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the-art social media dependency parser, evaluat-
ing social media English performance, as well as
AAE dialect disparity, among eleven alternative
pretrained models (§3). To illustrate dependency
parsing’s utility for social media analysis, we im-
plement a rule-based semantic attribute extractor to
analyze authors’ views toward an entity (Figure 1;
§4), and evaluate it in a case study of political nar-
ratives surrounding the U.S. official Dr. Anthony
Fauci during the COVID-19 pandemic—we com-
pare extractions against the authors’ social variable
of geolocated election results (§5). We find our
TweetIE system has better yield and higher preci-
sion for this task, compared to using previous open
information extraction systems.

2 Related Work: Social Semantic

Extraction

Natural language processing has been used to ex-
tract social insight from corpora in humanistic and
social scientific study. Archak et al. (2007); Ghose
et al. (2007) analyze the economic impact of de-
pendency parse-extracted adjective modification
from product reviews and seller feedback, asso-
ciating perceived attributes with monetary prices.
Narrative analysis of fictional characters has used
dependency parses to extract attributes associated
with character archetypes (Bamman et al., 2013);
our semantic relation extractor follows and extends
their approach. These dependency-based systems
can be viewed as expanding on widely used collo-
cation methods that tabulate words appearing near
an entity (Baker, 2006); for example, Blinder and
Allen (2016) use words directly before an entity
(a rough adjective modifier extractor) to analyze
attributes ascribed to immigrants in political dis-
course.

In the NLP context, outside of computational so-
cial science, open information extraction (OIE) is
a related semantic approach that extracts relational
tuples without a predefined schema, often applied
to large heterogenous corpora, such as web data
(Banko et al., 2007), typically using off-the-shelf
NLP technologies such as part-of-speech (POS)
tagging, named entity recognition (NER), semantic
role labelling, and dependency parsing (Mausam,
2016). Our TweetIE information extractor uses
a rule system working directly from dependency
parses, following the approach of argument extrac-
tion and normalization systems PropS (Stanovsky
et al., 2016) and PredPatt (White et al., 2016); the

latter performs well on OIE benchmarks (Zhang
et al., 2017). We share PredPatt’s motivation to rely
on Univerisal Dependencies parses, which have
coverage and availability across many language va-
rieties, including social media English here. This
contrasts favorably to the domain-dependent limi-
tations of machine-learned semantic role labeling
(Carreras and Màrquez, 2005) and semantic depen-
dency parsing (Oepen et al., 2014).

3 Dependency Parsing

3.1 Approach

Dependency parsing is typically performed by
either transition-based (Covington, 2001; Nivre,
2003) or graph-based (Eisner, 1996) models, and
can utilize representations including word embed-
dings, recurrent neural networks (Kiperwasser and
Goldberg, 2016), and/or transformers (Grünewald
et al., 2021). For experiments we use SuPar,2 a
Python library for syntactic and semantic pars-
ing, to implement a graph-based transformer de-
pendency parser using a deep biaffine attention
(Dozat and Manning, 2017) layer, fine tuned from
a HuggingFace-compatible pretrained transformer
language model (Wolf et al., 2020). Due to its com-
parative performance (§3.3), we select BERTweet-
base for the pretrained model for our final parser,
fine-tuned3 on Tweebank v2. Our experiments
use the Tweebank v2 splits from its supplied
“converted” CoNLL-compatible variant. We use
“Twitter-Stanza (TB2)” for tokenization, since it
achieves state-of-the-art results on Tweebank v2
tokenization (98.64 F1) (Jiang et al., 2022).4

Overall performance results are averaged over
three seeds, shown in the last row of Table 1. Our
results outperform the BiLSTM baselines featured
in (Liu et al., 2018) by 3.4 unlabelled attachment
score (UAS) and 4.0 labelled attachment score
(LAS), as well as the previous state of the art,
spaCy-XLM-RoBERTa, a transition-based parser
using the multilingual transformer XLM-R (Con-
neau et al., 2020).

