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ABSTRACT

Traffic flow prediction task plays important role in Intelligent Transportation Systems (ITS) on
freeways. However, incomplete traffic information tends to be collected by traffic detectors,
which is a major constraint for existing methods to get precise traffic predictions. To overcome
this limitation, this study aims to propose and evaluate a new advanced model, named transfer
learning-based long short-term memory (LSTM) model for traffic flow forecasting with
incomplete traffic information, that adopts traffic information from similar locations for the
target location to increase the data quality. More specifically, Dynamic Time Warping (DTW) is
used to evaluate the similarity between the source and target domains and then transfer the most
similar data to the target domain to generate a hybrid complete training sample for LSTM to
improve the prediction performance. To evaluate the effectiveness of the transfer learning-based
LSTM, this study implements empirical studies with a real-world dataset collected from a stretch
of I-15 freeway in Utah. Experimental study results indicate that the transfer learning-based
LSTM network could effectively predict the traffic flow conditions with a training sample with
missing values.

Keywords: Traffic flow prediction, Transfer learning, LSTM, Missing data
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1. INTRODUCTION

With the rapid development of urbanization, traffic congestion mitigation and environmental
pollution treatment have become significant problems that need to be solved in modern cities.
Recently, with the advancement of data collecting, processing, and computation technologies,
data-driven approaches offer the possibility of utilizing data-driven and computation technology
to efficiently tackle these problems. Intelligent transportation systems (ITS) aims to apply data-
driven computing technology to provide more accurate traffic state prediction (TSP) by using
massive data created in cities, which helps travelers plan their trips, allows transportation
agencies to take actions to mitigate traffic congestion, and therefore reduce air pollution. The
acquisition of accurate future traffic information has always been complicated due to the
stochastic nature of traffic patterns. TSP is a method that can predict future traffic information
based on historical traffic information (/—6), which is an effective way to obtain future traffic
information. In practice, historical traffic information is usually collected by various stationary
traffic sensors, which can be easily retrieved because it is collected by fixed traffic detectors (e.g.,
inductive loops and radar detectors) on freeways. However, those collected historical data
usually contain missing values and significantly limit traffic state prediction.

Recently, the effectiveness of transfer learning models in improving the performance of
machine learning models in various fields has been recognized, such as environmental science (7,
8), quantum chemistry (9), Bioinformatics (/0), transportation (//, 12), etc. In transportation
field, people mainly utilized transfer learning model for inter-city transfer to solve the
insufficient data limitations in target cites (//, /3). However, addressing flawed data problems
with transfer learning methods has not been well investigated in the literature. Therefore, this
research aims to develop an innovative framework, named as transfer learning-based LSTM, to
solve the missing data problem in TSP tasks. More specifically, transfer learning is used to find
out the monitoring stations with complete monitoring data and similar to the target domain and
then create a hybrid training sample consisting of data from target and source domains. Then
LSTM network 1is trained using hybrid training sample. This study makes significant
contributions to the literature from the following perspectives: (1) an innovative transfer
learning-based LSTM model is proposed for TSP problem; (2) an advanced method is provided
to solve the flawed data problem in TSP tasks.

The remainder of this paper is organized as follows. Section 2 reviews existing studies
related to missing data problems, transfer learning, and traffic state prediction. The transfer
learning-based LSTM framework are presented in Section 3. Section 4 implements the case
study on a real-world data from interstate freeway I-15. The last section summarizes the key
findings and future research directions.

2. LITERATURE REVIEW
Missing Data Problem

The missing data can be caused by many reasons in the traffic flow, such as malfunction
of the sensor, manual system closure, and errors in signal transmission (3). Therefore, missing
data imputation is a hot topic and many methods have been developed for reducing the impact of
missing data. Those methods can be generally classified into three categories: (a) Interpolation,
including temporal-neighboring and pattern-similar imputation methods (/4). The interpolation
models cannot make full use of local daily flow variation information to improve model



O 0O NOULL B WN B

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Z.Zhang & X. Yang

performance (/5). (b) Statistical learning methods, such as Markov chain Monte Carlo (MCMC)
(16) and probabilistic principal component analysis (PPCA) (17, 18). It can obtain traffic flow
information by using the statistical characteristics of traffic flow, but the accuracy is low because
these approaches are based on prior knowledge. (c) data-driven prediction approaches, including
autoregressive integrated moving average (ARIMA) (/9), Bayesian networks (20, 21), neural
network (22, 23), support vector regression (24), and long short-term memory (LSTM) network
(3). With the advancement of data collecting, processing, and computation technologies, data-
driven approaches are more popular and efficient to solve the missing data problems in traffic
flow prediction recently.

