seeing it

as a secondary rather than an essential practice.

Continued usage of unsafe functions. However, despite these

interventions, students continue to use unsafe functions [2, 18].

Lack of knowledge of these security implications can make it dif-

ficult for students to recognize similar issues in code should they

come across them in the future. This is important because it was

found in prior work by Fischer et al. [13] that the Stack Overflow

platform, which is relied on by many software developers, contains

an alarming amount of unsafe code snippets. If students are not

prepared or do not understand the security implications of the code

they read and write, it is possible that they will continue to employ

SOLO Level Definition

Pre-structural Fails to understand or have wrong understanding

Uni-structural Has simple understanding or knows a single aspect of
the topic.

Multi-structural Understands many aspects of the topic, but not necessar-
ily the connection between these aspects.

Relational Has deep understanding of different aspects and the rela-
tion between them.

Extended Abstract Has the ability to extend their deep knowledge to new
applications and concepts.

Figure 2: Definition of levels used in SOLO taxonomy [5].

unsafe coding practices in the future. Therefore, it is crucial to

understand why students still write insecure code despite all the

prior work trying to instill secure coding practices.

3 METHODS

We are using the data collected in our prior work [18], where we

conducted a study in two R1 universities, UCSD and UW-Madison,

and recruited 21 participants. We interviewed students who are

at least 18 years old, familiar with C, and have taken Computer

Systems or an equivalent course. Only 4 students completed se-

curity courses. Participants were interviewed over Zoom while

they work on a coding test (the coding survey can be found in the

supplementary materials [3]). Our work was approved by IRB as

discussed in our prior work [18]. We came up with six themes that

reoccurred during our interviews in our prior work [18]. These

themes are the 1) knowledge of C programming, 2) understanding

compiler and OS messages, 3) utilization of resources, 4) knowledge

of memory, 5) awareness of unsafe functions, and 6) understanding

of security topics. In this work, we are focusing only on the last five

themes as knowing C programming is a prerequisite for our study.

We coded our observations under each of the five themes for each

student. The finalized codes are listed in Figure 1. Looking ahead,

we will use these observations to develop a systematic taxonomy

of different mistakes that lead to insecure code writing.

Extending SOLO taxonomy. Biggs and Collis introduced the

structure of observed learning outcomes taxonomy, known as the

SOLO taxonomy [5], to assess the depth of students’ understand-

ing of different concepts and topics. Since its introduction, SOLO

taxonomy has been widely used by educators and researchers for

assessing learning outcomes [10ś12]. To our knowledge, few prior

studies have tried to extend the SOLO taxonomy to assess students

understanding of security. Although studies tried to apply Bloom’s

taxonomy [9] (e.g. [27]) to assess computer security education pro-

grams created by security professionals in the lens of an education

theory, the only work that we could find that used SOLO taxonomy

in the context of security and cryptography was by Patterson et

al. [20]. The work, however, focuses on cryptography only, and

does not consider understanding secure coding skills.

We extend the SOLO taxonomy in the context of writing secure

code. Based on the definitions of different levels in SOLO taxonomy

(Figure 2) and the observations we made from the interview data

(Figure 1), we design a novel assessment procedure for students.

We did not consider the extended abstract level because we are not

expecting students to be able to apply their security knowledge

2

Towards Finding the Missing Pieces to Teach Secure Programming Skills to Students SIGCSE 2023, March 15ś18, 2023, Toronto, ON, Canada.

0 7 14 21

Security topics
Unsafe functions

Memory
Resources

Compiler & OS

Percentage (%)Pre-structural Uni-structural Multi-structural

Relational Not applicable

Figure 3: Distribution of students based on the SOLO levels.

and skills to new fields and concepts; we believe this is the job of

security experts. Moreover, our coding questions were designed to

only assess students’ basic understanding of security and applying

them while reading and writing codes. Thus, our data is insufficient

to evaluate whether students have extended abstract knowledge.

