

1 **Secondary Crashes Identification and Modeling along Highways in Utah**
2

3 **Zhao Zhang**

4 Ph.D., Postdoctoral Researcher

5 Department of Civil and Environmental Engineering, University of Utah

6 100 Central Campus Dr., Suite 2000, Salt Lake City, UT, U.S., 84112

7 Email: zhao.zhang@utah.edu

8

9 **Yaobang Gong**

10 Ph.D., Postdoctoral Research Associate

11 Department of Civil and Environmental Engineering

12 University of Utah, Salt Lake City, UT, U.S., 84112

13 Email: yaobang.gong@utah.edu

14

15 **Pan Lu, Ph.D.**

16 Associate Professor

17 Upper Great Plains Transportation Institute

18 North Dakota State University, Fargo, ND, U.S., 58108

19 Email: pan.lu@ndsu.edu

20

21 **Xianfeng (Terry) Yang**

22 Ph.D., Assistant Professor

23 Department of Civil and Environmental Engineering, University of Maryland

24 1173 Glenn L. Martin Hall, College Park, MD, U.S., 20742

25 Email: xtyang@umd.edu

26

27

28 Word Count: 6000words + 6 Tables * 250 = 7500 words

29

30

31 Submitted to 102nd Transportation Research Board Annual Meeting for Presentation and
32 Publication

33

34

35

36 Submission Date: August 1, 2022

1 **ABSTRACT**

2 The occurrence of secondary crashes on highways would bring many adverse effects, such as
3 traffic congestion, air pollution, leading to more crashes. Accurate identification of secondary
4 crashes is the basis for identifying contributing factors and contributing factors are the
5 cornerstones for incident management system to find effective strategies to reduce the risk of
6 secondary crash. However, secondary crash records are often not recorded correctly. To tackle
7 this issue, this research aims to propose a hybrid method to accurately identify primary and
8 secondary crashes. Based on the identified primary and secondary crashes, this study developed
9 a binary logit model to find contributing factors of secondary crashes and construct a HOPIT
10 model to analyze the crash injury patterns in primary and secondary crashes with identified data
11 of primary and secondary crashes, respectively. This study provides a better understanding of
12 contributing factors as well as crash injury patterns of secondary crashes.

13 **Keywords:** Crash identification, Secondary crashes, Crash injury severity, Binary logit model,
14 Hierarchical ordered probit model

1 **1. INTRODUCTION**

2 Secondary crashes (SC) are typically defined as crashes that occur within the congested
3 spatiotemporal boundaries of the region in which a primary crash occurred (1). It usually occurs
4 within the spatial and temporal impact ranges of an existing primary crash (2). The occurrence of
5 secondary crashes on highways would bring many adverse effects, such as traffic congestion, air
6 pollution, leading to more crashes. Owens et al. (1) reported that secondary crashes account for
7 about 20% of all crashes and 18% of all fatalities on US freeways. While improving incident
8 management is one of the effective ways to reduce the risk of secondary crashes (3, 4), the
9 identification of appropriate incident management strategies should be based on the
10 understandings of contributing factors to secondary crashes. To understand the contributing
11 factors, accurate secondary crash data are needed. However, according to a preliminary study,
12 only 390 crashes that occurred on freeway I-15 in the state of Utah from 2010 to 2020 are
13 recorded as secondary crashes. Such data quality cannot meet the needs of developing effective
14 incident management strategies.

15 In addition, the secondary crashes on freeways have not been well studied yet in Utah. In
16 recent decades, the development of intelligent transportation systems (ITS) has made
17 transportation data easier to access, which offers the basis for secondary crash analysis. Notably,
18 UDOT develops many databases for different research purposes, such as the Utah ClearGuide
19 database, Freeway PeMS database, Numeric Crash Database, GIS-based crash database, etc.
20 These databases offer the possibility to conduct research on identifying primary and secondary
21 crashes from the crash database, finding the contributing factors of secondary crashes, and
22 examining the crash injury patterns of primary and secondary crashes.

23 Based on the discussion, this study aims to develop a hybrid method to effectively
24 identify primary and secondary crashes from all crash records on freeways. Furthermore, the
25 contributing factors of secondary crashes and crash injury patterns of primary and secondary
26 crashes are analyzed by statistical models with identified primary and secondary crashes. This
27 study could provide some basis for future research in the same field. The study results of this
28 paper will provide some insightful findings to help transportation agencies build up a more
29 effective incident management system to mitigate the secondary crashes on freeways.

30 The rest of the paper is organized as follows. Section 2 reviews existing studies related to
31 secondary crash identification, contributing factors modeling, and crash injury severity modeling.
32 The hybrid method for primary and secondary crashes identification, binary logit model, and
33 HOPIT model are presented in Section 3. Section 4 conducts the results analysis. The last section
34 summarizes the key findings and future research directions.

35 **2. LITERATURE REVIEW**

36 The static and dynamic methods are two popular approaches to identify secondary crashes. The
37 static threshold methods assumes that the secondary crashes should happen within a spatial and
38 temporal range of a primary crash. For example, Hirunyananitwattana and Mattingly (5) used the
39 static thresholds of 1 h and 2 miles upstream of a primary crash to identify secondary crashes.
40 Any crashes are determined as secondary crashes if they happen within 1 h and 2 miles after a
41 primary crash. There are also other similar studies using static methods (6, 7). The disadvantage
42 of the static method is the predetermined fixed spatial and temporal threshold. To overcome the
43 limitation of the static method, a series of studies developed dynamic methods to identify

1 secondary crashes. Such as queue length estimations (8), incident progression curve (3),
2 cumulative arrival and departure plots (4), and speed contour plot (2, 9).

3 In the literature, the logit model has been widely implemented to identify the contributing
4 factors of secondary crashes (4, 8, 10–13). The logit model has many advantages. The error
5 terms of dependent variables in the logit model do not need to be normally distributed. It has a
6 superior ability to avoid overfitting problems (14). It also outperforms other models in dealing
7 with an unbalanced sample, in which the number of one class is much larger than those of the
8 other classes. To reduce the risk of secondary crashes, the existing studies have been conducted
9 to identify the relationship between the probability of secondary crashes and contributing factors,
10 such as characteristics of the primary crash, traffic conditions, geometric information, weather
11 conditions, and demographic information (4, 8, 10–13). Based on the results of those studies, the
12 collision type, occurrence time, number of vehicles involved, and crash duration were found to
13 be significantly related to the likelihood of secondary crashes. In detail, the secondary crashes
14 are less likely to happen during the off-peak hours or on the weekend (Yang et al., 2014b; Zhan
15 et al., 2009). More vehicles involved in crashes increase the probability of secondary crashes
16 (Mishra et al., 2017; Zhang and Khattak, 2010). In addition, rear-end crashes with longer
17 durations are found to increase the risk of secondary crashes (Yang et al., 2014b).