2https://github.com/yzhangcs/parser
3Hyperparameters tested (selections underlined):

epochs=(50, 75, 100), warmup rate=(0.1, 0.15, 0.2), lr =
(1e-5, 5e-6, 1e-4), projective=(false, true)

4SuPar provides an option to use either projective (Eisner,
2000; Zhang et al., 2020), or non-projective (matrix tree: Koo
et al., 2007; Ma and Hovy, 2017) parsing; we use projective
parsing, finding it attains slightly better performance (+0.3
UAS, +0.2 LAS from preliminary experiments), presumably
since non-projectivity is rare in English (Peng and Zeldes,
2018).
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This software platform easily allows us to com-
pare training treebanks and pretrained language
models, which we next explore for their impact on
overall social media performance as well as dialect
disparity.

System UAS LAS

TweeboParser
81.4 76.9

(Kong et al., 2014)
Deep Biaffine

81.8 77.7
(Dozat and Manning, 2017)
Ensemble Model

83.4 79.4
(Liu et al., 2018)
spaCy-XLM-RoBERTa

83.8 79.4
(Jiang et al., 2022)
SuPar-BERTweet

87.2 83.4
(this work)

Table 1: Performance (in F1) of systems on Tweebank
v2 test set. First four rows are from Liu et al. (2018) and
Jiang et al. (2022).

3.2 Impact of Training Treebank

In order to measure the impact of treebanks on per-
formance in this domain, we fine-tune RoBERTa-
base (Liu et al., 2020) on three different treebanks,
and measure its respective performance on Twee-
bank v2’s test set using the CoNLL evaluation
script. In order to ensure compatibility with this
script and the ability to evaluate cross-treebanks,
we drop the corpora-specific dependency subtypes.

We select the Georgetown University Multilayer
Corpus (GUM) (Zeldes, 2017) and English Web
Treebank (EWT) (Silveira et al., 2014). These in-
clude user-generated content and are 2.5 and 4.5
times larger than Tweebank v2 respectively. De-
spite their increased size, both see significant per-
formance drops when evaluated on Tweebank v2
(Table 2).

In-Domain Tweebank v2
Fine-tuning Corpus UAS LAS UAS LAS

GUM 92.9 90.9 66.6 57.1
EWT 90.7 89.6 70.2 61.5
Tweebank v2 85.7 81.4 85.7 81.4

Table 2: Performance (in F1) of SuPar-RoBERTa when
trained on a given corpus, and its checkpoint with best
dev split performance evaluated against the associated
(in-domain) test split, as well as Tweebank v2.

3.3 Impact of Pretrained Model Selection

In addition to fine-tuning corpora, we observe a
noticeable performance impact with respect to the
models used, suggesting that pretraining has a role
as well.

We evaluate the performance of eleven trans-
former models on Tweebank v2. BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2020), ELEC-
TRA (Clark et al., 2020), XLNet (Yang et al., 2019),
and DeBERTa v3 (He et al., 2021) are general
purpose English transformers. XLM-R (Conneau
et al., 2020) adapts RoBERTa to multilingual cor-
pora, and InfoXLM (Chi et al., 2021) improves
upon XLM-R with mutual information-improved
loss function for cross-lingual context. TimeLMs
(Loureiro et al., 2022) fine-tunes RoBERTa, train-
ing continually with larger temporal range, yield
checkpoints for 2019 and 2019-2021 respectively.
BERTweet is a RoBERTa model trained from
scratch on Twitter. XLM-T (Barbieri et al., 2022)
fine-tunes XLM-R on multilingual Twitter.