We iterated over the structure and the definitions of the taxon-

omy multiple times. We made the observations based on students’

thinking-out-loud and their approach to interacting with the code

editor, compiler, and their search behavior, to classify the students’

understanding of security topics based on our taxonomy. The final

version of the taxonomy can be found in the supplementary mate-

rials [3]. Using the taxonomy, two researchers coded the student

interviewees independently. Then, the coders met to resolve any

disagreement, and if a resolution could not be met, the research

team met and collectively decided on a code through discussions.

4 RESULTS

We assess students’ answers to the coding survey using our ex-

tended SOLO taxonomy (found in the supplementary materials [3]).

4.1 Understanding Compiler and OS Messages

Students were allowed to compile their code during the interview

study; 16 students used their preferred IDEs, and 15 students got

compiler (or OS) messages. Thus, they will be our focus in this

subsection. As shown in Figure 3, most students had low-level un-

derstanding of compiler and OS messages (11 pre-structural and 3

uni-structural). Only one student showed multi-structural knowl-

edge, but no student had relational understanding in this theme.

Ignoring Messages. Developers need to care about compilers

and OS messages since they can indicate the need for security

considerations. We observed that 11 students completely ignored

all messages prompted by the compiler and proceeded without

reading them. These students have written vulnerable code in our

interview as well. For example, students got a warning about gets

whenever they tried to use it. In one case, a student got the warning

stating that łThe ‘gets’ function is dangerous and should not be

used.ž for Q1. Despite the warning, the student executed the code

with input łHello Worldž and got łstack smashing detectedž along

with an incorrect output. Yet, the student did not pay attention to

the output nor the error. Unfortunately, the student chose gets

as one of their final answers and said that despite noticing the

warnings: łI think it worksž.

We noticed that students ignore warnings in general, since warn-

ings do not mean the code is broken completely. However, students

also ignored error messages, such as łcore dumpedž, if they believed

the code works as intended. In fact, similar to the aforementioned

case, many other students got the łstack smashing detectedž error

when testing their code. Only one student was curious about why

the error appears when they input a long string to scanf in Q4.

łI am not understanding messages.ž Although some students

noticed compiler messages, many of them did not quite understand

how to address them. Students were allowed to search online dur-

ing the interview, but multiple students did not investigate these

messages further. In one case, a student tried to compile the code

we provided for Q3 using Visual Studio and got an error that says:

łstrcpy: This function or variable may be unsafe. Consider using

strcpy_s instead.ž Although the student noticed the error, they

thought that the library containing the function is not included,

which was not the case. The student believed the error could be

fixed by simply importing it; however, the student saw that the

issue persisted. As a result, they said: łI don’t knowž and proceeded

without trying to understand the message.

Some students who were prompted with łstack smashing de-

tectedž message noticed the error but did not look it up, nor showed

any understanding of it. For example, one student got the łstack

smashing detectedž error once in Q4 and ignored it, then the student

got the same error again in Q5. This time, the student noticed it but

was not sure what it meant. The student was curious about the error,

and after experimenting with the code, they realized that the print

statement after the offending line is executed despite hitting the

łstack smashing detectedž error, and wondered whether the code is

executed line by line: łIt’s interesting how the stack smash detected

comes in if I comment out the print statement. When I uncomment

it, the print happens before the stack smashing detected. Does it just

print everything first and then give me all the list of the errors or is

it like line by line?ž Although the student noticed the error, they

concluded that the correct answer is the one causing the error. The

student stated that they recall learning about stack smashing before

but do not remember anything about it.

In many cases, students cared only about the final result and

whether the code works. For example, one student was attempting

to find the issue with the code in Q4 and tried a long input. When

the student got the stack smashing error, they said: łIt worked, but it

[compiler] says stack smashing detected. Maybe this compiler is more

advanced than the one people normally use, but it actually worked.ž

The student was willing to proceed with their attempts to find out

how the code may break. However, the student decided to search

the error online after we asked about it and told them that they

may use online resources. After searching it online and reading,

the student learned about the issue, which helped them recognize

the error in the next question: łSo I would think that it could be one

of the same errors that we had beforež.

