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Figure 1: We apply our method on 3D data to generate smooth animations between keyframes (orange) of varied geometry and topology.

Abstract
Much of computer-generated animation is created by manipulating meshes with rigs. While this approach works well for an-
imating articulated objects like animals, it has limited flexibility for animating less structured free-form objects. We introduce
Wassersplines, a novel trajectory inference method for animating unstructured densities based on recent advances in contin-
uous normalizing flows and optimal transport. The key idea is to train a neurally-parameterized velocity field that represents
the motion between keyframes. Trajectories are then computed by advecting keyframes through the velocity field. We solve an
additional Wasserstein barycenter interpolation problem to guarantee strict adherence to keyframes. Our tool can stylize tra-
jectories through a variety of PDE-based regularizers to create different visual effects. We demonstrate our tool on various
keyframe interpolation problems to produce temporally-coherent animations without meshing or rigging.

Keywords: animation, trajectory inference, neural ODE

CCS Concepts
• Computing methodologies → Motion processing; Point-based models;

1. Introduction

In hand-drawn animation, a primary artist is tasked with laying out
keyframes. These frames define the rough motion of an animation
and occupy a fraction of the usual 12 drawings per second. The re-
maining frames are filled in afterwards to create smooth motion in
a process called inbetweening. In the transition from hand-drawn
animation to computer-assisted animation, much of the inbetween-

ing process became automated [Las87]. After an artist lays out
keyframes as mesh rig displacements, in-between frames can be
produced automatically using splines and other interpolation ma-
chinery. Secondary effects like elastic oscillation or fluids can be
added afterwards through physical simulation [KA08]. This pro-
cess is largely responsible for modern character animation and has
had major success for articulated objects like humans and animals.
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While methods for articulated animation via meshes and rigs
are abundant, research on animation of objects like the Drunn in
Walt Disney Animation Studio’s “Raya and the Last Dragon” is
far less common. These animations are characterized by abstract,
amorphous boundaries and free-form motion. As with classical an-
imation, keyframes are still provided by an artist to coarsely define
the desired motion. Due to the lack of structure between keyframes,
however, we denote such animations as unstructured. Rig-based
methods are insufficient in this case, since unstructured anima-
tions can separate and recombine. Simultaneous to their freedom
of movement, their trajectories must accurately reach keyframes, so
that an artist is able to convey the appropriate gestures in a scene.

Unstructured animation can be found in various media over the
last several decades. In 1991, “Terminator 2: Judgment Day” de-
picts visual effects of mercury transitioning into various geome-
tries. The unstructured animation style even pre-dates computer an-
imation and can be found in the exaggerated motions of Cruella’s
cigarette smoke in Disney’s 1961 “One Hundred and One Dalma-
tions.” That is to say, interest in this type of animation is abundant,
but methods are largely manual, highly specific to the scene, and
undocumented.

In this paper, we present Wassersplines for unstructured anima-
tion. We encode keyframes as point clouds or probability measures,
allowing us to capture arbitrary geometries without the limitations
of a mesh or rig. Trajectories are encoded using a coordinate multi-
layer perceptron (MLP) to produce a velocity field in space-time. A
rough animation is then produced by advecting points through the
velocity field. We propose a Wasserstein barycenter interpolation
step to guarantee strict keyframe adherence. Using partial differen-
tial equation– (PDE–) based regularizers on the coordinate MLP,
we bring about various effects in the animation without needing
extra keyframes. We demonstrate our method on 2D and 3D exam-
ples, showing strict adherence to keyframes and flexibility in the
interpolations.

2. Related Work

Normalizing Flows. Normalizing flows map a prescribed initial
density, such as a Gaussian, through a set of invertible functions to a
target posterior distribution [RM15; PNR*21]. Neural ordinary dif-
ferential equations (ODE) take this concept to the limit by parame-
terizing the state derivative with a deep neural network. Continuous
normalizing flows (CNF) integrate the neural ODE to produce the
target posterior distribution [CRBD18]. In this context, [GCB*18]
use the Hutchinson’s trace estimator to compute posterior density
values through a neural ODE.

Various strategies decrease training time for CNFs. [KBJD20;
FJNO20] regularize the spatial variation of the state derivative and
its higher-order time derivatives. [TSM*20] use random Fourier
features (RFF) for faster training of high-frequency state deriva-
tives. [HPG*21] sequentially unmask RFFs in order of increas-
ing frequency, decreasing sensitivity to the initial RFF sampling.
[PMY*20] learn auxiliary networks for faster ODE integration, a
costly step in application of CNFs.

Optimal Transport. Optimal transport (OT) models compute the
cheapest map from a source distribution onto a target distribu-

tion via a linear program [Kan06]. The cost of this map defines
the Wasserstein distance between distributions; see [PC*19; Sol18;
San15] for general discussion.

