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ABSTRACT 1 
The occurrence of secondary crashes on highways would bring many adverse effects, such as 2 

traffic congestion, air pollution, leading to more crashes. Accurate identification of secondary 3 
crashes is the basis for identifying contributing factors and contributing factors are the 4 
cornerstones for incident management system to find effective strategies to reduce the risk of 5 
secondary crash. However, secondary crash records are often not recorded correctly. To tackle 6 
this issue, this research aims to propose a hybrid method to accurately identify primary and 7 

secondary crashes. Based on the identified primary and secondary crashes, this study developed 8 
a binary logit model to find contributing factors of secondary crashes and construct a HOPIT 9 
model to analyze the crash injury patterns in primary and secondary crashes with identified data 10 
of primary and secondary crashes, respectively. This study provides a better understanding of 11 

contributing factors as well as crash injury patterns of secondary crashes.  12 

Keywords: Crash identification, Secondary crashes, Crash injury severity, Binary logit model, 13 
Hierarchical ordered probit model  14 
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1. INTRODUCTION 1 

Secondary crashes (SC) are typically defined as crashes that occur within the congested 2 

spatiotemporal boundaries of the region in which a primary crash occurred (1). It usually occurs 3 
within the spatial and temporal impact ranges of an existing primary crash (2). The occurrence of 4 
secondary crashes on highways would bring many adverse effects, such as traffic congestion, air 5 
pollution, leading to more crashes. Owens et al. (1) reported that secondary crashes account for 6 
about 20% of all crashes and 18% of all fatalities on US freeways. While improving incident 7 

management is one of the effective ways to reduce the risk of secondary crashes (3, 4), the 8 
identification of appropriate incident management strategies should be based on the 9 
understandings of contributing factors to secondary crashes. To understand the contributing 10 

factors, accurate secondary crash data are needed. However, according to a preliminary study, 11 
only 390 crashes that occurred on freeway I-15 in the state of Utah from 2010 to 2020 are 12 
recorded as secondary crashes. Such data quality cannot meet the needs of developing effective 13 
incident management strategies.  14 

In addition, the secondary crashes on freeways have not been well studied yet in Utah. In 15 
recent decades, the development of intelligent transportation systems (ITS) has made 16 

transportation data easier to access, which offers the basis for secondary crash analysis. Notably, 17 
UDOT develops many databases for different research purposes, such as the Utah ClearGuide 18 
database, Freeway PeMS database, Numeric Crash Database, GIS-based crash database, etc. 19 

These databases offer the possibility to conduct research on identifying primary and secondary 20 
crashes from the crash database, finding the contributing factors of secondary crashes, and 21 

examining the crash injury patterns of primary and secondary crashes.  22 

Based on the discussion, this study aims to develop a hybrid method to effectively 23 

identify primary and secondary crashes from all crash records on freeways. Furthermore, the 24 
contributing factors of secondary crashes and crash injury patterns of primary and secondary 25 

crashes are analyzed by statistical models with identified primary and secondary crashes. This 26 
study could provide some basis for future research in the same field. The study results of this 27 
paper will provide some insightful findings to help transportation agencies build up a more 28 

effective incident management system to mitigate the secondary crashes on freeways.   29 

The rest of the paper is organized as follows. Section 2 reviews existing studies related to 30 
secondary crash identification, contributing factors modeling, and crash injury severity modeling. 31 

The hybrid method for primary and secondary crashes identification, binary logit model, and 32 
HOPIT model are presented in Section 3. Section 4 conducts the results analysis. The last section 33 

summarizes the key findings and future research directions. 34 

2. LITERATURE REVIEW 35 

The static and dynamic methods are two popular approaches to identify secondary crashes. The 36 
static threshold methods assumes that the secondary crashes should happen within a spatial and 37 

temporal range of a primary crash. For example, Hirunyanitiwattana and Mattingly (5) used the 38 
static thresholds of 1 h and 2 miles upstream of a primary crash to identify secondary crashes. 39 
Any crashes are determined as secondary crashes if they happen within 1 h and 2 miles after a 40 
primary crash. There are also other similar studies using static methods (6, 7). The disadvantage 41 
of the static method is the predetermined fixed spatial and temporal threshold. To overcome the 42 

limitation of the static method, a series of studies developed dynamic methods to identify 43 
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secondary crashes. Such as queue length estimations (8), incident progression curve (3), 1 
cumulative arrival and departure plots (4), and speed contour plot (2, 9).  2 

