
C
om

m
er

ci
al

 S
im

Fi
re

si
m

 (
FP

G
A

)

V
er

il
at

or

Fi
rr

tl
 I

nt
er

pr
et

er

Y
os

ys
 (

Fo
rm

al
)

Simulator Independent Coverage for RTL Hardware Languages
Kevin Laeufer

laeufer@eecs.berkeley.edu
University of California, Berkeley

Berkeley, CA, USA

Jonathan Bachrach�
jrb@pobox.com

JITX
Berkeley, CA, USA

Vighnesh Iyer
vighnesh.iyer@eecs.berkeley.edu
University of California, Berkeley

Berkeley, CA, USA

Borivoje Nikolić
bora@eecs.berkeley.edu

University of California, Berkeley
Berkeley, CA, USA

David Biancolin�
biancolin@eecs.berkeley.edu

SiFive
San Mateo, CA, USA

Koushik Sen
ksen@eecs.berkeley.edu

University of California, Berkeley
Berkeley, CA, USA

ABSTRACT
We demonstrate a new approach to implementing automated cover-
age metrics including line, toggle, and finite state machine coverage.
Each metric is implemented through a compiler pass with a report
generator. They are decoupled from the backend simulation, emu-
lation, or formal verification tool through a simple API designed
around a single new cover primitive. Our prototype for the Chisel
hardware construction language demonstrates support across three
software simulators, the FPGA-accelerated FireSim simulator and a
formal tool. We demonstrate collecting line coverage while booting
Linux with FireSim at a target frequency of 65 MHz. By construc-
tion, coverage can be trivially merged across backends.

cocotb [10] or chiseltest [7, 16]. Besides testing individual modules,
dynamic verification is also used for system-level or integration
tests in which a complete System on Chip (SoC) is simulated. Since
the execution speed of software simulators degrades with larger
designs, emulation or FPGA-accelerated simulation platforms are
often used [13].

Dynamic verification is most effective when it has exercised the
full functionality of the design. Coverage metrics [20] are an approx-
imation of the input stimuli’ effectiveness in exercising the targeted
design. Verification engineers craft stimuli to hit an increasing num-
ber of coverpoints in the design and thus gain confidence in the
thoroughness of their test suite.

CCS CONCEPTS
• Hardware → Simulation and emulation; Coverage metrics.

KEYWORDS
RTL, FPGA, FSM Coverage, Line Coverage, Toggle Coverage, Hard-
ware Compiler

Traditional Approach

design.scala

firrtl compiler

Verilog

Our Modular Approach

design.scala

firrtl compiler

Toggle Line

FSM Custom

ACM Reference Format:
Kevin Laeufer, Vighnesh Iyer, David Biancolin, Jonathan Bachrach, Borivoje
Nikolić, and Koushik Sen. 2023. Simulator Independent Coverage for RTL
Hardware Languages. In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating
Systems, Volume 3 (ASPLOS ’23), March 25–29, 2023, Vancouver, BC, Canada.
ACM,NewYork,NY,USA,10 pages.https://doi.org/10.1145/3582016.3582019

Verilator

Toggle

Line

Com-
mercial

Simulator

Toggle

Line

instrumentation passes

firrtl IR Verilog

1 INTRODUCTION FSM
Dynamic verification is the major workhorse for pre-silicon veri-
fication of digital circuit designs. As soon as the register transfer
level (RTL) description of a circuit is written, it can be simulated
with one of many open-source or commercial simulators. In or-
der to simulate the environment in which the circuit is supposed
to operate, designers write testbenches either in their design lan-
guage or in a variety of unit testing frameworks like fault [28],

Custom Custom

+ More

Custom Custom
Report Report

Toggle Line

FSM Custom

report generators

�Afiliated with University of California, Berkeley at the time of this work.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582019

Figure 1: Traditionally, automated coverage collection is part
of a monolithic simulator. Users are limited to the coverage
metrics that the simulator authors have chosen to provide.
We instead implement every coverage metric as a single
in-strumentation pass in the firrt l compiler and a
simulator-
independent report generator. Only support for our proposed
cover primitive needs to be added to a new simulator to take
advantage of all our coverage metrics.

https://orcid.org/0000-0003-0942-7070
https://orcid.org/0000-0002-0533-2712
https://orcid.org/0000-0001-6934-6577
https://orcid.org/0000-0003-2324-1715
https://orcid.org/0000-0001-6371-9053
https://orcid.org/0000-0002-4539-9188
https://doi.org/10.1145/3582016.3582019
https://doi.org/10.1145/3582016.3582019

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Kevin Laeufer, Vighnesh Iyer, David Biancolin, Jonathan Bachrach, Borivoje Nikolić, and Koushik Sen

There are several issues with the status quo of coverage instru-
mentation and collection that we aim to address:

(1) Most open-source or innovative research simulators lack sup-
port for collecting and reporting automated coverage metrics [6,
13, 18, 25].

(2) For tools that do support these metrics, their custom imple-
mentation makes merging coverage across various software or
FPGA-accelerated simulators and formal tools dificult.

(3) New hardware languages generally lack support for source-
level coverage metrics. While we can get coverage metrics for
the generated Verilog, there is no automated way to map the
coverage results back to the original Chisel code.

In this paper, we present a new approach that relies on a compiler
to lower common automated coverage metrics to a single cover
primitive that can be easily implemented for a wide range of dif-
ferent simulators. Each metric is implemented as a compiler pass
that generates only cover primitives in addition to synthesizable
constructs which are already supported by all simulators. It also
collects metadata that allows a report generator to map the cover-
age counts back to the high-level information, such as which lines
were covered. The simulator implements the cover primitive as a
counter which is incremented every time the input signal is true at
a clock event and reports back the counts at the end of the simu-
lation. A simulator-independent report generator then consumes
the metadata from the compiler pass as well as the cover counts
from the simulator and thus creates a user-readable report. Since
the coverage counts reported by simulators are all in the same for-
mat, we can trivially merge results from different simulators before
extracting the high-level coverage reports. Figure 1 provides an
overview of our system.

We implemented our approach for the Chisel hardware con-
struction language and the FIRRTL compiler [5, 12]. Over a short
period of time, we were able to implement line, toggle, and finite
state machine coverage, thus exceeding the number of automated
coverage metrics offered by any open-source RTL simulator to-
day. For the coverage metrics that are natively supported by the
open-source Verilator simulator, we found no slowdown for our
simulator-independent solution. While the implementation of new
coverage metrics can be challenging we found that adding support
for new simulators was fairly simple. Besides Verilator, we also pro-
vide support for a FIRRTL simulator called treadle, for the ESSENT
simulator [6], the FPGA-accelerated FireSim simulator [13] as well
as a formal tool for trace generation.