Adding entropic regularization to the optimal transport linear
program yields an efficient and easily-implemented optimization
technique known as Sinkhorn’s algorithm or matrix rebalancing
[Cut13]. While cheaper to compute, entropically-regularized op-
timal transport biases the Wasserstein metric so that the distance
from a distribution to itself is nonzero. This issue is fixed in the
definition of the Sinkhorn divergence by adding a de-biasing term
to entropic optimal transport [GPC18]. Efficient large-scale im-
plementations of Sinkhorn divergence and other optimal transport
routines are available through “GeomLoss” [FSV*19] and “POT:
Python Optimal Transport” [FCG*21].

Dynamical optimal transport provides an alternative means
of computing Wasserstein distances when the ground metric is
quadratic in geodesic distance. Instead of computing a map be-
tween the source and target distributions, it computes a kinetic
energy-minimizing velocity field that advects the source distri-
bution into the target [BB00]; recent algorithms accelerate so-
lution of the relevant variational problems and explore alterna-
tive mesh-based and neural parameterizations [LCCS18; Lav21;
PPO14; THW*20].

Image/Shape Registration. Registrations between images or
shapes can be built from velocity field–induced diffeomorphisms.
[HMP15] regularize the velocity field in dynamical optimal trans-
port and prove existence of minimizers with a velocity gradient reg-
ularizer. [ELC19] compute static volume-preserving, velocity fields
for mesh registration. [FCVP17] use unbalanced OT to build diffeo-
morphic registrations in medical imaging.

Measure-valued Splines. Higher-order interpolations can be
computed through an ordered sequence of distributions by mini-
mizing acceleration instead of kinetic energy [CCG18; BGV19].
[BGV19] compute solutions as distributions over cubic splines via
a multi-marginal transport problem. [CCL*21] show that such solu-
tions do not allow for deterministic trajectory inference and instead
compute optimal transport plans between consecutive pairs of point
clouds followed by classical spline interpolation.

Our problem also aims to interpolate an input sequence of distri-
butions. A major difference, however, is that we parameterize the
trajectory of our interpolation with a velocity field. This difference
allows us to regularize based on spatial derivatives of the velocity
rather than just time-derivatives like acceleration. Furthermore, our
aim is not to globally minimize any particular time derivative but
rather to provide a palette of effects to control a trajectory.

Trajectory Inference. [SST*19; LZKS21] propose Waddington
OT for inference of cellular dynamics by concatenating OT in-
terpolations between consecutive keyframes. The approach used
by [Ric21] to animate Drunn is similar in that it also computes
OT matchings between consecutive point clouds. A key difference,
however, is that the point clouds used in animation of Drunn are
automatically generated by sampling densities evolved via fluid
simulation. This provides an abundance of data, mitigating ar-
tifacts of the piecewise-smooth trajectory. [TCCS21; TMPS03;
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PM17] augment incompressible fluid simulations with additional
forces to interpolate between target keyframes. These methods
balance between proximity to keyframes and regularization of
additional forces thus allowing deviation from target keyframes.
[BBRF14] interpolate keyframes by matching image patches be-
tween keyframes. To get smoother trajectories, however, they also
allow deviation from the provided keyframes.

3. Preliminaries

For completeness, we overview relevant developments in continu-
ous normalizing flows and optimal transport. For detailed coverage,
see [PNR*21; PC*19; GPC18].

3.1. Neural ODEs and CNFs

CNFs fit a target measure as the pushforward of a source measure
through a diffeomorphism, granting users the ability to sample the
target measure as long as they have sample access to the source
measure. We will re-purpose tools from the CNF literature to gen-
erate unstructured animations and review their basics here.

Given an initial state z(t0) ∈ Rn and parameterized state deriva-
tive function fθ(z, t) ∈ Rn, one can solve the ODE ż = fθ(z, t) for z
at time t1 as

z(t1) = z(t0)+
∫ t1

t0
fθ(z(t), t)dt. (1)

When fθ(z, t) is parameterized by a deep neural network, it is re-
ferred to as a coordinate MLP; ż= fθ(z, t) is a neural ODE. Given a
loss function L(z(t1)), the gradient ∇θL(z(t1)) is computed by the
adjoint method using black box ODE solvers [CRBD18].

Neural ODEs build CNFs in the following way. Let ν be a source
measure with simple parametric density on Rn, µ be the measure of
a target density, and φ be a map from z(t0) to z(t1). Then φ#ν de-
notes the pushforward measure obtained by advecting ν through fθ
from t0 to t1, i.e., the pushforward of ν by φ. The CNF generat-
ing µ is obtained by minimizing Kullback-Leibler (KL) divergence
KL(µ|φ#ν) with

KL(p|q) =
∫
Rn

log
(

d p
dq

)
d p (2)

for measures p, q over Rn [PNR*21; CRBD18].