In the literature, the logit model has been widely implemented to identify the contributing 3 
factors of secondary crashes (4, 8, 10–13). The logit model has many advantages. The error 4 
terms of dependent variables in the logit model do not need to be normally distributed. It has a 5 
superior ability to avoid overfitting problems (14). It also outperforms other models in dealing 6 
with an unbalanced sample, in which the number of one class is much larger than those of the 7 

other classes. To reduce the risk of secondary crashes, the existing studies have been conducted 8 
to identify the relationship between the probability of secondary crashes and contributing factors, 9 
such as characteristics of the primary crash, traffic conditions, geometric information, weather 10 

conditions, and demographic information (4, 8, 10–13). Based on the results of those studies, the 11 
collision type, occurrence time, number of vehicles involved, and crash duration were found to 12 
be significantly related to the likelihood of secondary crashes. In detail, the secondary crashes 13 
are less likely to happen during the off-peak hours or on the weekend (Yang et al., 2014b; Zhan 14 

et al., 2009). More vehicles involved in crashes increase the probability of secondary crashes 15 
(Mishra et al., 2017; Zhang and Khattak, 2010). In addition, rear-end crashes with longer 16 

durations are found to increase the risk of secondary crashes (Yang et al., 2014b).  17 

For examining the crash injury severity, the discrete choice regression models are widely 18 
implemented to analyze crash injury severity. The discrete choice regression models can be 19 

further classified into (a) logit models, including nested models (15, 16),  multinomial logit 20 
models (17–19), Mixed logit models (19–23), and (b) probit models include ordered probit 21 

model with fixed and random parameters (19, 24–26). Driver injury severities are often modeled 22 
as discrete injury severity outcomes (for instance, NI (no injury), MI (minor injury), and SI 23 

(severe injury)). Both ordered probit models and discrete choice models have their limitations in 24 
modeling discrete injury severity outcomes. These discrete outcome models with the flexibility 25 

of overlapping possible variables across the outcomes can estimate distinguished sets of 26 
independent variables for each crash injury severity result (27). These models assume that the 27 
discrete outcomes are independent of each other and they cannot consider the ordinal nature of 28 

crash injury severity. In contrast, the ordered probit model assumes that the same independent 29 
variables have different influences on different crash injury severity outcomes, which enables the 30 

ability of the ordered probit model to account for the ordinal characteristics of crash injury 31 

severity. However, Washington et al. (28) and Savolainen et al. (29) pointed out that the ordered 32 

probit model cannot explain how the thresholds that are estimable parameters profoundly affect 33 

intermediate categories and the effect of the independent variables on the highest and lowest 34 
ordered discrete category probabilities, with the impact on the interior category probabilities. The 35 
hierarchical ordered probit (HOPIT) model can overcome this limitation. The thresholds in the 36 
HOPIT model are always positive and ordered,  as a function of unique explanatory parameters 37 
that do not necessarily affect the ordered probability outcomes directly (27).  38 

3. METHODOLOGY  39 

Hybrid Method for Primary and Secondary Crashes Identification 40 

To overcome the limitations of existing static and dynamic methods, this study used a 41 
hybrid method that combines the traditional static method (i.e., fixed temporospatial thresholds) 42 

and speed contour plot to identify primary and secondary crashes. The main idea of the hybrid 43 
method is to identify paired prior and secondary crash by fixed temporospatial thresholds and 44 
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then validate it with the spatial and temporal impact range of a prior crash using real-time traffic 1 
flow data. Figure 1 illustrates the flowchart of the hybrid method.  2 

 3 

Figure 1 The flowchart of hybrid method for secondary crashes identification 4 

Static Method 5 

Firstly, the static method is applied to obtain potential paired crashes. The basic logic in 6 
the static method is to use fixed temporospatial thresholds to identify paired prior and secondary 7 

crashes from the database. Based on the literature review, the fixed temporospatial thresholds of 8 

two miles and one hour are set up for the static method in this study.  9 

Dynamic Method 10 

After the potential paired crashes are filtered by the static method, the speed contour plot, 11 

one of the dynamic methods, is used to identify secondary crashes. The core logic is to determine 12 
the spatial and temporal impact range of a prior crash using real-time traffic flow data while 13 

accounting for the effects of recurrent congestions. A secondary crash is then identified if it is 14 
within the spatial and temporal impact range of this prior crash. The detailed procedure for 15 
implementing the dynamic method can be stated as follows: 16 