2 BACKGROUND

2.1 Coverage
Tests of RTL designs generally involve test stimuli that exercise the
design as well as checks that catch when the design is behaving
incorrectly, e.g., assertions or comparison of outputs to a golden
model. In order to measure whether the inputs cover all interest-
ing behaviors of the design, various coverage metrics have been
proposed [20].

Simple structural or code coverage is based on the idea that if the
designer writes a statement in the RTL language it has to serve a
purpose and thus should be executed at least once. Toggle coverage
follows a similar thought pattern: If a wire in the circuit is always

stuck at one or zero, then either it should not be there or the design
has not been thoroughly tested.

In order to gain insight into more high-level design function-
ality engineers often manually annotate functional coverage that
describes the different scenarios that a circuit was designed for, e.g.,
one wants to see a processor pipeline resolve a read-after-write
hazard. While most functional coverpoints are user-defined, some
can also be automatically generated through knowledge of the de-
sign patterns that RTL engineers use. The prime example of this
is the finite state machine (FSM) coverage for which a simulator
extracts all states and possible transitions and counts how often
each is covered.

2.2 Hardware Construction Languages
With ever-increasing SoC complexity, many designers aim to write
RTL generators that can be extensively parameterized and therefore
reused. A prime example of this is the RocketChip SoC generator
which essentially takes in a list of devices to instantiate (e.g.
cores, peripherals, accelerators) and automatically creates device
and in-terconnect RTL [4].

Hardware construction languages (HCLs) implement the gen-
erator concept in a general-purpose programming language such
as Scala [5] or Python [27, 29]. They provide RTL primitives as a
library of objects and allow the designer to write Scala or Python
programs that connect the RTL constructs into a final design.

The main contrast to previous approaches of generating, e.g.,
Verilog from a Perl script is that the RTL constructs are not just
strings, but native objects in the host language, leading to better
type safety and maintainability. Many HCLs are designed to make
non-parameterized circuits look as if they were written in a regular
hardware description language. Chisel, forexample, provides a when
branch construct and assignment operators that work similarly to
non-blocking assignments in Verilog.

2.3 RTL Intermediate Representations
Many of the new hardware construction languages define an in-
termediate representation (IR) that is used to lower higher-level
language constructs to structural Verilog [12, 27, 29]. Besides trans-
lating the custom constructs to a small subset of structural Verilog
that is compatible with commercial and open-source backend tools,
the compiler infrastructure can also be used to add additional fea-
tures to the circuit.

In this paper, we write FIRRTL compiler passes to instrument the
IR with automated coverage metrics. There has been recent work
on new open-source compilers and intermediate representations for
high-level synthesis [19, 22, 24], as well as for established industry
languages like Verilog [23, 31], and the circt project which tries to be
a unifying compiler framework for hardware construction [8]. Most
of these compilers also emit structural Verilog which can then be
simulated. Our approach to automated coverage and the simulator
interface we propose is also applicable to these new languages and
frameworks.

2.4 Lowering to Structural Verilog
Traditional HDLs like VHDL and Verilog include synthesizable con-
structs, which can be mapped to hardware and non-synthesizable

Simulator Independent Coverage for RTL Hardware Languages ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

when en :
cover(clk, gt(data, 100), 1): data_gt_100

lowering to structural RTL
cover(clk, gt(data, 100), en): data_gt_100

when(in) {
out := 1.U

} .otherwise {
out := 2.U

}

Chisel to
structural
Verilog

assign out =
in ? 2'h1

: 2'h2;

always @(posedge clock)
if (en) cover(data > 8'h64);

data_gt_100 : cover property
(@(posedge clock)

en & data > 8'h64);

Immediate
Assertion

Concurrent
Assertion

Figure 3: In this example, the translation to structural Verilog
replaces a branch with a conditional assignment. Therefore,
100% line coverage on the generated Verilog does not neces-
sarily imply complete line coverage of the Chisel source.

Figure 2: After lowering the cover statement to structural
RTL, it can be emitted to SystemVerilog as an immediate or
concurrent assertion.

constructs that are mostly used for testing. While all of these fea-
tures can be very convenient for testing circuits, they come with
high implementation complexity. So far there is not a single open-
source simulator for SystemVerilog that is fully standard compli-
ant 1.

Most new hardware construction languages thus try to emit
much simpler, structural Verilog that can be understood by a wide
range of tools. More complex features are instead integrated into
the frontend language and lowered by the compiler into simpler
Verilog features that result in the same behavior. The common
subset that is generally well supported by a wide range of tools is
the synthesizable subset of the Verilog standard [1].

2.5 Automated Coverage on the Structural
Verilog

Since new hardware construction and high-level synthesis (HLS)
languages generate structural Verilog in order to target existing
backend tools, one may think that the easiest way to get automated
coverage would be to just use the coverage collection flags that
are already built into the existing Verilog simulators. However,
automated coverage generally relies on patterns in the code that
are written by the designer.

For example, if we create a mux with a branch statement (i f in
Verilog, when in Chisel), the condition will be taken into account
when calculating line or branch coverage. However, if we create a
mux through a conditional assignment or through an explicit
exclusive-or gate it does not show up in the line coverage report.
Figure 3 shows an example where a branch in Chisel gets lowered
into a conditional assignment by the FIRRTL compiler in order to
simplify the structural Verilog generation. This is perfectly valid, as it
preserves the semantics of the original Chisel code 2, however, it
means that achieving 100% line coverage on the generated Verilog
may not always result in complete line coverage for the original
code written by the designer.

Another example is finite state machine (FSM) coverage: While
the pattern, which designers use for FSMs, is clear in the original
Chisel, it is not recognized by Verilog simulators that only have
access to the generated structural Verilog.

1The results of a SystemVerilog compliance test for many open-source tools can be
found at https://symbiflow.github.io/sv-tests-results
2In Verilog, changing a branch into a conditional assignment changes the semantics
of the code due to X-propagation. In Chisel, there is no X-propagation, and thus the
semantics are preserved.

3 SIMULATOR INDEPENDENT COVERAGE
INTERFACE

A typical Chisel testing flow can involve different simulators, de-
pending on the desired start-up speed, throughput, and debugging
features. In order to support coverage on all of them, we developed
a simple interface that takes advantage of existing coverage features
in Verilog simulators and can easily be implemented for the five
very different verification tools that we worked with.

All our simulators support simulating any synchronous RTL
circuit that can be generated from Chisel. The one IR primitive
we add is a cover statement which samples a signal on the rising
edge of a clock and increments a counter if and only if the cov-
ered signal is true. Each cover statement also carries a name that
uniquely identifies it inside the module that it is declared in. This
way simulators can report coverage results as a simple map from
the name of the cover statement (including its path in the mod-
ule instance hierarchy) to a non-negative integer that represents
the count. Different simulators may use counters with different
bit-widths as long as the count is saturating. This allows important
optimizations in FPGA-accelerated simulators. We implemented
support for the cover statement in five different backends.