3.2. From Wasserstein Distance to Sinkhorn Divergence

While KL divergence is a popular loss function for building CNFs,
it requires overlapping support and density access to work. To by-
pass these shortcomings, we use Sinkhorn Divergence instead and
introduce it here.

Given probability measures µ and ν on X ⊂ Rn, let Π(µ,ν) de-
note the set of joint probability measures on X ×X with marginals
µ and ν. The squared 2-Wasserstein distance between µ and ν is
defined as

W 2
2 (µ,ν) := inf

π∈Π(µ,ν)

∫
X×X

∥x− y∥2dπ(x,y). (3)

The joint probability measure solving Equation 3 is the optimal

transport plan π. The 2-Wasserstein distance is well defined even
when µ and ν are non-overlapping, and its gradient brings non-
overlapping measures together.

Equation 3 is computationally challenging to solve, leading to
the popular use of entropic regularization. Entropically-regularized
transport distance is defined via the convex program

OTε(µ,ν) := inf
π∈Π(µ,ν)

∫
X×X

∥x− y∥2dπ(x,y)+ εKL(π | µ⊗ν).

(4)
Unlike Equation 3, OTε(µ,ν) can be computed efficiently by
Sinkhorn’s algorithm [Cut13]. This efficiency comes at the cost
of entropic bias, i.e., OTε(µ,µ) ̸= 0. The bias becomes especially
problematic when one is interested in Wasserstein gradient flows to
transform a source measure ν into a target measure µ. One could
implement the flow ν̇ = −∇νOTε(µ,ν), but it would converge to
a solution where ν ≠ µ [FSV*19]. To address this bias, [GPC18]
build the Sinkhorn divergence:

Sε(µ,ν) := OTε(µ,ν)−
1
2

OTε(µ,µ)−
1
2

OTε(ν,ν). (5)

Sε(µ,ν) eliminates entropic bias and restores the desired property
Sε(µ,µ) = 0. When ε = 0, we have the equivalence

S0(µ,ν) = OT0(µ,ν) =W 2
2 (µ,ν),

but the computational benefits of entropic transport are lost.

3.3. Unbalanced Optimal Transport

Unbalanced optimal transport is an extension of OT where
marginal constraints are softened and controlled by an extra param-
eter τ. The softened constraints make unbalanced OT more robust
to outliers, which we use in §6 to improve quality of results. Let
M+(X ×X ) be the space of positive measures on X ×X . Then
the unbalanced OT cost is

OTε,τ(µ,ν) := inf
π∈M+(X×X )

∫
X×X

∥x− y∥2dπ(x,y)

+ εKL(π | µ⊗ν)+ τ
2KL(π1 | µ)+ τ

2KL(π2 | ν), (6)

where π1 and π2 are marginals of π [Fey20], and τ can be intuitively
thought of as the maximum distance a piece of mass can be trans-
ported before the transport plan π would rather violate marginal
constraints. τ is referred to as “reach” in GeomLoss [FCVP17;
FSV*19].

Unbalanced Sinkhorn divergence Sε,τ is defined exactly the same
as Sε in Equation 5 but with OTε replaced by OTε,τ. Despite the
softening of marginal constraints, Sε,τ(µ,ν) = 0 still implies µ = ν.
When, τ =∞, Sε,τ = Sε i.e. balanced Sinkhorn divergence.

4. Method

We now present unstructured animation as a measure interpolation
problem equipped with a suitable fitting loss. We describe how to
control the animation through different regularizers as well as how
to guarantee strict adherence to keyframes.
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Figure 2: Schematic of Wasserstein barycenter interpolation.
While the neural ODE–produced trajectories (in grey) do not pre-
cisely adhere to keyframes, the modified trajectory produced using
Equation 20 (in black) is guaranteed to adhere to keyframes.
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Figure 3: Different renderings of our results. The first row is
rendered by converting point clouds into an explicit surface us-
ing metaballs with a 0.05 radius. This technique results in more
well defined boundaries but less visible interior density variation.
The second row is rendered directly as densities computed via
[BVPH11]. Boundaries are less sharp. but more interior variation
is revealed.

4.1. Notation

Let the keyframes be the set K = {(Xi, ti)}T−1
i=0 , where each Xi is

a measure over Rd for d ∈ {2,3} from which we can draw sam-
ples; ti are corresponding timestamps. Similarly to [THW*20], we
compute trajectories between keyframes using a coordinate MLP

fθ(z, t) : Rd ×R→ Rd (7)

and neural ODE ż = fθ(z, t). This choice gives us easy access to
all derivatives of fθ, something that would be more limited under a
non-neural parameterization, e.g., if we parameterize fθ on a grid
with piecewise tri-linear basis functions, f̈θ = 0.