• Identify the location of the labeled secondary crash (shown in Figure 2). 17 

• Extract 5-min speed data from detectors upstream and downstream of the location of the 18 

labeled secondary crash.  19 

• Implement traffic state estimation to obtain high-resolution data for plotting 20 

temporospatial speed contour. 21 

• Constructing speed contour plot for a labeled secondary crash: speed data (between 22 
before and after 6 h of labeled secondary crash) from traffic detectors within about 2 23 

miles of upstream and downstream. Figure 3 presents an example of a speed contour plot 24 
for a prior crash. It can be clearly seen that congestions and queue formations.  25 

• Subtracted the average speed over crash-free days to build a new contour plot, the effects 26 

of recurrent congestions can be eliminated. Figure 4 presents an example of a subtracted 27 
average speed contour plot of a labeled secondary crash. 28 

• The crashes were found as primary crashes if they happened in the same fixed 29 

temporospatial impact ranges of the labeled secondary crash. 30 
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 1 
Figure 2 Illustration of downloading data for dynamic approach 2 

 3 
Figure 3 Speed contour plot of labeled secondary crash 4 

 5 
Figure 4 Subtracted Average Speed contour plot of labeled secondary crash 6 
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Binary Logit Model 1 

The probability of the occurrence of a secondary crash given that there is a crash, which 2 

is equal to the probability of occurrence of the primary crash since the identified primary and 3 
secondary crashes are in pairs:  4 

𝑃(𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑐𝑟𝑎𝑠ℎ|𝑐𝑟𝑎𝑠ℎ) = 𝑃 (𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑐𝑟𝑎𝑠ℎ|𝐶𝑟𝑎𝑠ℎ)  (1) 5 

The binary logit model is used for modeling the probability of the occurrence of 6 
secondary crashes. In this project, the dependent variable of the logit model is the probability of 7 

the resulting outcome indicates the presence of a binary indicator variable coded as 1 (primary 8 
crash) or 0 (normal crash). The general form of the logistic model used in this project is 9 
presented in Equation 1.  10 

𝑃𝑖 =  
𝑒𝛽

1+𝑒𝛽 , 𝛽 =  𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛    (2) 11 

The logistic regression equation is approximately linear in the middle ranges and 12 

logarithmic at extreme values (28). A simple transformation of logistic regression is shown 13 
below: 14 

(
𝑃𝑖

1−𝑃𝑖
)= 𝑒(𝛽0̂+𝛽𝑖̂𝑥𝑖) = 𝑒𝛽0̂𝑒𝛽𝑖̂𝑥𝑖     (3) 15 

which shows that when the value of an explanatory variable increases by one unit, and all other 16 
variables are held constant, the probability ratio becomes: 17 

(
𝑃𝑖

1−𝑃𝑖
)* = 𝑒𝛽0̂𝑒𝛽𝑖̂(𝑥𝑖+1) =  𝑒𝛽0̂𝑒𝛽𝑖̂𝑥𝑖𝑒𝛽𝑖̂ = (

𝑃𝑖

1−𝑃𝑖
) 𝑒𝛽𝑖̂   (4) 18 

Thus, an increase in the independent variable 𝑥𝑖  by one unit (all other factors held 19 

constant, which is typically only possible when multicollinearity does not exist), the odds (
𝑃𝑖

1−𝑃𝑖
) 20 

increase by the factor 𝑒𝛽𝑖̂. The factor 𝑒𝛽𝑖̂ is the odds ratio and indicates the relative amount by 21 
which the odds of an outcome increases (odds ratio >1) or decreases (odds ratio <1) when the 22 
value of the corresponding independent variable increases by 1 unit. 23 

