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Abstract. This is a survey primarily about determining the border
rank of tensors, especially those relevant for the study of the complexity
of matrix multiplication. This is a subject that on the one hand is
of great significance in theoretical computer science, and on the other
hand touches on many beautiful topics in algebraic geometry such as
classical and recent results on equations for secant varieties (e.g., via
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1. Introduction

This is a survey of uses of secant varieties in the study of the complexity of
matrix multiplication, one of many areas in which Giorgio Ottaviani has made
signiőcant contributions. I pay special attention to the use of deformation
theory because at this writing, deformation theory provides the most promising
path to overcoming lower bound barriers. For an introduction to more general
uses of algebraic geometry in algebraic complexity theory see [35]. I begin by
reviewing some classical results.

1.1. Symplectic bundles on the plane, secant varieties,
and Lüroth quartics revisited [45]

In the 1860’s, Darboux studied degree n curves in P
2 that pass through all the

(

n+1
2

)

vertices of a complete (n + 1)-gon in P
2 (i.e., the union of n + 1 lines

in P
2 with no points of triple intersection). In 1869 Lüroth studied the n = 4

case. A naïve dimension count indicates that all quartics should pass through
the 10 vertices of some complete pentagon but Lüroth proved it is actually a
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codimension one condition.

In 1902 Dixon [24] proved all degree n curves in P
2 arise as a n×n symmetric

determinant (also see [23] for the general determinantal case).

In 1977 Barth [6] studied the moduli space of stable (symplectic) vector
bundles on P

2. In particular he showed that the curve of jumping lines of a
rank 2 stable bundle on P

2 with Chern classes (c1, c2) = (0, 4) is a Lüroth
quartic. Barth also gave a new proof of Lüroth’s theorem via vector bundles.

In [45] Giorgio Ottaviani explains these results via the defectivity of secant
varieties of Seg(P2 × v2(P

n−1)), where Seg(P2 × v2(P
n−1)) ⊂ P(C3⊗S2

C
n) is

the set of points [x⊗z2], where [x] ∈ P
2 and [z] ∈ P

n−1. The proof uses the
bounded derived category version of Beilinson’s monad Theorem [8], see [4] for
an excellent introduction.

1.2. Secant varieties

Throughout this paper V,A,B,C denote őnite dimensional complex vector
spaces. Let X ⊂ PV be a projective variety, Deőne its r-th secant variety, or
variety of secant P

r−1’s, to be

σr(X) :=
⋃

x1,...,xr∈X

⟨x1, . . . , xr⟩.

Here, for a set or subscheme Z ⊂ PV , ⟨Z⟩ ⊂ PV denotes its linear span, and
the overline denotes Zariski closure.

In this article I will be particularly interested in the case X = Seg(PA ×
PB × PC) ⊂ P(A⊗B⊗C), the variety of rank one (3-way) tensors. Given
T ∈ A⊗B⊗C, deőne the border rank of T , R(T ) to be the smallest r such that
[T ] ∈ σr(X).

Secant varieties have a long history in algebraic geometry dating back
to the 1800’s. In the 20th century they were used by J. Alexander and A.
Hirschowitz [1] to solve the polynomial interpolation problem, and by F. Zak
[51, Chap II, ğ2] to solve a linearized version of R. Hartshorne’s famous con-
jecture on complete intersections, called Hartshorne’s conjecture on linear nor-
mality. L. Manivel and I used them to study the geometry of the exceptional
groups and their homogeneous varieties, and even to obtain a new proof of the
Killing-Cartan classiőcation of complex simple Lie algebras and prove geomet-
ric consequences of conjectured categorical generalizations of Lie algebras by
Deligne and Vogel, see [37] for a survey. In this article, I discuss their use in
the context of algebraic complexity theory, more speciőcally, in proving lower
and upper bounds on the complexity of matrix multiplication.
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1.3. Matrix multiplication

In 1968, V. Strassen [47] discovered the usual way we multiply n×n-matrices,
which uses O(n3) arithmetic operations, is not optimal. After much work, it
was generally conjectured that one can in fact multiply matrices using O(n2+ϵ)
arithmetic operations for any ϵ > 0. To őx ideas, deőne the exponent of matrix
multiplication ω to be the inőmum over all τ such that n× n matrices may be
multiplied using O(nτ ) arithmetic operations, so the conjecture is that ω = 2.

The matrix multiplication tensor M⟨n⟩ : C
n

2

×C
n

2

→ C
n

2

executes the bilinear
map of multiplying two matrices. Fortunately for algebraic geometry, Bini [9]
showed R(M⟨n⟩) = O(nω) so we may study the exponent via secant varieties
of Segre varieties.

Thus one way to prove complexity lower bounds for matrix multiplication
would be to prove lower bounds on the border rank of M⟨n⟩. I will give a
history of such lower bounds. Perhaps more surprising, is that one way of
showing upper bounds for the complexity of matrix multiplication would be to
prove the border rank of certain auxiliary tensors is small, as I discuss in ğ4.

1.4. Dimensions of secant varieties

One expects dimσr(X) = min{r dimX+r−1, dimPV }, because one can pick r
points on X, and then a point on the P

r−1 spanned by them. This always gives
an upper bound on the dimension.

Strassen [48], motivated by the complexity of matrix multiplication, showed
that this expectation fails for X = Seg(P2 × P

n−1 × P
n−1) ⊂ P(C3⊗C

n⊗C
n),

n odd, r = 3n−1
2 .