4.2 Utilization of Resources

We do not expect students to know all functions and compiler

messages; however, it is important to effectively utilize different

resources (e.g., library documentation) in order to write efficient

and secure code. Thus, students were allowed to use any resources.

Looking up Functions. Most students looked up at least one

function, regardless of whether they already knew it or not. Inter-

estingly, many students who checked documentation just skimmed

them and never attempted to read them carefully. These students

usually check the types of parameters passed to the function and

3

SIGCSE 2023, March 15ś18, 2023, Toronto, ON, Canada. Majed Almansoori, Jessica Lam, Elias Fang, Adalbert Gerald Soosai Raj, & Rahul Chatterjee

proceed with using it. Similarly, some students checked only exam-

ples provided and attempted using functions in a similar fashion as

these examples by simply changing the parameters, which might

work in some cases, but fail in other. Indeed, we observed some stu-

dents who failed to use some of the functions correctly because they

did not pay attention to the documentation. For example, one stu-

dent who stated that they know the difference between fgets and

gets, skimmed the documentation of both functions, then chose

them as correct answers for Q1, although gets is incorrect and does

not print the desired output. Similarly, when attempting to answer

Q2, a student found strcat in Stack Overflow after searching up

łc string concatenationž and tried to use the function immediately

without trying to learn how to use it correctly:

char* concatenated str = strcat(buf, argv[1]);

In another example, a student searched up strcat and checked

the examples in cplusplus.com. The student decided to use it and

then noticed strcpy in the same example, so they switched to it

without checking its documentation. Not only the student failed to

answer Q2, they thought that strcpy concatenates strings and did

not even pay attention to the example provided in the website.

When a student was attempting to explain the issue in the snip-

pet in Q3, they checked up the Linux manual page for strcpy

(man7.com). The manual has an emphasized warning in different

colors, stating łBeware of buffer overruns!ž. The page also has an

entire section about bugs which discusses the issue with a small des-

tination buffer. Although the student checked the manual multiple

times, they were just skimming and ignored most of the text. The

student then stated that they did not know why the values stored

in the second array changed and proceeded to the next question.

Understanding Resources. In addition to library documentation,

there are other resources that students encounter during coding

such as Stack Overflow. We noticed that students often skimmed

these resources and did not pay attention to the information pre-

sented in these results. Students mostly visited Stack Overflow

when trying to find answers to their questions. When checking

Stack Overflow answers, students usually search for a short and

straightforward answer. We observed that if the answer seemed

long or contained many lines of code, the student is more likely to

skip it and leave the page. Moreover, when browsing answers, stu-

dents would look for any function that might seem relevant and try

to use it without reading the actual answer and try to understand it.

Unfortunately, many of these students do not only skim search re-

sults but also copy answers and code without understanding them.

One student searched up łconcatenate c stringž and copied the

answer directly from Stack Overflow and modified it slightly. The

answer contained many lines of code and a long explanation, but

the student skimmed the top of the answer then copied a line of

code without trying to understand the context. The student’s final

answer was:

char buffer[1024];

strcat(strcat(buffer,buf), argv[1]);

Although the answer works, if the input is not large, the student

unnecessarily used strcat twice and created a new destination

buffer other than the one provided in the code snippet. Both lines

were copied from Stack Overflow. Prior work [13] has shown that

Stack Overflow answers often contain vulnerable code snippet, and

in this case, out of context copy-paste of code made it vulnerable.

4.3 Knowledge of Memory

Students are expected to learn and understand how memory works

after taking a computer systems course. However, only three stu-

dents showed substantial knowledge regarding memory (Figure 3).

Limitations of łUndefined Behavior.ž Many students limit their

understanding of memory-related issues by thinking of them as

łundefined/unexpected behaviorž. Prior work showed that lectures

and textbooks for computer systems usually refer to buffer overflow

and other memory-related issues as undefined behavior [4], and this

could be one reason that students use this term frequently. Students

who used this term showed limited understanding of buffer overflow

and memory in general. For example, when attempting Q3, some

students answered that we are copying 30 characters into a 15

character long buffer, which causes undefined behavior. A student

said: łThe [buffer] size needs to be large enough when using strcpy.