Driver Injury Severity Modeling 24 

In this study, hierarchical ordered probit (HOPIT) models are developed to identify 25 

significant casual factors and quantify their impacts on driver injury severities in primary and 26 
secondary crashes. To investigate the crash injury probabilities and severity in primary and 27 
secondary crashes with an ordered probability setting, this study utilized ordered probability 28 

models by defining an unobserved variable 𝑧 that can be used as a basis for modeling ordinal 29 

ranking of data. The unobserved variable 𝑧 can be denoted as follows (28):  30 

𝑧𝑖 = 𝛽𝜒𝑖 + 𝜀𝑖 (5) 

where 𝜒 is a vector of explanatory variables determining the order for observation 𝑖; 𝛽 is a vector 31 

of estimable parameters; and 𝜀  is a random disturbance. The observed ordinal data 𝑦 , 32 

corresponding to the order of injury-severity outcomes for each observation, can be determined 33 
as below (28): 34 

𝑦𝑖  = 𝑗 if 𝜇𝑗−1 <  𝑧𝑖 < 𝜇𝑗, 𝑗 = 1, … , 𝐽 (6) 
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where, 𝜇 are threshold parameters; 𝑦 and 𝑗 represent ordered ranking of injury severity such as 1 
“no injury”, “minor injury”, and “severe injury”. 2 

The ordered probability results are fixed among the observations in the traditional 3 
ordered probit model. Not all ordinal data are best modeled using ordered probability models (28) 4 
since the restrictions placed on how variables are believed to affect ordered discrete outcome 5 
probabilities,. HOPIT model has the ability to solve this problem to some extent by allowing 6 
thresholds to be varied as a function of a set of explanatory parameters, which can be expressed 7 

as follows  (30): 8 

𝜇𝑖,𝑗 = 𝜇𝑖,𝑗−1 + exp(𝑡𝑗 + 𝒅𝑗𝑺𝑖) (7) 

where 𝑺 are vectors of variables affecting the thresholds, 𝒅 are vectors of estimable parameters 9 

for 𝑺, and 𝑡 is the intercept for each threshold. The threshold 𝜇0 is assumed to be zero, without 10 

loss of generality (28). The number of estimable thresholds is equal to the total crash severity 11 

level 𝑗  – 2. In this study, the ordered probability of each crash severity level 𝑗  of each 12 
observation can be determined by the following equation (28): 13 

𝑃(𝑦 = 𝑗) = 𝛷(𝜇𝑗 − 𝛽𝜒𝑖) − 𝛷(𝜇𝑗+1 − 𝛽𝜒𝑖) (8) 

where 𝑃(𝑦 = 𝑗)  is the probability of each crash injury severity level 𝑗 ; 𝛷 (.) represents the 14 

cumulative normal distribution; and 𝜇𝑗  and 𝜇𝑗+1  denote the upper and lower thresholds for 15 

outcome 𝑗. 16 

The influence of each explanatory variable on the probability of each crash injury 17 

severity level cannot be captured by the parameter estimates (especially on the intermediate 18 

levels) (28). To address this problem, it can be calculated by marginal effects (27, 28, 31, 32) 19 
using the following equation:  20 

𝑃(𝑦 = 𝑗)

𝜕𝜒 = [𝛷(𝜇𝑗−1 − 𝛽𝜒) −  𝛷(𝜇𝑗 − 𝛽𝜒)]𝛽 
(9) 

The marginal effects are computed at the sample mean of the explanatory variables and 21 

calculated using the average of 𝛽  for random parameters. The marginal effects measure the 22 
change in the outcome probability of each ordered ranking, which is caused by a unit change in a 23 
continuous or ordinary explanatory variable. 24 

4. RESULTS ANALYSIS 25 

Primary and Secondary Crashes Identification 26 

The experimental study was conducted on freeway I-15 in the state of Utah. Three-year 27 
(2017 to 2019) crash and traffic data were retrieved from Numetric database and Performance 28 
Measurement System (PeMS) managed by the Utah Department of Transportation (UDOT) 29 
respectively. We used fixed temporospatial thresholds of two miles and one hour to filter the 30 

potential primary and secondary crashes. Then the dynamic approach is implemented to cross-31 
check the accuracy of identified primary and secondary crashes.  32 