Transfer Learning

For traditional machine learning models, the basic assumption is the training data and
testing data are taken from the same domain, so the input feature space and data distribution
characteristics are the same. However, in some real-world machine learning scenarios, this
assumption does not hold. There are cases where training data is expensive or difficult to collect.
Therefore, there is a need to create high-performance learners trained with more easily obtained
data from different domains. This methodology is referred to as transfer learning (25). Transfer
learning is a novel branch of artificial intelligence (AI), which allows the distributions of training
samples to be different (7). More specifically, transfer learning is a unique technique that uses
well-established knowledge from a related source domain to improve the learning efficiency in
the target domain (25). Hence, it has been widely implemented in various fields to solve the
problem of limited data in target domain to train the model. In this study, due to the large ratio of
missing data issues at target stationary detectors, the unavailability of time series of labeled
training data leads to unsatisfactory modeling performance. Therefore, transfer learning is
applied to transfer knowledge from the complete sequences obtained at nearby detectors or
detectors located on similar roadway geometry to an incomplete sequence in the target domain.

Traffic state prediction

In the past decades, many data-driven models have been developed to predict short-term
traffic state. Those models can be generally grouped by parametric methods and nonparametric
methods (26). Parametric methods mainly include ARIMA model (27-29) and Kalman filter (30,
31). They cannot obtain satisfying performance under irregular traffic variations. To solve this
limitation, nonparametric methods are developed to obtain the acquisition of nonlinear laws from
historical data. It mainly includes k-Nearest Neighbors (32-35), Bayesian model (36, 37), SVM
(24, 33), and ANN (38, 39). But the performance of parametric methods is heavily dependent on
data quality and quantity of training data. Recently, various deep learning models have been
extensively used in TSP tasks to improve modeling accuracy. In comparison to other deep
learning networks, the recurrent neural network (RNN) could better capture the temporal
evolution of traffic flow by self-loops and chain-like structures (40). But traditional RNN models
have following limitations (2, 44): (1) Traditional RNNs cannot train time series with long time
lags, and (2) Traditional RNNs rely on the predetermined time lags to learn the temporal
sequence processing, but it is challenging to find the optimal time window size in an automatic
way. To tackle those issues, LSTM Network is a special Recurrent Neural Network (RNN)
architecture, was initially proposed by Hochreiter and Schmidhuber (45). The aforementioned
constraints could be solved by LSTM since it can learn information with long time spans and
determine the optimal time lags in an automated manner (2, 26). These advantages made the
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LSTM network extensively deployed for traffic state prediction (2, 3, 46—52). In this paper, the
LSTM network is utilized for traffic flow prediction with transferred historical traffic flow data.

In summary, a transfer learning-based LSTM framework that can transfer knowledge
from nearby detectors or detectors with similar roadway geometry to overcome the missing data
problem in traffic flow prediction is still lacking. This paper focuses on filling the gap by
proposing a transfer learning-based LSTM model for TSP with missing data.

3. METHODOLOGY

To deal with the training sample with missing data problems in traffic flow forecasting, the
transfer learning-based LSTM model is constructed. As shown in Figure 1, the proposed transfer
learning-based LSTM includes four key steps. Firstly, an incomplete data sequence is collected
from a detector sensor located on a freeway monitoring station and defined as the experiment
data in the target domain. Secondly, the time series similar method (e.g., dynamic time warping
(DTW)) is utilized to find out the monitoring stations with complete monitoring data and similar
to the target domain. The data from these stations are named as the source domain. Thirdly,
hybrid data from target and source domains to construct the training sample. Finally, train LSTM
network with hybrid data and use the trained model to predict the future traffic flow. The transfer
learning and LSTM are described in the following sections.

Data Pre-processing (Transfer Learning)