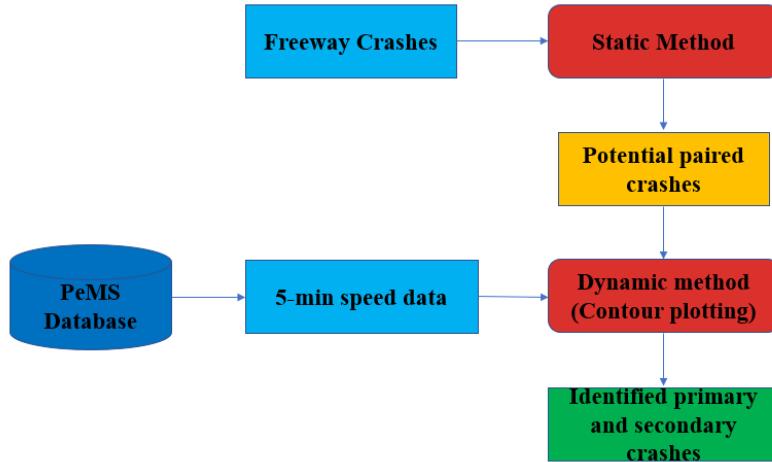
18 For examining the crash injury severity, the discrete choice regression models are widely
19 implemented to analyze crash injury severity. The discrete choice regression models can be
20 further classified into (a) logit models, including nested models (15, 16), multinomial logit
21 models (17–19), Mixed logit models (19–23), and (b) probit models include ordered probit
22 model with fixed and random parameters (19, 24–26). Driver injury severities are often modeled
23 as discrete injury severity outcomes (for instance, NI (no injury), MI (minor injury), and SI
24 (severe injury)). Both ordered probit models and discrete choice models have their limitations in
25 modeling discrete injury severity outcomes. These discrete outcome models with the flexibility
26 of overlapping possible variables across the outcomes can estimate distinguished sets of
27 independent variables for each crash injury severity result (27). These models assume that the
28 discrete outcomes are independent of each other and they cannot consider the ordinal nature of
29 crash injury severity. In contrast, the ordered probit model assumes that the same independent
30 variables have different influences on different crash injury severity outcomes, which enables the
31 ability of the ordered probit model to account for the ordinal characteristics of crash injury
32 severity. However, Washington et al. (28) and Savolainen et al. (29) pointed out that the ordered
33 probit model cannot explain how the thresholds that are estimable parameters profoundly affect
34 intermediate categories and the effect of the independent variables on the highest and lowest
35 ordered discrete category probabilities, with the impact on the interior category probabilities. The
36 hierarchical ordered probit (HOPIT) model can overcome this limitation. The thresholds in the
37 HOPIT model are always positive and ordered, as a function of unique explanatory parameters
38 that do not necessarily affect the ordered probability outcomes directly (27).

39 **3. METHODOLOGY**

40 ***Hybrid Method for Primary and Secondary Crashes Identification***

41 To overcome the limitations of existing static and dynamic methods, this study used a
42 hybrid method that combines the traditional static method (i.e., fixed temporospatial thresholds)
43 and speed contour plot to identify primary and secondary crashes. The main idea of the hybrid
44 method is to identify paired prior and secondary crash by fixed temporospatial thresholds and

1 then validate it with the spatial and temporal impact range of a prior crash using real-time traffic
2 flow data. Figure 1 illustrates the flowchart of the hybrid method.



3
4 **Figure 1 The flowchart of hybrid method for secondary crashes identification**

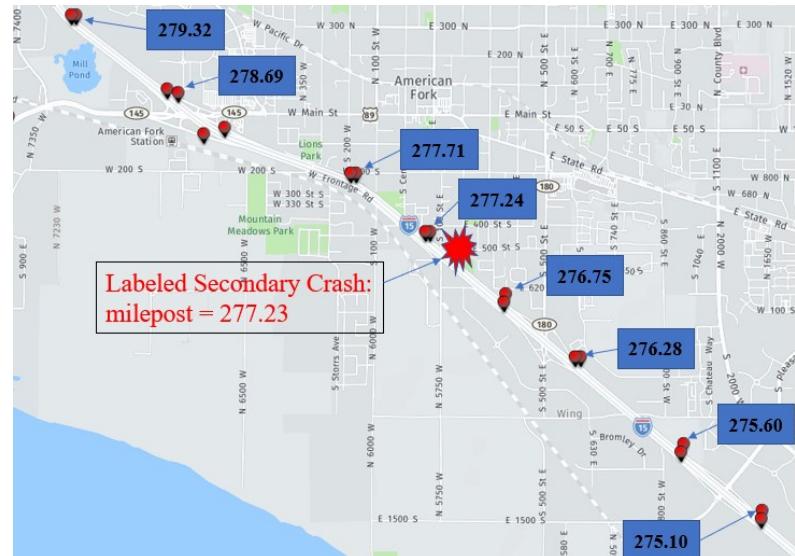
5 **Static Method**

6 Firstly, the static method is applied to obtain potential paired crashes. The basic logic in
7 the static method is to use fixed temporospatial thresholds to identify paired prior and secondary
8 crashes from the database. Based on the literature review, the fixed temporospatial thresholds of
9 two miles and one hour are set up for the static method in this study.

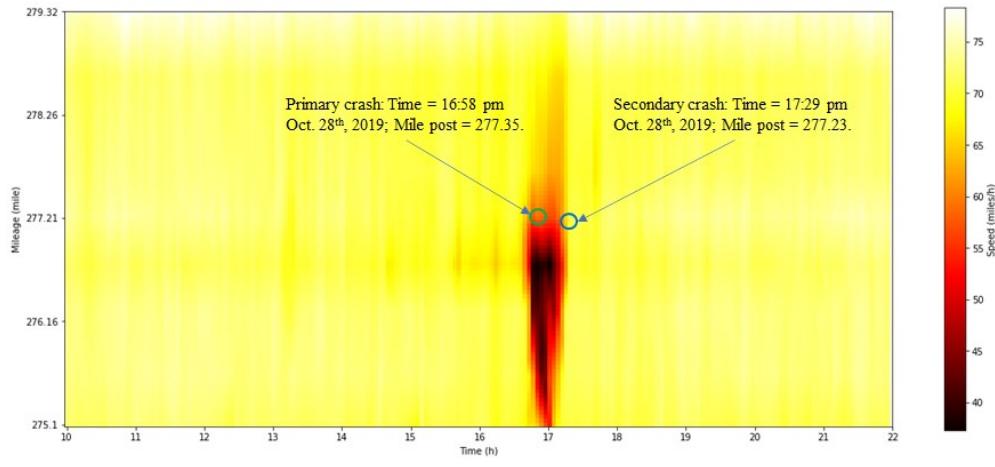
10 **Dynamic Method**

11 After the potential paired crashes are filtered by the static method, the speed contour plot,
12 one of the dynamic methods, is used to identify secondary crashes. The core logic is to determine
13 the spatial and temporal impact range of a prior crash using real-time traffic flow data while
14 accounting for the effects of recurrent congestions. A secondary crash is then identified if it is
15 within the spatial and temporal impact range of this prior crash. The detailed procedure for
16 implementing the dynamic method can be stated as follows:

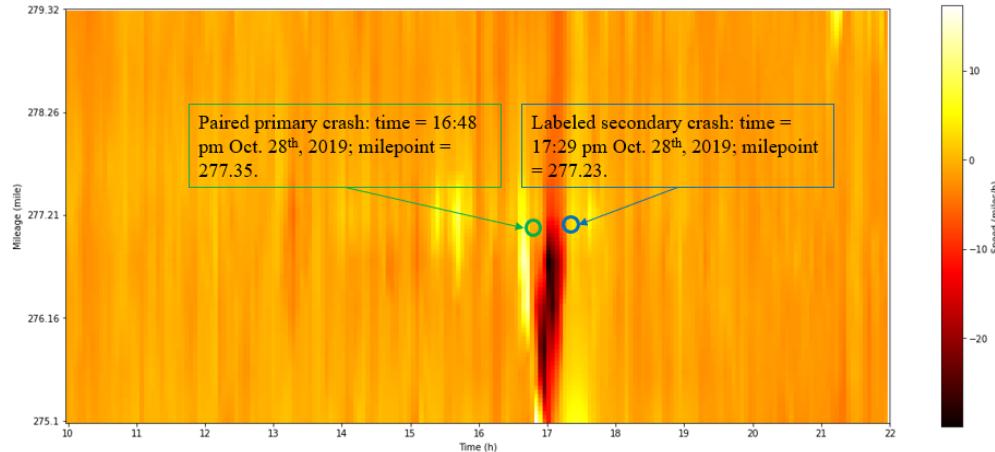
- 17 • Identify the location of the labeled secondary crash (shown in Figure 2).
- 18 • Extract 5-min speed data from detectors upstream and downstream of the location of the
19 labeled secondary crash.
- 20 • Implement traffic state estimation to obtain high-resolution data for plotting
21 temporospatial speed contour.
- 22 • Constructing speed contour plot for a labeled secondary crash: speed data (between
23 before and after 6 h of labeled secondary crash) from traffic detectors within about 2
24 miles of upstream and downstream. Figure 3 presents an example of a speed contour plot
25 for a prior crash. It can be clearly seen that congestions and queue formations.
- 26 • Subtracted the average speed over crash-free days to build a new contour plot, the effects
27 of recurrent congestions can be eliminated. Figure 4 presents an example of a subtracted
28 average speed contour plot of a labeled secondary crash.
- 29 • The crashes were found as primary crashes if they happened in the same fixed
30 temporospatial impact ranges of the labeled secondary crash.



1
2
Figure 2 Illustration of downloading data for dynamic approach



3
4
Figure 3 Speed contour plot of labeled secondary crash



5
6
Figure 4 Subtracted Average Speed contour plot of labeled secondary crash

1 **Binary Logit Model**

2 The probability of the occurrence of a secondary crash given that there is a crash, which
 3 is equal to the probability of occurrence of the primary crash since the identified primary and
 4 secondary crashes are in pairs:

5 $P(\text{Occurrence of secondary crash}|\text{crash}) = P(\text{primary crash}|\text{Crash}) \quad (1)$

6 The binary logit model is used for modeling the probability of the occurrence of
 7 secondary crashes. In this project, the dependent variable of the logit model is the probability of
 8 the resulting outcome indicates the presence of a binary indicator variable coded as 1 (primary
 9 crash) or 0 (normal crash). The general form of the logistic model used in this project is
 10 presented in Equation 1.

11 $P_i = \frac{e^\beta}{1+e^\beta}, \beta = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n \quad (2)$

12 The logistic regression equation is approximately linear in the middle ranges and
 13 logarithmic at extreme values (28). A simple transformation of logistic regression is shown
 14 below:

15 $(\frac{P_i}{1-P_i}) = e^{(\widehat{\beta}_0 + \widehat{\beta}_i x_i)} = e^{\widehat{\beta}_0} e^{\widehat{\beta}_i x_i} \quad (3)$

16 which shows that when the value of an explanatory variable increases by one unit, and all other
 17 variables are held constant, the probability ratio becomes:

18 $(\frac{P_i}{1-P_i})^* = e^{\widehat{\beta}_0} e^{\widehat{\beta}_i (x_i + 1)} = e^{\widehat{\beta}_0} e^{\widehat{\beta}_i x_i} e^{\widehat{\beta}_i} = (\frac{P_i}{1-P_i}) e^{\widehat{\beta}_i} \quad (4)$

19 Thus, an increase in the independent variable x_i by one unit (all other factors held
 20 constant, which is typically only possible when multicollinearity does not exist), the odds $(\frac{P_i}{1-P_i})$
 21 increase by the factor $e^{\widehat{\beta}_i}$. The factor $e^{\widehat{\beta}_i}$ is the odds ratio and indicates the relative amount by
 22 which the odds of an outcome increases (odds ratio >1) or decreases (odds ratio <1) when the
 23 value of the corresponding independent variable increases by 1 unit.

24 **Driver Injury Severity Modeling**

25 In this study, hierarchical ordered probit (HOPIT) models are developed to identify
 26 significant causal factors and quantify their impacts on driver injury severities in primary and
 27 secondary crashes. To investigate the crash injury probabilities and severity in primary and
 28 secondary crashes with an ordered probability setting, this study utilized ordered probability
 29 models by defining an unobserved variable z that can be used as a basis for modeling ordinal
 30 ranking of data. The unobserved variable z can be denoted as follows (28):

31 $z_i = \beta \chi_i + \varepsilon_i \quad (5)$

32 where χ is a vector of explanatory variables determining the order for observation i ; β is a vector
 33 of estimable parameters; and ε is a random disturbance. The observed ordinal data y ,
 34 corresponding to the order of injury-severity outcomes for each observation, can be determined
 as below (28):

35 $y_i = j \text{ if } \mu_{j-1} < z_i < \mu_j, j = 1, \dots, J \quad (6)$

1 where, μ are threshold parameters; y and j represent ordered ranking of injury severity such as
 2 “no injury”, “minor injury”, and “severe injury”.

3 The ordered probability results are fixed among the observations in the traditional
 4 ordered probit model. Not all ordinal data are best modeled using ordered probability models (28)
 5 since the restrictions placed on how variables are believed to affect ordered discrete outcome
 6 probabilities,. HOPIT model has the ability to solve this problem to some extent by allowing
 7 thresholds to be varied as a function of a set of explanatory parameters, which can be expressed
 8 as follows (30):

$$\mu_{i,j} = \mu_{i,j-1} + \exp(t_j + \mathbf{d}_j \mathbf{S}_i) \quad (7)$$

9 where \mathbf{S} are vectors of variables affecting the thresholds, \mathbf{d} are vectors of estimable parameters
 10 for \mathbf{S} , and t is the intercept for each threshold. The threshold μ_0 is assumed to be zero, without
 11 loss of generality (28). The number of estimable thresholds is equal to the total crash severity
 12 level $j - 2$. In this study, the ordered probability of each crash severity level j of each
 13 observation can be determined by the following equation (28):

$$P(y = j) = \Phi(\mu_j - \beta \chi_i) - \Phi(\mu_{j+1} - \beta \chi_i) \quad (8)$$

14 where $P(y = j)$ is the probability of each crash injury severity level j ; $\Phi(\cdot)$ represents the
 15 cumulative normal distribution; and μ_j and μ_{j+1} denote the upper and lower thresholds for
 16 outcome j .