For times ti ≤ t j , let φ
ti,t j be the diffeomorphism of Rd resulting

from integrating (7) from time ti to time t j. When ti > t j , φ
ti,t j is

the inverse of φ
t j ,ti . Let X t j

i be shorthand for the pushforward of
keyframe Xi by φ

ti,t j :

X t j
i = φ

ti,t j
# Xi. (8)

We sample from X t j
i by evolving samples from Xi through the ODE

(1) from time ti to time t j. In this notation, a trajectory strictly ad-
hering to keyframes satisfies

X t j
i = X j. (9)

4.2. Fitting Loss

CNF methods like [THW*20; CRBD18; GCB*18] use Kullback-
Leibler divergence KL(X j|X

t j
i ) as a fitting loss. For unstructured

animation, however, a KL loss is unsuitable because animation
keyframes often have compact support; in particular, pushforward
measures like X t j

i are unlikely to overlap with their targets X j early
in training. Furthermore, computing KL divergence requires den-
sity access, which is expensive to estimate. These situations leave
the KL divergence undefined or infinite [ACB17].

Instead, we use Sinkhorn divergence as a trajectory fitting loss:

Li, j
fit = Sε(X t j

i |X j). (10)

A Sinkhorn divergence of exactly 0 guarantees that X t j
i = X j. Un-

like KL divergence, Sinkhorn divergence has no dependence on
overlapping support between its measures. In addition, its gradi-
ent brings non-overlapping measures together. Finally, Sinkhorn di-
vergence can be computed with only sample access from its input
measures.

Our total trajectory fitting loss is then

Lfit =

√√√√T−2

∑
i=0

Li,i+1
fit +Li+1,i

fit . (11)

This choice is motivated by “teacher-forcing” in training recurrent
neural networks (RNNs), where one inserts ground-truth data into
the network to decrease training time [WZ89]. In our case, Lfit is
constructed by evaluating Equation 10 only between consecutive
keyframes, i.e., the ground truth data. We also use a square root
in Equation 11 in preparation to balance our fitting loss against
a regularization energy. Recall that Li,i+1

fit is essentially a squared
Wasserstein distance and that gradients of squared quantities de-
crease with the magnitudes of their arguments. The square-root
maintains the magnitude of the fitting loss gradient even as the fit-
ting loss approaches 0. This ensures that fitting loss gradients are
not out-competed by regularizers.

4.3. Controlling the Trajectory

Within the space of trajectories that minimize the fitting loss, we
can encourage paths with desirable features by regularizing the ve-
locity field fθ. This process is straightforward, since types of mo-
tion have natural vector calculus or continuum mechanics counter-
parts. Here, we identify different types of motion with mathemati-
cal quantities based on vector field fθ in a pointwise manner. These
pointwise quantities will be denoted l□ with placeholder symbol
□. We then show how to integrate these pointwise quantities in
space-time to build a corresponding regularizing loss L□. These
regularizers enable the user to select from a palette of options to
control their animation.

Squash and Stretch. We begin with one of the basic principles of
animation: “squash and stretch” [TJT95]. A mathematical measure
for this type of movement is rigidity:

lrig = ∥∇z fθ +∇z f⊤θ ∥2
F , (12)

where ∥ · ∥F denotes Frobenius norm. This term can also be in-
terpreted as a Killing vector field energy [BBSG10], or, from the
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Figure 4: Comparison between trajectories obtained using our method and optimal transport for interpolating between the Chinese character
for “horse” and an image of a horse (rows 1 and 2) and between two images of horses in different poses (rows 3 and 4). The OT interpolation
computed via [FCG*21] exhibits more spatial discontinuities (circled in red).
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Figure 5: Effect of rigidity and compressibility regularization on
our trajectories. Increasing the coefficient of the rigidity regular-
izer yields a less wobbly interpolation between two straight bars
(top). Regularizing compressibility when interpolating between a
square and rectangle reduces the increase in area of the shapes
along the trajectory (bottom).

perspective of continuum mechanics, fθ is the displacement gradi-
ent, and lrig is the magnitude of the linear strain tensor. Movements
generated by a velocity field where lrig = 0 will appear rigid and
not squash or stretch keyframes.

Compressibility. A closely related concept to rigidity is compress-
ibility. Consider a quivering block of gelatin. While its movements
are non-rigid, squashing in height will cause bulging in width.
Compressibility can be captured by divergence:

ldiv = (∇· fθ)
2 = Tr[∇z fθ]

2. (13)

Movements of a keyframe generated by a velocity field where ldiv =
0 will preserve area or volume, i.e., they are incompressible.

User-Directed Alignment. We can explicitly incentivize
keyframes to move in certain directions during the animation via a
user-provided metric A(z, t) ∈ Rd×d by minimizing

lA = ∥ fθ∥2
A = f⊤θ A fθ. (14)

If the user wants fθ to align with unit vector field v, they can choose
the metric A = I − vv⊤. Conversely, the user can also penalize
alignment of fθ to v with A = vv⊤.

