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ABSTRACT

The occurrence of secondary crashes on highways would bring many adverse effects, such as
traffic congestion, air pollution, leading to more crashes. Accurate identification of secondary
crashes is the basis for identifying contributing factors and contributing factors are the
cornerstones for incident management system to find effective strategies to reduce the risk of
secondary crash. However, secondary crash records are often not recorded correctly. To tackle
this issue, this research aims to propose a hybrid method to accurately identify primary and
secondary crashes. Based on the identified primary and secondary crashes, this study developed
a binary logit model to find contributing factors of secondary crashes and construct a HOPIT
model to analyze the crash injury patterns in primary and secondary crashes with identified data
of primary and secondary crashes, respectively. This study provides a better understanding of
contributing factors as well as crash injury patterns of secondary crashes.

Keywords: Crash identification, Secondary crashes, Crash injury severity, Binary logit model,
Hierarchical ordered probit model
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1. INTRODUCTION

Secondary crashes (SC) are typically defined as crashes that occur within the congested
spatiotemporal boundaries of the region in which a primary crash occurred (/). It usually occurs
within the spatial and temporal impact ranges of an existing primary crash (2). The occurrence of
secondary crashes on highways would bring many adverse effects, such as traffic congestion, air
pollution, leading to more crashes. Owens et al. (/) reported that secondary crashes account for
about 20% of all crashes and 18% of all fatalities on US freeways. While improving incident
management is one of the effective ways to reduce the risk of secondary crashes (3, 4), the
identification of appropriate incident management strategies should be based on the
understandings of contributing factors to secondary crashes. To understand the contributing
factors, accurate secondary crash data are needed. However, according to a preliminary study,
only 390 crashes that occurred on freeway I-15 in the state of Utah from 2010 to 2020 are
recorded as secondary crashes. Such data quality cannot meet the needs of developing effective
incident management strategies.

In addition, the secondary crashes on freeways have not been well studied yet in Utah. In
recent decades, the development of intelligent transportation systems (ITS) has made
transportation data easier to access, which offers the basis for secondary crash analysis. Notably,
UDOT develops many databases for different research purposes, such as the Utah ClearGuide
database, Freeway PeMS database, Numeric Crash Database, GIS-based crash database, etc.
These databases offer the possibility to conduct research on identifying primary and secondary
crashes from the crash database, finding the contributing factors of secondary crashes, and
examining the crash injury patterns of primary and secondary crashes.

Based on the discussion, this study aims to develop a hybrid method to effectively
identify primary and secondary crashes from all crash records on freeways. Furthermore, the
contributing factors of secondary crashes and crash injury patterns of primary and secondary
crashes are analyzed by statistical models with identified primary and secondary crashes. This
study could provide some basis for future research in the same field. The study results of this
paper will provide some insightful findings to help transportation agencies build up a more
effective incident management system to mitigate the secondary crashes on freeways.

The rest of the paper is organized as follows. Section 2 reviews existing studies related to
secondary crash identification, contributing factors modeling, and crash injury severity modeling.
The hybrid method for primary and secondary crashes identification, binary logit model, and
HOPIT model are presented in Section 3. Section 4 conducts the results analysis. The last section
summarizes the key findings and future research directions.

2. LITERATURE REVIEW

The static and dynamic methods are two popular approaches to identify secondary crashes. The
static threshold methods assumes that the secondary crashes should happen within a spatial and
temporal range of a primary crash. For example, Hirunyanitiwattana and Mattingly (5) used the
static thresholds of 1 h and 2 miles upstream of a primary crash to identify secondary crashes.
Any crashes are determined as secondary crashes if they happen within 1 h and 2 miles after a
primary crash. There are also other similar studies using static methods (6, 7). The disadvantage
of the static method is the predetermined fixed spatial and temporal threshold. To overcome the
limitation of the static method, a series of studies developed dynamic methods to identify
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secondary crashes. Such as queue length estimations (§), incident progression curve (3),
cumulative arrival and departure plots (4), and speed contour plot (2, 9).