17 The influence of each explanatory variable on the probability of each crash injury
 18 severity level cannot be captured by the parameter estimates (especially on the intermediate
 19 levels) (28). To address this problem, it can be calculated by marginal effects (27, 28, 31, 32)
 20 using the following equation:

$$\frac{P(y = j)}{\partial \chi} = [\Phi(\mu_{j-1} - \beta \chi) - \Phi(\mu_j - \beta \chi)]\beta \quad (9)$$

21 The marginal effects are computed at the sample mean of the explanatory variables and
 22 calculated using the average of β for random parameters. The marginal effects measure the
 23 change in the outcome probability of each ordered ranking, which is caused by a unit change in a
 24 continuous or ordinary explanatory variable.

25 4. RESULTS ANALYSIS

26 Primary and Secondary Crashes Identification

27 The experimental study was conducted on freeway I-15 in the state of Utah. Three-year
 28 (2017 to 2019) crash and traffic data were retrieved from Numetric database and Performance
 29 Measurement System (PeMS) managed by the Utah Department of Transportation (UDOT)
 30 respectively. We used fixed temporospatial thresholds of two miles and one hour to filter the
 31 potential primary and secondary crashes. Then the dynamic approach is implemented to cross-
 32 check the accuracy of identified primary and secondary crashes.

33 After we implemented the static method, 2,710 primary crashes and 3,341 secondary
 34 crashes are found. These identified primary and secondary crashes were validated by the hybrid
 35 method. Finally, we obtained 2,653 (97.95%) primary crashes, 2,953 (88.4%) secondary crashes,
 36 and 18,878 normal crashes were identified in the database. Table 1 presents the distribution of

1 identified primary and secondary crashes from 2017 to 2019 and the percentage in the total
 2 crashes.

3 **Table 1 Identified primary, secondary, and normal crashes by hybrid method**

Time	Identified primary crash	Identified secondary crash	Identified normal crash	Total
2017	1049 (12.3%)	1181 (13.8%)	6349 (74.2%)	8549
2018	886 (11.2%)	960 (12.2%)	6042 (76.6%)	7888
2019	718 (8.5%)	812 (9.7%)	6877 (81.8%)	8407
Total	2,653	2,953	18,878	24484

4 ***Modeling Contributing Factors of Secondary Crash***

5 Based on identified prior and secondary crashes, detailed information (such as crash
 6 injury severity level, crash occurrence time, driver information, weather conditions,
 7 environmental conditions, roadway surface condition, location, etc.) are collected for each crash.
 8 16,332 out of 18,878 normal crash records were used for model development in the next step,
 9 after removing incomplete records.

10 As shown in Table 2, 12 variables (including young people, daylight, snow weather,
 11 angle collision, rear-end crash, multiple vehicles involved, collision with fixed objects, speed-
 12 related crash, minivan, adverse roadway surface condition, vehicle slowing in traffic lane, and
 13 roadway with straight alignment) are found to positively associated with the probability of
 14 secondary crashes, indicating that those factors will significantly increase the probability of the
 15 occurrence of secondary crashes. Only “Weekend” and “Rural” are negatively associated with
 16 the probability of the occurrence of secondary crashes, indicating that crashes occurred on
 17 weekends and in rural areas are more likely to lead to a secondary crash. The odds ratio
 18 represents the increase in the likelihood that a crash will lead to a secondary crash. For example,
 19 for a rear-end crash, there is almost an 89.3% increase in the likelihood that a crash leads to a
 20 secondary crash.

21 The correlation test is conducted to determine the correlations between variables. The
 22 autocorrelations of variables are presented in Figure 5, which indicate that there are no strong
 23 correlations between all candidate variables. The ROC curve is used to evaluate the predictive
 24 performance of different models (33). A model of binary outcome (primary crash = 1 and non-
 25 primary crash = 0) classifies an observation as an event if the predicted probability of the
 26 observation exceeds a pre-specified threshold. Otherwise, it will be classified as a non-event. The
 27 ROC curve was developed to evaluate the predictive performance of the developed secondary
 28 crash risk prediction model presented in Table 5.3. As shown in Figure 6, the area under the
 29 ROC curve is 0.796, which indicates that the binary logit model has a good predictive
 30 performance.

1 **Table 2 Modeling results for secondary crash risk prediction**

Variable	Estimated Parameter	T-ratio	P-value	95% Coefficient interval
Constant	-5.19	-35.12	0.00***	-5.482, -4.902
Age (Young)	0.10	1.73	0.08*	-0.014, 0.216
Weekend	-0.35	-4.34	0.00***	-0.513, -0.194
Light (Daylight)	2.40	18.07	0.00***	2.137, 2.657
Weather (Snow)	0.83	8.30	0.00***	0.636, 1.030
MOC (Angle)	0.50	3.26	0.00***	0.200, 0.804
Crash type (Rear-end)	0.64	8.77	0.00***	0.496, 0.781
Multiple vehicles involved	0.26	3.77	0.00***	0.123, 0.390
Collision with fix object	0.23	3.01	0.00***	0.081, 0.386
Speed related	0.19	3.15	0.00***	0.071, 0.303
Rural	-0.96	-7.85	0.00***	-1.197, -0.719
Minivan	1.83	2.65	0.00***	0.478, 3.176
Adverse Roadway Surf Condition	0.40	4.68	0.00***	0.233, 0.568
Vehicle Maneuver (Slowing in traffic lane)	0.20	2.83	0.00***	0.061, 0.335
Horizontal Alignment (Straight)	0.24	4.32	0.00***	0.131, 0.348
Odds Ratio				
Age (Young)	1.106			0.980, 1.233
Weekend	0.702			0.590, 0.814
Light (Daylight)	10.990			8.133, 13.847
Weather (Snow)	2.300			1.847, 2.752
MOC (Angle)	1.652			1.153, 2.151
Crash type (Rear-end)	1.893			1.623, 2.163
Multiple vehicles involved	1.292			1.120, 1.465
Collision with fix object	1.264			1.071, 1.456
Speed related	1.206			1.065, 1.346
Rural	0.384			0.292, 0.475
Minivan	6.214			-2.171, 14.600
Adverse Roadway Surf Condition	1.493			1.242, 1.743
Vehicle Maneuver (Slowing in traffic lane)	1.218			1.052, 1.385
Horizontal Alignment (Straight)	1.270			1.132, 1.408
Number of observations	18985			
Log-likelihood	-5078.60			