3.1 Treadle
Treadle [18] is a Java Virtual Machine based simulator for circuits
represented in the FIRRTL IR. While it does not achieve the simula-
tion speeds possible with a compilation-based approach, it features
quick spin-up times and integrates well into the Scala-based Chisel
ecosystem, and is thus the preferred simulator for shorter simula-
tion runs and smaller- to medium-sized designs. Adding support
for the cover statement took less than one work week and around
200 lines of Scala code. Treadle had existing support for a stop
statement which also samples a condition at a positive edge. This
code was easy to adapt for the cover statement – we just needed to
increment a counter when the condition is true instead of stopping
the simulation. At the end of the simulation run, all counts are
transferred into a map from a cover point name to a count.

3.2 Verilator
Verilator [25] is a popular open-source Verilog simulator. It analyzes
and optimizes the input Verilog and generates C++ source code for a
simulation which is then compiled to a binary with a standard
C++ compiler. This approach generally leads to higher simulation
speeds, but it does increase the time spent building the simulation,
which is why it lends itself to longer simulation runs where the
startup cost can be amortized.

https://symbiflow.github.io/sv-tests-results

in

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Kevin Laeufer, Vighnesh Iyer, David Biancolin, Jonathan Bachrach, Borivoje Nikolić, and Koushik Sen

cover(clk, gt(data, 100), en): data_gt_100

clk
scan

Firesim

out Coverage
1 Bridge

0
counter +

and(gt(data, 100), en) "data_gt_100": 2

Figure 4: We generate saturating counters and a scan chain
for all cover statements for FPGA-accelerated simulation
with FireSim.

In order to simulate a Chisel design, it needs to be compiled into
structural Verilog which will then be turned into a simulation by
Verilator. Our cover statement can be mapped to a concurrent or
an immediate assertion in the Verilog generated by the FIRRTL
compiler as shown in Figure 2. By default, we generate immediate
cover statements [2] as those are the only form supported by the
open-source Yosys [31] synthesis tool covered in Section 3.4.

This way we make use of the built-in support for user-defined
coverage in Verilator. We do not re-use any of the Verilog line or
toggle coverage provided by Verilator. At the end of the simulation
run, Verilator generates a coverage data file that contains the counts
associated with each SystemVerilog cover statement. We also imple-
mented a converter that parses the custom coverage format used by
Verilator and re-associates the counts with the cover statements
in the FIRRTL source. Our interface code thus generates the exact
same map from cover statement names to counts as provided by
our native implementation for Treadle.

3.3 FireSim
FireSim [13] is an open-source, cycle-accurate FPGA-accelerated
RTL simulator, which at its core, uses a custom compiler based
on FIRRTL [17] to decouple the clock of the simulated RTL from
the FPGA clock. This allows for deterministic, cycle-accurate com-
position with software simulations of components like network
switches, as well as FPGA-optimized multi-cycle simulation models,
e.g., of multi-ported register files or DRAM models with realistic
access latencies.

While FireSim’s compiler supports some conventionally non-
synthesizable debug primitives, like assertions and prints, it cur-
rently has no means to implement cover statements, which cannot
directly be mapped onto an FPGA. We added a new compiler pass
to FireSim which replaces each cover statement with a saturating
counter that is then connected to a per-clock-domain scan chain
(Figure 4). The bit-width of the counter is a parameter set by the
user in order to trade off FPGA resources and cover count accuracy.
The pass also generates a listwith the names of all cover statements
in the order in which they are connected throughout the scan chain.
The scan chain is controlled by an FPGA-hosted simulation module
and C++ driver program which can pause the simulation, freezing
all coverage counts, and then clock out all coverage counts. Using
the metadata generated by the newly added coverage scan-chain
insertion pass for FireSim, we can then map the counts to the cover
statement names. We thus get the exact same coverage information

Table 1: Lines of code (LoC) for coverage passes and report
generators. Lines of new library code in parenthesis.

LoC Instrum. LoC Report
Common Library 106 290

Line Coverage 89 64
Toggle Coverage 279 (+131) 51+

FSM Coverage 144 (+228) 34
Ready/Valid Coverage 78 26

from the FPGA-accelerated simulation as provided by the software
simulators Treadle and Verilator.

3.4 Formal Verification with SymbiYosys
The most common use of formal verification tools is to verify as-
sertions. The tool will either find a series of inputs that lead to an
assertion violation or come up with a proof that the assertion can
never be violated. In addition to that, the open-source SymbiYosys
tool (like many commercial tools) also supports coverage trace gen-
eration [30]. Given a design annotated with cover points, it will try
to find sequences of inputs that will lead to each of the cover points.
Since we already emit our cover primitive as a standard immediate
assertion for the Verilator simulator, the same generated Verilog
can be used by SymbiYosys to automatically find inputs that will
maximize any of our automated coverage metrics.

3.5 ESSENT
ESSENT is a high-performance simulator prototype [6] with little
debugging support. In order to gain a sense of how hard it would be
to add support for a fifth tool, after the basic idea had been validated
with the other four backends, we recorded the time spent. Overall,
it took us around 5 hours and 60 lines of code to add support for
our cover primitive and thus allow ESSENT users to make use of
all our coverage metrics.

4 COVERAGE INSTRUMENTATION AND
REPORT GENERATORS

In this section, we describe how we implemented a number of auto-
mated coverage metrics. Our methodology relies on the assumption
that most automated coverage metrics can be implemented using
the cover statement introduced in Section 3. To demonstrate this,
we implemented line coverage, toggle coverage, and FSM coverage
as well as a custom Ready/Valid coverage metric. Each metric is
implemented as an instrumentation pass that analyzes the circuit
represented in the FIRRTL IR, adds cover statements and emits
metadata as well as a report generator that consumes the simulator
output and turns it into a high-level coverage report. To provide a
sense of implementation complexity, Table 1 contains an overview
of all coverage metrics implemented for this paper, along with the
number of lines of Scala code for the associated instrumentation
and report generator. All our report generators are bare-bones and
generate simple ASCII reports only. There are many potential im-
provements that could be made in order to generate interactive
HTML reports, or similar, which would significantly increase the
amount of code in the report generators.

metadata

Report

en
um

 a
nn

ot
at

io
n

fo
r

S:
 A

=
0,

 B
=

1,
 C

 =
2

Simulator Independent Coverage for RTL Hardware Languages

input Chisel circuit 10 when(in) {
11 out := 1.U
12 } .otherwise {

l_0: line 11 13 out := 2.U
l_1: line 13 14 }

remember mapping to firrtl

when in: @[main.scala 10:12]
cover(clock, UInt(1)): l_0
out <= UInt(1) @[main.scala 11:9]

else:
cover(clock, UInt(1)): l_1
out <= UInt(2) @[main.scala 13:9]

coverage counts
to structural firrtl or Verilog

l_0: 10 Any Supported Simulator
l_1: 5

15x when(in) { Coverage
10x out := 1.U

Line Coverage 15x } .otherwise {
Report 5x out := 2.U

Generator 15x }

Figure 5: The line coverage pass instruments every when
statement in the FIRRTL circuit. The mapping from lines to
branches is used to generate the coverage report from the
counts reported by the simulator.

