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ABSTRACT 1 
Traffic flow prediction task plays important role in Intelligent Transportation Systems (ITS) on 2 

freeways. However, incomplete traffic information tends to be collected by traffic detectors, 3 
which is a major constraint for existing methods to get precise traffic predictions. To overcome 4 
this limitation, this study aims to propose and evaluate a new advanced model, named transfer 5 
learning-based long short-term memory (LSTM) model for traffic flow forecasting with 6 
incomplete traffic information, that adopts traffic information from similar locations for the 7 

target location to increase the data quality. More specifically, Dynamic Time Warping (DTW) is 8 
used to evaluate the similarity between the source and target domains and then transfer the most 9 
similar data to the target domain to generate a hybrid complete training sample for LSTM to 10 
improve the prediction performance. To evaluate the effectiveness of the transfer learning-based 11 

LSTM, this study implements empirical studies with a real-world dataset collected from a stretch 12 
of I-15 freeway in Utah. Experimental study results indicate that the transfer learning-based 13 
LSTM network could effectively predict the traffic flow conditions with a training sample with 14 
missing values. 15 

Keywords: Traffic flow prediction, Transfer learning, LSTM, Missing data  16 
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1. INTRODUCTION 1 

With the rapid development of urbanization, traffic congestion mitigation and environmental 2 

pollution treatment have become significant problems that need to be solved in modern cities. 3 
Recently, with the advancement of data collecting, processing, and computation technologies, 4 
data-driven approaches offer the possibility of utilizing data-driven and computation technology 5 
to efficiently tackle these problems. Intelligent transportation systems (ITS) aims to apply data-6 
driven computing technology to provide more accurate traffic state prediction (TSP) by using 7 

massive data created in cities, which helps travelers plan their trips, allows transportation 8 
agencies to take actions to mitigate traffic congestion, and therefore reduce air pollution. The 9 
acquisition of accurate future traffic information has always been complicated due to the 10 

stochastic nature of traffic patterns. TSP is a method that can predict future traffic information 11 
based on historical traffic information (1–6), which is an effective way to obtain future traffic 12 
information. In practice, historical traffic information is usually collected by various stationary 13 
traffic sensors, which can be easily retrieved because it is collected by fixed traffic detectors (e.g., 14 

inductive loops and radar detectors) on freeways. However, those collected historical data 15 
usually contain missing values and significantly limit traffic state prediction.  16 

Recently, the effectiveness of transfer learning models in improving the performance of 17 
machine learning models in various fields has been recognized, such as environmental science (7, 18 
8), quantum chemistry (9), Bioinformatics (10), transportation (11, 12), etc. In transportation 19 

field, people mainly utilized transfer learning model for inter-city transfer to solve the 20 
insufficient data limitations in target cites (11, 13). However, addressing flawed data problems 21 

with transfer learning methods has not been well investigated in the literature. Therefore, this 22 
research aims to develop an innovative framework, named as transfer learning-based LSTM, to 23 

solve the missing data problem in TSP tasks. More specifically, transfer learning is used to find 24 
out the monitoring stations with complete monitoring data and similar to the target domain and 25 

then create a hybrid training sample consisting of data from target and source domains. Then 26 
LSTM network is trained using hybrid training sample. This study makes significant 27 
contributions to the literature from the following perspectives: (1) an innovative transfer 28 

learning-based LSTM model is proposed for TSP problem; (2) an advanced method is provided 29 
to solve the flawed data problem in TSP tasks.  30 

The remainder of this paper is organized as follows. Section 2 reviews existing studies 31 

related to missing data problems, transfer learning, and traffic state prediction. The transfer 32 

learning-based LSTM framework are presented in Section 3. Section 4 implements the case 33 

study on a real-world data from interstate freeway I-15. The last section summarizes the key 34 
findings and future research directions. 35 

