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Abstract: We propose a prognostic machine learning (ML) framework to support the behavioural outcome prediction 
for cancer survivors. Specifically, our contributions are four-fold: (1) devise a data-driven, clinical domain-
guided pipeline to select the best set of predictors among cancer treatments, chronic health conditions, and 
socio-environmental factors to perform behavioural outcome predictions; (2) use the state-of-the-art two-tier 
ensemble-based technique to select the best set of predictors for the downstream ML regressor constructions; 
(3) develop a StackNet Regressor Architecture (SRA) algorithm, i.e., an intelligent meta-modeling algorithm, 
to dynamically and automatically build an optimized multilayer ensemble-based RA from a given set of ML 
regressors to predict long-term behavioural outcomes; and (4) conduct a preliminarily experimental case study 
on our existing study data (i.e., 207 cancer survivors who suffered from either Osteogenic Sarcoma, Soft 
Tissue Sarcomas, or Acute Lymphoblastic Leukemia before the age of 18) collected by our investigators in a 
public hospital in Hong Kong. In this pilot study, we demonstrate that our approach outperforms the traditional 
statistical and computation methods, including Linear and non-Linear ML regressors.

1 INTRODUCTION 

The number of cancer survivors is increasing 
globally. The American Cancer Society recently 
reported that in 2021, 1,898,160 new cancer cases 
were projected to occur in the United States (Siegel et 
al., 2021). Treatment advances have resulted in a 
dramatic improvement in the survival rates of most 
cancers, especially in developed countries/regions. 
However, this growing population of cancer survivors 
may develop a myriad of treatment-related adverse 
effects that lead to a compromised health status. 
Studies (Brinkman et al., 2013; Friend et al., 2018) 
have also shown that cancer survivors are more likely 
than the general population to experience negative 
long-term behavioural outcomes, such as anxiety, 
depression, attention problems, and sluggish 
cognitive tempo, after cancer treatments. Thus, 
developing an effective approach to identify crucial 
factors and then detect these negative outcomes in 
advance is needed so that medical therapists can 
intervene early and take the appropriate actions and 

treatments promptly to mitigate adverse effects on 
cancer survivors. 

Currently, to support the identification of relevant 
factors and the early detection of those behavioural 
outcomes for cancer survivors, clinical scientists 
(Patel et al., 2013; Alias et al., 2020; Peng et al., 2021) 
utilize various statistical analysis to understand the 
relationship among those behavioural outcomes, 
cancer treatments, chronic health conditions, and 
socio-environmental factors. Specifically, the 
traditional statistical methods (linear regression 
analysis mainly) are used to extract those predictor 
variables and then model the relationship between the 
extracted predictor variables and the behavioural 
outcomes. This analysis is based on the assumption 
that the behavioural outcomes are for the most part 
linearly correlated with those predictor variables. 
However, this assumption may not always hold in this 
complex and dynamic problem. Furthermore, the 
predictors for those behavioural outcomes extracted 
by statistical methods may have weak prediction 
accuracy, as modeling human behavioural outcomes 
is challenging due to its multifactorial nature (many 



predictors, as well as interactions among the 
predictors affecting the outcome), heterogeneity 
(differences across individuals), non-linearity of data, 
multicollinearity (highly correlated variables), class 
imbalance (few observations of the outcome of 
interest) and missing data (Kliegr et al., 2020; 
Turgeon et al., 2020). As a result, this class of linear 
regressors can only account for a small proportion of 
variance, with limited usability in a clinical setting. 
Thus, developing an effective computational 
methodology that can maximize the use of those data 
for the purpose of prognostic and predictive 
behavioural outcomes is highly desirable. 