After we implemented the static method, 2,710 primary crashes and 3,341 secondary 33 
crashes are found. These identified primary and secondary crashes were validated by the hybrid 34 

method. Finally, we obtained 2,653 (97.95%) primary crashes, 2,953 (88.4%) secondary crashes, 35 
and 18,878 normal crashes were identified in the database. Table 1 presents the distribution of 36 
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identified primary and secondary crashes from 2017 to 2019 and the percentage in the total 1 
crashes.  2 

Table 1 Identified primary, secondary, and normal crashes by hybrid method 3 

Time Identified primary 

crash 

Identified secondary 

crash 

Identified normal 

crash 

Total 

2017 1049 (12.3%) 1181 (13.8%) 6349 (74.2%) 8549 

2018 886 (11.2%) 960 (12.2%) 6042 (76.6%) 7888 

2019 718 (8.5%) 812 (9.7%) 6877 (81.8%) 8407 

Total 2,653 2,953 18,878 24484 

Modeling Contributing Factors of Secondary Crash 4 

Based on identified prior and secondary crashes, detailed information (such as crash 5 
injury severity level, crash occurrence time, driver information, weather conditions, 6 
environmental conditions, roadway surface condition, location, etc.) are collected for each crash. 7 

16,332 out of 18,878 normal crash records were used for model development in the next step, 8 

after removing incomplete records.  9 

As shown in Table 2, 12 variables (including young people, daylight, snow weather, 10 
angle collision, rear-end crash, multiple vehicles involved, collision with fixed objects, speed-11 
related crash, minivan, adverse roadway surface condition, vehicle slowing in traffic lane, and 12 
roadway with straight alignment) are found to positively associated with the probability of 13 
secondary crashes, indicating that those factors will significantly increase the probability of the 14 

occurrence of secondary crashes. Only “Weekend” and “Rural” are negatively associated with 15 

the probability of the occurrence of secondary crashes, indicating that crashes occurred on 16 
weekends and in rural areas are more likely to lead to a secondary crash. The odds ratio 17 
represents the increase in the likelihood that a crash will lead to a secondary crash. For example, 18 

for a rear-end crash, there is almost an 89.3% increase in the likelihood that a crash leads to a 19 
secondary crash.  20 

The correlation test is conducted to determine the correlations between variables. The 21 
autocorrelations of variables are presented in Figure 5, which indicate that there are no strong 22 
correlations between all candidate variables. The ROC curve is used to evaluate the predictive 23 
performance of different models (33). A model of binary outcome (primary crash = 1 and non-24 

primary crash = 0) classifies an observation as an event if the predicted probability of the 25 

observation exceeds a pre-specified threshold. Otherwise, it will be classified as a non-event. The 26 

ROC curve was developed to evaluate the predictive performance of the developed secondary 27 
crash risk prediction model presented in Table 5.3. As shown in Figure 6, the area under the 28 
ROC curve is 0.796, which indicates that the binary logit model has a good predictive 29 
performance.   30 
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Table 2 Modeling results for secondary crash risk prediction 1 

Variable Estimated 

Parameter 

T-

ratio 

P-value 95% Coefficient 

interval 

Constant -5.19 -35.12   0.00*** -5.482, -4.902 

Age (Young)  0.10         1.73   0.08* -0.014, 0.216 

Weekend -0.35 -4.34   0.00*** -0.513, -0.194 

Light (Daylight) 2.40 18.07   0.00*** 2.137, 2.657 

Weather (Snow) 0.83 8.30   0.00*** 0.636, 1.030 

MOC (Angle) 0.50 3.26   0.00*** 0.200, 0.804 

Crash type (Rear-end) 0.64 8.77   0.00*** 0.496, 0.781 

Multiple vehicles involved 0.26 3.77   0.00*** 0.123, 0.390 

Collision with fix object 0.23 3.01   0.00*** 0.081, 0.386 

Speed related 0.19 3.15   0.00*** 0.071, 0.303 

Rural -0.96 -7.85   0.00*** -1.197, -0.719 

Minivan 1.83 2.65   0.00*** 0.478, 3.176 

Adverse Roadway Surf Condition 0.40 4.68   0.00*** 0.233, 0.568 

Vehicle Maneuver (Slowing in traffic 

lane) 