Swirliness. One of the most visually salient features of an anima-
tion or fluid is its swirliness. This is naturally captured by vector

(a)

(b)

(c)

(d)

(a) (b)

(c) (d)

Figure 6: Interpolation between three keyframes, demonstrating
the evolution of the Chinese character for “fish.” Without swirli-
ness regularization (λcurl = λ× = 0), the character does not prop-
erly rotate, with the head of the fish in the first keyframe (circled
in orange) getting mapped to the tail in the last. Trajectories using
[CCL*21] exhibit the same issue. When we regularize the trajec-
tory with λcurl = 10−1, the head of the fish in the first keyframe
over-rotates, landing near the head of the final keyframe. When reg-
ularizing with λ× = 10−1, the head of the fish in the first keyframe
is properly mapped to the head of the fish in the last keyframe.
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Figure 7: Effect of user-directed alignment on our trajectories.
Adding this regularizer (right) to the original trajectory (left) yields
a more circuitous path.

Figure 8: By combining user-directed alignment and carefully cho-
sen Fourier frequencies we compute perfectly loopable circular tra-
jectories depicting the fictitious lifecycle of a butterfly.

valued quantity curl: ∇× fθ. Its direction points in the axis of rota-
tion, and its magnitude is twice the angular velocity. Given a target
curl vector c⃗, we can quantify how close fθ is to meeting that target
with

lcurl = ∥∇× fθ − c⃗∥2
2. (15)

For example, if we want a 2D animation where the keyframe rotates
a full circle clockwise in four seconds, then we can measure lcurl
with c⃗ = [0,0,−π]⊤.

lcurl allows us to quantify how much fθ deviates from the target
curl at any specific point in the trajectory. To quantify how much
the integrated curl vector along a trajectory deviates from the target,
we also need l× =∇× fθ, the only vector valued l□ in our list of
regularizers.

Smoothness. Finally, we mention some regularizers from the neu-
ral ODE literature. ODE solvers can be slow to converge if fθ varies
too much spatially or temporally [KBJD20; FJNO20]. One can try

to make fθ smoother with the following:

lgrad = ∥∇z fθ∥2
F , (16)

lvel = ∥ fθ∥2
2, lacc = ∥ ḟθ∥2

2, ljerk = ∥ f̈θ∥2
2. (17)

lgrad quantifies spatial variation of fθ, while lvel, lacc, and ljerk mea-
sure orders of temporal variation, i.e., speed, acceleration, and jerk.

Integrating Along the Trajectory. We have defined various
point-wise quantities based on fθ. We will denote all of them
with l□(z, t), where □ can be replaced with any of the previously-
mentioned quantities. To regularize fθ with l□(z, t) we use the loss

L□ =
1
2

T−2

∑
i=0

∫ ti+1

ti

∫
Rd

l□(z, t)d
(
X t

i +X t
i+1

)
dt (18)

that integrates l□ over the trajectory dictated by fθ. As with Equa-
tion 11, Equation 18 only considers trajectories obtained by flowing
keyframes to their consecutive neighbors. Doing this avoids apply-
ing regularization unnecessarily at space-time locations that come
from accumulated error in ODE integration.

We add regularizer L□ to our total loss with coefficient λ□. The
one exception to this symbolic grouping (λ□, L□) is when □ =×
because L× is a vector. Let λ× represent regularizing factor corre-
sponding to regularizing loss function ∥L× − c⃗∥2

2 with target curl
c⃗. λ× regularizes the average curl as opposed to λcurl which regu-
larizes pointwise curl. We show in §6 the isolated effects of these
regularizers and how they can be used to control an animation. The
total loss function is

Ltot = Lfit + ∑
scalars

λ□L□+λ×∥L×− c⃗∥2
2 (19)

4.4. Wasserstein Barycenter Interpolation

After training the neural ODE, we are not yet guaranteed that the
trajectory strictly adheres to keyframes, as the neural ODE balances
the fitting loss and regularizing losses. If Lfit ̸= 0, the neural ODE
trajectories deviate from keyframes. We correct deviation by apply-
ing the following Wasserstein barycenter interpolation step. Given
a query time t ∈ [ti, ti+1], our output in-between frame is defined as

Xε,τ(t) = argminα (ti+1 − t)Sε,τ(X t
i ,α)

+(t − ti)Sε,τ(α,X t
i+1). (20)

In this way, our output trajectories are guaranteed to adhere to the
keyframes: Xε,τ(ti) = Xi for any choice of ε and τ. This step of
our pipeline is similar to [SDP*15], who use Wasserstein barycen-
ters for shape interpolation, but their barycenters are computed di-
rectly between keyframes while our barycenters are computed be-
tween ODE-advected keyframes allowing for artistic control. When
Lfit = 0, Equation 20 becomes trivial with X (t) = X t

i = X t
i+1. Our

interpolation is illustrated schematically in Figure 2.