Previously, E. Toeplitz, in 1877 [50], had already shown it fails for X =
Seg(P2 × v2(P

3)) ⊂ P(C3⊗S2
C

4), r = 5.

In 2007 Ottaviani [45] showed that more generally the expectation fails for
X = Seg(P2×v2(P

n−1)) ⊂ P(C3⊗S2
C

n) with n even r = 3n
2 −1, and that this

failure implies Lüroth’s theorem. In the same paper he also partially recovers
Barth’s moduli results.

2. Koszul flattenings and variants

2.1. Idea of Proofs of results in §1.4

To prove the naïve dimension count for dimσr(X) is wrong (e.g., in the case
of Lüroth’s theorem that σr(X) ̸= PV ), one can show that the ideal of σr(X)
is non-empty by exhibiting an explicit polynomial in the ideal.

Strassen did this and his result was revisited by Ottaviani: Consider
Seg(PA × PB × PC) ⊂ P(A⊗B⊗C) , dimA = 3 , dimB = dimC = m. Let
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{ai}, {bj}, {ck} be bases of A,B,C. Given T =
∑

T ijkai⊗bj⊗ck ∈ A⊗B⊗C,
consider the linear map

T∧1
A : A⊗B∗ → Λ2A⊗C

a⊗β 7→
∑

i,j,k

T ijkβ(bj)a ∧ ai⊗ck

Exercise: If [T ] ∈ Seg(PA × PB × PC), then rank(T∧1
A ) = 2, and thus, by

linearity, if rank(T∧1
A ) > 2R, then [T ] ̸∈ σR(Seg(PA× PB × PC)).

Ottaviani states in a remark that these minors are a reformulation of
Strassen’s equations (however see Remark 2.1 below), which, for tensors
T ∈A⊗B⊗C = C

a⊗C
m⊗C

m such that there exists α ∈ A∗ with rank(T (α)) =
m, are naturally expressed as follows: consider T (A∗) ⊂ B⊗C, and for α ∈ A∗

with rank(T (α)) = m, consider the linear isomorphism T (α) : B∗ → C. Then

T (A∗)T (α)
−1

⊂ End(C) is a space of endomorphisms. If T =
∑m

j=1 ej⊗bj⊗cj
for some ej ∈ A, then one obtains a space of diagonal matrices. In partic-
ular, the matrices commute. Since the property of commuting is closed, if
[T ] ∈ σm(Seg(PA×PB×PC)), then one still obtains a space of commuting en-
domorphisms. Moreover, the rank of the commutator (a measure of the failure
of commutivity) may be computed from the rank of T∧1

A . Note that in both
cases one restricts to a three dimensional subspace of A.

To see Strassen’s equations as polynomials, for X ∈ B⊗C, let X∧m−1 ∈
Λm−1B⊗Λm−1C ≃ B∗⊗C∗ denote the adjucate (cofactor matrix), and recall
that X−1 is essentially the adjugate times the determinant. Then Strassen’s
equations for T to have border rank (at most) m [48] become, for all X,Y, Z ∈
T (A∗) ⊂ B⊗C,

XY ∧m−1Z − ZY ∧m−1X = 0. (1)

These are equations of degree m+ 1.

Using a reőnement of these equations that takes into account the rank of
the commutator, Strassen proved R(M⟨n⟩) ≥

3
2n

2, the őrst non-classical lower
bound on the border rank of the matrix multiplication tensor.

Call a tensor T which satisőes the genericity condition that there exists
α ∈ A∗ with rank(T (α)) = m, 1A-generic.

When T is 1A-generic, taking Y of full rank and changing bases such that it
is the identity element, the equations require the space to be abelian. If T (A∗)
is of bounded rank m − 1, for each X,Y, Z, the set of m2 equations reduces
to a single equation. If T (A∗) is of bounded rank m − 2, then the equations
become vacuous.

Lemma 3.1 of [45] states that if T is 1A-generic, then the condition on
rank(T∧1

A ) is indeed a reformulation of Strassen’s equations.
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Remark 2.1. Recently, with my student Arpan Pal and Joachim Jelisiejew
[32], we proved that if T is not 1A-generic, then the condition on rank(T∧1

A ) is
a stronger condition than the A-Strassen equations.

2.2. Generalizations: Young flattenings [43, 44]

2.2.1. Koszul flattenings

Consider Seg(PA × PB × PC) ⊂ P(A⊗B⊗C), let dimA = 2p + 1, dimB =
dimC = m. (If dimA > 2p + 1, restrict to a general 2p + 1 dimensional
subspace.)

Given T =
∑

T ijkai⊗bj⊗ck ∈ A⊗B⊗C, consider the linear map

T∧p
A : ΛpA⊗B∗ → Λp+1A⊗C

ai1 ∧ · · · ∧ aip⊗β 7→
∑

i,j,k

T ijkβ(bj)ai1 ∧ · · · ∧ aip ∧ ai⊗ck

Exercise: If [T ] ∈ Seg(PA × PB × PC), then rank(T∧p
A ) =

(

2p
p−1

)

. Thus if

rank(T∧p
A ) >

(

2p
p−1

)

R, then [T ] ̸∈ σR(Seg(PA×PB×PC)). Call these equations
the p-Koszul flattenings.

When Ottaviani and I found the p-Koszul ŕattenings, we were sure we
would get a new lower bound for matrix multiplication. Our őrst attempts
were discouraging, we were attempting to take 2p + 1 = n

2 or nearly so. It
turns out that our initial attempts were too greedy, as such values do not give
good lower bounds. Only months later, we őnally tried taking p = n − 1

which enabled us to prove the őrst new lower bounds for border rank of matrix
multiplication since 1983:

Theorem 2.2 ([44]). R(M⟨n⟩) ≥ 2n2 − n.