Otherwise, it results in undefined behavior.ž Many of these students

did not know the consequences of this undefined behavior.

A few students showed a better understanding of memory and

buffer overflow despite mentioning undefined behavior. One stu-

dent, while answering Q5, stated that the longest option would

cause unexpected behavior because the input would overwrite

values and mess up with other memory addresses. However, the

student stated that long inputs would not crash the program and

selected the wrong answer. Generally, some students do not know

whether undefined behaviors could break the program or not. In

an extreme case, a student believed that undefined behavior is not

necessarily bad and stated: łLike it [undefined behavior] is not al-

ways bad; it is just we don’t know what is going to happen.ž Referring

to memory-related errors as undefined behaviors limits the un-

derstanding of their consequences. We argue that students should

understand the actual effects of these errors on memory since they

might introduce security vulnerabilities in programs.

Fixing and Avoiding Buffer Overflow. Many students thought

that buffer overflowwould be completely avoided by just increasing

the size of the destination array. They usually suggested making

the buffer large enough (e.g., 1KB) to handle all possible inputs.

Nonetheless, students failed to realize that a malicious user can

input strings longer than the expected input length. A student

stated when answering Q4: łThere’s going to be some point where

there’s an upper bound to someone’s name, so you could probably

conclude that there’s a certain size that you can do and you’ll be fine.

You could just use some really big numbers or google whoever has the

longest name and make it [destination buffer] slightly bigger. I don’t

know about any other ways.ž

Many of the students who suggested increasing the buffer size

also suggested dynamically allocating the array instead of static

allocation. While this solution might seem plausible, it actually

does not solve buffer overflow in most cases. If the user input is

passed as a command-line argument, then it is possible to dynam-

ically allocate an array with the size of len(argv[1]), avoiding

an overflow in this case. However, if user input is passed to stdin,

then a buffer should be already allocated before reading the input,

meaning that the allocated buffer might be smaller.

4

Towards Finding the Missing Pieces to Teach Secure Programming Skills to Students SIGCSE 2023, March 15ś18, 2023, Toronto, ON, Canada.

A few students were categorized as having a multi-structural

or relational knowledge of memory because they successfully pre-

vented buffer overflow. These students paid attention to the buffer

size and stopped reading the user input before overflowing the

array. We asked these students whether increasing the buffer size

was sufficient for solving the issue or not; they stated that you could

never know the length of user input.

4.4 Awareness of Unsafe Functions

Most students showed no concern when using unsafe functions.

15 students had pre-structural knowledge about unsafe functions,

and 1 student had uni-structural knowledge. Only a few students

showed a better understanding of these functions: 2 students pos-

sessed multi-structural knowledge and 3 had relational knowledge.

Unfamiliarity with Unsafe Functions. When choosing a func-

tion that could accomplish a certain task, such as string concate-

nation or reading a standard input, students often chose the first

function that came up in their Google search, as discussed earlier.

This, combined with limited knowledge of unsafe functions, caused

students to use unsafe functions in their code.

Unfortunately, students have shown very limited, or in many

cases, no knowledge about unsafe functions.We hoped that students

would know about gets at least and avoid using it, since prior

work has shown that it is warned against in some textbooks and

lectures [2, 4]. However, many students used gets. For example, a

student suggested in their answer replacing scanf with gets to fix

the issue in Q4: łUsing a different buffer-reading function (e.g., gets)

would fix it.ž ś (Written answer for Q4). The student did not just

suggest using gets, but also did not figure out that scanf could be

overflown in the context of Q4, which is concerning. In general,

students did not just use gets, but also used strcat, strcpy, and

scanf, suggesting that most students have no prior knowledge

about unsafe functions and their flaws.