To address the above problems, we propose a 
prognostic machine learning (ML) framework to 
support the behavioural outcome prediction for 
cancer survivors. Specifically, our contributions are 
four-fold: (1) devise a data-driven, clinical domain-
guided pipeline to select the best set of predictors 
among cancer treatments, chronic health conditions, 
and socio-environmental factors to perform 
behavioural outcome predictions; (2) use the state-of-
the-art two-tier ensemble-based technique to select 
the best set of predictors for the downstream ML 
regressor constructions; (3) develop a StackNet 
Regressor Architecture (SRA) algorithm, i.e., an 
intelligent meta-modeling algorithm, to dynamically 
and automatically build an optimized multilayer 
ensemble-based RA from a given set of ML 
regressors to predict long-term behavioural 
outcomes; and (4) conduct a preliminarily 
experimental case study on our existing study data 
(i.e., 207 cancer survivors who suffered from either 
Osteogenic Sarcoma, Soft Tissue Sarcomas, or Acute 
Lymphoblastic Leukemia before the age of 18) 
collected by our investigators in a public hospital in 
Hong Kong (HK). In this pilot study, we demonstrate 
that our approach outperforms the traditional 
statistical and computation methods, including Linear 
and non-Linear ML regressors. Note that the 
optimized SRA is the best SRA that can be built based 
upon the given inputs to the algorithm. 

The rest of the paper is organized as follows. In 
Section 2, we briefly describe our prognostic ML 
framework. We then explain our two-tier ensemble-
based technique to select the best set of predictors in 
Section 3. In Section 4, we illustrate our developed 
SRA algorithm with an example to show how an 
optimized SRA is constructed for each outcome. 
After that, we conduct an experimental analysis in our 
case study, illustrate the results, and draw the 
conclusions in Section 5. In Section 6, we summarize 
and briefly outline our future work. 

 

2 PROGNOSTIC ML 
FRAMEWORK 

In this section, we describe and explain our 
prognostic ML framework that consists of five main 
modules shown in Figure 1. First, medical records 
from cancer survivors, including clinical data, 
treatment protocols, biomarkers, chronic conditions, 
and socioeconomic factors, are passed into the Data 
Cleaner that "sanitizes" the records with the clinical 
domain knowledge from our investigators. In this 
case study, for example, it consists of replacing 
missing values in a patient’s record by averaging the 
existing values of the corresponding feature among 
all the other patients’ records grouped by a specific 
cancer type, age range, and biological sex. After the 
records are cleaned, they are passed into the Feature 
Transformer which transforms the categorical 
variables into the numeric binary variables using the 
one-hot encoding technique (Usman et al., 2015). For 
instance, instead of using Male or Female categorical 
value to indicate the biological sex, we use "1" and 
"0" to indicate if a survivor is male and female, 
respectively. The cleaned and transformed features of 
our records are then normalized by the Feature 
Normalizer using the min-max normalization 
technique (Patro et al., 2015) to eliminate feature bias. 
That is, a feature with a much higher magnitude 
weighs in a lot more in the distance calculations than 
a feature with a much lower magnitude. To suppress 
this effect, we convert all the features to the same 
range between "0" and "1" inclusively so that no 
variable is dominated by the others. After the features 
are normalized, they are fed into the Feature Selector. 
Due to the diverse properties of medical datasets in 
nature, we employ the state-of-the-art two-tier 
ensemble-based technique (Chen et al., 2020). First, 
features in a certain feature selection approach (i.e., 
Wrapper, Filter, and Embedded) are intersected 
among multiple ML regressors by using the two-
thirds majority rule. That is, a feature is included in 
the intersection of a feature selection approach if at 
least two-thirds of the regressors in that approach pick 
that feature. Then, the final set of features is selected 
by intersecting the intersection sets from each 
approach and applying the same two-thirds majority 
rule. In addition, we also incorporate the clinical 
domain knowledge from our investigators, who are 
the medical experts in this field, by including 
clinically relevant features (i.e., current age, age at 
diagnosis, and types of cancer therapy) in the final 
feature selection. Finally, the data corresponding to 
the selected features is passed into our StackNet 
Optimizer which utilizes our developed SRA 



algorithm to dynamically and automatically construct 
an optimized SRA from a set of given ML regressors 
to predict long-term behavioural outcomes, measured 
in T-score, in cancer survivors. Due to the distinct 
nature of each behavioural outcome and its selected 
features on the dataset, every SRA varies and delivers 

more accurate prediction results (i.e., the lowest 
prediction errors) in behavioural outcomes that are 
targeted based upon the clinical domain knowledge 
from our investigators. The Feature Selector and the 
StackNet Optimizer are explained in greater detail in 
Section 3 and 4. 