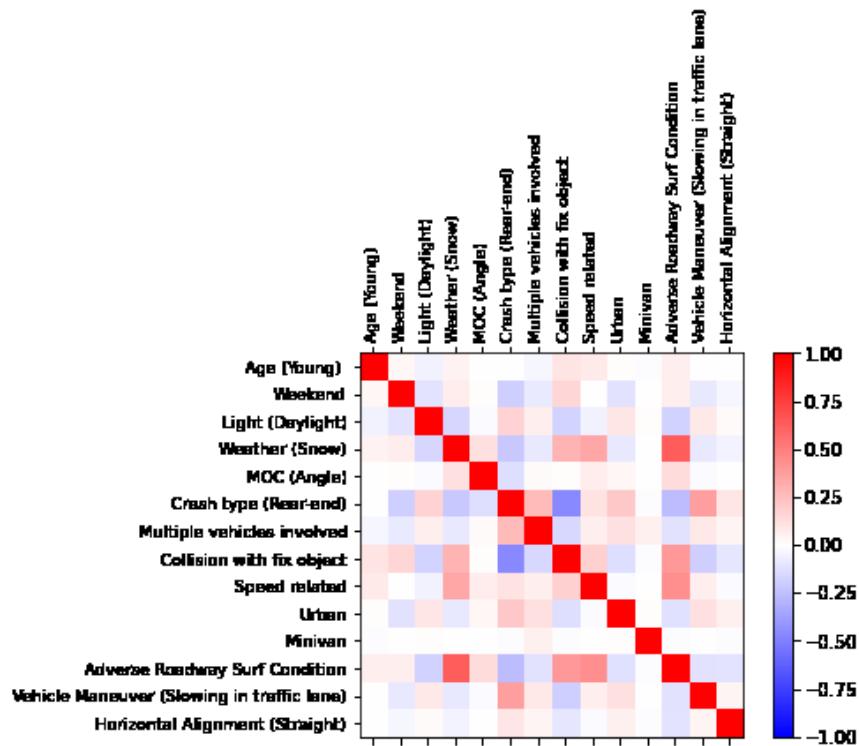


Figure 1 Variable correlation results in binary logit model

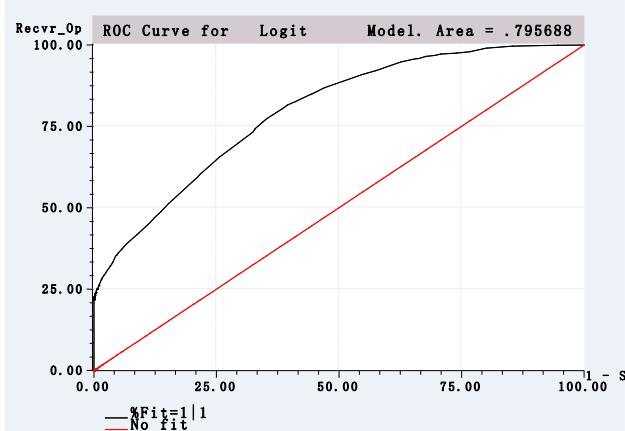


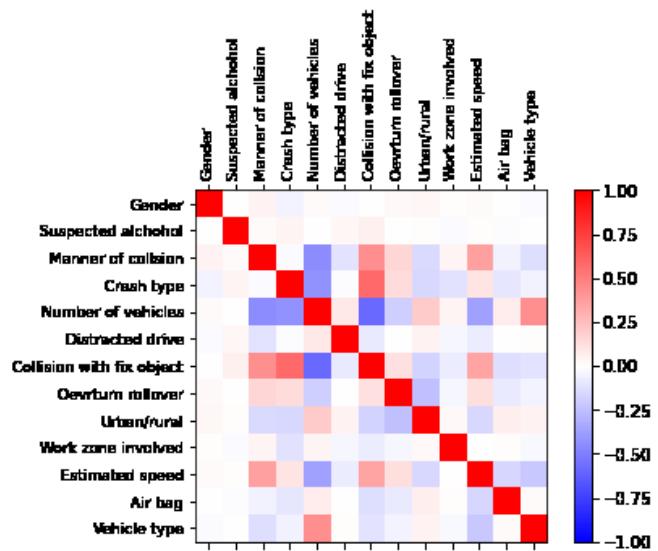
Figure 6 ROC curve for the binary logit model

Examining the Primary and Secondary Crash Injury Severity Patterns

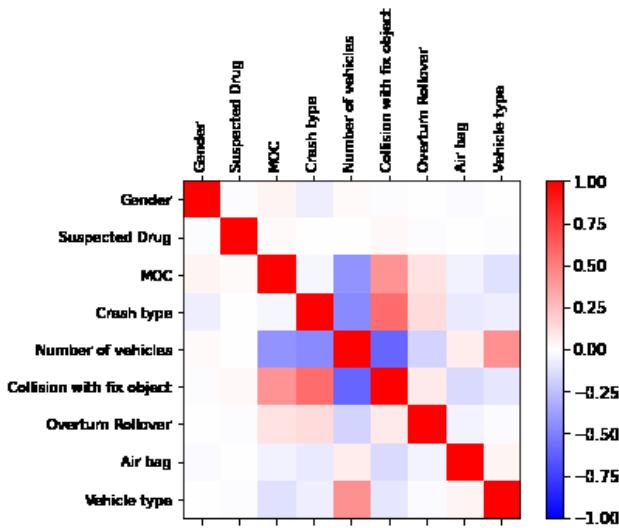
The crash injury severity was grouped by five levels in the original UDOT dataset including no injury, possible injury, minor injury, severe injury, and fatal. In this study, possible and minor injuries are combined as the minor injury level, and severe injuries and fatal are combined as the severe injury level for yielding a statistically meaningful sample size. Hence, the driver injury severity is recategorized into three levels including NI (no injury), MI (Minor injury), and SI (severe injury) which is similar to existing studies (34–36). In this project, two HOPIT models were estimated for primary and secondary crashes. Before running the model, the correlation between variables was plotted to test the autocorrelation of variables and presented in Figure 7-8. The figures show that there is no strong relationship between all candidate variables.

1 Table 3 and Table 5 show the estimated results of the HOPIT models for primary and secondary
 2 crashes.

3 Among 2,653 identified primary crashes, 1,835 (69.17%), 771 (29.06%), and 26 (1.77%)
 4 records were reported as no injury, minor injury, and severe injury, respectively. Among 2,953
 5 identified secondary crashes, 2,159 (73.11%), 768 (26.01%), and 26 (0.88%) records were
 6 reported as no injury, minor injury, and severe injury, respectively. Thirteen variables are found
 7 to be significant in primary crashes. Nine variables are found to be significant in secondary
 8 crashes. All variables are statistically significant to explain the variations in the threshold. The
 9 negative coefficients of threshold covariates indicate an upward shift on the threshold parameter
 10 and positive coefficients of threshold covariates indicate a downward shift on the threshold
 11 parameter. In Table 4 and Table 6, the marginal effects of each explanatory variable, related to
 12 the probability of a single crash that results in a severity outcome, are estimated for primary
 13 crash and secondary. More detailed result analyses and explanations are presented following.