What is more concerning is that some students also used safer al-

ternatives in their code incorrectly and without checking for buffer

bounds. For example, some students used fgets instead of gets.

However, their choice was not based on security considerations.

Rather, they found the function online and decided to use it. In one

instance, a student wrote the following code for Q1:

if (NULL == fgets (name, 1024, stdin)) { return 1; }

The student imitated the example provided in the documentation

of fgets but failed to notice that the documentation limited the

number of characters read to 60, which is the size of the buffer.

Instead, the student changed 60 to 1024 without any considerations

of the actual buffer size which was 12. Such a mistake when using

safer alternatives would make them as bad as unsafe functions.

Ignoring Flaws of Function. While we encourage teaching about

unsafe functions, learning about them is not enough to avoid writ-

ing insecure code. Surprisingly, some students still used some unsafe

functions despite knowing about them. For example, one student,

who has taken a security course, used gets(name) for Q1 at first.

Then the student remembered that the survey was about secure

coding habits, so they changed their answer to fgets(name, 12,

stdin). When using fgets, the student paid attention to the buffer

size and avoided buffer overflow. In Q2, the student, however, used

strcpy śwhich is vulnerableś along with strncat as follows:

strcpy(buf, strncat(buf, argv[1], 14));

Although this code snippet is safe in the given context, it uses

strcpy in an unsafe way. The student paid attention only to the

security implications of strcat versus strncat, and not to strcpy.

While some unsafe functions can be used safely by ensuring that the

source string is constant, we believe that avoiding these functions

is a better practice for early stage programmers.

Another student who has also taken a security course showed

a similar behavior: they used gets(name) for Q1. Then, while an-

swering Q2, the student remembered about buffer overflow and

said: łI forgot to check for buffer overflow [in Q1]. I realized I didn’t

check the length of the input.ž The student did not mention explicitly

that gets is unsafe; however, they stated that they would use getc

instead and read 10 characters only. In both cases, despite having a

security background about unsafe functions and buffer overflow,

both students were not coding with a security mindset.

4.5 Understanding of Security Topics

Many topics in the computer systems course, such as the ones

related to memory, are closely related to security. As shown in

Figure 3, most students have either pre-structural or uni-structural

knowledge of security topics (a total of 12 and 4, respectively).

łI can justwrite code from scratch.ž Writing secure code requires

following best practices. One of the best coding practices is to use

safe and standard library functions. We however found students

sometime try to write their own code instead of using standard

library functions, and in the process inadvertantly introduce bugs

and vulnerabilities (that could have been avoided by using the

library functions). For example, in Q2, some students implemented

string concatenation from scratch instead of using library functions.

While the code might work correctly, the possibility of writing

buggy code is higher than when using existing library functions.

One example code from a student:

char buf[28] = "Hello ";

int offset = 6;

for (int i = 0; i < 22; i++) {

buf[i + offset] = argv[1][i];

if (i == sizeof(argv[1])) { break; }

}

The student tested this code snippet to ensure it works; however,

the code breaks out of the loop whenever i == sizeof(argv[1]),

and since sizeof(argv[1]) is always 4, the code will break out of

the loop before filling up the buffer.

In another example, a student also attempted to implement a

string concatenation algorithm from scratch. However, in this case,

the student made a small mistake:

char buf[28] = "Hello ";

int len = strlen(argv[1]);

for (int i = 0; i < len && i < 23; i++) {

buf[i + 6] = argv[1][i];

}

5

SIGCSE 2023, March 15ś18, 2023, Toronto, ON, Canada. Majed Almansoori, Jessica Lam, Elias Fang, Adalbert Gerald Soosai Raj, & Rahul Chatterjee

When investigating the code closely, one can notice that the loop

continues until i < 23 or in other words, i = 22. Once the loop

reaches the end, the program will be executing the following line:
buf[28] = argv[1][22];

Thus, this will allow writing one byte to the array out of bound,

which can lead to buffer overflow vulnerabilities [1].