It is worth noting that the absolute limit of Koszul ŕattenings, and any
determinantal equations that we found, was 2n2 − 1, i.e., for tensors in
C

m⊗C
m⊗C

m, 2m− 1.

2.2.2. Young flattenings

We found the p-Koszul ŕattenings as part of a general program to systematically
őnd equations for secant varieties, especially equations of secant varieties of
homogeneous varieties, which we call Young flattenings. Giorgio likes to think
of these in terms of degeracy loci of maps between vector bundles, and I prefer
a more representation-theoretic perspective. The basic idea is for X ⊂ PV , to
őnd an inclusion of V into a space of matrices. Then if the matrices associated
to points of X have rank at most q, the size qr+ 1 minors restricted to V give
equations for σr(X).
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Vector bundle perspective

Let E → X be a vector bundle of rank e, write L = OX(1) so V = H0(X,L)∗ =
H0(L)∗. Let v ∈ V and consider the linear map AE

v : H0(E) → H0(E∗⊗L)∗

induced by the multiplication map H0(E)⊗H0(L)∗ → H0(E∗⊗L)∗. Then, as-
suming all spaces are sufficiently large, the size (re+1) minors of AE

v give equa-
tions for σr(X). Here we have an inclusion V =H0(L)∗⊂H0(E)∗⊗H0(E∗⊗L)∗.

Representation theory perspective

Let X = G/P ⊂ PVλ where Vλ is an irreducible module for the reductive
group G of highest weight λ and X is the orbit of a highest weight line, i.e.,
the minimal G-orbit in PVλ. Look for G-module inclusions Vλ ⊂ Vµ⊗Vν , so
in coordinates one realizes Vλ as a space of matrices. Then for x ∈ X if the
associated matrix has rank k, the size rk+1 minors of Vµ⊗Vν restricted to Vλ
give equations in the ideal of σr(X).

We spent some time trying to őnd more powerful Young ŕattenings. At
őrst we just thought we were not being clever enough in our search for deter-
minantal equations, but then we came to suspect that there was some limit to
the method.

3. Beyond Koszul flattenings: steps forward and barriers
to future progress

3.1. The cactus barrier

Around the same time, in both algebraic complexity theory [25] and algebraic
geometry [7, 11] (see [34, Chap. 10] for an overview), it was proven that
determinantal methods are subject to an absolute barrier that is at most 6m
for tensors in C

m⊗C
m⊗C

m.
To explain the barrier from a geometric perspective, rewrite the deőnition

of the secant variety as

σr(X) :=
⋃

{⟨R⟩ | length(R) = r, R ⊂ X, R : smoothable}.

Here R ⊂ X denotes a zero dimensional scheme and the union is taken over all
zero dimensional schemes satisfying the conditions in braces. Deőne the cactus
variety [11]:

κr(X) :=
⋃

{⟨R⟩ | length(R) = r, R ⊂ X}.

It turns out that κ6m−4(Seg(P
m−1×P

m−1×P
m−1)) = P(Cm⊗C

m⊗C
m), com-

pared with σr(Seg(P
m−1×P

m−1×P
m−1)) which does not őll P(Cm⊗C

m⊗C
m)

until r ∼ m2

3 .
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The barrier results from the fact that determinantal equations for σr(X)
are also equations for κr(X)!

When I learned this, I became very discouraged.

3.2. A Phyrric victory

With M. Michałek, we were able to push things a little further for tensors
with symmetry. Given T ∈ A⊗B⊗C, R(T ) ≤ r if and only if there exists a
curve Et ⊂ G(r, A⊗B⊗C), the Grassmannian of r planes through the origin in
A⊗B⊗C, such that

• For t ̸= 0, Et is spanned by r rank one elements.

• T ∈ E0.

Let GT := {g ∈ GL(A)×GL(B)×GL(C) | g ·T = T} denote the symmetry
group of T . Then if we have such a curve Et, then for all g ∈ GT , gEt also
gives a border rank decomposition. Thus one can insist on normalized curves,
those with E0 Borel őxed for a Borel subgroup of GT [40]. Then one can apply
a border rank version of the classical substitution method (see, e.g., [2]) to
reduce the problem to bounding the border rank of a smaller tensor. Applying
this to the matrix multiplication tensor, we proved:

Theorem 3.1 ([41]). R(M⟨n⟩) ≥ 2n2 − log
2
n− 1.

Recall that the limit of lower bounds one can prove with Young ŕattening
is 2m− 1. We wrote down an explicit sequence of tensors Tm ∈ C

m⊗C
m⊗C

m

with a one-dimensional symmetry group and proved:

Theorem 3.2 ([42]). R(Tm) ≥ (2.02)m.

After that, I did not see any path to further lower bounds.

3.3. A vast generalization: border apolarity

W. Buczyńska and J. Buczyński [12] had the following idea: Consider not just
a curve in the Grassmannian obtained by taking the spans of r moving points
{Tj,ϵ}, where T = limϵ→0

∑r
j=1 Tj,ϵ, but the curve of ideals Iϵ ∈ Sym(A∗ ⊕

B∗⊕C∗) that the points give rise to: let Iϵ be the ideal of polynomials vanishing
on [T1,ϵ]∪ · · · ∪ [Tr,ϵ] ⊂ PA× PB × PC. Now consider the “limiting idealž. But
how should one take limits? If one works in the usual Hilbert scheme the r
points limit to some zero dimensional scheme and one could take the span of
that scheme. But for secant varieties one is really taking the limit of the spans
⟨T1,ϵ, . . . , Tr,ϵ⟩ in the Grassmannian of r planes and the span of the limiting
scheme can be strictly smaller than the limit of the spans, so this idea does not
work.
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The answer is to work in the Haiman-Sturmfels multigraded Hilbert scheme
[29], which lives in a product of Grassmannians and keeps track of the entire
Hilbert function rather than just the Hilbert polynomial. The price one pays
is that now one must allow unsaturated ideals.