Raw Data with
Missing Values

il

Target Select \ Source
Domain DTW Domain

Hybrid training
sample

Accurate Traffic Flow
Predictions

Figure 1 The diagram of transfer learning-based LSTM with missing data

Transfer Learning

Transfer learning is one of the key methods utilized in this study. The target and source
domains are two essential components of learning, and the core foundation of transfer learning is
to identify the similarity between source and target domains. The source domain data will have a
negative impact on machine learning model performance in the target domain if the source
domain is weakly related to the target domain. Pan et al. (53) stated that it is important to avoid
negative transfer in the transfer learning research and select an appropriate criterion to measure
similarity between target domain and source domains. Based on the existing literature (54-56),
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the commonly used similarity measurement criteria include Euclidean distance (ED), Kullback-
Leibler divergence (K-L divergence), Pearson correlation coefficient (Pearson), longest common
subsequence (LCSS), and Dynamic Time Warping (DTW), etc. In general, inherent data
properties of the time series is the key to select an appropriate similarity measurement criterion.
The ED method may lead to the inappropriate transmission of time information since it requires
the length of the time series must be equal. The main disadvantage of K-L divergence is that
distance and asymmetry are not considered. Pearson’s correlation coefficient is good at dealing
with measuring the strength of the correlation between two variables, but it is not ideal method
for nonlinear cases. LCSS is mainly works for shape similarity rather than the spatial similarity
and is very time consuming. The DTW algorithm can use time series of different lengths and can
accurately capture the similarity between the trends of two time series. Hence, considering the
length of continuous gaps in traffic flow data varies, DTW is selected as the key similarity
measurement criterion in this paper.

DTW can be designed to calculate the similarity between two time series and select the
shortest distance between values since it is a nonlinear programming technique that involves
model similarity matching for time series by bending and aligning the time axis. In this study,
Incomplete time series traffic flow data, named as the target domain data, are defined as Dr. This
series can be denoted as Dy = {D3+, D2, ..., D}, it is incomplete time series traffic flow data with
missing values. The important step is to select source domain time series data Dg, where 1SN,
S #T, and N is the total number of detector stations. The detailed procedures of the DTW
algorithm are described as Table 1, which is used to determine the best source domain the target
domain based on the following constraints:

"1<S<KNandS#T

where D,, denotes the appropriate source domain among all domains of traffic detector stations.

Table 1 The details procedure of the DTW algorithm

Dynamic Time Warping (DTW) algorithm

Step 1 | Suppose X = {x1, X5, ... ,x,} and Y = { y1, Y5, ... , Vin} Tepresent two time series
data , n and m are the lengths of two sequences. The two time series sequences can
be formulated as an n x m distance matrix Dy, and the elements d;; = D(x;,y;) of
the distance matrix D;,.,, denote the distance between x; and y;.
Step2 | W= {wyi,w,, ..., w,} denote the optimal warping path in DTW, which consists of
adjacent elements in the matrix D,,,,, that represents the Ktk element of W. The
warping path must satisfy the following three conditions:
(1) max(m, n) <k <m+n-1.
(2) Boundary limits: wy = d;; and wy, = d .
(3) Two adjacent elements in W must be adjacent in D,,,, and extend forward,
namely wy, = {a, b} and wy,; = {a’, b'}. The corresponding points between the two
time series data must not intersect. i.e., 0 <a'-a<land 0 b'-b < 1.
Step 3 | Calculate the DTW distance Dy (i, j) between the starting points i and j of the two
sequences. The warping path can be examined by dynamic programming using
following formulas:

Dprw (i,j) = min{Dpry (i = 1,j — 1), Dprw (i, j — 1), Dprw (@ — 1, )} + dij
Dprw(1,1) = dyy

(M
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Step4 | The DTW distance for the two time series data is the Dpryy, (i, j) at the endpoint of
the two sequences.

Long Short-Term Memory (LSTM) Network

In this study, Long Short-Term Memory (LSTM) is used to generate accurate traffic flow
predictions with transferred training samples. LSTM is a special Recurrent Neural Network
(RNN) architecture — LSTM network was proposed by Hochreiter and Schmidhuber (45), which
could overcome the vanishing gradient problem of traditional RNN. A typical LSTM network is
composed of one input layer, one recurrent hidden layer (memory block), and one output layer.
The memory block contains memory cells with self-connections memorizing the temporal state,
and pair of adaptive, multiplicative gating units to control information flow in the block. The
typical architecture of an LSTM network is illustrated in Figure 2.

G X ;/:?\ G -
Tanh
Sfunction
H t
—
InputGate ForgetGate 6: OutputGate
Sigmod Sigmod Tank Sigmod
function Jfunction function Jfunction
A A A A
Hi _
T A
X

Figure 2 The structure of LSTM network

The current state H, of an LSTM unit at time ¢ can be expressed by following formula:

InputGate = sig(w;[x¢, H—1] + 1;) (2)
ForgetGate = sig(wg[x;, He—1] + 1) 3)

C, = tanh(wg[xe, He—1 ]+ 1¢) “4)
OutputGate = sig(w,[xy, He_1] + 1,) )

C, = InputGate ® C,_, + ForgetGate ®C, (6)
H; = C;® OutputGate (7)

where © denotes the scalar product; w denotes the weights matrices; # denotes the offset vector;
C¢_1 denotes the state of the previous cell at time 7 — 1; tanh(-) denotes the activation function:

®)

eX—e™*

eX+e~X

tanh(x) =

sig(+) denotes the logistic sigmoid function:

1
1+e X

sig(x) = ©)
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4. EXPERIMENTAL STUDY
Experimental Setup

In this study, the Performance Measurement System (PeMS) data collected from
interstate freeway I-15 is utilized to validate the effectiveness of the proposed transfer learning-
based LSTM network with missing data. PeMS data is the most commonly used data type in
traffic flow forecasting tasks (26, 40, 48, 57). The studied freeway corridor and detector stations
are illustrated in Figure 3. In the studied scenario, the separate freeway segment in I-15 has 10
detectors. Station 407 marked as yellow is used for testing the proposed transfer learning-based
LSTM network with missing data. The detector stations marked as blue are used for conducting
the transfer learning for target station 407. Traffic flow data were collected from August 2, 2021,
to August 11, 2021. Since the data is collected every 5 minutes, there are 288 observations per
detector per day. To evaluate the performance of the proposed transfer learning-based LSTM
network with missing data, the testing cases are constructed regarding the basic TSP problem
with random missing data. To further test the robustness of methods this case, we investigate the
missing data scenarios by artificially removing the traffic flow in the training data to mimic the
common device malfunctioning situations. The robustness analysis is conducted to show the
capability of dealing with the unpredictable missing inputs in the training phase. Theoretically,
the proposed transfer learning-based LSTM is efficient for predicting the traffic flow with
missing data on the target locations. To justify this feature, a certain portion of the training
dataset is removed. The test set is the complete dataset. In the robustness study, 30%, 50%, and
70% of the training data are removed and transfer learning was used to supplement those missing
data, and the testing data keep unchanged.

ta

il

| Figure 3 The deployment of freewy corridor and stations

¥

In the setup of the experiments, the prefixed parameters of the proposed method are
summarized in Table 2. Time series data need to be expressed in the proper format for the LSTM
network. Generally, the time-series data consists of several tuples (time, value), which is
inappropriate for feeding them into LSTM. Hence, the sliding window technique is used to
reconstruct original time series data. The sliding window technique is presented in Table 3. For
example, the traffic flows for the prior 3 timestamps of the moment T(i = 1, 2, 3), are used as
input for the LSTM network, and the traffic flow of moment T is the output.
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Table 2 The prefixed parameters of LSTM network

Parameter Value
Training set size 2880
Testing set size 864
The learning rate 0.001

Optimizer Adam
Activation fuction Relu
Hidden layer 3
Epoch 1000
Table 3 Data windowing
Input Output
Xr_i(i=1,2,3) Xr

In view of the requirements of machine learning models, the raw flow data were
normalized into a range from 0 to 1, using the following equation:
x.—x -
Xy = i*min 10
n *max~ *min (19)
where, Xy denote the normalized raw flow data; i denote the flow data; and Xmax and ¥min

are the minimum and maximum raw flow data, respectively. Finally, the prediction needs to be
denaturable.

Performance Index

To evaluate the accuracy of predictions, this research selects three common prediction
evaluation indexes RMSE, MAPE, and MAE (26, 40, 58) of each dimension are used as the
performance metric, which are defined in Equations 11 -13. The smaller the value of these three
evaluation methods indicate better performance of the model.

1
RMSE = J;Z?=1(yi ~yi%)? (11
MAPE = -3, =214 100% (12)
l
1
MAE = ¥ 1 lyi = yi*| (13)

where, y; is the observed traffic speed and flow and y; * is the estimated traffic speed and flow.

Results Analysis

The similarity results between the target domain and source domains are presented in
Table 4. As shown in the table, station 414 is determined to be the most appropriate source
domain for the target domain (station 407). Then we used the traffic flow data of station 414 to
transfer to 407 and then combine those data to get a hybrid training sample for the LSTM
network.
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Table 4 The DTW correlation (x 107) results between the target domain (407) and source
domains.

Missing rate | 375 384 386 391 393 401 412 414 420
0.3 0.139 | 0.146 | 0.146 | 0.123 | 0.121 | 0.143 | 0.137 | 0.136 | 0.136

0.5 0.174 | 0.180 | 0.180 | 0.185 | 0.188 | 0.177 | 0.169 | 0.167 | 0.172

0.7 0.173 | 0.175 | 0.176 | 0.190 | 0.194 | 0.175 | 0.169 | 0.169 | 0.170
Average 0.162 | 0.167 | 0.167 | 0.166 | 0.168 | 0.165 | 0.158 | 0.158 | 0.159