 
Figure 1: Prognostic ML Framework. 

3 TWO-TIER ENSEMBLE-BASED 
FEATURE SELECTOR 

 
Figure 2: Two-Tier Ensemble-Based Feature Selector. 

Figure 2 is our two-tier ensemble-based feature 
selector that consists of three main feature selection 
methods, including Wrapper, Embedded, and Filter. 
Each method contains its own three different ML 
algorithms to select a set of features. The wrapper 
methods incorporate a greedy search algorithm, i.e., 
stepwise regression, in which features are 
sequentially added and/or removed from a pre-
selected ML regressor, based on its performant 
quality, until the algorithm finds the best subset of the 
features that result in constructing the best performant 
regressor. In this approach, we employ three common 
types of selection algorithms: (1) forward selection 
that starts with no feature and then adds one at a time 
iteratively until the mean squared error (MSE) of the 
regressor stops improving, (2) backward selection 

that starts with all the existing features and then 
removes one feature at a time iteratively until the 
regressor MSE is no longer decreasing, and (3) 
bidirectional selection that performs both forward and 
backward selection alternately to get the best subset 
of the features that delivers the lowest regressor MSE. 
To implement these three algorithms in our Feature 
Selector, we employ a conventional three-layer 
artificial neural network that has been widely used in 
solving feature selection problems for many domains 
and organizations (Joseph Manoj et al., 2019). 

Unlike the wrapper methods that select the 
features based on the regressor performance after it is 
built, the embedded methods perform the feature 
selection during the construction of a ML regressor. 
In other words, they perform the feature selection 
during the regressor training. Lasso, Ridge, and 
Elastic-Net regressors are the three embedded 
algorithms used in our Feature Selector that are 
briefly explained in the following. The Lasso 
regressor (Ranstam et al., 2018) is a Linear regressor 
with the L1 regularization technique to add a penalty 
(λ), i.e., the regularization parameter, to the absolute 
value of the coefficient magnitude (|𝛽𝛽𝑗𝑗|) of each input 
feature 𝑥𝑥𝑗𝑗, where 0 ≤ λ ≤ ∞, 0 ≤ j ≤ p, and p ∈ Z+. The 
Lasso cost function 𝐽𝐽(𝜷𝜷)  is defined by 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜷𝜷(∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜷𝜷(∑ (𝑦𝑦𝑖𝑖 −𝑁𝑁
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is the predicted output, 1 ≤ i ≤ N, and N ∈ Z++. By 
computing the gradient descent of 𝐽𝐽(𝜷𝜷), if we keep 
the value λ very small, e.g., λ = 0, 𝐽𝐽(𝜷𝜷)  behaves 
similar to MSE that the gradient descent will search 
for the best set of 𝜷𝜷 such that MSE is the minimal. In 
this case, no feature is removed. However, if we 



increase λ to a very large number, in order to 
minimize 𝐽𝐽(𝜷𝜷), the gradient descent will try to make 
some values of 𝜷𝜷 towards 0 to reduce the cost that 
results in keeping some important features and 
eliminating the others. Similar to the Lasso regressor, 
the Ridge regressor (Hoerl, 2020) still uses a Linear 
regressor but with the L2 regularization technique to 
add the λ penalty to the square of 𝛽𝛽𝑗𝑗 , i.e., 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜷𝜷(∑ (𝑦𝑦𝑖𝑖 − ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗

𝑝𝑝
𝑗𝑗=0 )2 + 𝜆𝜆∑ 𝛽𝛽𝑗𝑗2

𝑝𝑝
𝑗𝑗=0 )𝑁𝑁

𝑖𝑖=1 . 
Instead of making some values of 𝜷𝜷 to absolute zero, 
as compared to Lasso, Ridge never sets the values of 
𝜷𝜷 to zero and only minimizes them by keeping and 
removing the features respectively to obtain the 
minimal cost. By taking advantage of both Lasso and 
Ridge regression, the Elastic Net (Alhamzawi et al., 
2018) is an extension that is defined by 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜷𝜷(∑ (𝑦𝑦𝑖𝑖 − ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗𝑗𝑗