As with the border substitution method, one can insist that limiting ideal
I0 is Borel őxed, which for tensors with a large symmetry group reduces in
small multi-degrees to a small search that has been exploited in practice.

Instead of single curve Eϵ ⊂ G(r, A⊗B⊗C) limiting to a Borel őxed point,
for each (i, j, k) one gets a curve in each Gr(r, SiA∗⊗SjB∗⊗SkC∗), each curve
limiting to a Borel őxed point and satisfying compatibility conditions. Here
Gr(r, V ) is the Grassmannian of codimension r subspaces in V . In this situa-
tion, Eϵ = (Iϵ)

⊥
(111).

The upshot is an algorithm that either produces all normalized candidate
I0’s or proves border rank > r. The caveat is that once one has a candidate
I0 one must determine if it actually came from a curve of ideals of r distinct
points.

Using border apolarity, in [19] we proved numerous new matrix multiplica-
tion border rank lower bounds, as well as determining the border rank of the
size three determinant polynomial considered as a tensor det3 ∈ C

9⊗C
9⊗C

9,
whose importance for complexity is explained below. In particular, our results
include the őrst nontrivial lower bounds for “unbalanced matrix multiplication
tensorsž, something that was untouchable using previous methods.

3.4. Border apolarity is subject to the cactus barrier

In practice, one attempts to construct an ideal by building it up from low
multi-degrees. The main restrictions one obtains is when one has the ideal
constructed up to multi-degrees (s−1, t, u), (s, t−1, u) and (s, t, u−1), and one
wants to construct the ideal in degree (s, t, u). In order that the construction
may continue, one needs that the natural symmetrization and addition map

Is−1,t,u⊗A
∗ ⊕ Is,t−1,u⊗B

∗ ⊕ Is,t,u−1⊗C
∗ → SsA∗⊗StB∗⊗SuC∗ (2)

has image of codimension at least r. Here Is−1,t,u ⊂ Ss−1A∗⊗StB∗⊗SuC∗

denotes the component of the ideal in multi-degree (s− 1, t, u) etc. (Here and
in what follows, the direct sum is the abstract direct sum of vector spaces, so
there is no implied assertion that the spaces are disjoint when they live in the
same ambient space.)

That is, the minors of the map of appropriate size must vanish. These are
determinantal conditions and therefore subject to the cactus barrier.

Remark 3.3. Aside for the experts: J. Buczyński points out that not all com-
ponents of the usual Hilbert scheme contain ideals with generic Hilbert func-
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tion. Thus in those situations, border apolarity may give better lower bounds
on border rank than on cactus border rank.

3.5. Deformation theory

Although border apolarity alone cannot overcome the cactus barrier, by placing
calculations in the Haiman-Sturmfels multigraded Hilbert scheme, it provides
a path to overcoming the cactus barrier. Namely one can apply the tools
of deformation theory (see, e.g., [30] for an introduction) to determine if a
candidate ideal is deformable to the ideal of a smooth scheme. Below, after
motivating the problem, I describe a őrst implementation of this in the special
case of tensors of minimal border rank.

4. Strassen’s laser method for upper-bounding the
exponent of matrix multiplication using tensors of
minimal or near minimal border rank

The best way to prove an upper bound on matrix multiplication complexity
would be to prove an upper bound for matrix multiplication directly. Fortu-
nately for algebraic geometry, Bini [9] showed that this is measured by the
border rank of the matrix multiplication tensor. However, there has been
little progress in this direction since the early 1980’s. Instead, border rank
upper bounds for M⟨n⟩ have been proven using indirect methods, the most
important papers are those of Schönhage [46], Strassen [49] and Coppersmith-
Winograd [22]. The resulting technique is called Strassen’s laser method. Re-
markably, it begins with a tensor of minimal (or near minimal) border rank,
i.e., a concise tensor in C

m⊗C
m⊗C

m of border rank m or nearly m, and then
builds a large tensor from it, using its Kronecker powers deőned below, and
then, using methods from probability and combinatorics, shows this large ten-
sor admits a degeneration to a large matrix multiplication tensor.

For tensors T ∈ A⊗B⊗C and T ′ ∈ A′⊗B′⊗C ′, the Kronecker product of
T and T ′ is the tensor T ⊠ T ′ := T⊗T ′ ∈ (A⊗A′)⊗(B⊗B′)⊗(C⊗C ′), re-
garded as 3-way tensor. Given T ∈ A ⊗ B ⊗ C, the Kronecker powers of T
are T⊠N ∈ A⊗N ⊗ B⊗N ⊗ C⊗N , deőned iteratively. Rank and border rank
are submultiplicative under Kronecker product: R(T ⊠ T ′) ≤ R(T )R(T ′),
R(T ⊠ T ′) ≤ R(T )R(T ′), and both inequalities may be strict.

Given T, T ′ ∈ A ⊗ B ⊗ C, we say that T degenerates to T ′ if
T ′ ∈ GL(A)×GL(B)×GL(C) · T , the closure of the orbit of T , the closures
are the same in the Euclidean and Zariski topologies.