5. Implementation Details

Here we describe various implementation details needed to repli-
cate our results. The majority of figures are produced with the same
default parameters though our method is not overly sensitive to
these choices.
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Figure 9: Effects of various regularizers on a four-keyframe animation. Employing rigidity, user-directed alignment, acceleration, and
swirliness regularization as well as modifying the standard deviation of the RFF results in trajectories with varying path qualities and
shapes. We also compare to trajectories obtained using optimal transport [FCG*21] and [CCL*21].

Keyframes have been presented so far as measures over Rd with
sample access. Our implementation mirrors this assumption and
samples N points per keyframe in every training iteration. For 2D
(3D) examples, N is initialized to 300 (1000) points. We increase
N by a factor of 41/6 ∼ 1.26 every 50 training iterations, ensuring
that N has quadrupled by iteration 300. All keyframes are jointly
normalized to lie within [−1,1]d . Our state derivative fθ is a mul-
tilayer perceptron with normally sampled random Fourier features
[TSM*20] of standard deviation σz,t = 3π/

√
d ∼ 6.7 in spatial and

temporal dimensions. This distribution gives us fourier frequencies
with periods roughly comparable to the diagonal of the bounding
box. We use three hidden layers of size 512 each. All nonlinearities
are Tanh except for the final layer, which is Softplus. This choice of
nonlinearities gives us easy access to all derivatives of fθ. In con-
trast, using all ReLU nonlinearities would have prevented us from
effectively building regularizers on quantities like f̈θ.

We also employ incremental unmasking of 100 random Fourier
features during training, as described in [HPG*21], with a modified
rate so that all features are unmasked when 80% of training itera-
tions are finished instead of their 50%. All models were trained for
a fixed 300 iterations with a learning rate of 10−4. We use Adam
[KB14] with default parameters and a learning rate scheduler that
halves the learning rate on plateau with a minimum learning rate of
10−7.

The Sinkhorn divergence in Equation 10 is computed via Ge-
omLoss [FCVP17] with entropic regularization weight ε = 10−4.
Integration of the neural ODE is done using “torchdiffeq” with all
default parameters [CRBD18]. The space-time integral in Equa-
tion 18 is computed each training iteration by sampling 30 points of
keyframe Xi, integrating in time to 5 uniformly sampled values in
[ti, ti+1], and averaging their l□(z, t) values. We compute Wasser-
stein barycenters solving Equation 20 by initializing α = X t

i and
iterating gradient descent via GeomLoss.

During training, we normalize Lfit to start at
√

2 in the first it-
eration; unless stated otherwise, all results in §6 are generated in-
cluding λjerk = 10−2 as a regularizer. This regularization ensures
fθ does not take convoluted trajectories that result in slow ODE
integration. All input keyframes are one second apart. Our compu-

tations are performed on a single Nvidia GeForce RTX 3090 GPU
and take approximately 10 (15) minutes to train a 2D (3D) anima-
tion.

To visualize our trajectories, in 2D, we render each frame by
splatting isotropic radial basis functions (RBFs) at each of 4000
point samples per frame. Following [BVPH11], we choose the
bandwidth for each RBF as the distance to the 20th nearest neigh-
bor of the corresponding point. All velocity fields in our figures
correspond to the final time step. We also trace out the trajectories
of point clouds through the animation to visualize the shape of the
trajectory. This takes ∼1s to render per frame. In 3D, we visualize
frames using spherical metaballs, where the radius of each meta-
ball is determined based on the corresponding point’s distance to
its 25th nearest neighbor. We smooth the resulting meshes using 20
iterations of the Blender “Smooth” modifier with a smoothing fac-
tor of 2. Point clouds for 3D renders contain 25000 points and take
∼10s per frame.

The metaball rendering for 3D can also be applied to our 2D
results generally producing sharper boundaries, and lower interior
variation as shown in Figure 3. Animations in §6 are accompanied
by videos in supplementary materials. The metaball rendering is
also additionally applied to more 2D results in supplementary ma-
terials. We strongly recommend viewing the animations rather than
relying solely on static figures within the paper.

6. Results

Optimal Transport. We compare trajectories obtained using opti-
mal transport and our method in Figure 4. In the first two rows, we
interpolate from the Chinese character for “horse” to an image of a
horse, and in the second two rows we interpolate between two im-
ages of horses in different poses. In both cases, the OT interpolation
has more spatial discontinuities (circled and tracked in red). Since
our method constructs a diffeomorphism by integrating Equation 7,
our trajectories tend to avoid discontinuous movements. Our results
generate more intuitive interpolations between keyframes than OT,
which maps points at the top of the horse character to its back.
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Rigidity and Compressibility. Figure 5 tests the effect of Lrig
and Ldiv on our trajectories. In the top half, we interpolate from
the blue bar to the green bar with λvel = 10−2, λjerk = 0 and
λrig = {0,1,10}. The λrig = 0 trajectory is wobbly and bends the
bar severely. The λrig = 1 trajectory is straighter but still shows
some deformation. The λrig = 10 case is almost entirely rigid.
In the bottom half, we interpolate from a blue unit square to a
green rectangle with width 3 and height 1/3. The plot shows per-
cent area increase throughout the interpolation with λdiv = 0 vs.
λdiv = 1. In both cases, we also include λvel = 10−1 and λjerk = 0.
When λdiv = 0, the trajectory increases area by 42.7%, and when
λdiv = 1, the area increase drops to 6.3%. On the right, we show
the keyframes and their trajectories traced out for λdiv = 10−1. The
trajectories are qualitatively different, e.g., when λdiv = 0, the tra-
jectory traces out a concave path, but when λdiv = 1, the trajectory
traces out a convex path with more area preservation.