In the literature, the logit model has been widely implemented to identify the contributing
factors of secondary crashes (4, 8, 10—13). The logit model has many advantages. The error
terms of dependent variables in the logit model do not need to be normally distributed. It has a
superior ability to avoid overfitting problems (/4). It also outperforms other models in dealing
with an unbalanced sample, in which the number of one class is much larger than those of the
other classes. To reduce the risk of secondary crashes, the existing studies have been conducted
to identify the relationship between the probability of secondary crashes and contributing factors,
such as characteristics of the primary crash, traffic conditions, geometric information, weather
conditions, and demographic information (4, 8, /0—13). Based on the results of those studies, the
collision type, occurrence time, number of vehicles involved, and crash duration were found to
be significantly related to the likelihood of secondary crashes. In detail, the secondary crashes
are less likely to happen during the off-peak hours or on the weekend (Yang et al., 2014b; Zhan
et al.,, 2009). More vehicles involved in crashes increase the probability of secondary crashes
(Mishra et al.,, 2017; Zhang and Khattak, 2010). In addition, rear-end crashes with longer
durations are found to increase the risk of secondary crashes (Yang et al., 2014b).

For examining the crash injury severity, the discrete choice regression models are widely
implemented to analyze crash injury severity. The discrete choice regression models can be
further classified into (a) logit models, including nested models (/5, /6), multinomial logit
models (/7-19), Mixed logit models (/9-23), and (b) probit models include ordered probit
model with fixed and random parameters (/9, 24-26). Driver injury severities are often modeled
as discrete injury severity outcomes (for instance, NI (no injury), MI (minor injury), and SI
(severe injury)). Both ordered probit models and discrete choice models have their limitations in
modeling discrete injury severity outcomes. These discrete outcome models with the flexibility
of overlapping possible variables across the outcomes can estimate distinguished sets of
independent variables for each crash injury severity result (27). These models assume that the
discrete outcomes are independent of each other and they cannot consider the ordinal nature of
crash injury severity. In contrast, the ordered probit model assumes that the same independent
variables have different influences on different crash injury severity outcomes, which enables the
ability of the ordered probit model to account for the ordinal characteristics of crash injury
severity. However, Washington et al. (28) and Savolainen et al. (29) pointed out that the ordered
probit model cannot explain how the thresholds that are estimable parameters profoundly affect
intermediate categories and the effect of the independent variables on the highest and lowest
ordered discrete category probabilities, with the impact on the interior category probabilities. The
hierarchical ordered probit (HOPIT) model can overcome this limitation. The thresholds in the
HOPIT model are always positive and ordered, as a function of unique explanatory parameters
that do not necessarily affect the ordered probability outcomes directly (27).

3. METHODOLOGY
Hybrid Method for Primary and Secondary Crashes Identification

To overcome the limitations of existing static and dynamic methods, this study used a
hybrid method that combines the traditional static method (i.e., fixed temporospatial thresholds)
and speed contour plot to identify primary and secondary crashes. The main idea of the hybrid
method is to identify paired prior and secondary crash by fixed temporospatial thresholds and
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then validate it with the spatial and temporal impact range of a prior crash using real-time traffic
flow data. Figure 1 illustrates the flowchart of the hybrid method.

Potential paired
crashes

B e (EEE
[P |

Figure 1 The flowchart of hybrid method for secondary crashes identification

Static Method

Firstly, the static method is applied to obtain potential paired crashes. The basic logic in
the static method is to use fixed temporospatial thresholds to identify paired prior and secondary
crashes from the database. Based on the literature review, the fixed temporospatial thresholds of
two miles and one hour are set up for the static method in this study.

Dynamic Method

After the potential paired crashes are filtered by the static method, the speed contour plot,
one of the dynamic methods, is used to identify secondary crashes. The core logic is to determine
the spatial and temporal impact range of a prior crash using real-time traffic flow data while
accounting for the effects of recurrent congestions. A secondary crash is then identified if it is
within the spatial and temporal impact range of this prior crash. The detailed procedure for
implementing the dynamic method can be stated as follows:

e Identify the location of the labeled secondary crash (shown in Figure 2).

e Extract 5-min speed data from detectors upstream and downstream of the location of the
labeled secondary crash.

e Implement traffic state estimation to obtain high-resolution data for plotting
temporospatial speed contour.