14
 15 **Figure 7 Variable correlation results in HOPIT model for primary crash**



16
 17 **Figure 8 Variable correlation results in HOPIT model for secondary crash**

1 For primary crashes, female drivers are more likely to be involved in severe primary
2 crashes by 0.3%. It is reasonable that suspected alcohol is positively related to the crash severity,
3 with the coefficients of 0.60. Drivers with suspected alcohol use are more prone to be involved in
4 minor and severe-injury crashes, especially minor injury crashes. Compared with other collision
5 types, the angle collision has a higher potential impact (coefficient = 0.89) on minor-injury and
6 severe-injury in primary crashes. Vehicle-fixed-object crashes are 9.7% and 0.9% more likely to
7 lead to minor injury and severe injury in primary crashes (relative to other types of crashes). The
8 front to rear crash is positively significant in predicting the crash severity, with the coefficients
9 of 0.54. Compared with single and two-vehicle involved, multiple vehicles involved (coefficient
10 = 0.60) can significantly increase the possibility of minor and severe injury. It is reasonable that
11 distracted driving is positively related to the crash severity, with a coefficient of 0.23. The
12 distracted driver is more prone to minor and severe injury crashes, especially minor injury
13 crashes. Overturn vehicle crash is positively significant in predicting the crash injury severity,
14 with the coefficients of 1.18. It is more likely to be involved in minor and severe injury primary
15 crashes by 33.7% and 10.7%, respectively. It is perceptive that crashes with minor injuries and
16 severe injuries are less likely to occur in rural areas (with a coefficient of -0.23). The work-zone-
17 involved crashes are more likely to lead to minor injuries and severe injuries. It is reasonable that
18 crashes with high speed have a positively significant impact on increasing the possibility of
19 minor injuries and severe injuries, with a coefficient of 0.16. Primary crashes with airbags
20 deployed are 19.7% and 2.7% more likely to lead to minor injuries and severe injuries. Normally,
21 the airbag deployed indicates that the vehicle is severely damaged, so the driver might get
22 severely injured. Passenger vehicle type is found to be significant in primary crashes with
23 negative parameters -0.24. It may reduce the possibility of minor injury and severe injury in
24 primary crashes.

25 According to the results of the HOPIT model developed for secondary crashes, female
26 drivers are more likely to be involved in minor-injured secondary crashes by 5.4%. Drivers with
27 suspected drug use are more likely to be involved in crashes with minor and severe injuries, with
28 a coefficient of 0.85. Drivers with suspected drug use are more prone to be involved in crashes
29 with minor and severe injuries, especially minor-injury crash. Compared with other collision
30 types, the head-on collision has a higher probability of leading to minor injuries and severe
31 injuries, with a coefficient of 0.82. Vehicle-fixed object crashes are 6.0% and 0.2% more likely
32 to lead to minor injuries and severe injuries in secondary crashes (relative to other types of
33 crashes). The rear-end crash is positively related to crash severity, with the coefficients of 0.42.
34 Compared with single and two-vehicle involved, multiple vehicles involved (coefficient = 0.48)
35 can significantly increase the possibility of minor and severe injuries, especially for minor
36 injuries. Overturn vehicle crashes may lead to higher crash injury severity, with a coefficient of
37 1.16. Drivers involved in overturn vehicle crashes are 38.0% or 5.5% more likely to get minor or
38 severe injured, respectively. Secondary crashes with airbags deployed are 20.8% and 1.3% more
39 likely to lead to minor injuries and severe injuries. Passenger vehicle type is found to be
40 significant in primary crashes with negative parameters 0.088. It may reduce the possibility of
41 minor injury and severe injury in secondary crashes.

1 **Table 3 Estimation Results for Primary Crash**

Variable description	Estimated parameter	Standard error	T-ratio	P-value
Constant	-1.10	0.13	-8.42	0.00***
Female driver	0.10	0.05	1.80	0.00*
Suspected alcohol	0.60	0.24	2.53	0.01***
Angle collision	0.89	0.12	7.46	0.00***
Front to rear crash	0.54	0.07	7.18	0.00***
Multiple vehicles involved	0.60	0.08	7.98	0.00***
Distracted Drive	0.23	0.11	2.02	0.04**
Collison with fix object	0.30	0.07	4.11	0.00***
Overtur	1.18	0.15	7.95	0.00***
Rural	-0.23	0.12	-1.82	0.07*
Work zone involved	0.29	0.09	3.07	0.00***
High speed	0.16	0.06	2.62	0.01***
Air bag deployed	0.60	0.07	8.20	0.00***
Passenger vehicle	-0.24	0.11	-2.26	0.02**
Threshold parameter				
θ_1	0.42054	0.06298	6.68	0.00***
Threshold covariates				
y_1	-0.20	0.09	-2.18	0.03**
y_2	0.32	0.08	3.98	0.00***
y_3	0.56	0.15	3.86	0.00***
Summary statistics				
Number of observations	2653			
$LL(\theta)$	-1818.80			
$LL(\beta)$	-1615.39			
AIC	3266.8			
McFaden Pseudo R^2	0.11			

2 ***, **, * Significance at 1%, 5%, 10% level.

3 **Table 4 Marginal Effects for Primary crash**

Variable	No injury	Minor injury	Severe injury
Female driver	-0.034	0.031	0.003
Suspected alcohol	-0.227	0.196	0.031
Angle collision	-0.341	0.280	0.061
Front to rear crash	-0.182	0.167	0.015
Multiple vehicles involved	-0.220	0.195	0.025
Distracted Drive	-0.082	0.074	0.008
Collison with fix object	-0.106	0.097	0.009
Overtur	-0.444	0.337	0.107
Rural	0.073	-0.068	-0.005
Work zone involved	-0.105	0.095	0.010
High speed	-0.055	0.051	0.005
Air bag deployed	-0.224	0.197	0.027
Passenger vehicle	0.088	-0.080	-0.008

1 **Table 5 Estimation Results for Secondary Crash**

Variable description	Estimated parameter	Standard error	T-ratio	P-value
Constant	-0.81	0.12	-6.49	0.00***
Female driver	0.17	0.05	3.35	0.00***
Suspected Drugs	0.85	0.29	2.94	0.00***
MOC (Head-on)	0.82	0.31	2.63	0.01***
Crash type (Rear-end)	0.42	0.07	6.42	0.00***
Multiple vehicles involved	0.48	0.08	6.23	0.00***
Collision with fix object	0.19	0.07	2.55	0.01***
Overturn	1.16	0.16	7.28	0.00***
Air bag deployed	0.61	0.08	8.13	0.00***
Passenger vehicle	-0.43	0.11	-4.00	0.00***
Threshold parameter				
θ_1	0.76	.053	14.35	0.00***
Threshold covariates				
y_1	-0.33	0.12	-2.82	0.00***
y_2	-1.07	0.43	-2.48	0.01**
y_3	0.28	0.18	1.60	0.10*
Summary statistics				
Number of observations	2953			
$LL(0)$	1833.52			
$LL(\beta)$	-1667.21			
AIC	3362.4			
McFadden Pseudo R^2	0.09			

2 *** , ** , * Significance at 1%, 5%, 10% level.