Curl Regularization. Figure 6 interpolates between three
keyframes from the etymology of the Chinese characters for “fish.”
These characters are shown upright in the black box at the right of
the figure. As pictographs, they are meant to be similar to fish, with
their bottoms resembling tail fins and tops resembling fish heads.
For the animation, we lay these characters in a semicircular ar-
rangement, with the intention that an animated trajectory between
them should follow a semicircular arc.

First, we show trajectories computed using [CCL*21] and mark
in the orange circles corresponding points throughout the anima-
tions. The markers show that the head of the fish in keyframe 1
is mapped to the tail in keyframe 3. Since their method computes
OT maps between consecutive keyframes, and the vector fields
producing OT interpolations are necessarily curl free, this result
is unsurprising. Then, we compute trajectories using the default
λjerk = 10−2. Again, the intermediate fish characters do not rotate
through the animation. In the bottom left, we show the effect of
adding λcurl = 10−1 with a target pointwise curl of c⃗ = [0,0,−π]⊤.
As described in subsection 4.3, this encourages the pointwise curl
of fθ to be c⃗ throughout the trajectory, corresponding to a clock-
wise rotation at the rate of π/2 per second. The resulting animation
is significantly different from before. The head in keyframe 1 cor-
responds to the head in keyframe 2, and the trajectory slightly over-
rotates just past the head of the fish in keyframe 3; in the bottom
right, we regularize with λ× = 10−1 incentivizing the average curl
over the trajectory to be c⃗. In this case, the head in keyframe 1 is
successfully mapped to the head in all following keyframes.

User-Directed Alignment and Cyclic Trajectories. Figure 7
demonstrates the effect of LA. We interpolate from a butterfly to
a cat and finally to a caterpillar. The baseline trajectory is shown
on the left. On the right, we add a λA = 10−1 regularizer that pe-
nalizes alignment of the velocity field to the unit radial vector field.
As a result, the trajectory takes a circuitous path.

In Figure 8, we compute a cyclic trajectory by repeating the first
keyframe at the end of the keyframe list. We round temporal RFF
coefficients to the nearest values that produce cyclic signals with a
3 second period. Finally, we add the same λA = 10−1 regularizer
as in the middle to encourage a circular trajectory. The result is a

perfectly loopable animation depicting the fictitious life cycle of a
butterfly.

Regularizing Trajectories. Figure 9 demonstrates the isolated ef-
fects of various regularizers on the trajectory of a four-keyframe
animation. The goal is to transform from a witch, into a pumpkin,
into a cat, and finally into a bat. By employing different regulariz-
ers, we achieve varying effects on the animation.

In the top left, we show a baseline trajectory with just λjerk =

10−2 as a regularizer. Here, in-between frames maintain a mostly
upright posture, i.e., the top of each keyframe is mapped to the top
of the following keyframe. When the aspect ratios of the keyframes
differ, this trajectory squashes keyframes into one another.

Next, we impose an additional λrig = 10−1. While there is no
truly rigid interpolation between these keyframes, the cat rotates
sideways into the bat, yielding a more rigid trajectory than the base
case. The orange arrows indicate the path from the cat to the bat.

We then replace the rigid regularizer with λA = 10−1, where the
metric is chosen to incentivize alignment of fθ to the unit radial
vector field. The origin is plotted in red. Due to λA, the trajectory
of the pumpkin to the cat is pulled towards the origin, creating a
bouncing effect.

As a comparison, on the top right, we show the trajectory from
concatenated OT maps computed by [FCG*21]. This results in ex-
tremely sharp turns at the keyframes, which is expected since tra-
jectories are built piecewise.

On the bottom left, we impose λacc = 10−1 on top of the base.
The shape of the trajectory at the pumpkin keyframe is smoother
compared to the trajectory taken in the base case.

Next we replace λacc with λcurl = 10−1, where again, the curl is
incentivized to be c⃗ = [0,0,−π]⊤. As a result, the trajectory makes
almost a full 2π rotation.

Then we remove all regularizers and increase the RFF standard
deviation from σz,t = 6.7 to 11.1. The increased magnitude of RFF
coefficients and lack of regularization yield a much noisier trajec-
tory.