e Constructing speed contour plot for a labeled secondary crash: speed data (between
before and after 6 h of labeled secondary crash) from traffic detectors within about 2
miles of upstream and downstream. Figure 3 presents an example of a speed contour plot
for a prior crash. It can be clearly seen that congestions and queue formations.

e Subtracted the average speed over crash-free days to build a new contour plot, the effects
of recurrent congestions can be eliminated. Figure 4 presents an example of a subtracted
average speed contour plot of a labeled secondary crash.

e The crashes were found as primary crashes if they happened in the same fixed
temporospatial impact ranges of the labeled secondary crash.
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Binary Logit Model

The probability of the occurrence of a secondary crash given that there is a crash, which
is equal to the probability of occurrence of the primary crash since the identified primary and
secondary crashes are in pairs:

P(Occurrence of secondary crash|crash) = P (primary crash|Crash) (D)

The binary logit model is used for modeling the probability of the occurrence of
secondary crashes. In this project, the dependent variable of the logit model is the probability of
the resulting outcome indicates the presence of a binary indicator variable coded as 1 (primary
crash) or 0 (normal crash). The general form of the logistic model used in this project is
presented in Equation 1.

B
Pi= ——5,B= Bo+Bixs + -+ Buxn )

The logistic regression equation is approximately linear in the middle ranges and
logarithmic at extreme values (28). A simple transformation of logistic regression is shown
below:

(:_;i): e (BotBix) = oBogBuxi 3)

which shows that when the value of an explanatory variable increases by one unit, and all other
variables are held constant, the probability ratio becomes:

P; B B(x: B Boxi B Pi \ B
(1__131)* = eﬁoeﬁl(xﬁ'l) = eﬁOeﬁLxleﬁl = (1__pl) e.Bl (4)
Thus, an increase in the independent variable x; by one unit (all other factors held
Py

1-P;

constant, which is typically only possible when multicollinearity does not exist), the odds (

increase by the factor eP:. The factor ePt is the odds ratio and indicates the relative amount by
which the odds of an outcome increases (odds ratio >1) or decreases (odds ratio <1) when the
value of the corresponding independent variable increases by 1 unit.

Driver Injury Severity Modeling

In this study, hierarchical ordered probit (HOPIT) models are developed to identify
significant casual factors and quantify their impacts on driver injury severities in primary and
secondary crashes. To investigate the crash injury probabilities and severity in primary and
secondary crashes with an ordered probability setting, this study utilized ordered probability
models by defining an unobserved variable z that can be used as a basis for modeling ordinal
ranking of data. The unobserved variable z can be denoted as follows (28):

zi =Bxi +& (5)

where y is a vector of explanatory variables determining the order for observation i; f8 is a vector
of estimable parameters; and € is a random disturbance. The observed ordinal data y,
corresponding to the order of injury-severity outcomes for each observation, can be determined
as below (28):

Vi =]lfnu]—1 < Zj < .ujlj = 1! 1] (6)
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where, p are threshold parameters; y and j represent ordered ranking of injury severity such as

b 1Y

“no injury”, “minor injury”, and “severe injury”.

The ordered probability results are fixed among the observations in the traditional
ordered probit model. Not all ordinal data are best modeled using ordered probability models (28)
since the restrictions placed on how variables are believed to affect ordered discrete outcome
probabilities,. HOPIT model has the ability to solve this problem to some extent by allowing
thresholds to be varied as a function of a set of explanatory parameters, which can be expressed
as follows (30):

Mij = Mij-1 + exp(tj + djSl-) (7)

where § are vectors of variables affecting the thresholds, d are vectors of estimable parameters
for S, and t is the intercept for each threshold. The threshold pg is assumed to be zero, without
loss of generality (28). The number of estimable thresholds is equal to the total crash severity
level j — 2. In this study, the ordered probability of each crash severity level j of each
observation can be determined by the following equation (28):

Py =)) = ®(u; — Bxi) — P(1j+1 — Bxi) (8)

where P(y = j) is the probability of each crash injury severity level j; @ (-) represents the
cumulative normal distribution; and p; and ;,, denote the upper and lower thresholds for

outcome j.