3 **Table 6 Marginal Effects for Secondary crash**

Variable	No injury	Minor injury	Severe injury
Female driver	-0.056	0.054	0.002
Suspected Drugs	-0.319	0.291	0.028
MOC (Head-on)	-0.308	0.282	0.026
Crash type (Rear-end)	-0.133	0.128	0.004
Multiple vehicles involved	-0.168	0.160	0.008
Collision with fix object	-0.062	0.060	0.002
Overturn	-0.435	0.380	0.055
Air bag deployed	-0.221	0.208	0.013
Passenger vehicle	0.154	-0.146	-0.008

4 **5. CONCLUSION AND FUTURE RESEARCH DIRECTIONS**

5 Accurate identification of secondary crashes is the basis for identifying contributing factors and
6 contributing factors are the cornerstones for the incident management system to find effective
7 strategies to reduce the risk of secondary crashes. This paper provided a preliminary analysis of
8 traffic crash records and labeled secondary crash records in the UDOT's crash database. The
9 results show that the accuracy of labeled secondary crash records is low. To tackle this issue, this
10 paper proposed a hybrid method to accurately identify primary and secondary crashes. Based on
11 the identified crash data, the binary logit model was implemented for modeling the contributing

1 factors. In addition, the HOPIT models were developed to examine the crash injury severity in
2 identified primary and secondary crash datasets. The experimental study results indicate that the
3 proposed hybrid method can effectively identify the primary and secondary crashes from the
4 database. The binary logit model finds the contributing factors of secondary crashes and the
5 crash injury severity patterns are identified by HOPIT models with the identified data of primary
6 and secondary crashes. Those findings could provide some insightful information to
7 transportation agencies to find effective countermeasures to reduce the secondary crashes and
8 reduce the injury severity of primary and secondary crashes on freeways.

9 Although some insightful findings are presented in this research. There are some
10 limitations, including: (1) more comprehensive and multi-source crash data should be utilized to
11 improve the accuracy of primary and secondary crash identification. (2) more crash information
12 should be collected to improve the modeling results of the binary logit model and HOPIT models.
13 (3) There might be some confounding variables that need to be found, such as AADT, road
14 geometry information. This might illustrate future studies to overcome this challenge.

15
16 **AUTHOR CONTRIBUTIONS**

17 The authors confirm contribution to the paper as follows: study conception and design: X. Yang
18 and Z. Zhang; data collection: Z. Zhang; analysis and interpretation of results: Z. Zhang, Y.
19 Gong, and X. Yang; draft manuscript preparation: Z. Zhang, Y. Gong, and X. Yang. All authors
20 reviewed the results and approved the final version of the manuscript.

1 **REFERENCE**

2 1. Owens, N., A. Armstrong, P. Sullivan, C. Mitchell, D. Newton, R. Brewster, and T. Trego.
3 *Traffic Incident Management Handbook*. Washington, DC, 2010.

4 2. Xu, C., P. Liu, B. Yang, and W. Wang. Real-Time Estimation of Secondary Crash
5 Likelihood on Freeways Using High-Resolution Loop Detector Data. *Transportation*
6 *Research Part C: Emerging Technologies*, Vol. 71, 2016, pp. 406–418.
7 <https://doi.org/10.1016/j.trc.2016.08.015>.

8 3. Sun, C. C., and V. Chilukuri. Dynamic Incident Progression Curve for Classifying
9 Secondary Traffic Crashes. *Journal of Transportation Engineering*, Vol. 136, No. 12,
10 2010, pp. 1153–1158. [https://doi.org/10.1061/\(ASCE\)TE.1943-5436.0000187](https://doi.org/10.1061/(ASCE)TE.1943-5436.0000187).

11 4. Zhan, C., A. Gan, and M. Hadi. Identifying Secondary Crashes and Their Contributing
12 Factors. *Transportation Research Record*, No. 2102, 2009, pp. 68–75.
13 <https://doi.org/10.3141/2102-09>.

14 5. Hirunyanitiwattana, Worapong, and S. P. Mattingly. Identifying Secondary Crash
15 Characteristics for California Highway System. 2006.

16 6. Moore, J. E., G. Giuliano, and S. Cho. Secondary Accident Rates on Los Angeles
17 Freeways. *Journal of Transportation Engineering*, Vol. 130, No. 3, 2004, pp. 280–285.
18 [https://doi.org/10.1061/\(ASCE\)0733-947X\(2004\)130:3\(280\)](https://doi.org/10.1061/(ASCE)0733-947X(2004)130:3(280)).

19 7. Zhan, C., L. Shen, M. A. Hadi, and A. Gan. Understanding the Characteristics of
20 Secondary Crashes on Freeways. 2008.

21 8. Zhang, H., and A. Khattak. What Is the Role of Multiple Secondary Incidents in Traffic
22 Operations? *Journal of Transportation Engineering*, Vol. 136, No. 11, 2010, pp. 986–997.
23 [https://doi.org/10.1061/\(ASCE\)TE.1943-5436.0000164](https://doi.org/10.1061/(ASCE)TE.1943-5436.0000164).

24 9. Yang, H., B. Bartin, and K. Ozbay. Mining the Characteristics of Secondary Crashes on
25 Highways. *Journal of Transportation Engineering*, Vol. 140, No. 4, 2014, pp. 1–10.
26 [https://doi.org/10.1061/\(ASCE\)TE.1943-5436.0000646](https://doi.org/10.1061/(ASCE)TE.1943-5436.0000646).

27 10. Yang, H., K. Ozbay, and K. Xie. Assessing the Risk of Secondary Crashes on Highways.
28 *Journal of Safety Research*, Vol. 49, No. February, 2014, pp. 143.e1-149.
29 <https://doi.org/10.1016/j.jsr.2014.03.007>.

30 11. Mishra, S., M. M. Golias, A. A. Sarker, and A. Naimi. *Effect of Primary and Secondary*
31 *Crashes: Identification, Visualization and Prediction*. 2017.

32 12. Wang, J., B. Liu, L. Zhang, and R. David R. Modeling Secondary Accidents Identified by
33 Traffic Shock Waves. *Accident Analysis and Prevention*, Vol. 87, 2016, pp. 141–147.
34 <https://doi.org/10.1016/j.aap.2015.11.031>.

35 13. Wang, J., W. Xie, B. Liu, S. Fang, and D. R. Ragland. Identification of Freeway
36 Secondary Accidents with Traffic Shock Wave Detected by Loop Detectors. *Safety*
37 *Science*, Vol. 87, 2016, pp. 195–201. <https://doi.org/10.1016/j.ssci.2016.04.015>.

1 14. Mitra, S., and S. Washington. On the Nature of Over-Dispersion in Motor Vehicle Crash
2 Prediction Models. *Accident Analysis and Prevention*, Vol. 39, No. 3, 2007, pp. 459–468.
3 <https://doi.org/10.1016/j.aap.2006.08.002>.

4 15. Lee, J., and F. Mannering. Impact of Roadside Features on the Frequency and Severity of
5 Run-off-Roadway Accidents: An Empirical Analysis. *Accident Analysis and Prevention*,
6 Vol. 34, No. 2, 2002, pp. 149–161. [https://doi.org/10.1016/S0001-4575\(01\)00009-4](https://doi.org/10.1016/S0001-4575(01)00009-4).

7 16. Chang, L.-Y., and F. L. Mannering. Predicting Vehicle Occupancies from Accident Data:
8 An Accident Severity Approach. *Transportation Research Record: Journal of the
9 Transportation Research Board*, Vol. 1635, No. 1, 2007, pp. 93–104.
10 <https://doi.org/10.3141/1635-13>.