𝑝𝑝
𝑗𝑗=0 )2 + 𝜆𝜆1 ∑ |𝛽𝛽𝑗𝑗|𝑝𝑝

𝑗𝑗=0 +𝑁𝑁
𝑖𝑖=1

𝜆𝜆2 ∑ 𝛽𝛽𝑗𝑗2
𝑝𝑝
𝑗𝑗=0 )  to combine both L1 and L2 

regularizations by searching the best penalty 
combinations of 𝜆𝜆1 and 𝜆𝜆2 to minimize the cost and 
find the best set of features. 

Finally, the filter methods rank and select the 
features based on the statistical measures with their 
corresponding outcomes. Dissimilar to the Wrapper 
and Embedded methods, this process is totally 
independent of any ML regressor algorithms to select 
the features. The three filter algorithms (Cherrington 
et al., 2019) used in the Feature Selector include the 
Relief for Regression (RReliefF), Maximum 
Relevance — Minimum Redundancy (MRMR), and 
Correlation-based (CFS). The RReliefF algorithm is 
a family member of the Relief algorithms to select the 
features for regression problems. The main objective 
is to estimate the quality of features according to how 
well their values distinguish between instances that 
are near to each other. The MRMR algorithm selects 
the K best features, at each iteration, which have 
maximum relevance with respect to the target 
variable and minimum redundancy with respect to the 
features that have been selected at previous iterations. 
The CFS algorithm is a heuristic technique to 
evaluate the feature subset that can be either discrete 
or continuous. If the feature is discrete, symmetric 
uncertainty can be used. If the feature is continuous, 
Pearson’s correlation can be applied. 

Once these three feature sets are obtained from 
their respective algorithms in their own feature 
selection methods, they are intersected among them 
by applying the same decision rule, i.e., at least two-
thirds of the algorithms picking that feature, to deliver 
an intermediate feature set that is consented by these 
three methods in Tier 1. Once these three intermediate 
feature sets are generated by the Wrapper, Embedded, 

and Filter methods, respectively, they are passed into 
Tier 2 to select the final best subset of features that 
are intersected by applying the same two-thirds 
majority rule among all these three approaches. In 
addition, we also incorporate the clinical domain 
knowledge from our investigators, who are the 
medical experts in this field, by including the 
clinically relevant features (i.e., current age, age at 
diagnosis, and types of cancer therapy) in the final set. 
At the end, this final set, including the ML- and 
domain-expert-selected features, is passed into the 
downstream StackNet regressor building that is 
described and explained in Section 4. 

4 SRA ALGORITHM 

Presently, a typical StackNet regressor (Scikit-Learn, 
2021) is a two-layer ensemble-based architecture that 
combines multiple ML regressors at the 1st layer as 
the base with a regressor at the 2nd layer as the meta-
learner to perform predictions, where each base ML 
regressor is constructed on the complete training 
dataset and then the meta-regressor is fitted based 
upon the outputs, i.e., the meta-feature of each base 
ML regressor, as well as the input predictors of the 
complete training set. This SRA has been widely used 
to solve many problems in different domains and 
organizations (Kao et al., 2019; Saikia et al., 2019; 
Chen et al., 2021). However, this manually-
constructed architecture is always static and lacks the 
dynamic and automatic properties to build an 
architecture without considering each regressor 
performance on the actual dataset. Specifically, the 
main problems of this static architecture building 
include: (1) the number of layers is fixed; (2) the 2nd 
layer always has one meta-regressor; (3) the position 
arrangement of the regressors between the two layers 
is pre-determined based upon users’ prior experience 
and the experimental results in some literature 
reviews (Kao et al., 2019; Saikia et al., 2019; Chen et 
al., 2021); (4) the hyperparameters of all of the 
regressors have to be found before the architecture is 
being built; and (5) the hyperparameter tuning of the 
meta-learner in some architectures may not consider 
the meta-features of those base ML regressors. To 
address the above issues, we develop the SRA 
algorithm that dynamically and automatically 
constructs an architecture in our optimizer. The 
pseudocode algorithm of the optimizer is outlined in 
Table 1. 