 36 
2. LITERATURE REVIEW 37 

Missing Data Problem 38 

The missing data can be caused by many reasons in the traffic flow, such as malfunction 39 
of the sensor, manual system closure, and errors in signal transmission (3). Therefore, missing 40 
data imputation is a hot topic and many methods have been developed for reducing the impact of 41 
missing data. Those methods can be generally classified into three categories: (a) Interpolation, 42 

including temporal-neighboring and pattern-similar imputation methods (14). The interpolation 43 
models cannot make full use of local daily flow variation information to improve model 44 
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performance (15). (b) Statistical learning methods, such as Markov chain Monte Carlo (MCMC) 1 
(16) and probabilistic principal component analysis (PPCA) (17, 18). It can obtain traffic flow 2 

information by using the statistical characteristics of traffic flow, but the accuracy is low because 3 
these approaches are based on prior knowledge. (c) data-driven prediction approaches, including 4 
autoregressive integrated moving average (ARIMA) (19), Bayesian networks (20, 21), neural 5 
network (22, 23), support vector regression (24), and long short-term memory (LSTM) network 6 
(3). With the advancement of data collecting, processing, and computation technologies, data-7 

driven approaches are more popular and efficient to solve the missing data problems in traffic 8 
flow prediction recently.  9 

Transfer Learning 10 

For traditional machine learning models, the basic assumption is the training data and 11 
testing data are taken from the same domain, so the input feature space and data distribution 12 
characteristics are the same. However, in some real-world machine learning scenarios, this 13 

assumption does not hold. There are cases where training data is expensive or difficult to collect. 14 
Therefore, there is a need to create high-performance learners trained with more easily obtained 15 
data from different domains. This methodology is referred to as transfer learning (25). Transfer 16 
learning is a novel branch of artificial intelligence (AI), which allows the distributions of training 17 
samples to be different (7). More specifically, transfer learning is a unique technique that uses 18 
well-established knowledge from a related source domain to improve the learning efficiency in 19 
the target domain (25). Hence, it has been widely implemented in various fields to solve the 20 

problem of limited data in target domain to train the model. In this study, due to the large ratio of 21 

missing data issues at target stationary detectors, the unavailability of time series of labeled 22 
training data leads to unsatisfactory modeling performance. Therefore, transfer learning is 23 
applied to transfer knowledge from the complete sequences obtained at nearby detectors or 24 

detectors located on similar roadway geometry to an incomplete sequence in the target domain.  25 

Traffic state prediction 26 

In the past decades, many data-driven models have been developed to predict short-term 27 

traffic state. Those models can be generally grouped by parametric methods and nonparametric 28 
methods (26). Parametric methods mainly include ARIMA model (27–29) and Kalman filter (30, 29 

31). They cannot obtain satisfying performance under irregular traffic variations. To solve this 30 
limitation, nonparametric methods are developed to obtain the acquisition of nonlinear laws from 31 

historical data. It mainly includes k-Nearest Neighbors (32–35), Bayesian model (36, 37), SVM 32 
(24, 33), and ANN (38, 39). But the performance of parametric methods is heavily dependent on 33 
data quality and quantity of training data. Recently, various deep learning models have been 34 
extensively used in TSP tasks to improve modeling accuracy. In comparison to other deep 35 
learning networks, the recurrent neural network (RNN) could better capture the temporal 36 

evolution of traffic flow by self-loops and chain-like structures (40). But traditional RNN models 37 
have following limitations (2, 44): (1) Traditional RNNs cannot train time series with long time 38 
lags, and (2) Traditional RNNs rely on the predetermined time lags to learn the temporal 39 
sequence processing, but it is challenging to find the optimal time window size in an automatic 40 
way. To tackle those issues, LSTM Network is a special Recurrent Neural Network (RNN) 41 

architecture, was initially proposed by Hochreiter and Schmidhuber (45). The aforementioned 42 

constraints could be solved by LSTM since it can learn information with long time spans and 43 

determine the optimal time lags in an automated manner (2, 26). These advantages made the 44 
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LSTM network extensively deployed for traffic state prediction (2, 3, 46–52). In this paper, the 1 
LSTM network is utilized for traffic flow prediction with transferred historical traffic flow data.  2 