11 17. Shankar, V., and F. Mannering. An Exploratory Multinomial Logit Analysis of Single-
12 Vehicle Motorcycle Accident Severity. *Journal of Safety Research*, Vol. 27, No. 3, 1996,
13 pp. 183–194. [https://doi.org/10.1016/0022-4375\(96\)00010-2](https://doi.org/10.1016/0022-4375(96)00010-2).

14 18. Ulfarsson, G. F., and F. L. Mannering. Differences in Male and Female Injury Severities
15 in Sport-Utility Vehicle, Minivan, Pickup and Passenger Car Accidents. *Accident Analysis
16 and Prevention*, Vol. 36, No. 2, 2004, pp. 135–147. [https://doi.org/10.1016/S0001-4575\(02\)00135-5](https://doi.org/10.1016/S0001-4575(02)00135-5).

18 19. Ye, F., and D. Lord. Comparing Three Commonly Used Crash Severity Models on
19 Sample Size Requirements: Multinomial Logit, Ordered Probit and Mixed Logit Models.
20 *Analytic Methods in Accident Research*, Vol. 1, 2014, pp. 72–85.
21 <https://doi.org/10.1016/j.amar.2013.03.001>.

22 20. Li, Z., Q. Wu, Y. Ci, C. Chen, X. Chen, and G. Zhang. Using Latent Class Analysis and
23 Mixed Logit Model to Explore Risk Factors on Driver Injury Severity in Single-Vehicle
24 Crashes. *Accident Analysis and Prevention*, Vol. 129, No. March 2018, 2019, pp. 230–240.
25 <https://doi.org/10.1016/j.aap.2019.04.001>.

26 21. Wu, Q., F. Chen, G. Zhang, X. C. Liu, H. Wang, and S. M. Bogus. Mixed Logit Model-
27 Based Driver Injury Severity Investigations in Single- and Multi-Vehicle Crashes on
28 Rural Two-Lane Highways. *Accident Analysis and Prevention*, Vol. 72, 2014, pp. 105–
29 115. <https://doi.org/10.1016/j.aap.2014.06.014>.

30 22. Anastasopoulos, P. C., and F. L. Mannering. An Empirical Assessment of Fixed and
31 Random Parameter Logit Models Using Crash- and Non-Crash-Specific Injury Data.
32 *Accident Analysis and Prevention*, Vol. 43, No. 3, 2011, pp. 1140–1147.
33 <https://doi.org/10.1016/j.aap.2010.12.024>.

34 23. Cerwick, D. M., K. Gkritza, M. S. Shaheed, and Z. Hans. A Comparison of the Mixed
35 Logit and Latent Class Methods for Crash Severity Analysis. *Analytic Methods in
36 Accident Research*, Vol. 3–4, 2014, pp. 11–27. <https://doi.org/10.1016/j.amar.2014.09.002>.

37 24. MCCARTHY, P. S., and S. MADANAT. Highway Accident Data Analysis: Alternative
38 Econometric Methods. *Transportation Research Record*, No. 1467, 1994, pp. 44–49.

1 25. Fountas, G., and P. C. Anastasopoulos. Analysis of Accident Injury-Severity Outcomes:
2 The Zero-Inflated Hierarchical Ordered Probit Model with Correlated Disturbances.
3 *Analytic Methods in Accident Research*, Vol. 20, No. October, 2018, pp. 30–45.
4 <https://doi.org/10.1016/j.amar.2018.09.002>.

5 26. Chen, C. C., C. C. Chen, and T. T. Hoang. Role of Concrete Confinement of Wide-Flange
6 Structural Steel Shape in Steel Reinforced Concrete Columns under Cyclic Loading.
7 *Engineering Structures*, Vol. 110, 2016, pp. 79–87.
8 <https://doi.org/10.1016/j.engstruct.2015.12.002>.

9 27. Fountas, G., and P. C. Anastasopoulos. A Random Thresholds Random Parameters
10 Hierarchical Ordered Probit Analysis of Highway Accident Injury-Severities. *Analytic*
11 *Methods in Accident Research*, Vol. 15, 2017, pp. 1–16.
12 <https://doi.org/10.1016/j.amar.2017.03.002>.

13 28. Washington, S. P., M. G. Karlaftis, and F. Mannerling. *Statistical and Econometric*
14 *Methods for Transportation Data Analysis*. Chapman and Hall/CRC, 2011.

15 29. Savolainen, P. T., F. L. Mannerling, D. Lord, and M. A. Quddus. The Statistical Analysis
16 of Highway Crash-Injury Severities: A Review and Assessment of Methodological
17 Alternatives. *Accident Analysis and Prevention*, Vol. 43, No. 5, 2011, pp. 1666–1676.
18 <https://doi.org/10.1016/j.aap.2011.03.025>.

19 30. Greene, W. H., and D. A. Hensher. *Modeling Ordered Choices: A Primer*. Cambridge
20 University Press, 2010.

21 31. Anastasopoulos, P. C., M. G. Karlaftis, J. E. Haddock, and F. L. Mannerling. Household
22 Automobile and Motorcycle Ownership Analyzed with Random Parameters Bivariate
23 Ordered Probit Model. *Transportation Research Record: Journal of the Transportation*
24 *Research Board*, Vol. 2279, No. 1, 2012, pp. 12–20. <https://doi.org/10.3141/2279-02>.

25 32. Russo, B. J., P. T. Savolainen, W. H. Schneider IV, and P. C. Anastasopoulos.
26 Comparison of Factors Affecting Injury Severity in Angle Collisions by Fault Status
27 Using a Random Parameters Bivariate Ordered Probit Model. *Analytic Methods in*
28 *Accident Research*, Vol. 2, 2014, pp. 21–29. <https://doi.org/10.1016/j.amar.2014.03.001>.

29 33. Egan, J. P. Signal Detection Theory and ROC-Analysis. *Academic press*, 1975.

30 34. Hou, Q., X. Huo, J. Leng, and Y. Cheng. Examination of Driver Injury Severity in
31 Freeway Single-Vehicle Crashes Using a Mixed Logit Model with Heterogeneity-in-
32 Means. *Physica A: Statistical Mechanics and its Applications*, Vol. 531, 2019, p. 121760.
33 <https://doi.org/10.1016/j.physa.2019.121760>.

34 35. Behnood, A., A. M. Roshandeh, and F. L. Mannerling. Latent Class Analysis of the Effects
35 of Age, Gender, and Alcohol Consumption on Driver-Injury Severities. *Analytic Methods*
36 *in Accident Research*, Vol. 3–4, 2014, pp. 56–91.
37 <https://doi.org/10.1016/j.amar.2014.10.001>.

38 36. Zhang, Z., R. Yang, Y. Yuan, G. Blackwelder, and X. Yang. Examining Driver Injury

1 Severity in Left-Turn Crashes Using Hierarchical Ordered Probit Models. *Traffic Injury
2 Prevention*, Vol. 0, No. 0, 2021, pp. 1–6. <https://doi.org/10.1080/15389588.2020.1841899>.

3