Let us consider the example shown in Figure 3 to 
illustrate how our SRA algorithm of the optimizer can 
construct an optimized SRA, where the optimizer 



consists of two main modules: Architecture 
Generator (AG) and Weight Optimizer (WO). 
Suppose there are six ML regressors 𝑴𝑴� : [KNN, RF, 
GR, BR, XGB, ET] and six sets of corresponding 
hyperparameters 𝑷𝑷�: [𝑷𝑷�𝟏𝟏, 𝑷𝑷�𝟐𝟐, …, 𝑷𝑷�𝟔𝟔], where KNN is 
the K-Nearest Neighbours, RF is the Random Forest, 
XGB is the XGBoost, BR is the Bayesian Ridge, GR 
is the Gaussian Process, and ET is the Extra-trees. 
First, the AG module takes the D_Train on 𝑭𝑭�, 𝑴𝑴� , 𝑷𝑷�, 
B_Outcome (e.g., Attention Problems), and K = 5 as 
the inputs and then process them in three distinct 
phases, which we label them as "Stacking", "Un-
stacking", and "Recursive". 

Stacking Phase – STEPs 1 ~ 3: This phase 
consists of three steps, where each ML regressor in 𝑴𝑴�  

is trained and stacked at Lcurrent and Lnext 
respectively. In STEP 1, it first finds the best set of 
hyperparameters 𝑷𝑷� for KNN, RF, GR, BR, XGB, and 
ET respectively at Lcurrent = 1 by using the RS 
algorithm with 5-fold CV and RMSE on D_Train on 
𝑭𝑭� and B_Outcome. In STEP 2, this example assumes 
that the RMSE values of BR, XGB, and ET are the 
lowest. Based on the RMSE values, the top half of the 
ML regressors, i.e., BR, XGB, and ET, are stacked 
into Lnext = 2. In STEP 3, it finds the best set of 
corresponding hyperparameters 𝑷𝑷� for BR, XGB, and 
ET respectively at Lnext = 2 by using the RS 
algorithm with 5-fold CV and RMSE on D_Train on 
𝑭𝑭�, the meta-feature of KNN, RF, GR respectively at 
Lcurrent = 1, and B_Outcome. 

Table 1: SRA Algorithm. 

Input: 
𝑴𝑴� : [M1, M2, …, Mn], where 𝑴𝑴�  is a set of input ML regressors Mi s, for 1 ≤ i ≤ n and n ∈ 𝑍𝑍++ 
𝑭𝑭�: [F1, F2, …., Fk], where 𝑭𝑭� is a set of input searched features Fjs of ∀𝑀𝑀𝑖𝑖 ∈ 𝑴𝑴� , for 1 ≤ j ≤ k and k ∈ 𝑍𝑍++ 
𝑷𝑷�𝒊𝒊: [pi1, pi2,…, pij], where 𝑷𝑷�𝒊𝒊 is a set of hyperparameters pil of 𝑀𝑀𝑖𝑖 ∈ 𝑴𝑴� , for 1 ≤ i ≤ n, 1 ≤ l ≤ j, and n, j ∈ 𝑍𝑍++ 
𝑷𝑷�: [𝑷𝑷�𝟏𝟏, 𝑷𝑷�𝟐𝟐, …, 𝑷𝑷�𝒏𝒏], where 𝑷𝑷� is a set of 𝑷𝑷�𝒊𝒊, for 1 ≤ i ≤ n 
D_Train: Training Dataset on 𝑭𝑭� 
B_Outcome: Behavioural Outcome 
K: The number of groups that a given D_Train is to be split into for performing the cross-validation (CV) 
Output: 
StackNetOptRegArch: Optimized SRA 
Initialization: 
StackNetRegArch = NULL # Set the current SRA as NULL 
Lcurrent = 1 # Set the current layer of StackNetRegArch 
Lnext = Lcurrent + 1 # Set the next layer of StackNetRegArch 
StackNetRegArch[Lcurrent] = 𝑴𝑴�  # Set the initial StackNetRegArch with 𝑴𝑴�  
RMSE[Lcurrent][Mi] = 0 # Set Root Mean Square Error (RMSE) of 𝑀𝑀𝑖𝑖 at Lcurrent of StackNetRegArch, where 1 ≤ i ≤ n 
RMSE[Lnext][Mi] = 0 # Set Root Mean Square Error (RMSE) of 𝑀𝑀𝑖𝑖 at Lnext of StackNetRegArch, where 1 ≤ i ≤ n 
Weıght��������� = NULL # Set Weıght��������� that stores a set of weights of all predicted B_Outcome values at the highest layer of 
StackNetRegArch as NULL 
Processing: 
Module 1: Architecture Generator 
STEP 1: Find the best 𝑷𝑷�𝒊𝒊 ∈ 𝑷𝑷� for each Mi at Lcurrent by using the Random Search (RS) algorithm with K-fold CV and 
RMSE on D_Train on 𝑭𝑭� and B_Outcome, where 𝑀𝑀𝑖𝑖 ∈ 𝑴𝑴� . 
 