Strassen’s laser method [49, 21] obtains upper bounds on ω by showing a
certain explicit degeneration of a large Kronecker power of a tensor T satisfy-
ing certain combinatorial properties, admits a further degeneration to a large
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matrix multiplication tensor. Since border rank is non-increasing under degen-
erations and one has an upper bound on R(T⊠N ) inherited from the knowledge
of R(T ), one obtains an upper bound on the border rank of the large matrix
multilplication tensor.

An early success of the laser method was with a tensor of border rank
m + 1, now called the small Coppersmith-Winograd tensor Tcw,q ∈ (Cq+1)⊗3.
Coppersmith and Winograd showed that for all k and q = m− 1, [22]

ω ≤ logq

(

4

27

(

R

(

T⊠k
cw,q

))
3

k

)

. (3)

They used this when q = 8 and the estimate R(T⊠k
cw,q) ≤ (q + 2)k to obtain

ω ≤ 2.41. In particular, one could even potentially prove ω equaled two were
limk→∞(R(T⊠k

cw,2))
3

k equal to 3 instead of 4. Using an enhancement of border
apolarity, with A. Conner and H. Huang, in [20] we solved the longstanding
problem of determining R(T⊠2

cw,2). Unfortunately for matrix multiplication up-

per bounds, we proved that R(T⊠2
cw,2) = 42. Previously, just using Koszul ŕat-

tenings, analogous (and even higher Kronecker power) results for other small
Coppersmith-Wingorad tensors were obtained with A. Conner, F. Gesmundo,
and E. Ventura [18].

A more intriguing tensor is the “skew-cousinž of the small Coppersmith-
Winograd tensor Tskewcw,q occuring in odd dimensions, which similarly satisőes
for all k and even q, [18]

ω ≤ logq

(

4

27

(

R

(

T⊠k
skewcw,q

))
3

k

)

. (4)

Again, the q = 2 case could potentially be used to prove the exponent is two.
Here one begins with a handicap, as R(Tskewcw,2) = 5 > 4, but with A. Conner
and A. Harper, using border apolarity for the lower bound and numerical search
methods for the upper bound, in [19] we showed R(T⊠2

skewcw,2) = 17 < 25.
Unfortunately 17 > 16. The problem of determining the border rank of the
cube remains.

It is worth remarking that T⊠2
cw,2 is isomorphic to the size three permanent

polynomial considered as a tensor and T⊠2
skewcw,2 is isomorphic to the size three

determinant polynomial [18].
The best bounds on the exponent were obtained using the laser method

applied to the big Coppersmith-Winograd tensor TCW,q, which has minimal
border rank. However, barriers to future progress using the laser method ap-
plied to this tensor have been discovered, őrst in [3], and then in numerous
follow-up works. In particular, one cannot prove ω < 2.3 using TCW,q in the
laser method. A geometric interpretation of the barriers is given in [16].

Very recently, at an April 2022 workshop on geometry and complexity the-
ory in Toulouse, France, J. Jelisiejew and M. Michałek announced a path to
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improving the laser method. Their observation was that the border rank es-
timate for the “certain degenerationž of T⊠N in the laser method mentioned
above can be improved! The proof exploits properties of the algebra associated
to T⊠N (discussed in ğ7.1 below) that persist under the degeneration.

Even without that recent developement, other minimal border rank tensors
could potentially prove ω < 2.3 with the standard laser method. In fact in
[31, Cor 4.3] and [17, Cor 7.5] it was observed that among tensors that are
1A, 1B and 1C generic (such are called 1-generic tensors), TCW,q is the “worstž
for the laser method in the sense that any bound one can prove using TCW,q

can also be proved using any other minimal border rank 1-generic tensor. This
provides strong motivation to understand tensors of minimal border rank. A
second motivation is that it can serve as a case study for the implementation
of deformation theory to overcome the cactus barrier.

5. Classical and neo-classical equations for tensors of
minimal border rank

Before discussing recent developments for tensors of minimal border rank, I ex-
plain the previous state of the art. I already have discussed Strassen’s equations
and Koszul ŕattenings. What follows are additional conditions.

5.1. The equations of [36, 38]

Several modules of equations were found in [36, 38] using representation the-
ory and variants of Strassen’s equations. Many of these still lack a geometric
interpretation.

5.2. The flag condition

If R(T ) = m there exists a ŕag A1 ⊂ · · · ⊂ Am−1 ⊂ A such that for all j,
T (A∗

j ) ⊂ σj(Seg(PB × PC)). This has been observed several times, dating
back at least to [13, Exercise 15.14]. Note that to convert this condition to
polynomial conditions, one would have to use elimination theory, even for the
őrst step that there exists a line A∗

1 such that PT (A∗
1) ∈ Seg(PB × PC). The

ŕag condition was essential to the results in [20].

5.3. The End-closed condition

Gerstenhaber [28] observed the following: Let ⟨x1, . . . , xm⟩ ⊂ End(Cm) be a
limit of spaces of simultaneously diagonalizable matrices. Then ∀i, j, xixj ∈
⟨x1, . . . , xm⟩. Call this the “End-closed conditionž. To express the condition as
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polynomials, let {αi} be a basis of A∗, with α1 chosen to maximize the rank
of T (α1), then for all α′, α′′ ∈ A∗, the End-closed condition is

(T (α′)T (α1)
∧m−1T (α′′)) ∧ T (α1) ∧ · · · ∧ T (αm) = 0 ∈ Λm+1(End(C)). (5)

These are polynomials of degree 2m+ 1. When T is 1A-generic and one takes
α1 such that rank(T (α1)) = m, these correspond to T (A∗)T (α1)

−1 ⊂ End(C)
being closed under composition of endomorphisms.