In summary, a transfer learning-based LSTM framework that can transfer knowledge 3 
from nearby detectors or detectors with similar roadway geometry to overcome the missing data 4 
problem in traffic flow prediction is still lacking. This paper focuses on filling the gap by 5 
proposing a transfer learning-based LSTM model for TSP with missing data.  6 

3. METHODOLOGY 7 

To deal with the training sample with missing data problems in traffic flow forecasting, the 8 
transfer learning-based LSTM model is constructed. As shown in Figure 1, the proposed transfer 9 

learning-based LSTM includes four key steps. Firstly, an incomplete data sequence is collected 10 
from a detector sensor located on a freeway monitoring station and defined as the experiment 11 
data in the target domain. Secondly, the time series similar method (e.g., dynamic time warping 12 
(DTW)) is utilized to find out the monitoring stations with complete monitoring data and similar 13 

to the target domain. The data from these stations are named as the source domain. Thirdly, 14 

hybrid data from target and source domains to construct the training sample. Finally, train LSTM 15 
network with hybrid data and use the trained model to predict the future traffic flow. The transfer 16 
learning and LSTM are described in the following sections.  17 

 18 
Figure 1 The diagram of transfer learning-based LSTM with missing data 19 

Transfer Learning 20 

Transfer learning is one of the key methods utilized in this study. The target and source 21 
domains are two essential components of learning, and the core foundation of transfer learning is 22 
to identify the similarity between source and target domains. The source domain data will have a 23 
negative impact on machine learning model performance in the target domain if the source 24 
domain is weakly related to the target domain. Pan et al. (53) stated that it is important to avoid 25 

negative transfer in the transfer learning research and select an appropriate criterion to measure 26 
similarity between target domain and source domains. Based on the existing literature (54–56), 27 
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the commonly used similarity measurement criteria include Euclidean distance (ED), Kullback-1 
Leibler divergence (K-L divergence), Pearson correlation coefficient (Pearson), longest common 2 

subsequence (LCSS), and Dynamic Time Warping (DTW), etc. In general, inherent data 3 
properties of the time series is the key to select an appropriate similarity measurement criterion. 4 
The ED method may lead to the inappropriate transmission of time information since it requires 5 
the length of the time series must be equal. The main disadvantage of K-L divergence is that 6 
distance and asymmetry are not considered. Pearson’s correlation coefficient is good at dealing 7 

with measuring the strength of the correlation between two variables, but it is not ideal method 8 
for nonlinear cases. LCSS is mainly works for shape similarity rather than the spatial similarity 9 
and is very time consuming. The DTW algorithm can use time series of different lengths and can 10 
accurately capture the similarity between the trends of two time series. Hence, considering the 11 

length of continuous gaps in traffic flow data varies, DTW is selected as the key similarity 12 
measurement criterion in this paper. 13 

DTW can be designed to calculate the similarity between two time series and select the 14 

shortest distance between values since it is a nonlinear programming technique that involves 15 
model similarity matching for time series by bending and aligning the time axis. In this study, 16 

Incomplete time series traffic flow data, named as the target domain data, are defined as 𝐷𝑇. This 17 

series can be denoted as 𝐷𝑇 = {𝐷𝑇
1, 𝐷𝑇

2, … , 𝐷𝑇
𝑚}, it is incomplete time series traffic flow data with 18 

missing values. The important step is to select source domain time series data 𝐷𝑆, where 1⩽S⩽N, 19 

S ≠T, and N is the total number of detector stations. The detailed procedures of the DTW 20 
algorithm are described as Table 1, which is used to determine the best source domain the target 21 
domain based on the following constraints:  22 

𝐷𝑛 {
(𝐷𝑇𝑊(𝐷𝑆, 𝐷𝑇

1)) 𝐷𝑆

𝑚𝑖𝑛

1 ⩽ 𝑆 ⩽ 𝑁 𝑎𝑛𝑑 𝑆 ≠ 𝑇
     (1)  23 

where 𝐷𝑛 denotes the appropriate source domain among all domains of traffic detector stations. 24 