4.1 Branch and Line Coverage
Branch coverage counts how often a branch is taken in the HDL or
HCL source code. From this information line and statement cover-
age can be derived by counting the number of lines or statements
that are executed when a particular branch is taken. In order to
implement a branch coverage instrumentation pass we rely on the
fact that the FIRRTL compiler automatically turns the dominating
branch condition of a statement into an enable signal for the state-
ment. This is done during lowering to structural RTL as shown in
Figure 2. Thus we place our instrumentation pass before that
lowering happens and just add a cover statement right after every
branch. This is shown in Figure 5.

In order to turn the branch coverage information into actual line
coverage, additional information is needed. We scan all statements
that are directly inside a given branch and extract their line numbers
and source file information. Thus we build up a map from a cover
point to the lines that are covered by it. After the simulation finishes,
the map is used by our report generator to turn coverage counts
from the simulator into a textual report that annotates the Scala
source file with counts of how often each line was executed.

4.2 Toggle Coverage
We implemented our toggle coverage as a compiler pass that runs on
the structural RTL after optimizations such as constant propagation
and dead code elimination have been performed. We distinguish
between I/O signals, registers, memories, and wires and allow the
user to choose which category they want to instrument. For every
selected signal, we add a register in order to record its value in
the previous clock cycle. A xor gate allows us to detect whether a
bit in the signal changed. Counting rising and falling edges, i.e.,
toggles from zero to one or one to zero, separately would be a simple
extension that would use two instead of one cover statementperbit.
We also add a register that is zero in the first cycle of the simulation

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

clock

X
O cover(...)
R

signal

in childA in childB

Figure 6: The toggle coverage pass adds a register and a xor
gate. I t avoids redundant instrumentation for signals that
always have the same value.

and one after in order to disable all toggle cover statements during
the first cycle when the previous value has not been updated yet.

We implemented a global alias analysis which analyzes the de-
sign hierarchy and reports groups of signals that are guaranteed to
always carry the same value. For example, in Figure 6 the "signal"
wire in the top module always carries the same value as the "in"
ports of the two child modules. The alias information is used by
our toggle coverage pass to only instrument a single signal from
each alias group. An important example is the global reset signal,
which only gets instrumented once in the top-level module instead
of once in every module in the hierarchy. The global alias analysis
pass is necessary to make toggle coverage perform well.

input Chisel circuit

object S … { val A, B, C = Value }
val state = RegInit(S.A)
switch(state) {
is(S.A) { state := Mux(in, S.A, S.B) }
is(S.B) { when(in) { state := S.B }

.otherwise { state := S.C } } }

lowered Firrtl (simplified)

node n0 = mux(in, UInt(1), UInt(2))
node n1 = mux(eq(UInt(1), state), n0, state)
node n2 = mux(in, UInt(0), UInt(1))
node n3 = mux(eq(UInt(0), state), n2, n1)
state <= mux(reset, UInt(0), n3)

(1) analyze next state expression by cases

Start (reset = 1): UInt(0) ⇨ A
A (state = 0 && reset = 0):
mux(in, UInt(0), UInt(1)) ⇨ {A, B}

B (state = 1 && reset = 0):
mux(in, UInt(1), UInt(2)) ⇨ {B, C}

C (state = 2 && reset = 0):
state ⇝ UInt(2) ⇨ {C}

(2) add cover statements (simplified example)

cover(…,eq(state, UInt(0)),…) : state_A
; we track the previous state in a register
state_prev <= state
state_prev_valid <= not(reset)
cover(…,
and(eq(state_prev,Int(0)),eq(state,UInt(1))),
state_prev_valid,…) : state_A_to_B

Figure 7: Finite state machine (FSM) coverage assumes that
the state register uses a ChiselEnum. We first analyze all possi-
ble next states by simplifying the state update expression for
each possible current state. We then add cover statements
for all states and possible transitions.

rv
-m

in
i

se
rv

N
eu

ro

rv
-m

in
i

se
rv

N
eu

ro

T
LR

A
M

T
LR

A
M

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Kevin Laeufer, Vighnesh Iyer, David Biancolin, Jonathan Bachrach, Borivoje Nikolić, and Koushik Sen

Table 2: Software simulation benchmarks and the number
cover points generated by the line and toggle coverage in-
strumentation passes.

Design
riscv-mini [14]

TLRAM [4]
serv-chisel

NeuroProc [21]

Cycles Executed
126,550
816,473
828,931

53,455,204

Run Time # Line
3.34 s 157
1.45 s 8
1.05 s 79

40.38 s 809

Toggle
4,042
2,532

725
4,786

4.3 Finite State Machine Coverage
Finite State Machines (FSMs) are commonly used to implement the
controls for RTL modules. In modern Chisel, designers generally
create a ChiselEnum that contains all the states and a state register
of their custom enum type. To implement our instrumentation pass,
we take full advantage of the annotation system which allows Chisel
libraries, like the ChiselEnum library, to annotate circuit elements
in Scala. We use the annotation to find registers that contain values
from a ChiselEnum. The annotation also tells us all legal states that
were defined as part of the enum. Figure 7 shows an example where
the enum S contains the three possible values A, B, and C.

With this information, we analyze the next expression of the
register. In our example, there are four cases that we need to ana-
lyze: One case when the system is in reset, and one case for each
possible state. In each case, we apply constant propagation, replac-
ing the reset and state symbols with their assignments. Thus we
collect all possible next-state assignments and derive all possible
transitions. In cases where – after simplification – we end up with
an expression that is not a constant or a mux, we over-approximate,
assuming all states are possible next states. Thus our analysis is
conservative in that it will only over-report possible transitions and
never miss any transitions. One example where our analysis fails is
an FSM in RocketChip [4] where the next state signal goes through
a submodule that is invisible to our (module scoped) analysis. After
analyzing the possible transitions, we add cover points for every
state and transition in a second step.

4.4 Ready/Valid Coverage
One of the most commonly used interfaces from the Chisel standard
library is a DecoupledIO bundle. A data transfer happens during
cycles in which the ready and val id wires are both asserted. We
developed a custom coverage pass that analyzes the ports of all
modules in the design and adds a cover statement for every decou-
pled interface it finds in order to count how often data is transferred.
Thanks to all the code we had previously developed, we were able
to implement and test this new coverage metric in around 3h. This
shows how new metrics that may be specific to a design ecosystem
can easily be added by using our simulator-independent approach.
Traditionally RTL designers might have manually added cover state-
ments as part of the functional coverage, however, our pass is more
economical since it works across a wide range of designs using
DecoupledIO without manual annotations.