Model UAS LAS

General Purpose Models

BERT-base-uncased 85.0 80.8
RoBERTa-base 85.7 81.4
ELECTRA-base 85.6 81.6
XLNet-base-cased 85.8 81.7
DeBERTa-v3-base 87.1 83.2

Multilingual Models

XLM-R-base 86.2 82.4
InfoXLM-base 86.5 82.7

Social Media Models

TimeLMs-2019 85.7 81.6
TimeLMs-2021 86.3 82.3
BERTweet-base 87.2 83.4

Multilingual Social Media Models

XLM-T-base 86.5 82.0

Table 3: Performance (in F1) of SuPar dependency
parsers using various pretrained transformers, fine-tuned
and evaluated on the Tweebank v2 train and test splits,
with the epoch of the best dev split performance being
selected.

Table 3 indicates that stronger performance can
be achieved through either better representations
in modeling or through more social media pretrain-
ing, as seen respectively with DeBERTa v3 and
BERTweet, one having the highest GLUE score
(Wang et al., 2018; He et al., 2021), and the other
trained entirely on Twitter.

3.4 Performance on Non-Majority English

One key challenge of working with social media
text is the lack of adherence to any standardized
dialect of a language, and the inclusion of signif-
icant minority dialects, such as high prevalence
of African American English (AAE) (Jones, 2015;
Blodgett et al., 2016). AAE dependency parsing in-
cludes significant challenges from recognizing null
copulas to correctly understanding phonologically
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Tweebank v2 TwitterAAE Deps
Model MAE AAE R.E. MAE AAE R.E.

General Purpose Models

BERT 84.03 78.93 1.32 74.24 67.31 1.27
RoBERTa 84.40 78.61 1.37 75.46 67.50 1.32
ELECTRA 84.35 80.73 1.23 74.18 67.31 1.27
XLNet 84.41 79.85 1.29 75.72 69.75 1.25
DeBERTa-v3 85.63 82.44 1.22 77.08 71.90 1.23

Multilingual Models

XLM-R 85.14 81.56 1.24 74.07 68.06 1.23
InfoXLM 85.17 82.11 1.21 74.44 68.19 1.24

Social Media Models

TLMs19 84.22 81.33 1.18 76.23 72.22 1.17
TLMs21 84.87 82.30 1.17 76.91 72.38 1.20
BERTweet 85.42 84.38 1.07 78.10 76.55 1.07

Multilingual Social Media Models

XLM-T 84.86 82.62 1.15 76.14 72.94 1.13

Table 4: MAE/AAE Performance (in LAS F1) and Rel-
ative Error of the models from Table 3, trained on Twee-
bank v2, and evaluated on Tweebank v2 test split and
TwitterAAE deps.

driven alternative spellings (Blodgett et al., 2018).
We evaluate the ability of the previously listed

dependency parsing models by using the relative er-
ror of their performance on Mainstream American
English (MAE) and AAE test sets,

LASRelErr =
1− LASAAE

1− LASMAE
(1)

which attains 1 if accuracy is equal across dialects.
We have found this to be always greater than 1.0 in
our experiments, indicating performance is worse
for the minority dialect, AAE.

In order to measure disparity on the fine-tuning
source, we measure the relative error of both the
TwitterAAE dependencies and use the Twitter-
AAE demographic dialect inference model to par-
tition the Tweebank v2 test set into splits based
on whether there was higher proportion MAE or
AAE, yielding 951 and 249 tweets respectively. We
also measure this on the TwitterAAE dependencies,
which provides 250 tweets of both MAE and AAE
respectively.

Table 4 and Figure 2 display the disparities be-
tween MAE and AAE performance on Tweebank
v2 and TwitterAAE dependencies. This form of de-
mographic evaluation offers insight on a key ques-
tion that is not visible in the UAS / LAS scores
alone: whether the performance gains come from
overfitting on the majority dialect or increased per-
formance across dialects.

We observe the social media models to have less
LAS relative error than the general purpose models,
with BERTweet, the model exposed to the most so-
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Figure 2: Graph of the performance of the models pre-
sented in Table 3 in LAS and macro-average of the
relative error on the MAE/AAE split Tweebank v2 test
set and TwitterAAE dependencies.

cial media content, having less relative error than
any model. As seen in Table 4, its state-of-the-art
performance in Tweebank v2 does not suggest that
it has the best performance with the syntax of stan-
dard English; it actually underperforms DeBERTa-
v3, and only outperforms in total due to the 2 LAS
difference on AAE. The relative error suggests that
BERTweet’s performance only adds on average 7%
more error to a AAE sample compared to standard
English, while general purpose models like De-
BERTa v3 and RoBERTa add around 22.5% and
34.5% more, despite being fine-tuned on the same
corpora.