5.4. The symmetry Lie algebra condition

Let g = gl(A) ⊕ gl(B) ⊕ gl(C). Let ĝT = {X ∈ g | X.T = 0}. (This is the
pullback of the symmetry Lie algebra of T to gl(A) ⊕ gl(B) ⊕ gl(C).) With
T understood, write gAB = {X ∈ gl(A) ⊕ gl(B) | X.T = 0} and similarly for
gBC , gAC .

A concise tensor of rank m, M⊕m
⟨1⟩ , has dim ĝM⊕m

⟨1⟩
= 2m and dim gAB =

dim gAC = dim gBC = m. The dimension of the symmetry Lie-algebra is semi-
continuous under degenerations, thus if T is of minimal border rank dim ĝT ≥
2m and dim ĝAB ≥ m and permuted statements.

Computing these dimensions amounts to determining the dimension of the
kernel of a linear map. Precisely to check if dim ĝT ≥ 2m are equations of
degree 3m2 − 2m+ 1 and dim gAB ≥ m are equations of degree 2m2 −m+ 1.

6. The 111-equations and first consequences

6.1. The 111-equations

The 111-equations are the rank conditions on the map (2) when (s, t, u) =
(1, 1, 1) and one is testing for border rank m. Note that in this case there
are no choices for the ideal in degrees (110), (101), (011), so they are really
polynomial equations. These equations őrst appeared in [12, Thm 1.3].

The 111-equations for concise tensors of minimal border rank may be re-
phrased as the requirement that

dim((T (A∗)⊗A) ∩ (T (B∗)⊗B) ∩ (T (C∗)⊗C)) ≥ m. (6)

A special case of the 111-equations are the two-factor 111-equations, which
have a natural geometric interpretation and are easier to implement because
a pairwise intersection can be computed using inclusion-exclusion: Given sub-
spaces X1, X2, X3 of a vector space V , by inclusion-exclusion dim(Xi ∩Xj) =
dim(Xi) + dim(Xj)− dim⟨Xi, Xj⟩.

Thus the two-factor 111-test may be computed by checking if
dim⟨T (A∗)⊗A, T (B∗)⊗B⟩ ≥ 2m2 − m + 1 and permuted statements. These
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are equations of degree 2m2 −m+ 1 in the T ijk. Notice that if (X,Y ) ∈ gAB ,
i.e., X.T = −Y.T , then (X,−Y ) gives rise to an element of (T (A∗)⊗A) ∩
(T (B∗)⊗B), i.e., the two factor 111-tests are equivalent to the dimension re-
quirements on gAB , gAC , gBC for minimal border rank.

More generally, the full 111-equations may also be understood as a general-
ization of the lower bound on dim(ĝT ), where one not just bounds dimension,
but restricts the structure of ĝT as well.

To compare the 111-equations with other previously known equations, we
have:

Proposition 6.1. [32, Prop. 1.1, Prop. 1.2] The 111-equations imply both
Strassen’s equations and the End-closed equations. The 111-equations do not
always imply the p = 1 Koszul flattening equations.

Consider the situation of a concise tensor where each of the associated
spaces of homomorphisms is of bounded rank m − 1. Strassen’s equations
do allow some assertions in this situation. A normal form for such tensors
was proved by S. Friedland [26]. This normal form was generalized in [32,
Prop. 3.3] by using the 111-equations instead of Strassen’s equations. (In
fact this generalized normal form allowed the proof that the 111-equations
imply Strassen’s equations and the End-closed equations.) These normal forms
respectively allowed the characterization of concise tensors of minimal border
rank when m = 4 and m = 5, in fact S. Friedland was even able to resolve the
non-concise m = 4 case using additional equations he developed, solving the
set-theoretic “salmon prize problemž posed by E. Allman.

Recall that Strassen’s equations and the End-closed equations are trivial
when a tensor gives rise to three linear spaces of bounded rank at most m− 2.
The 111-equations do not share this defect. We are currently implementing
them for such spaces of tensors. (The p = 1 Koszul ŕattenings are not trivial
in this setting, we have yet to determine their utility for bounded rank m− 2
situations.)

7. Deformation theory for tensors of minimal border rank

For tensors T ∈ C
m⊗C

m⊗C
m satisfying genericity conditions, one has natural

algebraic structures associated to them that can be utilized to help determine
if they have minimal border rank.

7.1. Binding tensors and algebras

Say T ∈ A⊗B⊗C is 1A and 1B generic with T (α1) : B∗ → C and T (β1) :
A∗ → C of full rank. (A tensor that is at least two of 1A, 1B or 1C generic is
called binding.) Use their inverses to obtain a tensor isomorphic to T , where
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I abuse notation and also denote by T , T ∈ C∗⊗C∗⊗C, i.e., a bilinear map
T : C ×C → C, which gives C the structure of an associative algebra with left
identity α1 and right identity β1. (The algebra is associative because matrix
multiplication is associative.)

If T satisőes the A-Strassen equations then it is isomorphic to a partially
symmetric tensor, see Proposition 8.1, and the associated algebra is abelian.
Conversely, given such an algebra, one obtains its structure tensor.