5 EVALUATION
Prior sections already discussed how our approach allowed us to
quickly implement four different coverage metrics for five different
backends. In this section, we investigate the run time and/or area
overhead of our simulator-independent coverage solution.

0 10 20 30 40 0 500 1,000

Runtime Overhead (%) Runtime Overhead (%)

Line Native
Line FIRRTL Toggle Native
FSM Toggle FIRRTL
Ready/Valid All FIRRTL

Figure 8: Coverage instrumentation overhead on Verilator
v4.034. For TLRAM, the measured overhead of our FIRRTL
line coverage is close to zero.

5.1 Software Simulator Coverage Overhead
Making use of generic cover statements instead of hard-coding line
coverage into the simulator allows us to support new simulators
with little effort. However, one might suspect that using a more
generic coverage collection mechanism compared to built-in line
coverage might create additional overheads. We measure the over-
head of our coverage metrics on simulation speed and compare it to
the built-in Verilog coverage of the open-source Verilator simulator.

Our benchmarks come from various open-source projects writ-
ten in Chisel. Table 2 provides an overview. We picked long-running
tests, recorded a waveform VCD and then generated a minimal test-
bench that only replays the top-level inputs from the VCD. This
way we can isolate the simulator run time from the time it takes to
generate stimuli and any overhead in the verification environment.
This careful isolation means that the reported overhead may be less
noticeable in practice 3.

Figure 8 shows the run time overhead of various coverage in-
strumentation over the baseline. We find that in general, our instru-
mentation causes the same or slightly less overhead compared to
Verilator’s built-in coverage. This can be attributed to the fact that
Verilator appears to internally follow an approach similar to ours.

While we are prohibited from reporting data for commercial
simulators in a meaningful way, we observed that our generic ap-
proach does negatively impact the performance of event-driven
simulators. However, Verilator with our coverage is generally signif-
icantly faster than any commercial tool with its native coverage. By
providing extensive coverage support for open-source simulators,
we remove one of the common reasons that prevent users from
switching to faster simulators like Verilator.

3Chisel testbenches normally slow down the simulation by 2x-1000x. Industry insiders
tell us that well-optimized commercial SystemVerilog testbenches often present a 50%
overhead leading to a 2x slowdown compared to raw simulation speed. Thus the raw
simulation overhead that we measured will be less noticeable with a real testbench.

U
ti
liz

at
io

n
(%

)

� �
�
� (
M

H
z)

Li
ne

 C
ov

 (%
)

Simulator Independent Coverage for RTL Hardware Languages ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

48-bit 32-bit
4-bit 2-bit

80

60

40

16-bit 8-bit 160
1-bit baseline

140
Rocket BOOM

120

100

80

60

20 40
0 8 16 24 32 40 48

0
Registers Logic LUTs Registers Logic LUTs

Rocket Design BOOM Design

Figure 9: FireSim simulator FPGA resource utilization versus
counter width on two different processor designs.

5.2 FireSim Coverage Overhead
We applied our line coverage instrumentation to two different SoC
designs from the Chipyard framework [3]. The first includes four,
in-order scalar Rocket [4] cores and the second uses a single out-
of-order BOOM [33] core. This results in 8060 cover statements in
the RocketChip design and 12059 cover statements for the BOOM
SoC. We then ran our scan chain insertion pass and transformed
the designs into a cycle-accurate FPGA-accelerated simulation with
FireSim [13]. Both simulators target a Xilinx Ultrascale+ VU9P
device, the FPGA supplied by Amazon EC2 F1 instances, and were
compiled using Xilinx Vivado 2018.3.

Figure 9 shows the resource usage for different counter sizes
and compares them to a baseline without any coverage instrumen-
tation. We include numbers for up to 48 bit of resolution which
would be suficient to prevent counter-saturation in practically all
applications. Wide coverage counters lead to significant increases
in resource usage, but as long as we are only interested in finding
lines that have never been covered, small counters offer minimal
area overhead. Figure 10 illustrates the ���� scaling trends versus
increasing counter widths. For counter widths up to 8 bit for the
Rocket and 2 bit for the BOOM-based design, the overhead from
our coverage support falls within the noise introduced by differing
placements.

We used our instrumented SoCs with 16 bit coverage counters
to boot Linux and obtain line coverage results. For the RocketChip
design the simulation executed 3.3 B cycles in 50.4 s (65 MHz). Scan-
ning out the 8060 cover counts at the end of the simulation took
12 ms. For the BOOM design the simulation executed 1.7 B cycles
in 42.6s (40 MHz). Scanning out the 12059 cover counts at the end
of the simulation took 17 ms. In the future, we might be able to
trade off simulation time and FPGA resource usage by using smaller
counters that are sampled more frequently.

5.3 Coverage Merging and Removal
Adding full line coverage to a large SoC design can have a significant
area impact if we want to obtain high-resolution coverage counts.
Also, note that mapping a FireSim simulation to the FPGA can take
multiple hours. We can take advantage of the fact that we use the

Counter Width (bit)
Figure 10: FireSim simulator ���� versus counter width. A
bit width of zero represents the baseline with no coverage
support. Note, the 48 bit BOOM configuration did not place
due to resource limitations.

same coverage instrumentation for both FPGA and software-based
simulation to filter out coverage points already caught in software
simulation.

After merging the coverage results from running a RISC-V test
suite with Verilator, we were able to reduce the number of coverage
counters by 42% by excluding the ones that were covered at least
10 times by the tests. As shown in Figure 9, resource consumption
is dominated by coverage hardware for wide counters, with LUT
utilization increasing by 2.8× in the 32 bit case. Once redundant
points are removed, this falls to 2.0×, a tremendous saving that
could be further improved with a more comprehensive suite of
initial tests.

5.4 Coverage as Fuzzing Feedback
We demonstrate how our approach to coverage can be useful – not
only for human developers – but also as automated feedback in a
fuzz testing setup. Mutational coverage-directed fuzz testing has
recently been applied to RTL designs [11, 15, 26]. However, it is
still unclear which feedback metric should be used to drive the
input generation. In the past, it has been dificult to switch feedback
metrics since they are tied to a particular simulator. However, with
the cover statement-based approach suggested in this paper, any
metric that we implemented an instrumentation pass for can be

100

90

80
mux line

mux + line
70

0 200 400 600 800 1,000 1,200

Time (s)
Figure 11: Cumulative line coverage of inputs discovered
through fuzzing with various feedback metrics. Averaged
over five runs.

ddr

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Kevin Laeufer, Vighnesh Iyer, David Biancolin, Jonathan Bachrach, Borivoje Nikolić, and Koushik Sen

used. To demonstrate,we created a simple fuzzing setup, connecting
the AFL fuzzer [32] to a rfuzz-style harness [15] using the RTL Fuzz
Lab infrastructure [9]. The coverage counts serve as direct feedback
to AFL instead of going to a report generator. This way, we can mix
and match various metrics easily. We implemented the mux toggle
coverage metric from rfuzz in our framework and compared it to
using our line coverage as feedback when fuzzing an I2C peripheral.
Figure 11 shows cumulative line coverage for different feedback
metrics.