The implications suggest that social media trans-
formers capture the syntax not only better than
their general purpose counterparts, regardless of
architecture improvements, but also do it in a more
equitable manner. This is important for applica-
tions sensitive to demographic effects.

4 TweetIE: Belief Extraction from

Dependencies

A well-performing social media dependency parser,
along with pre-existing POS and NER taggers, en-
able novel applications for computational social
science. We apply these technologies for a belief
extraction system, which decodes these syntactic
structures into simple semantic representations and
presents information applicable for computational
social scientific purposes, specifically the delin-
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eation of beliefs to communities represented by
social variables. We call this system TweetIE.

4.1 Design Principles

In order to preserve the benefits of the domain-
specific dependency parsing system while main-
taining a simple overall system, we seek to:

• Infer relations using dependency parses,
NER tags, and POS tags, not through lexi-
cons that might only cover standard English.

• Focus on relations regarding a named entity
and its attributes.

• Minimize the number of arguments for rela-
tions to allow for accumulation and compari-
son across social variables.

4.2 Target Entities and Pronoun Coreference

We focus our extraction based on the attributes of
a single named-entity in a given tweet, through
either specifying a name, or using an @ mention
of that user’s account. In the case of names of
persons or organizations, we take into account the
specified token, and expand it using the flat rela-
tion and the span of any BIO NER tags. If the
root of this span is a conj dependency or if any
relevant predicates have conj dependencies, we dis-
tribute dependency relations over them, as done in
the CCprocessed/Enhanced++ variants of Stanford
(De Marneffe and Manning, 2008) and Universal
(Schuster and Manning, 2016) Dependencies.

In order to capture common forms of anaphora
such as possessive pronoun usage, we implement
a simple precision-oriented coreference system for
binary gendered target entities. The user specifies
the target’s gender, and the system seeks any per-
sonal pronouns with the target as the antecedent. It
first determines whether the target’s mention(s) are
in second person (denoted by the vocative relation)
or third person (otherwise). It attributes pronouns
of the determined person and specified gender to
the target if there are no other entities (denoted by
“PER” NER tags) mentioned in the text before it
that are potentially applicable (as in they agree with
regards to grammatical person).

To evaluate this system, we annotated a random
sample of 100 tweets for whether their POS-tagged
pronouns refer to the target entity of our later case
study, Dr. Anthony Fauci (see Section 5). Our
system achieved 33/39 (84.6%) precision and 33/52
(63.5%) recall.

4.3 Relations

We limit our focus to the following semantic rela-
tions:

4.3.1 IS_A

The IS_A relation covers any nominal or adjectival
properties stated to directly pertain to the target
entity, represented using the following patterns:5

1. target
nsubj
←→ propertynom

2. propertyadj
nsubj
−−−→ target

3. target
appos
←→ propertynom

4. target
compound
−−−−−−→ propertynom

5. target
amod
−−−→ propertyadj

6. target
nsubj
←→ propertynom

amod
−−−→ propertyadj

7. target
appos
←→ propertynom

amod
−−−→ propertyadj

Patterns 1 and 2 detect subject-complement linking
through copular clauses, even when explicit copu-
las are omitted. Pattern 3 detects appositions, and
Pattern 4 detects titles that do not make up fully
formed appositions (ex: “President Obama”).

Pattern 5 detects adjective modifiers. Patterns
6 and 7 detect adjective modifiers of previously
captured nominal properties, hoping to capture in-
tersective adjectives (ex: “Trump is a famous per-
son”).