The influence of each explanatory variable on the probability of each crash injury
severity level cannot be captured by the parameter estimates (especially on the intermediate
levels) (28). To address this problem, it can be calculated by marginal effects (27, 28, 31, 32)
using the following equation:

Py =)
—7 = (@t = Bx) — @(u; - BB

The marginal effects are computed at the sample mean of the explanatory variables and
calculated using the average of f for random parameters. The marginal effects measure the
change in the outcome probability of each ordered ranking, which is caused by a unit change in a
continuous or ordinary explanatory variable.

4. RESULTS ANALYSIS
Primary and Secondary Crashes ldentification

©)

The experimental study was conducted on freeway I-15 in the state of Utah. Three-year
(2017 to 2019) crash and traffic data were retrieved from Numetric database and Performance
Measurement System (PeMS) managed by the Utah Department of Transportation (UDOT)
respectively. We used fixed temporospatial thresholds of two miles and one hour to filter the
potential primary and secondary crashes. Then the dynamic approach is implemented to cross-
check the accuracy of identified primary and secondary crashes.

After we implemented the static method, 2,710 primary crashes and 3,341 secondary
crashes are found. These identified primary and secondary crashes were validated by the hybrid
method. Finally, we obtained 2,653 (97.95%) primary crashes, 2,953 (88.4%) secondary crashes,
and 18,878 normal crashes were identified in the database. Table 1 presents the distribution of
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identified primary and secondary crashes from 2017 to 2019 and the percentage in the total
crashes.

Table 1 Identified primary, secondary, and normal crashes by hybrid method

Time Identified primary | Identified secondary | Identified normal Total
crash crash crash

2017 1049 (12.3%) 1181 (13.8%) 6349 (74.2%) 8549

2018 886 (11.2%) 960 (12.2%) 6042 (76.6%) 7888

2019 718 (8.5%) 812 (9.7%) 6877 (81.8%) 8407

Total 2,653 2,953 18,878 24484

Modeling Contributing Factors of Secondary Crash

Based on identified prior and secondary crashes, detailed information (such as crash
injury severity level, crash occurrence time, driver information, weather conditions,
environmental conditions, roadway surface condition, location, etc.) are collected for each crash.
16,332 out of 18,878 normal crash records were used for model development in the next step,
after removing incomplete records.

As shown in Table 2, 12 variables (including young people, daylight, snow weather,
angle collision, rear-end crash, multiple vehicles involved, collision with fixed objects, speed-
related crash, minivan, adverse roadway surface condition, vehicle slowing in traffic lane, and
roadway with straight alignment) are found to positively associated with the probability of
secondary crashes, indicating that those factors will significantly increase the probability of the
occurrence of secondary crashes. Only “Weekend” and “Rural” are negatively associated with
the probability of the occurrence of secondary crashes, indicating that crashes occurred on
weekends and in rural areas are more likely to lead to a secondary crash. The odds ratio
represents the increase in the likelihood that a crash will lead to a secondary crash. For example,
for a rear-end crash, there is almost an 89.3% increase in the likelihood that a crash leads to a
secondary crash.

The correlation test is conducted to determine the correlations between variables. The
autocorrelations of variables are presented in Figure 5, which indicate that there are no strong
correlations between all candidate variables. The ROC curve is used to evaluate the predictive
performance of different models (33). A model of binary outcome (primary crash = 1 and non-
primary crash = 0) classifies an observation as an event if the predicted probability of the
observation exceeds a pre-specified threshold. Otherwise, it will be classified as a non-event. The
ROC curve was developed to evaluate the predictive performance of the developed secondary
crash risk prediction model presented in Table 5.3. As shown in Figure 6, the area under the
ROC curve is 0.796, which indicates that the binary logit model has a good predictive
performance.
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Table 2 Modeling results for secondary crash risk prediction