Table 1 The details procedure of the DTW algorithm 25 

Dynamic Time Warping (DTW) algorithm 

Step 1 Suppose X = {𝑥1, 𝑥2, … , 𝑥𝑛} and Y = { 𝑦1, 𝑦2, … , 𝑦𝑚} represent two time series 

data , n and m are the lengths of two sequences. The two time series sequences can 

be formulated as an n × m distance matrix 𝐷𝑛∗𝑚, and the elements 𝑑𝑖𝑗 = 𝐷(𝑥𝑖, 𝑦𝑗) of 

the distance matrix 𝐷𝑛∗𝑚 denote the distance between 𝑥𝑖 and 𝑦𝑗. 

Step 2 W = { 𝑤1, 𝑤2, … , 𝑤𝑘} denote the optimal warping path in DTW, which consists of 

adjacent elements in the matrix 𝐷𝑛∗𝑚  that represents the Kth element of W. The 

warping path must satisfy the following three conditions:  

(1) max(m, n) ⩽ k ⩽ m + n -1.  

(2) Boundary limits: 𝑤1 = 𝑑11 and 𝑤𝑘 = 𝑑𝑛𝑚.  

(3) Two adjacent elements in W must be adjacent in 𝐷𝑛∗𝑚  and extend forward, 

namely 𝑤𝑘 = {a, b} and 𝑤𝑘+1 = {a′, b′}. The corresponding points between the two 

time series data must not intersect. i.e., 0 ⩽ a′ - a ⩽ 1 and 0 ⩽ b′ - b ⩽ 1. 

Step 3 Calculate the DTW distance 𝐷𝐷𝑇𝑊(𝑖, 𝑗) between the starting points i and j of the two 

sequences. The warping path can be examined by dynamic programming using 

following formulas: 

𝐷𝐷𝑇𝑊(𝑖, 𝑗) = min{𝐷𝐷𝑇𝑊(𝑖 − 1, 𝑗 − 1), 𝐷𝐷𝑇𝑊(𝑖, 𝑗 − 1), 𝐷𝐷𝑇𝑊(𝑖 − 1, 𝑗)} + 𝑑𝑖𝑗 

𝐷𝐷𝑇𝑊(1, 1) =  𝑑11 
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Step 4 The DTW distance for the two time series data is the 𝐷𝐷𝑇𝑊(𝑖, 𝑗) at the endpoint of 

the two sequences. 

Long Short-Term Memory (LSTM) Network  1 

In this study, Long Short-Term Memory (LSTM) is used to generate accurate traffic flow 2 
predictions with transferred training samples. LSTM is a special Recurrent Neural Network 3 
(RNN) architecture – LSTM network was proposed by Hochreiter and Schmidhuber (45), which 4 
could overcome the vanishing gradient problem of traditional RNN. A typical LSTM network is 5 

composed of one input layer, one recurrent hidden layer (memory block), and one output layer. 6 
The memory block contains memory cells with self-connections memorizing the temporal state, 7 
and pair of adaptive, multiplicative gating units to control information flow in the block. The 8 

typical architecture of an LSTM network is illustrated in Figure 2. 9 

 10 
Figure 2 The structure of LSTM network 11 

The current state 𝐻𝑡 of an LSTM unit at time t can be expressed by following formula:  12 