User Inputs Might be Long. When handling buffers, students

mostly suggested increasing the buffer size or allocating the buffer

dynamically. However, some students exhibited behavior that should

be avoided at all costs. In one example, a student proposed asking

the user to input a string shorter than the size of the buffer: łThis

[buffer overflow] can be fixed by either asking [the user] for shorter

input or reallocating space in name [destination buffer] to support

the length of the input.ž The student, in this example, assumed that

the user is honest. Mistrusting the user is a desirable habit that we

want to instill in students. In fact, we observed this behavior in a

few students. One student suggested using fgets instead of scanf

for Q4 to avoid buffer overflow. We asked the student whether

increasing the size of the buffer would solve the issue; the student

replied: łWe never know since the user might be a mischievous user.ž

The student also added that long inputs can be used for hacking.

5 DISCUSSION

We show there is a correlation between students’ knowledge of

the five essential skills and their secure C coding practices. To

inculcate a security mindset, we may need to redesign some of our

beginner-level CS courses.

Need to Focus on Improving Overall Coding Practices and

Skills of Students. Prior work mainly focused on evaluating and

improving students’ secure programming knowledge and skills.

However, as observed in Section 4, the real problem lies in students’

lack of more fundamental knowledge and skills, such as paying

attention to compiler and OS messages and carefully reading doc-

umentation. Students lacking knowledge about the five essential

coding practices are prone to write insecure code.

Therefore, introductory CS courses (CS1 and CS2) should focus

on instilling students to pay attention to compiler and OS mes-

sages and learn to utilize online and offline resources. Having a

relational level of understanding of these two themes would help

students improve their other required skills. Moreover, utilizing

resources and paying attention to messages are among the most

critical skills students would use after graduating and joining the

industry. Moreover, courses that teach C or C++ languages should

spend more time discussing unsafe functions and their security

alternatives. Finally, computer systems courses should emphasize

basic security mistakes and memory-related issues. We cannot ex-

pect students to acquire excellent secure programming skills and

knowledge without understanding the basic details of process mem-

ory layout; students must grasp topics related to memory before

learning about security. Ideally, students should be formally intro-

duced to computer security through a dedicated course; however,

given the lack of such required courses [2], students should be

exposed to safe and unsafe functions in computer systems courses.

Ecological validity. We interviewed only 21 students across two

R1 universities in the US. Although this is small, we believe that our

results can be generalized to students (and developers) in real-life

scenarios. First, we prepared an interviewing environment that

would reduce and possibly eliminate any stress caused by actual

interviews or exams. Students were allowed to spend as much as 90

minutes solving the survey questionnaire; we believe this provided

students withmore time than actually needed to finish the interview.

Second, students could access all necessary resources to solve the

questions on hand, unlike typical coding exams at universities.

Third, we did not explicitly ask students to use compilers or online

resources to evaluate their knowledge of each of the five themes.

Finally, we interviewed students from two different universities,

yet, we observed similar behaviors at both locations, suggesting

that students at other universities might have similar coding skills.

Limitations. Our survey questionnaire was originally designed to

evaluate the understanding of buffer overflow, which made it easy

for some students to predict some of the questions. Redesigning the

survey to avoid predicting questions might help find additional ob-

servations. Also, it is possible that students did not take the survey

seriously because it was not graded nor was part of coursework.

Finally, while we tried to reduce sources of stress as much as possi-

ble, we cannot say for sure that students were not stressed at all,

especially since interviews were conducted during the beginning

of the pandemic. Conducting the same study in a lab setting might

yield different observations or results.

Future work. Our analysis shows that students lack some essen-

tial skills and knowledge necessary for writing secure C code. In

order to teach students secure coding practices, it is important to

identify and understand all the pieces that contribute to secure

programming. Therefore, research should focus on finding the root

cause for why students write insecure codes before trying to solve

the issue. Moreover, our extended SOLO taxonomy [3] can be used

to design surveys and further understand how each of the five

themes contributes to secure programming skills.