Variable Estimated  7- P-value 95% Coefficient
Parameter  ratio interval
Constant -5.19 -35.12 0.007"  -5.482,-4.902
Age (Young) 0.10 1.73 0.08" -0.014, 0.216
Weekend -0.35 434 0.007°  -0.513,-0.194
Light (Daylight) 2.40 18.07 0.00™"  2.137,2.657
Weather (Snow) 0.83 8.30 0.00""  0.636, 1.030
MOC (Angle) 0.50 326  0.00™"  0.200, 0.804
Crash type (Rear-end) 0.64 877  0.00™ 0.496,0.781
Multiple vehicles involved 0.26 3.77  0.007°  0.123,0.390
Collision with fix object 0.23 3.01  0.00™" 0.081,0.386
Speed related 0.19 3.15  0.00™" 0.071,0.303
Rural -0.96 -7.85  0.00""  -1.197,-0.719
Minivan 1.83 2.65 0.00™"  0.478,3.176
Adverse Roadway Surf Condition 0.40 468  0.007" 0.233,0.568
Vehicle Maneuver (Slowing in traffic 0.20 2.83 0.00™"  0.061,0.335
lane)
Horizontal Alignment (Straight) 0.24 432  0.00™" 0.131,0.348
Odds Ratio
Age (Young) 1.106 0.980, 1.233
Weekend 0.702 0.590, 0.814
Light (Daylight) 10.990 8.133, 13.847
Weather (Snow) 2.300 1.847,2.752
MOC (Angle) 1.652 1.153,2.151
Crash type (Rear-end) 1.893 1.623,2.163
Multiple vehicles involved 1.292 1.120, 1.465
Collision with fix object 1.264 1.071, 1.456
Speed related 1.206 1.065, 1.346
Rural 0.384 0.292, 0.475
Minivan 6.214 -2.171,14.600
Adverse Roadway Surf Condition 1.493 1.242,1.743
Vehicle Maneuver (Slowing in traffic 1.218 1.052, 1.385
lane)
Horizontal Alignment (Straight) 1.270 1.132, 1.408
Number of observations 18985
Log-likelihood -5078.60

10
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Figure 1 Variable correlation results in binary logit model
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Figure 6 ROC curve for the binary logit model

Examining the Primary and Secondary Crash Injury Severity Patterns

The crash injury severity was grouped by five levels in the original UDOT dataset
including no injury, possible injury, minor injury, severe injury, and fatal. In this study, possible
and minor injuries are combined as the minor injury level, and severe injuries and fatal are
combined as the severe injury level for yielding a statistically meaningful sample size. Hence,
the driver injury severity is recategorized into three levels including NI (no injury), MI (Minor
injury), and SI (severe injury) which is similar to existing studies (34—36). In this project, two
HOPIT models were estimated for primary and secondary crashes. Before running the model, the
correlation between variables was plotted to test the autocorrelation of variables and presented in
Figure 7-8. The figures show that there is no strong relationship between all candidate variables.

11
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Table 3 and Table 5 show the estimated results of the HOPIT models for primary and secondary
crashes.