𝐼𝑛𝑝𝑢𝑡𝐺𝑎𝑡𝑒 = 𝑠𝑖𝑔(𝑤𝑖[𝑥𝑡, 𝐻𝑡−1] + 𝜂𝑖)    (2) 13 

         𝐹𝑜𝑟𝑔𝑒𝑡𝐺𝑎𝑡𝑒 = 𝑠𝑖𝑔(𝑤𝑓[𝑥𝑡, 𝐻𝑡−1] + 𝜂𝑓)     (3) 14 

𝐶𝑡̃ = tanh (𝑤𝐶̃[𝑥𝑡, 𝐻𝑡−1]+ 𝜂𝐶̃)              (4) 15 

            𝑂𝑢𝑡𝑝𝑢𝑡𝐺𝑎𝑡𝑒 = 𝑠𝑖𝑔(𝑤𝑜[𝑥𝑡, 𝐻𝑡−1] + 𝜂𝑜)    (5) 16 

   𝐶𝑡 = 𝐼𝑛𝑝𝑢𝑡𝐺𝑎𝑡𝑒 ⨀ 𝐶𝑡−1 +  𝐹𝑜𝑟𝑔𝑒𝑡𝐺𝑎𝑡𝑒 ⨀𝐶𝑡̃    (6) 17 

      𝐻𝑡 =  𝐶𝑡⨀ 𝑂𝑢𝑡𝑝𝑢𝑡𝐺𝑎𝑡𝑒      (7) 18 

where ⨀ denotes the scalar product; w denotes the weights matrices; η denotes the offset vector; 19 

𝐶𝑡−1 denotes the state of the previous cell at time t – 1; tanh(⋅) denotes the activation function: 20 

tanh(𝑥) =  
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥      (8) 21 

sig(⋅) denotes the logistic sigmoid function: 22 

sig(𝑥) =  
1

1+𝑒−𝑥
       (9)  23 
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4. EXPERIMENTAL STUDY 1 

Experimental Setup 2 

In this study, the Performance Measurement System (PeMS) data collected from 3 
interstate freeway I-15 is utilized to validate the effectiveness of the proposed transfer learning-4 
based LSTM network with missing data. PeMS data is the most commonly used data type in 5 
traffic flow forecasting tasks (26, 40, 48, 57). The studied freeway corridor and detector stations 6 
are illustrated in Figure 3. In the studied scenario, the separate freeway segment in I-15 has 10 7 

detectors. Station 407 marked as yellow is used for testing the proposed transfer learning-based 8 
LSTM network with missing data. The detector stations marked as blue are used for conducting 9 
the transfer learning for target station 407. Traffic flow data were collected from August 2, 2021, 10 

to August 11, 2021. Since the data is collected every 5 minutes, there are 288 observations per 11 
detector per day. To evaluate the performance of the proposed transfer learning-based LSTM 12 
network with missing data, the testing cases are constructed regarding the basic TSP problem 13 
with random missing data. To further test the robustness of methods this case, we investigate the 14 

missing data scenarios by artificially removing the traffic flow in the training data to mimic the 15 
common device malfunctioning situations. The robustness analysis is conducted to show the 16 

capability of dealing with the unpredictable missing inputs in the training phase. Theoretically, 17 
the proposed transfer learning-based LSTM is efficient for predicting the traffic flow with 18 
missing data on the target locations. To justify this feature, a certain portion of the training 19 

dataset is removed. The test set is the complete dataset. In the robustness study, 30%, 50%, and 20 
70% of the training data are removed and transfer learning was used to supplement those missing 21 

data, and the testing data keep unchanged.  22 

 23 
 Figure 3 The deployment of freeway corridor and stations 24 

In the setup of the experiments, the prefixed parameters of the proposed method are 25 

summarized in Table 2. Time series data need to be expressed in the proper format for the LSTM 26 
network. Generally, the time-series data consists of several tuples (time, value), which is 27 
inappropriate for feeding them into LSTM. Hence, the sliding window technique is used to 28 
reconstruct original time series data. The sliding window technique is presented in Table 3. For 29 

example, the traffic flows for the prior 3 timestamps of the moment 𝑇(𝑖 = 1, 2, 3), are used as 30 

input for the LSTM network, and the traffic flow of moment 𝑇 is the output.  31 

 

375 384 386 391 393 401 420414407 412
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Table 2 The prefixed parameters of LSTM network 1 