6 CONCLUSION

We conducted coding interviews with 21 students from two R1

universities in the US to evaluate students’ secure programming

practices. Our prior work [18] showed that students lack skills and

knowledge in five key themes contributing to security skills. To bet-

ter understand how each theme contributes to secure coding skills,

we designed a modified SOLO taxonomy for each of the five themes

and used it to evaluate students. Our assessment showed that most

students have a rudimentary knowledge and understanding of the

essential skills (themes) needed for secure programming. We also

found that students who had pre-structural or uni-structural knowl-

edge of these themes generally failed to write secure code and avoid

vulnerabilities, implying that there is a strong correlation between

secure programming and these essential skills.

ACKNOWLEDGMENTS

We thank all the students who participated in our study. We also

thank the anonymous reviewers for their feedback on our work.

This work was supported in part by NSF Award 2044473. Any

opinions, findings, and conclusions, or recommendations expressed

in this material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation.

6

Towards Finding the Missing Pieces to Teach Secure Programming Skills to Students SIGCSE 2023, March 15ś18, 2023, Toronto, ON, Canada.

REFERENCES
[1] CWE-193: Off-by-one error. https://cwe.mitre.org/data/definitions/193.html.
[2] Majed Almansoori, Jessica Lam, Elias Fang, KieranMulligan, Adalbert Gerald Soo-

sai Raj, and Rahul Chatterjee. How Secure are our Computer Systems Courses?
In Proceedings of the 2020 ACM Conference on International Computing Education
Research, pages 271ś281, 2020.

[3] Majed Almansoori, Jessica Lam, Elias Fang, Adalbert Gerald Soosai Raj, and
Rahul Chatterjee. Supplementary Materials for Towards Finding the Missing
Pieces to Teach Secure Programming Skills to Students (Published in SIGCSE TS
2023). https://www.majedalmansoori.com/papers/SIGCSE23_Supplementary_
Materials.pdf.

[4] Majed Almansoori, Jessica Lam, Elias Fang, Adalbert Gerald Soosai Raj, and Rahul
Chatterjee. Textbook Underflow: Insufficient Security Discussions in Textbooks
Used for Computer Systems Courses. In Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education, pages 1212ś1218, 2021.

[5] John B Biggs and Kevin F Collis. Evaluating the quality of learning: The SOLO
taxonomy (Structure of the Observed Learning Outcome). Academic Press, 1982.

[6] Matt Bishop. A Clinic for łSecurež Programming. IEEE Security and Privacy,
8(2):54ś56, 2010.

[7] Matt Bishop, Melissa Dark, Lynn Futcher, Johan Van Niekerk, Ida Ngambeki,
Somdutta Bose, and Minghua Zhu. Learning Principles and The Secure Program-
ming Clinic. In IFIP World Conference on Information Security Education, pages
16ś29. Springer, 2019.

[8] Matt Bishop and BJ Orvis. A Clinic to Teach Good Programming Practices. In
Proceedings of the 10th Colloquium for Information Systems Security Education,
pages 168ś1174, 2006.

[9] Benjamin S Bloom et al. Taxonomy of Educational Objectives. Vol. 1: Cognitive
Domain. New York: McKay, 20(24):1, 1956.

[10] GillianM Boulton-Lewis. The SOLO Taxonomy as aMeans of Shaping and Assess-
ing Learning in Higher Education. Higher Education Research and Development,
14(2):143ś154, 1995.

[11] Claus Brabrand and Bettina Dahl. Using the SOLO Taxonomy to Analyze Com-
petence Progression of University Science Curricula. Higher Education, 58(4):531ś
549, 2009.

[12] Charles C Chan, MS Tsui, Mandy YC Chan, and Joe H Hong. Applying the
Structure of The Observed Learning Outcomes (SOLO) Taxonomy on Student’s
Learning Outcomes: An Empirical Study. Assessment & Evaluation in Higher
Education, 27(6):511ś527, 2002.