0.20 2.83   0.00*** 0.061, 0.335 

Horizontal Alignment (Straight) 0.24 4.32   0.00*** 0.131, 0.348 

Odds Ratio 

Age (Young)  1.106   0.980, 1.233 

Weekend 0.702   0.590, 0.814 

Light (Daylight) 10.990   8.133, 13.847 

Weather (Snow) 2.300   1.847, 2.752 

MOC (Angle) 1.652   1.153, 2.151 

Crash type (Rear-end) 1.893   1.623, 2.163 

Multiple vehicles involved 1.292   1.120, 1.465 

Collision with fix object 1.264   1.071, 1.456 

Speed related 1.206   1.065, 1.346 

Rural 0.384   0.292, 0.475 

Minivan 6.214   -2.171,14.600 

Adverse Roadway Surf Condition 1.493   1.242, 1.743 

Vehicle Maneuver (Slowing in traffic 

lane) 

1.218   1.052, 1.385 

Horizontal Alignment (Straight) 1.270   1.132, 1.408 

 

Number of observations 18985 

Log-likelihood -5078.60 
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 1 
Figure 1 Variable correlation results in binary logit model 2 

 3 
Figure 6 ROC curve for the binary logit model 4 

Examining the Primary and Secondary Crash Injury Severity Patterns 5 

The crash injury severity was grouped by five levels in the original UDOT dataset 6 
including no injury, possible injury, minor injury, severe injury, and fatal. In this study, possible 7 
and minor injuries are combined as the minor injury level, and severe injuries and fatal are 8 
combined as the severe injury level for yielding a statistically meaningful sample size. Hence, 9 

the driver injury severity is recategorized into three levels including NI (no injury), MI (Minor 10 
injury), and SI (severe injury) which is similar to existing studies (34–36). In this project, two 11 

HOPIT models were estimated for primary and secondary crashes. Before running the model, the 12 
correlation between variables was plotted to test the autocorrelation of variables and presented in 13 
Figure 7-8. The figures show that there is no strong relationship between all candidate variables. 14 

ROC Curve for   Logit      Model. Area = .795688
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Table 3 and Table 5 show the estimated results of the HOPIT models for primary and secondary 1 
crashes.  2 

Among 2,653 identified primary crashes, 1,835 (69.17%), 771 (29.06%), and 26 (1.77%) 3 
records were reported as no injury, minor injury, and severe injury, respectively. Among 2,953 4 
identified secondary crashes, 2,159 (73.11%), 768 (26.01%), and 26 (0.88%) records were 5 
reported as no injury, minor injury, and severe injury, respectively. Thirteen variables are found 6 
to be significant in primary crashes. Nine variables are found to be significant in secondary 7 

crashes. All variables are statistically significant to explain the variations in the threshold. The 8 
negative coefficients of threshold covariates indicate an upward shift on the threshold parameter 9 
and positive coefficients of threshold covariates indicate a downward shift on the threshold 10 

parameter. In Table 4 and Table 6, the marginal effects of each explanatory variable, related to 11 
the probability of a single crash that results in a severity outcome, are estimated for primary 12 
crash and secondary. More detailed result analyses and explanations are presented following. 13 

 14 
Figure 7 Variable correlation results in HOPIT model for primary crash 15 

 16 
Figure 8 Variable correlation results in HOPIT model for secondary crash 17 
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For primary crashes, female drivers are more likely to be involved in severe primary 1 
crashes by 0.3%. It is reasonable that suspected alcohol is positively related to the crash severity, 2 

with the coefficients of 0.60. Drivers with suspected alcohol use are more prone to be involved in 3 
minor and severe-injury crashes, especially minor injury crashes. Compared with other collision 4 
types, the angle collision has a higher potential impact (coefficient = 0.89) on minor-injury and 5 
severe-injury in primary crashes. Vehicle-fixed-object crashes are 9.7% and 0.9% more likely to 6 
lead to minor injury and severe injury in primary crashes (relative to other types of crashes). The 7 

front to rear crash is positively significant in predicting the crash severity, with the coefficients 8 
of 0.54. Compared with single and two-vehicle involved, multiple vehicles involved (coefficient 9 
= 0.60) can significantly increase the possibility of minor and severe injury. It is reasonable that 10 
distracted driving is positively related to the crash severity, with a coefficient of 0.23. The 11 