Parameter Value 

Training set size 2880 

Testing set size 864 

The learning rate 0.001 

Optimizer Adam 

Activation fuction Relu 

Hidden layer 3 

Epoch 1000 

Table 3 Data windowing 2 

Input Output 

𝑋𝑇−𝑖(𝑖 = 1, 2, 3) 𝑋𝑇 

In view of the requirements of machine learning models, the raw flow data were 3 

normalized into a range from 0 to 1, using the following equation: 4 

     𝑥𝑛 =
𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
       (10) 5 

where, 𝑥𝑛 denote the normalized raw flow data;  𝑥𝑖 denote the flow data; and 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 6 

are the minimum and maximum raw flow data, respectively. Finally, the prediction needs to be 7 

denaturable. 8 

Performance Index 9 

To evaluate the accuracy of predictions, this research selects three common prediction 10 

evaluation indexes RMSE, MAPE, and MAE (26, 40, 58) of each dimension are used as the 11 
performance metric, which are defined in Equations 11 -13. The smaller the value of these three 12 

evaluation methods indicate better performance of the model. 13 

      𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖 ∗)2𝑛

𝑖=1                  (11) 14 

      𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦𝑖
∗− 𝑦𝑖|

𝑦𝑖 

𝑛
𝑖=1 ∗ 100%                   (12) 15 

       𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖 ∗ |𝑛

𝑖=1                  (13) 16 

where, 𝑦𝑖 is the observed traffic speed and flow and 𝑦𝑖 ∗ is the estimated traffic speed and flow. 17 

Results Analysis  18 

The similarity results between the target domain and source domains are presented in 19 

Table 4. As shown in the table, station 414 is determined to be the most appropriate source 20 
domain for the target domain (station 407). Then we used the traffic flow data of station 414 to 21 

transfer to 407 and then combine those data to get a hybrid training sample for the LSTM 22 
network. 23 
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Table 4 The DTW correlation (× 𝟏𝟎𝟕) results between the target domain (407) and source 1 
domains.  2 

Missing rate 375 384 386 391 393 401 412 414 420 

0.3 0.139 0.146 0.146 0.123 0.121 0.143 0.137 0.136 0.136 

0.5 0.174 0.180 0.180 0.185 0.188 0.177 0.169 0.167 0.172 

0.7 0.173 0.175 0.176 0.190 0.194 0.175 0.169 0.169 0.170 

Average 0.162 0.167 0.167 0.166 0.168 0.165 0.158 0.158 0.159 

Table 5 summarizes the traffic flow prediction results from LSTM and other benchmark 3 
methods (e.g., SVM, RF, and ANN) of the station 407 with missing rates 0.3, 0.5, and 0.7). For 4 

the missing rata of 0.3, LSTM generates a 42.93 vehicles/5-minutes of RMSE, a 9.30% of 5 

MAPE, and 28.86 vehicles/5-minutes of MAE. As shown in the table, in comparison to these 6 
benchmark methods, the transfer learning-based LSTM obtains best modeling performance 7 

under the missing rate of 0.3. For the missing rata of 0.5, the transfer learning-based LSTM 8 
obtains the most accurate predictions, which yields a 43.03 vehicles/5-minutes of RMSE, a 9.33% 9 
of MAPE, and 28.86 vehicles/5-minutes of MAE. For the missing rate of 0.7, the transfer 10 
learning-based LSTM can still achieve best prediction results (e.g., a 43.06 vehicles/5-minutes of 11 

RMSE, a 9.34% of MAPE, and 29.01 vehicles/5-minutes of MAE) compared with benchmark 12 
models. All results proved that the proposed transfer learning-based LSTM could perform well 13 

for traffic flow forecasting with missing data. Figure 4 (a)-(c) show the comparison of prediction 14 
results of SVM, RF, ANN, and LSTM with ground truth. It can be clearly seen that the line of 15 
LSTM could better fit the ground truth under different missing rates compared with benchmark 16 

models. This demonstrates the excellent prediction performance of transfer learning-based 17 