5.5 Formal Trace Generation
As explained in Section 3.4 we can use our automated coverage
instrumentation together with a formal tool to automatically gen-
erate traces that exercise our cover statements. We instrumented
the open-source RISC-V Mini processor core and used bounded
model checking to find cover points that cannot be reached in
40 cycles. RISC-V Mini was not a design that we were previously
familiar with. Using formal trace generation with our line coverage
instrumentation, we discovered that the RTL for the instruction and
data caches are the same, but the instruction cache is read-only, and
thus, the code blocks for write accesses are never exercised. When
we used finite state machine coverage, we discovered a bug in our
FSM analysis pass that resulted in an overestimate of transitions in
the FSM. Formal verification revealed that these transitions could
never be covered.

Thus by moving the coverage instrumentation out of the simula-
tor and into the FIRRTL compiler we are able to expand it to new
use cases, such as automated coverage generation with a simple
formal tool. This allows designers to explore their design easily and
can also be very convenient for finding bugs in coverage instru-
mentation passes.

6 LIMITATIONS
We show that the most common types of coverage can be rep-
resented using synthesizable constructs and a cover statement.
However, while working on this project, we uncovered one limi-
tation which we would like to share: In the special case where we
have a large number of events that we know are mutually exclusive,
i.e., only one of them can occur in any given cycle, the use of mul-
tiple cover statements is sub-optimal since we cannot exploit the
fact that only one of the counters will need to be incremented each
cycle. A good example is that we might like to count how often a
signal’s value falls into certain cover bins. Implementing these cases
eficiently requires a new cover-values primitive which counts
how often a signal takes on each possible value. cover-values can
be implemented in software by indexing into an array of counters
or using a block RAM on the FPGA. This optimization becomes im-
portant when we want to cover a wide range of values, like in some
fuzz testing applications [11]. Figure 12 demonstrates the exponen-
tial blowup when trying to use our cover statement and sketches
eficient software and hardware implementations of cover-values
inspired by prior work [11].

7 CONCLUSION
Modern hardware verification flows rely on a variety of different
simulators, emulators, and formal verification tools. In this paper,

input signal : UInt<4>
cover-values(clk, signal, enabled)

lowering to cover (⚡ exponential blowup ⚡)

cover(clk, eq(signal, UInt(0)), enabled)
cover(clk, eq(signal, UInt(1)), enabled)
; 2 ... 14 omitted
cover(clk, eq(signal, UInt(15)), enabled)

C++ simulation (simplified)

if(enabled && signal == 0) cnt_0 +=1;
if(enabled && signal == 1) cnt_1 +=1;
// 2 ... 14 omitted
if(enabled && signal == 15) cnt_15 +=1;

direct lowering to a C++ simulation

if(enabled) cnt[signal] += 1;

direct lowering to hardware (e.g., for FireSim) - sketch

signal addr Read data

a
Write Memory

enabled
+

data

Figure 12: Covering all signal values with the cover statement
leads to an exponential blowup. A cover-values statement
could be lowered directly to significantly more eficient soft-
ware and hardware implementations.

we demonstrate how a compiler-centered approach that lowers
automated coverage metrics to a single primitive allows for uni-
form coverage support across backends. Adding support to a new
simulator can be done in as little as a single day of work and - by
design - every coverage metric will be available from the start. We
demonstrate coverage support for the Verilator and ESSENT simula-
tors which are significantly faster than many commercial tools [25]
as well as the FPGA accelerated FireSim simulator which simulates
a four-core SoC at 65 MHz effective target frequency, while com-
mercial emulators are generally known to be significantly slower.

Besides broad support for all coverage metrics, our technique
enables features that would be dificult to support with a mono-
lithic design where every coverage metric is hard-coded into the
simulator: We are able to use a formal tool to generate coverage
traces for all automatic metrics, including custom user-defined met-
rics like our ready/valid coverage. We can use coverage from a
software simulation of a design to remove easily reachable cover
points before instrumenting an FPGA-accelerated simulation with
coverage counters. We are able to re-use any combination of our
automated metrics to serve as feedback to a fuzzer for automated
input generation.

ACKNOWLEDGMENTS
We would like to express our gratitude to several members of the
Chisel and greater hardware open-source community: Deborah
Soung helped us understand how Chisel coverage is obtained in
a commercial setting. Chick Markley was instrumental in adding
cover support to the treadle simulator. Tom Alcorn originally sug-
gested adding a cover statement to FIRRTL which ultimately lead
us to the idea behind this paper. Wilson Snyder wrote the patch to
add a "per-instance" coverage feature to Verilator.

Simulator Independent Coverage for RTL Hardware Languages

This work was supported in part by Semiconductor Research
Corporation, by NSF grants CCF-1900968, CCF-1908870, and CNS-
1817122 and by SLICE Lab industrial sponsors and afiliates Amazon,
Apple, Google, Intel, Qualcomm, and Western Digital, as well as
by SKY lab industrial sponsors and afiliates Astronomer, Google,
IBM, Intel, Lacework, Microsoft, Mohamed Bin Zayed University
of Artificial Intelligence, Nexla, Samsung SDS, Uber, and VMware.
Any opinions, findings, conclusions, or recommendations in this
paper are solely those of the authors and do not necessarily reflect
the position or the policy of the sponsors.

A ARTIFACT APPENDIX

A.1 Abstract
Our artifact includes the implementation of our coverage passes and
report generators, our modifications to FireSim as well as a simple
circuit fuzzer. Most results from our paper can be reproduced on a
standard x86 Linux computer, however, for the FireSim performance
and area/frequency results, a more complicated setup on AWS cloud
FPGAs is necessary.