4.3.2 HAS_A

The HAS_A relation pertains to any object pos-
sessed the target entity, implemented through pos-
sessive modification.

1. objectnom
nmod:poss
−−−−−−→ target

4.3.3 AS_AGENT, AS_PATIENT

The AS_AGENT and AS_PATIENT relations
pertain to actions performed by the target entity
and performed upon the target entity respectively.

1. active verb
nsubj
−−−→ targetagent

2. active verb
obj
−−→ targetpatient

3. passive verb
nsubj:pass
−−−−−−→ targetpatient

4. passive verb
obl
−−→ targetagent

5. active verb
obl
−−→ targetpatient

case
−−→ prep.

5H→D represents a relation from a head H to its depen-
dency D, while X←→Y indicates a relation in either direction.
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Patterns 1 and 2 account for active tense verbs,
while 3 and 4 account for passive tense verbs,
which are distinguished from active tense by the
presence of a nsubj:pass dependency.

Pattern 5 consists of when the target acts as an
adjunct of the verb using a preposition, and is lex-
icalized through appending the preposition to the
verb (ex: “I stand with Obama”, “He listens to Bill
Gates”).

4.3.4 AS_CONJUNCT

The AS_CONJUNCT relations pertains to any
nominal conjoined with the target entity. If this
nominal consists of a named-entity, it is expanded
in the same manner as the target entity (through
flat dependencies and BIO NER spans).

1. target
conj
←→ conjunct

Although this has no explicit semantic meaning, it
suggests that the two hold a latent semantic relation-
ship, such as co-hypernymy (Snow et al., 2004).

4.4 Negation

A theoretical concern for this mode of semantic ex-
traction deals with the presence of negative polarity
adverbs. Intuitively when comparing these extrac-
tions across social variables, this form of negation
should not be accumulated in the same case as the
original clause.

However, dependency relations describing nega-
tive polarity do not exist in the current version of
Universal Dependencies, with the neg relation be-
ing removed in Universal Dependencies v2 (Nivre
et al., 2020). In order to account for this, we check
previous version of treebanks for user-generated
content with this relation: specifically EWT v1.4.
In this treebank, the neg relation only covers the
following tokens: [‘no’, ‘not’, ‘never’, ‘nt’, ‘n’t’].

We utilize this list by adding a negative polarity
to any relation extracted that is modified by any of
those tokens. This is implemented by prepending
the extraction’s argument with ‘not_’, an approach
used in sentiment analysis (Das and Chen, 2007).
A word list in this vein has clear limitations - it
does not cover social media variations in spelling,
yet it allows us to capture this quality on its most
common variants.

4.5 Evaluation

TweetIE can either be evaluated through the accu-
racy of each component, or qualitatively through
how well its outputs model the social variables. On

a component level, its accuracy depends foremost
upon the performance of its dependency parsing,
NER, and POS models.

The performance of the dependency parsing has
been described in Section 3. For POS and NER
tagging use Jiang et al. (2022)’s state-of-the-art-
models: “HuggingFace-BERTweet (TB2+EWT)”
for POS (which achieved 95.38 UPOS accuracy
on Tweebank v2) and “HuggingFace-BERTweet
(TB2+W17)” for NER (which achieved 74.35 F1
on Tweebank-NER).

Finally, we examine externally validity by inves-
tigating the model’s ability to capture social context
in the following case study.

5 Case Study: COVID-19 Polarization

A key source of variation in opinion is with respect
to political ideology, and social media is rife with
arguments about political figures specifically. In
this section, we show TweetIE’s ability to capture
the ideological attributes of said figures, specifi-
cally the attributes social media users ascribe to
Dr. Anthony Fauci, director of the National Insti-
tute of Allergy and Infectious Diseases, who is a
key figure in United States COVID-19 discourse.
While TweetIE could be used to study a network of
entities and their relations, we find focusing on a
single entity is a useful and insightful first step.