LSTM under different missing rates.  18 

Table 5 Prediction results of spots on normal segment with missing data 19 

Method Missing rate RMSE MAPE MAE 

SVM 0.3 56.83 16.67 39.54 

RF 0.3 52.40 11.78 36.14 

ANN 0.3 48.40 13.20 35.85 

LSTM 0.3 42.93 9.30 28.86 

SVM 0.5 52.57 16.00 38.20 

RF 0.5 49.94 11.26 34.50 

ANN 0.5 49.87 14.10 37.57 

LSTM 0.5 43.03 9.33 28.86 

SVM 0.7 53.17 16.05 38.15 

RF 0.7 50.25 11.50 35.38 

ANN 0.7 49.44 13.68 36.92 

LSTM 0.7 43.06 9.34 29.01 

To further confirm this finding, the prediction results obtained by transfer learning-based 20 
LSTM compared with ground truth.  In Figure (a)-(c), the prediction results can be seen as fitting 21 
the ground truth well if the coefficient of the trend line is close to one and the intercept is close to 22 
zero. For the missing rate of 0.3, the coefficient is 0.97 and the intercept is 10.33 for LSTM. For 23 

the missing rate of 0.5, the coefficient is 0.97 and the intercept is 10.63 for LSTM. For the 24 
missing rate of 0.7, the coefficient is 0.97 and the intercept is 12.82 for LSTM. These results 25 
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indicate that the transfer learning-based could achieve stable and accurate prediction 1 
performance under different missing rates. 2 

 3 
(a) 4 

 5 
(b) 6 

 7 
(c) 8 

Figure 4 Prediction results versus ground truth  9 
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 1 
(a) 2 
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 6 

 7 
 8 
 9 

 10 
 11 

 12 

  (b)                (c) 13 

Figure 5 Predicted flow by LSTM  14 

To further verify the robustness of the proposed transfer learning-based LSTM, Figure 6 15 
illustrates the prediction error of transfer learning-based LSTM with different missing rates 16 

under different traffic dynamic orders. The traffic conditions are divided into three categories 17 
according to traffic volume: low traffic volume (0-300 vehicles/5-minutes), medium traffic 18 

volume (300-550 vehicles/5-minutes), and high traffic volume (> 550 vehicles/5- minutes). As 19 
shown in the figure, the performance of transfer learning-based LSTM is downgraded with the 20 
traffic volume increasing with different missing rates.  21 

 22 
Figure 6 Prediction performance of transfer learning-based LSTM with different missing 23 

rates under different traffic volumes  24 

26.8

35.04
38.69

23.13

34.78 35.61

23.77

34.53

39.52

0

5

10

15

20

25

30

35

40

45

L M H L M H L M H

0.3 0.5 0.7

Fl
o

w
 R

M
SE

 (
V

eh
/5

-m
in

)



Z. Zhang & X. Yang 

13 
 

5. CONCLUSIONS AND FUTURE RESEARCH DIRENCTIONS 1 
Accurate traffic flow prediction plays important role in the successful operation of ITS on 2 

freeways. However, traffic detectors may provide incomplete traffic information, which is a 3 
major constraint for existing methods to get precise traffic predictions. To overcome this 4 
limitation, this paper introduces an advanced transfer learning-based LSTM network for traffic 5 
flow forecasting with incomplete traffic information. This new method could transfer similar 6 

data from source domain to target domain to generate a hybrid training sample. This attribute 7 
makes the transfer learning-based LSTM network could overcome the limitation of training 8 
sample with missing values and then improve the prediction performance of LSTM. 9 
Experimental study results indicate that the transfer learning-based LSTM network could 10 
effectively predict the traffic flow conditions with training sample with missing values. Hence, 11 

the proposed transfer learning-based LSTM network has potential to help transportation agencies 12 
find better countermeasures to mitigate traffic congestions, improve traffic operation efficiency 13 
and safety, and save the freeway operation cost.  14 

The effectiveness of the transfer learning-based LSTM approach has been approved. 15 

However, transfer learning-based LSTM traffic flow forecasting still needs more future studies. 16 
More specifically, more advanced machine learning algorithms and similarity evaluation 17 
criterion and its application on urban freeway networks are worth studying.  18 
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