[13] Felix Fischer, Konstantin Bottinger, Huang Xiao, Christian Stranksy, Yasemin
Acar, Michael Backes, and Sascha Fahl. Stack Overflow Considered Harmful? The
Impact of Copy&Paste on Android Application Security. In 2017 IEEE Symposium
on Security and Privacy, pages 121ś136, 2017.

[14] Dave Gruber. Modern Application Development Security, 2020.

[15] Sara Hooshangi, Richard Weiss, and Justin Cappos. Can the Security Mind-
set Make Students Better Testers? In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education, pages 404ś409, 2015.

[16] Cynthia E Irvine and Shiu-Kai Chin. Integrating Security into the Curriculum.
Computer, 31(12):25ś30, 1998.

[17] Siddharth Kaza and Blair Taylor. Introducing Secure Coding in Undergraduate
(CS0, CS1, and CS2) and High School (AP Computer Science A) Programming
Courses. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education, pages 1050ś1050, 2018.

[18] Jessica Lam, Elias Fang, Majed Almansoori, Rahul Chatterjee, and Adalbert Gerald
Soosai Raj. Identifying Gaps in the Secure Programming Knowledge and Skills
of Students. In Proceedings of the 53rd ACM Technical Symposium on Computer
Science Education V. 1, pages 703ś709, 2022.

[19] Kara Nance. Teach Them When They Aren’t Looking: Introducing Security in
CS1. IEEE Security and Privacy, 7(5):53ś55, 2009.

[20] Blain Patterson. Analyzing Student Understanding of Cryptography Using the
SOLO Taxonomy. Cryptologia, pages 1ś11, 2020.

[21] Ambareen Siraj, Nigamanth Sridhar, John A Drew Hamilton Jr, Latifur Khan,
Siddharth Kaza, Maanak Gupta, and Sudip Mittal. Is there a Security Mindset
and Can it be Taught? In Proceedings of the Eleventh ACM Conference on Data
and Application Security and Privacy, pages 335ś336, 2021.

[22] Ludwig Slusky and Parviz Partow-Navid. Students Information Security Practices
and Awareness. Journal of Information Privacy and Security, 8(4):3ś26, 2012.

[23] C Symantec. Internet security threat report: Volume 24. Symantee Enterprise
Security, 2019.

[24] Madiha Tabassum, StaceyWatson, Bill Chu, and Heather Richter Lipford. Evaluat-
ing Two Methods for Integrating Secure Programming Education. In Proceedings
of the 49th ACM Technical Symposium on Computer Science Education, pages
390ś395, 2018.

[25] Blair Taylor and Siddharth Kaza. Security Injections@Towson: Integrating Secure
Coding into Introductory Computer Science Courses. ACM Transactions on
Computing Education (TOCE), 16(4):1ś20, 2016.

[26] Cynthia Taylor and Saheel Sakharkar. ’); DROP TABLE textbooks;ś An Argument
for SQL Injection Coverage in Database Textbooks. In Proceedings of the 50th
ACM Technical Symposium on Computer Science Education, pages 191ś197, 2019.

[27] Johan Van Niekerk and Rossouw Von Solms. Using Bloom’s Taxonomy for
Information Security Education. In Information Assurance and Security Education
and Training, pages 280ś287. Springer, 2013.

[28] Michael Whitney, Heather Richter Lipford, Bill Chu, and Jun Zhu. Embedding Se-
cure Coding Instruction into the IDE: A Field Study in an Advanced CS Course. In
Proceedings of the 46th ACM Technical Symposium on Computer Science Education,
pages 60ś65, 2015.

[29] Jun Zhu, Heather Richter Lipford, and Bill Chu. Interactive Support for Secure
Programming Education. In Proceeding of the 44th ACM technical symposium on
Computer science education, pages 687ś692, 2013.

7

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	4 Results
	4.1 Understanding Compiler and OS Messages
	4.2 Utilization of Resources
	4.3 Knowledge of Memory
	4.4 Awareness of Unsafe Functions
	4.5 Understanding of Security Topics

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