Explicitly, let I ⊂ C[x1, . . . , xn] be an ideal whose zero set in affine space
is őnite, more precisely so that AI := C[x1, . . . , xn]/I is a őnite dimensional
algebra of dimension m. (This will be the case, e.g., if the zero set consists of
m distinct points each counted with multiplicity one.) Let {pI} be a basis of
AI with dual basis {p∗I} We can write the structure tensor of AI as

TAI
=

∑

pI ,pJ∈AI

p∗I⊗p
∗
J⊗(pIpJ mod I).

Then [10] shows that a binding tensor T that is the structure tensor of a
smoothable algebra is of minimal border rank, i.e., the tensorM⊕m

⟨1⟩ degenerates

to T , where M⊕m
⟨1⟩ is the tensor whose associated algebra AM⊕m

⟨1⟩
comes from the

ideal of m distinct points. The key step is showing that in this situation T ∈

GL(A)×GL(B)×GL(C)M⊕m
⟨1⟩ if and only if (using the above identiőcations)

T ∈ GL(C)M⊕m
⟨1⟩ .

Thus one may utilize deformation theory on the Hilbert scheme of points to
determine if a binding tensor satisfying the A-Strassen equations has minimal
border rank. In particular, such tensors automatically are of minimal border
rank when m ≤ 7 [14].

7.2. 1-Generic tensors: Gorenstein algebras

Now say T is 1A, 1B , and 1C generic (such tensors are called 1-generic) and
satisőes the A-Strassen equations. We have γ1 ∈ C∗ such that T (γ1) ∈ End(C)
is invertible. What extra structure do we obtain?

Recall that an algebra A is Gorenstein if there exists f ∈ A∗ such that any
of the following equivalent conditions holds:

1) TA(f) ∈ A∗ ⊗A∗ is of full rank,

2) the pairing A⊗A → C given by (a, b) 7→ f(ab) is non-degenerate,

3) Af = A∗.

Thus f = γ1 above tells us AT is Gorenstein by (1). By the second assertion
in Proposition 8.1, T is moreover symmetric.

In particular, such T is of minimal border rank when m ≤ 13 [15]. For an
algorithm that resolves the m = 14 case, see [27].
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The additional algebraic structure of being Gorenstein makes the deforma-
tion theory easier to implement.

Example 7.1. Consider A = C[x]/(x2), with basis 1, x, so

TA = 1∗⊗1∗⊗1 + x∗⊗1∗⊗x+ 1∗⊗x∗⊗x.

Writing e0 = 1∗, e1 = x∗ in the őrst two factors and e0 = x, e1 = 1 in the
third,

TA = e0⊗e0⊗e1 + e1⊗e0⊗e0 + e0⊗e1⊗e0

That is, TA = TWState is a general tangent vector to Seg(PA× PB × PC).

Example 7.2 (The big Coppersmith-Winograd tensor). Consider the algebra

ACW,q = C[x1, . . . , xq]/(xixj , x
2
i − x2j , x

3
i , i ̸= j)

Let {1, xi, [x
2
1]} be a basis of A, where [x21] = [x2j ] for all j. Then

TACW,q
=1∗⊗1∗⊗1 +

q
∑

i=1

(1∗⊗x∗i⊗xi + x∗i⊗1∗⊗xi + x∗i⊗x
∗
i⊗[x21])

+ 1∗⊗[x21]
∗⊗[x21] + [x21]

∗⊗1∗⊗[x21].

Set e0 = 1∗, ei = x∗i , eq+1 = [x21]
∗ in the őrst two factors and e0 = [x21], ei = xi,

eq+1 = 1 in the third to obtain

TACW,q
=TCW,q = e0⊗e0⊗eq+1 +

q
∑

i=1

(e0⊗ei⊗ei + ei⊗e0⊗ei + ei⊗ei⊗e0)

+ e0⊗eq+1⊗e0 + eq+1⊗e0⊗e0,

which is the usual expression for the big Coppersmith-Winograd tensor.

7.3. 1∗-generic tensors: modules and the ADHM
correspondence

When dimA = dimB = dimC = m, one says T is 1∗-generic if it is 1A or 1B
or 1C generic.

Consider the case of a tensor that is 1A-generic but not binding. What
structure can we associate to it? Fixing α1 as above we obtain T ∈ A⊗C∗⊗C,
i.e., T (A∗)T (α1)

−1 ⊂ End(C), and if Strassen’s equations are satisőed, we have
an abelian subspace, and if furthermore the End-closed condition holds, we may
think of this space as deőning an algebra action on End(C), which we may lift to
an action of the polynomial ring S := C[y2, . . . , ym] by ys(c) := T (αs)T (α1)

−1c.
(The choice of indices is deliberate, as T (α1)T (α1)

−1 = IdC corresponds to
1 ∈ S.)
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That is, the vector space C becomes a module over the polynomial ring.
This association is called the ADHM correspondence in [33], after [5]. This
leads one to deformation theory in the Quot scheme that parametrizes such
modules.

This correspondence allowed Jelisiejew, Pal and myself [32] to character-
ize concise 1∗-generic tensors of border rank ≤ 6 as the zero set of Strassen’s
equations and the End-closed equations, and also as the zero set of the 111-
equations. Strassen’s equations, the 111-equations and the End-closed equa-
tions fail to characterize minimal border rank tensors when m ≥ 7.

7.4. Concise tensors: the 111-algebra and its modules

Now say we just have a concise tensor. Previously there had not been any
algebraic structure available for studying such tensors. Moreover, as remarked
above, both Strassen’s equations and the End-closed equations are trivially
satisőed for such tensors when the three associated spaces of homomorphisms
are of rank bounded above by m − 2. Despite this, the 111-equations still
give strong restrictions in these cases. I now explain that they also allow the
implementation of deformation theory even in this situation.