Among 2,653 identified primary crashes, 1,835 (69.17%), 771 (29.06%), and 26 (1.77%)
records were reported as no injury, minor injury, and severe injury, respectively. Among 2,953
identified secondary crashes, 2,159 (73.11%), 768 (26.01%), and 26 (0.88%) records were
reported as no injury, minor injury, and severe injury, respectively. Thirteen variables are found
to be significant in primary crashes. Nine variables are found to be significant in secondary
crashes. All variables are statistically significant to explain the variations in the threshold. The
negative coefficients of threshold covariates indicate an upward shift on the threshold parameter
and positive coefficients of threshold covariates indicate a downward shift on the threshold
parameter. In Table 4 and Table 6, the marginal effects of each explanatory variable, related to
the probability of a single crash that results in a severity outcome, are estimated for primary
crash and secondary. More detailed result analyses and explanations are presented following.
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Figure 7 Variable correlation results in HOPIT model for primary crash
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For primary crashes, female drivers are more likely to be involved in severe primary
crashes by 0.3%. It is reasonable that suspected alcohol is positively related to the crash severity,
with the coefficients of 0.60. Drivers with suspected alcohol use are more prone to be involved in
minor and severe-injury crashes, especially minor injury crashes. Compared with other collision
types, the angle collision has a higher potential impact (coefficient = 0.89) on minor-injury and
severe-injury in primary crashes. Vehicle-fixed-object crashes are 9.7% and 0.9% more likely to
lead to minor injury and severe injury in primary crashes (relative to other types of crashes). The
front to rear crash is positively significant in predicting the crash severity, with the coefficients
of 0.54. Compared with single and two-vehicle involved, multiple vehicles involved (coefficient
= 0.60) can significantly increase the possibility of minor and severe injury. It is reasonable that
distracted driving is positively related to the crash severity, with a coefficient of 0.23. The
distracted driver is more prone to minor and severe injury crashes, especially minor injury
crashes. Overturn vehicle crash is positively significant in predicting the crash injury severity,
with the coefficients of 1.18. It is more likely to be involved in minor and severe injury primary
crashes by 33.7% and 10.7%, respectively. It is perceptive that crashes with minor injuries and
severe injuries are less likely to occur in rural areas (with a coefficient of -0.23). The work-zone-
involved crashes are more likely to lead to minor injuries and severe injuries. It is reasonable that
crashes with high speed have a positively significant impact on increasing the possibility of
minor injuries and severe injuries, with a coefficient of 0.16. Primary crashes with airbags
deployed are 19.7% and 2.7% more likely to lead to minor injuries and severe injuries. Normally,
the airbag deployed indicates that the vehicle is severely damaged, so the driver might get
severely injured. Passenger vehicle type is found to be significant in primary crashes with
negative parameters -0.24. It may reduce the possibility of minor injury and severe injury in
primary crashes.

According to the results of the HOPIT model developed for secondary crashes, female
drivers are more likely to be involved in minor-injured secondary crashes by 5.4%. Drivers with
suspected drug use are more likely to be involved in crashes with minor and severe injuries, with
a coefficient of 0.85. Drivers with suspected drug use are more prone to be involved in crashes
with minor and severe injuries, especially minor-injury crash. Compared with other collision
types, the head-on collision has a higher probability of leading to minor injuries and severe
injuries, with a coefficient of 0.82. Vehicle-fixed object crashes are 6.0% and 0.2% more likely
to lead to minor injuries and severe injuries in secondary crashes (relative to other types of
crashes). The rear-end crash is positively related to crash severity, with the coefficients of 0.42.
Compared with single and two-vehicle involved, multiple vehicles involved (coetficient = 0.48)
can significantly increase the possibility of minor and severe injuries, especially for minor
injuries. Overturn vehicle crashes may lead to higher crash injury severity, with a coefficient of
1.16. Drivers involved in overturn vehicle crashes are 38.0% or 5.5% more likely to get minor or
severe injured, respectively. Secondary crashes with airbags deployed are 20.8% and 1.3% more
likely to lead to minor injuries and severe injuries. Passenger vehicle type is found to be
significant in primary crashes with negative parameters 0.088. It may reduce the possibility of
minor injury and severe injury in secondary crashes.
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Table 3 Estimation Results for Primary Crash

Variable description Estimated parameter  Standard error T-ratio  P-value
Constant -1.10 0.13 -8.42 0.00™"
Female driver 0.10 0.05 1.80 0.00"
Suspected alcohol 0.60 0.24 2.53 0.01"
Angle collision 0.89 0.12 7.46 0.00™
Front to rear crash 0.54 0.07 7.18 0.00™"
Multiple vehicles involved 0.60 0.08 7.98 0.00™
Distracted Drive 0.23 0.11 2.02 0.04™
Collison with fix object 0.30 0.07 4.11 0.00™
Overturn 1.18 0.15 7.95 0.00"""
Rural -0.23 0.12 -1.82 0.07
Work zone involved 0.29 0.09 3.07 0.00™
High speed 0.16 0.06 2.62 0.01™
Air bag deployed 0.60 0.07 8.20 0.00"""
Passenger vehicle -0.24 0.11 -2.26 0.02"
Threshold parameter

0, 0.42054 0.06298 6.68 0.00™""
Threshold covariates

Vi -0.20 0.09 -2.18 0.03"
» 0.32 0.08 3.98 0.00™
V3 0.56 0.15 3.86 0.00™
Summary statistics

Number of observations 2653

LL(0) -1818.80

LLp) -1615.39

AIC 3266.8

McFaden Pseudo R* 0.11

sk wk Ok Significance at 1%, 5%, 10% level.