5.1 Corpora Design and Configuration

We collect a corpus of tweets from Twitter Deca-
hose with the token ‘fauci’ spanning from March
1, 2020 to December 31, 2021. We filter to mes-
sages with geographic location information: either
from a tweet’s official API geotag, or from its au-
thor having a self-described user.location text field
consisting of a city and state in postal code nota-
tion (e.g. “Minneapolis, MN”). We look up these
fields using the US Census Bureau’s Place bound-
ary shapefiles,6 and as a proxy for political valence,
each valid place is paired with its county’s Biden-
Trump margin, the difference of Joe Biden’s ver-
sus Donald Trump’s percentage votes won in the
2020 U.S. presidential election (MIT Election Data
& Science Lab, 2018).7 Additionally, we discard
any tweets from verified users or users with over
10,000 followers in order to capture conversational

6https://www.census.gov/geographies/mapping-
files/time-series/geo/tiger-line-file.2020.html

7For Alaska we use the state-level result, since it does not
provide county-level results.



44

Relation Trump-Leaning (t < −2) Biden-Leaning (t > 2)

IS_A(fauci, propertynom) murderer**, joke**, hack*, fraud*, rat*, flip*, id-
iot, flop, state, prison, fake, jail

nih**, hero, md, director,
president

IS_A(fauci, propertyadj) fake*, little*, deep, liberal, wrong, corrupt beloved, optimistic, best

AS_AGENT(fauci, verb) sweat**, force**, need*, help*, read*, lie*, know*,
let*, not_fund*, not_understand*, flip, predict,
write, make, stick, hold, prove, want, not_say,
admit, not_get, demand, issue, laugh, state, put,
spread, pull

speak**, join*, warn*, throw,
not_recommend, offer, pro-
vide, respond, consider, de-
bunk, fail, reveal

AS_PATIENT(fauci, verb) not_trust***, screw, prosecute, grill, keep to, ar-
rest, expose, lock, do to, remove, accord to, look
like, mean, blast, read

know*, feature, discredit,
threaten, worship, join, insult

HAS_A(fauci, object) friend*, nih*, family, mind, hand, ex-employee,
involvement, fraud, mask

guidance, time

AS_CONJUNCT(fauci, conj.) gates***, obama**, bill gates*, biden*, brix, cdc,
rest, covid, nih, company, government

director, experts

Table 5: TweetIE extractions with at least 20 unique users with a county-level political valence t-statistic outside of
[-2, 2]. Results are reported in decreasing absolute value t-statistic. * |t| > 3, ** |t| > 4, *** |t| > 5.

dialogue rather than statements by reporters and
officials.

5.2 Results and Qualitative Evaluation

We obtain 75,325 tweets, which have an electoral
margin average of 22.8 and standard deviation of
33.9. TweetIE yields 13,532 unique triples of re-

lation(Fauci, token), which we call unique extrac-
tions. The counts of these sum to 99,633 total ex-
tractions overall. In order to improve aggregation,
we lowercase and normalize the token terms with
NLTK’s WordNetLemmatizer (Loper and Bird,
2002), and remove stopwords from NLTK’s En-
glish stopword list.

For each tuple that is expressed by at least 20
unique users, we use a one-sample student’s t statis-
tic to determine if the mean author-geography polit-
ical sentiment of the tuple is significantly different
than the corpus population’s. We require |t| > 2 as
a rough filter for traditional statistical significance.8

This method for term ranking is appropriate for the
continuous variable of political sentiment. Since
words’ frequencies greatly vary, rare terms tend
to be sentiment average outliers; the t statistic’s
normalization by standard error helps control for
an expression’s sample size.9

8Under the central limit theorem, |t| > 1.96 corresponds
to p-value < 0.05. Given multiple hypothesis testing issues
we do not propose a formal significance test interpretation,
though false discovery rate or other methods could be applied
(Bamman et al., 2012).

9Social science NLP has often ranked terms by analogous
confidence measures of term frequency versus a discrete social
variable, such as χ

2 (Gentzkow and Shapiro, 2010) or log-
odds posterior confidence (Monroe et al., 2008).