STEP 2: Move the top half of Mis, i.e., ⌊𝑛𝑛

2
⌋, that have the lowest RMSE from Lcurrent to Lnext 

 
STEP 3: Find the best 𝑷𝑷�𝒊𝒊 ∈ 𝑷𝑷� for each Mi at Lnext by using the Random Search (RS) algorithm with K-fold CV and RMSE 
on D_Train on 𝑭𝑭�, the meta-feature of each Mi at Lcurrent, and B_Outcome, where 𝑀𝑀𝑖𝑖 ∈ 𝑴𝑴� . 
 
STEP 4: Compare the RMSE of each Mi at Lnext with its RMSE at Lcurrnet  
if RMSEs of ∀𝑀𝑀𝑖𝑖 ∈ 𝑴𝑴�  at Lnext < their RMSEs at Lcurrent: 

Go To STEP 5 
else if ∃𝑀𝑀𝑖𝑖 ∈ 𝑴𝑴� , whose RMSE at Lnext >= its RMSE at Lcurrent: 

Move Mi back to Lcurrent from Lnext 
Go To STEP 5 

 
STEP 5: Evaluate if Weight Optimizer or STEPs 1 ~ 4 should be executed recursively based on the number of regressors 
at Lcurrent and Lnext 



if # of regressors of StackNetRegArch at Lnext = 0 
StackNetRegArch = StackNetRegArch[Lcurrent] 
 
# Evaluate if Weight Optimizer should be executed based upon the number of regressors at Lcurrent 
if # of regressors of StackNetRegArch at Lcurrent > 1 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡���������� = WeightOptimizer(StackNetRegArch, D_Train, 𝑭𝑭�, B_Outcome) 
StackNetOptRegArch = StackNetRegArch with 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡���������� 

else   
StackNetOptRegArch = StackNetRegArch 

else 
Lcurrent = Lnext 
Lnext = Lcurrent + 1 
 
if # of regressors of StackNetRegArch at Lcurrent ≥ 3 

Repeat STEP 1 ~ 4. 
else if # of regressors of StackNetRegArch at Lcurrent ≥ 2 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡���������� = WeightOptimizer(StackNetRegArch, D_Train, 𝑭𝑭�, B_Outcome) 
StackNetOptRegArch = StackNetRegArch with 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡���������� 

else 
StackNetOptRegArch = StackNetRegArch 

 
Return StackNetOptRegArch 
Module 2: WeightOptimizer(StackNetRegArch, D_Train, 𝑭𝑭�, B_Outcome) 
STEP 1: Use D_Train on 𝑭𝑭� to generate a set of predicted B_Outcome values 𝑦𝑦� = [𝑦𝑦�1,𝑦𝑦�2, … , 𝑦𝑦�𝑚𝑚] of StackNetRegArch, 
where 𝑦𝑦�𝑖𝑖  is a predicted value of B_Outcome and m is the total number of regressors at the highest layer of 
StackNetRegArch, for 1 ≤ i ≤ m and m ∈ 𝑍𝑍++ 
 