For X ∈ End(A) = A∗⊗A, let X ◦A T denote the corresponding element
of T (A∗)⊗A. Explicitly, if X = α⊗a, then X ◦A T := T (α)⊗a and the map
(−) ◦A T : End(A) → A⊗B⊗C is extended linearly.

Definition 7.3 ([32, Def. 1.9]). Let T be a concise tensor. We say that a
triple (X,Y, Z) ∈ End(A)×End(B)×End(C) is compatible with T if X ◦AT =
Y ◦B T = Z ◦C T . The 111-algebra of T is the set of triples compatible with T .
We denote this set by AT

111.

Thus a compatible triple gives a point in the triple intersection (6). The
name 111-algebra is justiőed by the following theorem:

Theorem 7.4 ([32, Thm. 1.10]). The 111-algebra of a concise tensor T ∈
A⊗B⊗C is a commutative unital subalgebra of End(A) × End(B) × End(C)
and its projection to any factor is injective.

Using the 111-algebra, one obtains four consecutive obstructions for a con-
cise tensor to be of minimal border rank [32]:

1. dim(AT
111) ≥ m. For the next three conditions, assume equality holds.

2. AT
111 must be smoothable.

3. Using the 111-algebra, A,B,C become modules for it and the polynomial
ring S. These three S-modules, A,B,C (where the underline is there to
emphasize their module structure) must lie in the principal component
of the Quot scheme.
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4. There exists a surjective module homomorphism A⊗AT
111

B → C associ-
ated to T and this homomorphism must be a limit of module homomor-
phisms Aϵ⊗Aϵ

Bϵ → Cϵ for a choice of smooth algebras Aϵ and semisimple
modules Aϵ, Bϵ, Cϵ.

8. New proofs of existing results

In this section I present two signiőcantly simpler proofs than the original that
binding tensors satisfying Strassen’s equations are partially symmetric and the
original, more elementary proof that binding tensors satisfying Strassen’s equa-
tions automatically satisfy the End-closed condition. These proofs were ob-
tained in conversations with J. Jelisiejew and M. Michałek.

Let A,B,C≃C
m and let T ∈A⊗B⊗C be 1A-generic. Say rank(TA(α0))=m.

Note the tautological identities: T (α, β) = TA(α)β = TB(β)α.

TheA-Strassen equations for minimal border rank say that for all α1, α2∈A,

TA(α1)TA(α0)
−1TA(α2) = TA(α2)TA(α0)

−1TA(α1).

Proposition 8.1 ([39]). Let T be 1A and 1B-generic and satisfy the A-Strassen
equations. Then T is isomorphic to a tensor in S2C∗⊗C. If T is 1-generic
then it is isomorphic to a symmetric tensor.

Here are two proofs:

Proof. Assume T (α0) ∈ B⊗C and T (β0) ∈ A⊗C are of full rank. Deőne
T̃ ∈ C∗⊗C∗⊗C by T̃ (c1, c2) := T (TB(β0)

−1c1, TA(α0)
−1c2).

Set α1 = TB(β0)
−1c1, α2 = TB(β0)

−1c2 so

T̃ (c1, c2) = T (α1, TA(α0)
−1TB(β0)α2) definition

= T (α1, TA(α0)
−1TA(α2)β0) taut.id.

= TA(α1)TA(α0)
−1TA(α2)β0 taut.id.

= TA(α2)TA(α0)
−1TA(α1)β0 Strassen

= T̃ (c2, c1) taut.id.

The second assertion follows as S3 is generated by the transpositions (1, 2) and
(1, 3).

Proof. Under the hypotheses T∧1
A : A⊗B∗ → Λ2A⊗C has rank m2 − m and

the 1B-genericity condition assures that the m-dimensional kernel contains an
element of full rank, ψ : A → B, which makes (ψ⊗ IdB⊗C)(T ) ∈ S2B∗⊗C.
The second assertion follows similarly.
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Note that Proposition 8.1 implies the B-Strassen equations are satisőed as
well.

The following proposition appeared in [32] with a less elementary proof.
Below is the original proof.

Proposition 8.2. If T is 1A and 1B generic and satisfies the A-Strassen equa-
tions, then T (A∗)T (α0)

−1 ⊂ End(C) satisfies the End-closed condition.

Proof. We need to show that for all α1, α2, that, there exists α′ such that

TA(α1)TA(α0)
−1TA(α2)TA(α0)

−1 = TA(α
′)TA(α0)

−1.

It is sufficient to work with T̃ ∈ S2C∗⊗C. Here, by symmetry T̃A(c) =
T̃B(c) =: T̃C∗(c). We claim T̃C∗(c1)T̃C∗(c2) = T̃C∗(T̃ (c1, c2)). This will őnish
the proof as c1, c2, T̃ (c1, c2) ∈ C ∼= A∗ play the role of α1, α2, α

′ above.
To see this

T̃C∗(c1)T̃C∗(c2)(c) = T̃C∗(c1)T̃ (c2, c) taut.

= TC∗(c1)T̃ (c, c2)) sym.

= T̃C∗(c1)T̃C∗(c)(c2) taut.

= T̃C∗(c)T̃C∗(c1)(c2) Strassen

= T̃ (c, T̃ (c1, c2)) taut.

= T̃ (T̃ (c1, c2), c) sym.

= T̃C∗(T̃ (c1, c2))(c) taut.
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