distracted driver is more prone to minor and severe injury crashes, especially minor injury 12 
crashes. Overturn vehicle crash is positively significant in predicting the crash injury severity, 13 
with the coefficients of 1.18. It is more likely to be involved in minor and severe injury primary 14 
crashes by 33.7% and 10.7%, respectively. It is perceptive that crashes with minor injuries and 15 

severe injuries are less likely to occur in rural areas (with a coefficient of -0.23). The work-zone-16 

involved crashes are more likely to lead to minor injuries and severe injuries. It is reasonable that 17 
crashes with high speed have a positively significant impact on increasing the possibility of 18 
minor injuries and severe injuries, with a coefficient of 0.16. Primary crashes with airbags 19 

deployed are 19.7% and 2.7% more likely to lead to minor injuries and severe injuries. Normally, 20 
the airbag deployed indicates that the vehicle is severely damaged, so the driver might get 21 

severely injured. Passenger vehicle type is found to be significant in primary crashes with 22 

negative parameters -0.24. It may reduce the possibility of minor injury and severe injury in 23 

primary crashes.  24 

According to the results of the HOPIT model developed for secondary crashes, female 25 

drivers are more likely to be involved in minor-injured secondary crashes by 5.4%. Drivers with 26 
suspected drug use are more likely to be involved in crashes with minor and severe injuries, with 27 
a coefficient of 0.85. Drivers with suspected drug use are more prone to be involved in crashes 28 

with minor and severe injuries, especially minor-injury crash. Compared with other collision 29 
types, the head-on collision has a higher probability of leading to minor injuries and severe 30 

injuries, with a coefficient of 0.82. Vehicle-fixed object crashes are 6.0% and 0.2% more likely 31 

to lead to minor injuries and severe injuries in secondary crashes (relative to other types of 32 
crashes). The rear-end crash is positively related to crash severity, with the coefficients of 0.42. 33 

Compared with single and two-vehicle involved, multiple vehicles involved (coefficient = 0.48) 34 
can significantly increase the possibility of minor and severe injuries, especially for minor 35 
injuries. Overturn vehicle crashes may lead to higher crash injury severity, with a coefficient of 36 
1.16. Drivers involved in overturn vehicle crashes are 38.0% or 5.5% more likely to get minor or 37 
severe injured, respectively. Secondary crashes with airbags deployed are 20.8% and 1.3% more 38 

likely to lead to minor injuries and severe injuries. Passenger vehicle type is found to be 39 
significant in primary crashes with negative parameters 0.088. It may reduce the possibility of 40 
minor injury and severe injury in secondary crashes.   41 
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Table 3 Estimation Results for Primary Crash 1 