STEP 2: 𝑊𝑊�  = [w1, w2, ..., wm], where wi is the weight of 𝑦𝑦�𝑖𝑖, for 1 ≤ i ≤ m, 0 ≤ wi ≤ 1 and w1 + w2 + ... + wm = 1 
 
STEP 3: Define the objective function 𝑍𝑍 = ((∑ 𝑤𝑤𝑖𝑖𝑦𝑦�𝑖𝑖𝑚𝑚

𝑖𝑖=1 ) − 𝑩𝑩_𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶)2 # It is the sum of square errors between the 
actual B_Outcome value and the weighted sum of predicted values 𝑦𝑦�𝑖𝑖s  of all the regressors at the highest layer of 
StackNetRegArch 
 
STEP 4: Formulate the minimization problem: 

Minimize Z 
s.t. w1 + w2 + ... + wm = 1 
      0 ≤ wi ≤ 1, where 1 ≤ i ≤ m  

 
STEP 5: Compute 𝑊𝑊�  that minimizes Z by the convex optimizer 
 
STEP 6: Return 𝑊𝑊�  

 

 
 
 



Scenario 1 

 
Scenario 2 

 
Figure 3: An Illustrative Example.

Un-stacking Phase – STEP 4: This phase is to 
determine if a ML regressor could still stay at Lnext 
and then move on to STEP 5 or need to move back to 
Lcurrent, based upon its RMSE value. For this step 
explanation, we assume that there are two possible 
scenarios in this example: (1) the RMSEs of BR, 
XGB, and ET at Lnext are all lower than those at 
Lcurrent and (2) the RMSEs of some regressors, e.g., 
ET, at Lnext, equal to or higher than those at Lcurrent. 
For Scenario 1, the BR, XGB, and ET regressors all 
can stay at Lnext = 2 and move on to STEP 5, as they 
perform better at a higher layer indicated in the green 
colour. For Scenario 2, however, the ET regressor 
needs to be moved back to Lcurrent = 1 as the base 
regressor, called un-stacking, as its performance is 
worse at Lnext = 2 indicated in the red colour. After 
that, the algorithm goes to STEP 5. 

Recursive Phase – STEP 5: This phase is to 
decide whether or not the WO module or STEPs 1~4 
should be executed recursively. For Scenario 1, as the 
number of regressors at Lnext is not zero, Lcurrent 
and Lnext are incremented to 2 and 3 respectively in 
the "else" statement. Due to the number of regressors 
at Lcurrent at least three, STEPs 1 ~ 4 are called again 
in the process that has been described above. At the 
end, the ET regressor is at the 3rd layer due to its 
RMSE, which is lower than that at the 2nd layer. As 

there is only one regressor at the highest layer, i.e., 
Lcurrent = 3, there is no need to call the WO module. 
The final SRA is then composed of [KNN, RF, GR] 
at the 1st layer, [BR, XGB] at the 2nd layer, and [ET] 
at the 3rd layer. For Scenario 2, as the number of 
regressors is more than one at Lcurrent = 2, the WO 
module needs to be called to formulate the below 
minimization problem using STEPs 1~4 in Module 
2 and then learn the optimal weight of each output 
from BR and XGB respectively in STEP 5. In STEP 
6, 𝑊𝑊�  = [w1, w2] is returned to STEP 5 in Module 1 to 
construct the final SRA that consists of [KNN, RF, 
GR, ET] at the 1st layer and [BR, XGB] at the 2nd layer 
that combines the predicted outputs of BR and XGB, 
i.e., (∑ 𝑤𝑤𝑖𝑖𝑦𝑦�𝑖𝑖2

𝑖𝑖=1 ), to predict the behavioural outcome. 
 