Table 5 summarizes the traffic flow prediction results from LSTM and other benchmark
methods (e.g., SVM, RF, and ANN) of the station 407 with missing rates 0.3, 0.5, and 0.7). For
the missing rata of 0.3, LSTM generates a 42.93 vehicles/5-minutes of RMSE, a 9.30% of
MAPE, and 28.86 vehicles/5-minutes of MAE. As shown in the table, in comparison to these
benchmark methods, the transfer learning-based LSTM obtains best modeling performance
under the missing rate of 0.3. For the missing rata of 0.5, the transfer learning-based LSTM
obtains the most accurate predictions, which yields a 43.03 vehicles/5-minutes of RMSE, a 9.33%
of MAPE, and 28.86 vehicles/5-minutes of MAE. For the missing rate of 0.7, the transfer
learning-based LSTM can still achieve best prediction results (e.g., a 43.06 vehicles/5-minutes of
RMSE, a 9.34% of MAPE, and 29.01 vehicles/5-minutes of MAE) compared with benchmark
models. All results proved that the proposed transfer learning-based LSTM could perform well
for traffic flow forecasting with missing data. Figure 4 (a)-(c) show the comparison of prediction
results of SVM, RF, ANN, and LSTM with ground truth. It can be clearly seen that the line of
LSTM could better fit the ground truth under different missing rates compared with benchmark
models. This demonstrates the excellent prediction performance of transfer learning-based
LSTM under different missing rates.

Table S Prediction results of spots on normal segment with missing data

Method | Missing rate RMSE MAPE MAE
SVM 0.3 56.83 16.67 39.54
RF 0.3 52.40 11.78 36.14
ANN 0.3 48.40 13.20 35.85
LSTM 0.3 42.93 9.30 28.86
SVM 0.5 52.57 16.00 38.20
RF 0.5 49.94 11.26 34.50
ANN 0.5 49.87 14.10 37.57
LSTM 0.5 43.03 9.33 28.86
SVM 0.7 53.17 16.05 38.15
RF 0.7 50.25 11.50 35.38
ANN 0.7 49.44 13.68 36.92
LSTM 0.7 43.06 9.34 29.01

To further confirm this finding, the prediction results obtained by transfer learning-based
LSTM compared with ground truth. In Figure (a)-(c), the prediction results can be seen as fitting
the ground truth well if the coefficient of the trend line is close to one and the intercept is close to
zero. For the missing rate of 0.3, the coefficient is 0.97 and the intercept is 10.33 for LSTM. For
the missing rate of 0.5, the coefficient is 0.97 and the intercept is 10.63 for LSTM. For the
missing rate of 0.7, the coefficient is 0.97 and the intercept is 12.82 for LSTM. These results

10
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indicate that the transfer learning-based could achieve stable and accurate prediction
performance under different missing rates.
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Figure S Predicted flow by LSTM

To further verify the robustness of the proposed transfer learning-based LSTM, Figure 6
illustrates the prediction error of transfer learning-based LSTM with different missing rates
under different traffic dynamic orders. The traffic conditions are divided into three categories
according to traffic volume: low traffic volume (0-300 vehicles/5-minutes), medium traffic
volume (300-550 vehicles/5-minutes), and high traffic volume (> 550 vehicles/5- minutes). As
shown in the figure, the performance of transfer learning-based LSTM is downgraded with the
traffic volume increasing with different missing rates.
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Figure 6 Prediction performance of transfer learning-based LSTM with different missing

rates under different traffic volumes
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5. CONCLUSIONS AND FUTURE RESEARCH DIRENCTIONS

Accurate traffic flow prediction plays important role in the successful operation of ITS on
freeways. However, traffic detectors may provide incomplete traffic information, which is a
major constraint for existing methods to get precise traffic predictions. To overcome this
limitation, this paper introduces an advanced transfer learning-based LSTM network for traffic
flow forecasting with incomplete traffic information. This new method could transfer similar
data from source domain to target domain to generate a hybrid training sample. This attribute
makes the transfer learning-based LSTM network could overcome the limitation of training
sample with missing values and then improve the prediction performance of LSTM.
Experimental study results indicate that the transfer learning-based LSTM network could
effectively predict the traffic flow conditions with training sample with missing values. Hence,
the proposed transfer learning-based LSTM network has potential to help transportation agencies
find better countermeasures to mitigate traffic congestions, improve traffic operation efficiency
and safety, and save the freeway operation cost.

The effectiveness of the transfer learning-based LSTM approach has been approved.
However, transfer learning-based LSTM traffic flow forecasting still needs more future studies.
More specifically, more advanced machine learning algorithms and similarity evaluation
criterion and its application on urban freeway networks are worth studying.
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