***, **, * Significance at 1%, 5%, 10% level. 2 

Table 4 Marginal Effects for Primary crash 3 

Variable  No injury Minor injury Severe injury 

Female driver -0.034 0.031 0.003 

Suspected alcohol -0.227 0.196 0.031 

Angle collision -0.341 0.280 0.061 

Front to rear crash -0.182 0.167 0.015 

Multiple vehicles involved -0.220 0.195 0.025 

Distracted Drive -0.082 0.074 0.008 

Collison with fix object -0.106 0.097 0.009 

Overturn -0.444 0.337 0.107 

Rural 0.073 -0.068 -0.005 

Work zone involved -0.105 0.095 0.010 

High speed -0.055 0.051 0.005 

Air bag deployed -0.224 0.197 0.027 

Passenger vehicle 0.088 -0.080 -0.008 

Variable description Estimated parameter Standard error T-ratio P-value 

Constant -1.10 0.13 -8.42 0.00*** 

Female driver 0.10 0.05 1.80 0.00* 

Suspected alcohol 0.60 0.24 2.53 0.01*** 

Angle collision 0.89 0.12 7.46 0.00*** 

Front to rear crash 0.54 0.07 7.18 0.00*** 

Multiple vehicles involved 0.60 0.08 7.98 0.00*** 

Distracted Drive 0.23 0.11 2.02 0.04** 

Collison with fix object 0.30 0.07 4.11 0.00*** 

Overturn 1.18 0.15 7.95 0.00*** 

Rural -0.23 0.12 -1.82 0.07* 

Work zone involved 0.29 0.09 3.07 0.00*** 

High speed 0.16 0.06 2.62 0.01*** 

Air bag deployed 0.60 0.07 8.20 0.00*** 

Passenger vehicle -0.24 0.11 -2.26 0.02** 

Threshold parameter     

𝜃1 0.42054 0.06298 6.68 0.00*** 

Threshold covariates     

y1 -0.20 0.09 -2.18 0.03** 

y2 0.32 0.08 3.98 0.00*** 

y3 0.56 0.15 3.86 0.00*** 

Summary statistics  

Number of observations  2653 

LL(0) -1818.80 

LL(β) -1615.39 

AIC 3266.8 

McFaden Pseudo R2 0.11 
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Table 5 Estimation Results for Secondary Crash 1 

***, **, * Significance at 1%, 5%, 10% level. 2 

Table 6 Marginal Effects for Secondary crash 3 

Variable  No injury Minor injury Severe injury 

Female driver -0.056 0.054 0.002 

Suspected Drugs -0.319 0.291 0.028         

MOC (Head-on) -0.308 0.282 0.026         

Crash type (Rear-end) -0.133         0.128          0.004          

Multiple vehicles involved -0.168 0.160 0.008 

Collison with fix object -0.062 0.060 0.002          

Overturn -0.435 0.380 0.055 

Air bag deployed -0.221 0.208 0.013 

Passenger vehicle 0.154 -0.146 -0.008        

5. CONCLUSION AND FUTURE RESEARCH DIRENCTIONS 4 

Accurate identification of secondary crashes is the basis for identifying contributing factors and 5 
contributing factors are the cornerstones for the incident management system to find effective 6 
strategies to reduce the risk of secondary crashes. This paper provided a preliminary analysis of 7 
traffic crash records and labeled secondary crash records in the UDOT’s crash database. The 8 
results show that the accuracy of labeled secondary crash records is low. To tackle this issue, this 9 

paper proposed a hybrid method to accurately identify primary and secondary crashes. Based on 10 
the identified crash data, the binary logit model was implemented for modeling the contributing 11 

Variable description Estimated parameter Standard error T-ratio P-value 

Constant -0.81 0.12 -6.49 0.00*** 

Female driver 0.17 0.05 3.35 0.00*** 

Suspected Drugs 0.85 0.29 2.94 0.00*** 

MOC (Head-on) 0.82 0.31 2.63 0.01*** 

Crash type (Rear-end) 0.42 0.07 6.42 0.00*** 

Multiple vehicles involved 0.48 0.08 6.23 0.00*** 

Collison with fix object 0.19 0.07 2.55 0.01*** 

Overturn 1.16 0.16 7.28 0.00*** 

Air bag deployed 0.61 0.08 8.13 0.00*** 

Passenger vehicle -0.43 0.11 -4.00 0.00*** 

Threshold parameter     

𝜃1 0.76 .053 14.35 0.00*** 

Threshold covariates     

y1 -0.33 0.12 -2.82 0.00*** 

y2 -1.07 0.43 -2.48 0.01** 

y3 0.28 0.18 1.60 0.10* 

Summary statistics  

Number of observations  2953 

LL(0) 1833.52 

LL(β) -1667.21 

AIC 3362.4 

McFaden Pseudo R2 0.09 
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factors. In addition, the HOPIT models were developed to examine the crash injury severity in 1 
identified primary and secondary crash datasets. The experimental study results indicate that the 2 

proposed hybrid method can effectively identify the primary and secondary crashes from the 3 
database. The binary logit model finds the contributing factors of secondary crashes and the 4 
crash injury severity patterns are identified by HOPIT models with the identified data of primary 5 
and secondary crashes. Those findings could provide some insightful information to 6 
transportation agencies to find effective countermeasures to reduce the secondary crashes and 7 

reduce the injury severity of primary and secondary crashes on freeways.  8 

Although some insightful findings are presented in this research. There are some 9 
limitations, including: (1) more comprehensive and multi-source crash data should be utilized to 10 

improve the accuracy of primary and secondary crash identification. (2) more crash information 11 
should be collected to improve the modeling results of the binary logit model and HOPIT models. 12 
(3) There might be some confounding variables that need to be found, such as AADT, road 13 
geometry information. This might illustrate future studies to overcome this challenge. 14 
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