Finally on the bottom right, we show [CCL*21] for contrast. It
produces a smooth path of cubic splines that are qualitatively close
to the λacc = 10−1 case. Similar to Figure 6, the trajectory does
not rotate keyframes, instead opting to squash them to get the right
aspect ratio.

Volumetric Results. In Figure 10, we show various frames of an
animation of a spinning ring with and without regularizers. In the
first row we only use the default regularizer λjerk = 10−1. Since the
loss does not care about rigidity, the resulting trajectory develops
bulges indicated by the red arrows. In the second row we addition-
ally regularize with λacc = λrig = 10−1 to produce a much tamer
trajectory.

In Figure 11, we show the effect of unbalanced Wasserstein
barycenter interpolation on interpolations of the same keyframes
and the same neural ODE. The only difference is in the Wasser-
stein barycenter interpolation step Equation 20, where the first row
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rigid
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Figure 10: Effect of rigidity regularizer on trajectories of tori. The
top row is computed with default parameters, while the bottom row
is computed with additional regularization λacc = λrig = 10−1. Red
arrows point out several locations where extra deformation occurs
without rigidity regularization. Using these regularizers results in
less wobbling along the trajectory.
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Figure 11: Effect of balanced v.s. unbalanced Wasserstein barycen-
ter interpolation on intermediate frames of a hand closing anima-
tion. Volume of fingers is not carefully tuned in keyframes, resulting
in balanced OT necessarily transporting mass between fingers dur-
ing the animation. This is pointed out in the balanced interpolation,
where red and green arrows track lumps of mass moving between
fingers. Using unbalanced Wasserstein barycenters instead allevi-
ates the mass splitting, and fingers are clearly separated throughout
the animation.

is computed with default parameter τ = ∞, and the second row
with τ = 0.05. Recall from subsection 3.3 that τ represents how
much distance a transport plan is willing to move mass before giv-
ing up on constraints of the classical OT problem. Since fingers of
the hand animation keyframes have different volumes, animations
generated with τ = ∞ necessarily transfer mass between fingers.
This is tracked by the red and green arrows indicating mass moving
between fingers. When we use unbalanced Wasserstein barycen-
ters, the mass balancing between fingers is alleviated resulting in
much sharper distinctions between each individual finger.

Figure 1 summarizes application of our method to generate 3D
animations. In the first row, we build in-between frames for an an-
imation from an open hand, to a partially closed hand, and finally
to a cat. This animation is regularized with λacc = λrig = 10−1. We
use unbalanced Wasserstein barycenter interpolation with τ = .05
for in-between frames from the open hand to the partially closed
hand. Due to the increased complexity of computing unbalanced
Wasserstein barycenters, we reserve the unbalanced case for only
where we explicitly want to alleviate mass splitting and otherwise
default to balanced barycenters. In the second row, we interpolate
from a sphere to a cow to a torus with all default parameters. The

change in topology is handled seamlessly. In the last row, we in-
terpolate through five keyframes of rings at different angles. The
first, third, and fifth keyframes are rings with detailed helical pat-
terns carved into them, while the second and fourth keyframes are
normal tori. We regularize this animation with λacc = λrig = 10−1

to produce a smooth trajectory.

7. Discussion and Conclusion

Unstructured animations appear in various forms of media rang-
ing from hand-drawn to video games and film. These animations
share a fluid morphing capability that is mesmerizing to watch but
challenging to construct. Our work identifies unstructured anima-
tion as a density interpolation problem and builds automatic solu-
tions through the machinery of optimal transport, neural ODEs, and
PDE-based regularizers for intuitive and varied control.

Future work might consider discontinuous parameterizations of
the velocity field. Depending on the context, spatially discontinu-
ous trajectories may be desirable, but integration of a smooth ve-
locity field will always produce a diffeomorphism. Discontinuous
velocity fields provide added flexibility, but also pose challenges
to gradient based optimization and ODE integration. A natural reg-
ularizer in this setting is vectorial total variation [GC10], which
measures vector field smoothness but does not diverge near discon-
tinuities.

Another avenue for further exploration might be to treat the fit-
ting loss as a constraint. If the fitting loss can reach exactly 0,
Wasserstein barycenter interpolation would no longer be necessary.
The final rendering quality of our animations depend in part on the
number of samples used to build the trajectory. Since the Wasser-
stein barycenter interpolation is computed independently per in-
between frame and scales in expense with the number of points, it
would be ideal to skip computing barycenters altogether.

Mesh- and rig-based animation are approachable for beginners
through the abundance of accessible tools and tutorials. Unstruc-
tured animation is the opposite: Almost no documented computa-
tional tools exist enabling its design. This paper represents a step
toward bridging the gap between rig-based animation and unstruc-
tured animation. We hope that the graphics community will dis-
cover more exciting approaches toward unstructured animation to
further improve its ease of construction and accessibility.
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