Table 4 Marginal Effects for Primary crash

Variable No injury Minor injury  Severe injury
Female driver -0.034 0.031 0.003
Suspected alcohol -0.227 0.196 0.031
Angle collision -0.341 0.280 0.061
Front to rear crash -0.182 0.167 0.015
Multiple vehicles involved -0.220 0.195 0.025
Distracted Drive -0.082 0.074 0.008
Collison with fix object -0.106 0.097 0.009
Overturn -0.444 0.337 0.107
Rural 0.073 -0.068 -0.005
Work zone involved -0.105 0.095 0.010
High speed -0.055 0.051 0.005
Air bag deployed -0.224 0.197 0.027
Passenger vehicle 0.088 -0.080 -0.008
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Table 5 Estimation Results for Secondary Crash

Variable description

Estimated parameter

Standard error

T-ratio P-value

Constant
Female driver
Suspected Drugs
MOC (Head-on)

Crash type (Rear-end)
Multiple vehicles involved
Collison with fix object

Overturn
Air bag deployed
Passenger vehicle

Threshold parameter

6

Threshold covariates

Vi
»
»3
Summary statistics

Number of observations

LL(0)
LLB)

AIC

McFaden Pseudo R?

-0.81
0.17
0.85
0.82
0.42
0.48
0.19
1.16
0.61
-0.43

0.76

-0.33
-1.07
0.28

2953
1833.52
-1667.21
3362.4
0.09

0.12
0.05
0.29
0.31
0.07
0.08
0.07
0.16
0.08
0.11

.053
0.12

0.43
0.18

649  0.00™"
3.35 0.00"*
2.94 0.00""
2.63 0.01°"
6.42 0.00™"
6.23 0.00"*
2.55 0.01°"
7.28 0.00"*
8.13 0.00""
-4.00  0.00"

1435  0.00™

-2.82  0.00"
248  0.01™
1.60 0.10

sk kO Significance at 1%, 5%, 10% level.

Table 6 Marginal Effects for Secondary crash

Variable No injury Minor injury Severe injury
Female driver -0.056 0.054 0.002
Suspected Drugs -0.319 0.291 0.028

MOC (Head-on) -0.308 0.282 0.026

Crash type (Rear-end) -0.133 0.128 0.004
Multiple vehicles involved -0.168 0.160 0.008
Collison with fix object -0.062 0.060 0.002
Overturn -0.435 0.380 0.055

Air bag deployed -0.221 0.208 0.013
Passenger vehicle 0.154 -0.146 -0.008

5. CONCLUSION AND FUTURE RESEARCH DIRENCTIONS

Accurate identification of secondary crashes is the basis for identifying contributing factors and
contributing factors are the cornerstones for the incident management system to find effective
strategies to reduce the risk of secondary crashes. This paper provided a preliminary analysis of
traffic crash records and labeled secondary crash records in the UDOT’s crash database. The
results show that the accuracy of labeled secondary crash records is low. To tackle this issue, this
paper proposed a hybrid method to accurately identify primary and secondary crashes. Based on
the identified crash data, the binary logit model was implemented for modeling the contributing
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factors. In addition, the HOPIT models were developed to examine the crash injury severity in
identified primary and secondary crash datasets. The experimental study results indicate that the
proposed hybrid method can effectively identify the primary and secondary crashes from the
database. The binary logit model finds the contributing factors of secondary crashes and the
crash injury severity patterns are identified by HOPIT models with the identified data of primary
and secondary crashes. Those findings could provide some insightful information to
transportation agencies to find effective countermeasures to reduce the secondary crashes and
reduce the injury severity of primary and secondary crashes on freeways.

Although some insightful findings are presented in this research. There are some
limitations, including: (1) more comprehensive and multi-source crash data should be utilized to
improve the accuracy of primary and secondary crash identification. (2) more crash information
should be collected to improve the modeling results of the binary logit model and HOPIT models.
(3) There might be some confounding variables that need to be found, such as AADT, road
geometry information. This might illustrate future studies to overcome this challenge.
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