This results in 110 expressions have test statis-
tics greater than 2 or less than -2, shown in Table
5. These reflect common political narratives con-
cerning Fauci and his COVID-19 response. Polit-
ical scientific work has found liberal respondents
to be more trusting in COVID-19 experts such as
Fauci than conservatives (Kerr et al., 2021), as well
as more hesitant towards COVID-19 vaccination
(Khubchandani et al., 2021), whose development
and production Fauci was involved with.

The notable considerations of Fauci as a joke or
a fraud, or that he lies or is not trusted, reflect lack
of trust in Fauci by the Trump-leaning. Likewise,
suggesting that Fauci is a hero or beloved, as well
as emphasizing what he says or his warnings show
trust in Fauci from the Biden-leaning.

There are elements of COVID-19 related right-
wing conspiracism in the Trump-leaning extrac-
tions as well. Common antecedents of COVID-19
conspiracism include the notions of a fraudlent pan-
demic, vaccination as a weapon, suspicions of the
government, pharmaceutical industry, Democrats,
and Bill Gates (van Mulukom et al., 2022). In our
analysis this theme surfaces in Gates’ appearance
as a frequent conjunct; furthermore, many Trump-
leaning extractions indicate Fauci as a murderer for
his involvement in vaccination, or as someone who
should be prosecuted, arrested, or put in prison.
A shortcoming of our token-based approach can
be seen with the bigram “deep state”, a key nar-
rative element, being split into two separate IS_A
statements, which would be better viewed together.
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5.3 Alternative Systems

To demonstrate TweetIE’s value over open infor-
mation extraction (OIE) systems for this task, we
evaluate two other systems against the Fauci corpus.
These are ReVerb, a lexical pattern and POS-based
system (Fader et al., 2011), and ClausIE, a Stan-
ford Dependencies based system (Del Corro and
Gemulla, 2013). ReVerb was selected to represent
systems that do not require a parser, while ClausIE
is the state-of-the-art system on the BenchIE OIE
benchmark (Gashteovski et al., 2022). Like other
OIE systems, these extract <Arg1, Relation, Arg2>
tuples where relations and arguments are (normal-
ized) strings from the sentence. While some work
has sought to use OIE triples for social insight (Ash
et al., 2021), we map them to IS_A, AS_AGENT,
and AS_PATIENT for comparability.10

ReVerb is an OIE system that extracts relations
using POS tags, noun phrase chunks, and lexical
constraints; its output OIE triples have normalized
values. If the relation is normalized to “be”, and the
target entity is in one of the arguments, we extract
the other argument as IS_A. Otherwise if the target
entity is in Argument 1, the relation is extracted as
AS_AGENT, and if in Argument 2, AS_PATIENT.

ClausIE parses a sentence using Stanford Depen-
dencies, using pattern detectors to eventually arrive
at final OIE triples (“propositions”). While the re-
lations are short, unfortunately the arguments can
be very long phrases, and cannot be accumulated
for counts or social variable aggregates. For a fair
and generous comparison, we utilize ClausIE’s in-
termediate representation of “clause” tuples, which
are based on one of seven syntactic patterns such as
copular clauses (SVC) or monotransitives (SVO);
these are tuples of syntactic head words.11 For
IS_A, we take all detected copular clauses with
the target entity in the subject or complement role,
recording the remaining of the two as an IS_A
extraction. For AS_AGENT, we extract the verb
argument of any non-copular clause with the tar-
get entity in the subject role. We do the same for
AS_PATIENT if the target entity is in the comple-

10While IS_A requires adaptation from the OIE frame-
work, AS_AGENT and AS_PATIENT relations can be viewed
as a Davidsonian-style binarization of an OIE triple: e.g.
<Fauci, hate, us> is equivalent to AGENT(hate, Fauci) ∧
PATIENT(hate, us), at least assuming a Dowty (1991)-style
proto-role theory of what OIE Arg1 and Arg2 mean.