Minimize 𝑍𝑍 = ((∑ 𝑤𝑤𝑖𝑖𝑦𝑦�𝑖𝑖2
𝑖𝑖=1 ) −𝑩𝑩_𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶)2  

s.t. w1 + w2 = 1 
0 ≤ wi ≤ 1, where 1 ≤ i ≤ 2 

(1) 

5 EXPERIMENTAL RESULT 
AND DISCUSSION 

The dataset for our preliminarily experimental case 
study consists of 207 cancer patients' records 



collected from a public hospital in HK between 2018 
– 2021. All the records came from the patients who 
suffered either Osteogenic Sarcoma, Soft Tissue 
Sarcomas, or Acute Lymphoblastic Leukemia before 
the age of 18. In each record, there are more than 60 
features that include biomarkers, treatments, chronic 
health conditions, socio-environmental factors, and 
behavioural outcomes. After processing those 
features in our Feature Selector and getting the 
clinical consultation from our investigators, we have 
approximately 20 features per outcome, i.e., 
Anxious/Depressed, Somatic Complaints, Thought 
Problems, Attention Problems, Depressive Problems, 
and Sluggish Cognitive Tempo, which the clinical 
experts would like to target on. In this pilot study, the 
K-Nearest Neighbours (K), Random Forest (R), 
XGBoost (X), Bayesian Ridge (B), Gaussian Process 
(G), and Extra-trees (E) regressors with 5-CV are 
employed in our Optimized StackNet (O) regressor. 
Compared its normalized RMSE (NRMSE) of each 
outcome with the Linear (L) regressor’s and the 
Typical StackNet (T) regressor’s, the results are 

summarized in Figure 4. Note that each T regressor is 
constructed by using the same six ML regressors. One 
of them is the meta-regressor (M) that is chosen based 
on users’ prior experience and the experimental 
results in some literature reviews (Kao et al., 2019; 
Saikia et al., 2019; Chen et al., 2021). The rest of them 
are the base ML regressors. 

In Figure 4, we can see that our optimized 
StackNet regressor for each outcome has the lowest 
NRMSE that outperforms all the other individual 
benchmarks, where each optimized StackNet 
regressor has its own distinct architecture for each 
outcome shown in the "Model" column. Further than 
that, on the average NRMSE among all the 
considered outcomes per regressor, our optimized 
StackNet regressor’s is 0.170 that is 5.6% lower than 
the R and G regressors’ (0.180) and almost 11% 
lower than the T regressor’s (0.191), which is the 
second worse performance among all the regressors. 
It can be proved that without performing the StackNet 
architecture optimization, the performance may even 
worse than the individual regressors. 

 

 
Figure 4: Experimental Results on the Study Data. 

6 CONCLUSIONS AND FUTURE 
WORK 

In this paper, we propose a prognostic ML framework 
to support the behavioural outcome prediction for 
cancer survivors. Specifically, our contributions are 
four-fold: (1) devise a data-driven, clinical domain-
guided pipeline to select the best set of predictors 

among cancer treatments, chronic health conditions, 
and socio-environmental factors to perform 
behavioural outcome predictions; (2) use the state-of-
the-art two-tier ensemble-based technique to select 
the best set of predictors for the downstream ML 
regressor constructions; (3) develop a SRA algorithm, 
i.e., an intelligent meta-modeling algorithm, to 
dynamically and automatically build an optimized 
multilayer ensemble-based RA from a given set of 
ML regressors to predict long-term behavioural 
outcomes; and  (4) conduct a preliminarily 



experimental case study on our existing study data 
collected by our investigators in a public hospital in 
HK. In this pilot study, we demonstrate that our 
approach outperforms the traditional statistical and 
computation methods, including Linear and non-
Linear ML regressors. However, there is still a lack 
of many important research questions, e.g., what 
other feature selection approaches should be used to 
select a better set of features for the outcome 
prediction, how the proposed algorithm could be 
enhanced to reduce the time and space complexity, 
and what other available datasets should be collected 
for the performance evaluations. 
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