A.2 Artifact check-list (meta-information)
• Run-time environment: Linux, AWS FPGA Developer AMI
• Hardware: x86 Computer, AWS Cloud FPGAs
• Experiments: Verilator performance overhead, fuzzing, FireSim

overhead
• How much disk space required (approximately)?: 2GB (local),

200GB (on AWS)
• How much time is needed to prepare workflow (approxi-

mately)?: 1h (local), 1h (on AWS)
• How much time is needed to complete experiments (approxi-

mately)?: 5h (local), 5h (on AWS)
• Publicly available?: Yes. On Github: https://github.com/ekiwi/

simulator-independent-coverage and https://github.com/ekiwi/firesim
• Code licenses?: 2-Clause BSD and Apache 2.0
• Archived?: https://doi.org/10.5281/zenodo.7592871

A.3 Description
A.3.1 How to access. We recommend cloning the github repository
for the latest code:

https://github.com/ekiwi/simulator-independent-coverage

A.3.2 Software dependencies. Our artifact has been tested on re-
cent Fedora 37 and Ubuntu 20.04 Linux. C++ build tools, bc, sbt,
Java (e.g., OpenJDK), hyperfine, and python3 with the scipy and
matplotlib libraries need to be installed.

A.4 Installation
Please follow the instructions in the Readme.md provided as part
of the artifact.

A.5 Evaluation and expected results
The artifact contains scripts to reproduce the following:

• Benchmark statistics in Table 2 (local, 20min)
• Verilator overhead in Figure 8 (local, 2h)
• Fuzzing coverage over time in Figure 11 (local, 2h)
• FireSim resource overhead in Figure 9 and 10 (AWS, 5h)
• Section 5.2 Linux boot times for RocketChip (AWS, 10min)

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

The Readme.md provided with the artifact contains detailed
instructions on how to reproduce each item.

A.6 Experiment customization
New coverage passes can be added by extending the Scala SBT
project in the coverage folder. The provided passes and report
generators can serve as a starting point.

New circuits and testbenches to measure overhead on Verilator
can be added by modifying the Makefile in the benchmarks folder
and copying over the FIRRTL circuit and a C++ testbench.

A.7 Note
The support for the cover statement is part of upstream Treadle
since v1.5.0: https://github.com/chipsalliance/treadle

The code to interface with Verilator and convert its custom
coverage format into our standard map from cover statement name
to count is part of upstream ChiselTest since v0.5.0: https://github.
com/ucb-bar/chiseltest

Our artifact depends on binary JARs of both Treadle and Chisel-
Test from the Maven package repository.

Experimental support for cover statements in ESSENT can be
found on a public fork: https://github.com/ekiwi/essent/tree/coverage

A.8 Methodology
Submission, reviewing and badging methodology.

REFERENCES
[1] 2005. IEC/IEEE International Standard - Verilog(R) Register Transfer Level

Synthesis. IEEE/IEC 62142 (2005).
[2] 2017. IEEE Standard for SystemVerilog—Unified Hardware Design, Specification,

and Verification Language. IEEE Std. 1800 (2017).
[3] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar,

Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton,
Paul Rigge, Colin Schmidt, John Wright, Jerry Zhao, Yakun Sophia Shao, Krste
Asanović, and Borivoje Nikolić. 2020. Chipyard: Integrated Design, Simulation,
and Implementation Framework for Custom SoCs. IEEE Micro 40 (2020). https:
//doi.org/10.1109/mm.2020.2996616

[4] Krste Asanović, Rimas Avižienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Palmer Dabbelt, John Hauser, Adam
Izraelevitz, Sagar Karandikar, Benjamin Keller, Donggyu Kim, John Koenig,
Yunsup Lee, Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel
Moreto, Albert Ou, David Patterson, Brian Richards, Colin Schmidt, Stephen
Twigg, Huy Vo, and Andrew Waterman. 2016. The Rocket Chip Generator.
Technical Report UCB/EECS-2016-17. University of California, Berkeley. http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[5] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Ri-
mas Avižienis, John Wawrzynek, and Krste Asanović. 2012. Chisel: Constructing
Hardware in a Scala Embedded Language. In DAC Design Automation Conference
2012. https://doi.org/10.1145/2228360.2228584

[6] Scott Beamer and David Donofrio. 2020. Eficiently Exploiting Low Activity
Factors to Accelerate RTL Simulation. In 57th ACM/IEEE Design Automation
Conference (DAC). https://doi.org/10.1109/DAC18072.2020.9218632

[7] Andrew Dobis, Kevin Laeufer, Hans Jakob Damsgaard, Tjark Petersen, Kasper
Juul Hesse Rasmussen, Enrico Tolotto, Simon Thye Andersen, Richard Lin, and
Martin Schoeberl. 2023. Verification of Chisel Hardware Designs with ChiselVer-
ify. Microprocessors and Microsystems 96 (2023). https://doi.org/10.1016/j.micpro.
2022.104737

[8] Schuyler Eldridge, Prithayan Barua, Aliaksei Chapyzhenka, Adam Izraelevitz,
Jack Koenig, Chris Lattner, Andrew Lenharth, George Leontiev, Fabian Schuiki,
Ram Sunder, et al. 2021. MLIR as Hardware Compiler Infrastructure. In Workshop
on Open-Source EDA Technology (WOSET). https://woset-workshop.github.io/
WOSET2021.html#article-6

[9] Brandon Fajardo, Kevin Laeufer, Jonathan Bachrach, and Koushik Sen. 2021.
RTLFUZZLAB: Building A Modular Open-Source Hardware Fuzzing Framework.
In Workshop on Open-Source EDA Technology (WOSET). https://woset-workshop.
github.io/WOSET2021.html#article-10

https://github.com/ekiwi/simulator-independent-coverage
https://github.com/ekiwi/simulator-independent-coverage
https://github.com/ekiwi/firesim
https://doi.org/10.5281/zenodo.7592871
https://github.com/ekiwi/simulator-independent-coverage
https://github.com/chipsalliance/treadle
https://github.com/ucb-bar/chiseltest
https://github.com/ucb-bar/chiseltest
https://github.com/ekiwi/essent/tree/coverage
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1109/mm.2020.2996616
https://doi.org/10.1109/mm.2020.2996616
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1109/DAC18072.2020.9218632
https://doi.org/10.1016/j.micpro.2022.104737
https://doi.org/10.1016/j.micpro.2022.104737
https://woset-workshop.github.io/WOSET2021.html#article-6
https://woset-workshop.github.io/WOSET2021.html#article-6
https://woset-workshop.github.io/WOSET2021.html#article-10
https://woset-workshop.github.io/WOSET2021.html#article-10

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Kevin Laeufer, Vighnesh Iyer, David Biancolin, Jonathan Bachrach, Borivoje Nikolić, and Koushik Sen

[10] Chris Higgs, Stuart Hodgson, and Eric Wieser. 2021. cocotb. https://github.com/
cocotb/cocotb.