11A shortcoming of this approach is that ClausIE only ap-
plies coordination handling to the final OIE triples; it was not
clear to us if it was possible to backport this feature to the
clause tuples.

ment or object roles. We normalize these outputs
in the same way as TweetIE.

As neither ReVerb nor ClausIE use coreference
resolution, we present TweetIE with and without
coreference enabled for comparison.

The systems share common extractions; the top
ten IS_A share fraud, one, liar, expert, doctor, man,
the top five AS_AGENT share say and tell, and the
top five AS_PATIENT share fire and trust.

This suggests that they all can capture similar
phenomena in the dataset, yet the amount of infor-
mation they actually extract (total yield) varies sig-
nificantly. Over these three patterns, ReVerb yields
16,980 total extractions, ClausIE yields 43,097,
TweetIEno-coref yields 61,484, and TweetIE yields
74,572. TweetIE’s superior yield is important, as
the statistical inference over social variables is re-
liant on the ability to extract on a scale large enough
to be representative; the smaller yield from ReVerb
is likely to be inadequate. This occurs in our social
analysis criteria of requiring terms to have at least
20 unique users and a t-statistic outside of [-2,2].
For IS_A, AS_AGENT and AS_PATIENT respec-
tively, ReVerb yields 1/1/2, ClausIE yields 12/22/6,
TweetIEno-coref yields 23/28/22, and TweetIE yields
26/39/22.

In addition, ClausIE struggled to understand @
mentions, and they appeared as extractions of ev-
ery variety instead of extraneous vocative men-
tions (second most common IS_A and AS_AGENT,
most common AS_PATIENT). We attribute this
to ClausIE’s reliance on a parser not trained on a
social media domain without the benefit of trans-
former modeling.

Finally, we perform a precision evaluation to
judge which systems’ extractions more accurately
reflect semantic implications of the text. We ran-
domly sample 250 tweets and annotate whether
each semantic tuple from ReVerb, ClausIE, and
TweetIE is present in or directly implied by the
text. The annotator (first author) was presented
with the text of the tweet, along with the outputs of
all systems in a random order (with system names
hidden). Each output was labelled as implied or not
implied; for each system we report the precision
and its 95% confidence interval from bootstrapped
standard errors, from 100,000 simulations of resam-
pling at the tweet level. This results in ReVerb hav-
ing a precision of 73.8± 12.5% (31/42), ClausIE
having a precision of 66.1 ± 8.5% (84/129), and
TweetIE having the highest precision at 83.5±4.7%
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(187/222).
The difference between TweetIE and ClausIE is

statistically significant (p < 0.001). Thus TweetIE
is able to achieve its higher yield but without any
cost to precision, presumably due to its modeling
and rule improvements.

6 Conclusion and Future Work

The annotations from Tweebank v2 and the perfor-
mance improvements from BERTweet have lead
to significant advancements in social media depen-
dency parsing, with performance gains of 3.4 UAS
and 4.0 LAS, as well as significantly lessening how
much performance lags for the non-standard lan-
guage variety of African-American English.

These achievements enable downstream applica-
tions of syntactic parsing on social media data, of
which we note information extraction as being espe-
cially utilizable for computational social scientific
means. We outline a process to decode these depen-
dency parses into aggregatable semantic structures,
for comparisons with social variables that one may
seek to study.

We show how one can model political narratives
with respect to named entities with a case study
on elements and actions attributed to Dr. Anthony
Fauci on social media during the COVID-19 pan-
demic. Through this, we replicate findings in social
scientific literature on the topic, and we have sim-
ilar extractions to pre-existing open information
extraction yet with increased yield, enabling more
substantial computational social scientific analyses.

Future work can build upon these foundations
by extending these techniques to beliefs spanning
multiple entities, by considering additional social
variables, or by taking into account temporal ef-
fects through timestamps. This could allow for the
observation of more complex phenomena, such as
actions from an entity towards another entity or the
adoption and decline of beliefs over time.
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