[11] Jaewon Hur, Suhwan Song, Dongup Kwon, Eunjin Baek, Jangwoo Kim, and
Byoungyoung Lee. 2021. DIFUZZRTL: Differential Fuzz Testing to Find CPU
Bugs. In 2021 IEEE Symposium on Security and Privacy (SP). https://doi.org/10.
1109/SP40001.2021.00103

[12] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert Mag-
yar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, and Jonathan
Bachrach. 2017. Reusability is FIRRTL Ground: Hardware Construction Lan-
guages, Compiler Frameworks, and Transformations. In Proceedings of the
36th International Conference on Computer-Aided Design (ICCAD ’17). https:
//doi.org/10.1109/ICCAD.2017.8203780

[13] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, EmmanuelAmaro, Colin Schmidt,Aditya Chopra,
Qijing Huang, Kyle Kovacs, Borivoje Nikolić, Randy Katz, Jonathan Bachrach, and
Krste Asanović. 2018. FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System
Simulation in the Public Cloud. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). https://doi.org/10.1109/ISCA.2018.
00014

[14] Donggyu Kim. 2019. risc-v mini. https://github.com/ucb-bar/riscv-mini.
[15] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik

Sen. 2018. RFUZZ: Coverage-Directed Fuzz Testing of RTL on FPGAs. In 2018
IEEE/ACM International Conference on Computer-Aided Design (ICCAD’18). https:
//doi.org/10.1145/3240765.3240842

[16] Richard Lin and Kevin Laeufer. 2018 - 2023. ChiselTest. https://github.com/ucb-
bar/chiseltest.

[17] Albert Magyar, David Biancolin, John Koenig, Sanjit Seshia, Jonathan Bachrach,
and Krste Asanović. 2019. Golden Gate: Bridging The Resource-Eficiency Gap
Between ASICs and FPGA Prototypes. In 2019 IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD) (ICCAD’19). https://doi.org/10.1109/
ICCAD45719.2019.8942087

[18] Chick Markley. 2021. treadle. https://github.com/chipsalliance/treadle.
[19] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. 2021. A Com-

piler Infrastructure for Accelerator Generators. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’21). https://doi.org/10.1145/3445814.3446712

[20] Andrew Piziali. 2007. Functional Verification Coverage Measurement and Analysis.
Springer Science & Business Media.

[21] Anthon Vincent Riber. 2020. Power-eficient Hardware Platform for Spiking Neu-
ral Network. Master’s thesis. Department of Applied Mathematics and Com-
puter Science, Technical University of Denmark. https://github.com/Thonner/
NeuromorphicProcessor

[22] Sameer D Sahasrabuddhe, Hakim Raja, Kavi Arya, and Madhav P Desai. 2007.
AHIR: A Hardware Intermediate Representation for Hardware Generation from
High-level Programs. In 20th International Conference on VLSI Design held jointly
with 6th International Conference on Embedded Systems (VLSID’07). https://doi.
org/10.1109/VLSID.2007.28

[23] Fabian Schuiki, Andreas Kurth, Tobias Grosser, and Luca Benini. 2020. LLHD: A
Multi-level Intermediate Representation for Hardware Description Languages.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’20). https://doi.org/10.1145/3385412.3386024

[24] Amirali Sharifian, Reza Hojabr, Navid Rahimi, Sihao Liu, Apala Guha, Tony
Nowatzki, and Arrvindh Shriraman. 2019. �IR - An intermediate representation
for transforming and optimizing the microarchitecture of application accelera-
tors. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’19). https://doi.org/10.1145/3352460.3358292

[25] Wilson Snyder et al. 2022. Verilator. https://www.veripool.org/wiki/verilator
[26] Timothy Trippel, Kang G Shin, Alex Chernyakhovsky, Garret Kelly, Dominic

Rizzo, and Matthew Hicks. 2022. Fuzzing Hardware Like Software. In 31st USENIX
Security Symposium (USENIX Security 22).

[27] Lenny Truong and Pat Hanrahan. 2019. A Golden Age of Hardware Description
Languages: Applying Programming Language Techniques to Improve Design
Productivity. In 3rd Summit on Advances in Programming Languages (SNAPL
2019). https://doi.org/10.4230/LIPIcs.SNAPL.2019.7

[28] Lenny Truong, Steven Herbst, Rajsekhar Setaluri, Makai Mann, Ross Daly, Keyi
Zhang, Caleb Donovick, Daniel Stanley, Mark Horowitz, Clark Barrett, et al. 2020.
fault: A Python Embedded Domain-Specific Language for Metaprogramming
Portable Hardware Verification Components. In International Conference on Com-
puter Aided Verification (CAV’20). https://doi.org/10.1007/978-3-030-53288-8_19

[29] whitequark. 2022. amaranth. https://github.com/amaranth-lang/amaranth.
[30] Claire Wolf. 2021. SymbiYosys. https://github.com/YosysHQ/SymbiYosys
[31] Claire Wolf and Johann Glaser. 2013. Yosys - A Free Verilog Synthesis Suite. In

Proceedings of the 21st Austrian Workshop on Microelectronics (Austrochip).
[32] Michał Zalewski. 2014. American Fuzzy Lop Technical Details. http://lcamtuf.

coredump.cx/afl/technical_details.txt. Accessed April, 2018.
[33] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanović. 2020. Sonic-

BOOM: The 3rd Generation Berkeley Out-of-Order Machine. In Fourth Workshop
on Computer Architecture Research with RISC-V. https://carrv.github.io/2020/
papers/CARRV2020_paper_15_Zhao.pdf

Received 2022-10-20; accepted 2023-01-19

https://github.com/cocotb/cocotb
https://github.com/cocotb/cocotb
https://doi.org/10.1109/SP40001.2021.00103
https://doi.org/10.1109/SP40001.2021.00103
https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/ISCA.2018.00014
https://github.com/ucb-bar/riscv-mini
https://doi.org/10.1145/3240765.3240842
https://doi.org/10.1145/3240765.3240842
https://github.com/ucb-bar/chiseltest
https://github.com/ucb-bar/chiseltest
https://doi.org/10.1109/ICCAD45719.2019.8942087
https://doi.org/10.1109/ICCAD45719.2019.8942087
https://github.com/chipsalliance/treadle
https://doi.org/10.1145/3445814.3446712
https://github.com/Thonner/NeuromorphicProcessor
https://github.com/Thonner/NeuromorphicProcessor
https://doi.org/10.1109/VLSID.2007.28
https://doi.org/10.1109/VLSID.2007.28
https://doi.org/10.1145/3385412.3386024
https://doi.org/10.1145/3352460.3358292
https://www.veripool.org/wiki/verilator
https://doi.org/10.4230/LIPIcs.SNAPL.2019.7
https://doi.org/10.1007/978-3-030-53288-8_19
https://github.com/amaranth-lang/amaranth
https://github.com/YosysHQ/SymbiYosys
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://carrv.github.io/2020/papers/CARRV2020_paper_15_Zhao.pdf
https://carrv.github.io/2020/papers/CARRV2020_paper_15_Zhao.pdf

