On the Effectiveness of Persistent Homology

Renata Turke$ Guido Montifar
University of Antwerp University of California, Los Angeles
renata.turkes@uantwerpen.be montufar@math.ucla.edu
Nina Otter

Queen Mary University of London
n.otter@gmul.ac.uk

Abstract

Persistent homology (PH) is one of the most popular methods in Topological Data
Analysis. Even though PH has been used in many different types of applications,
the reasons behind its success remain elusive; in particular, it is not known for
which classes of problems it is most effective, or to what extent it can detect
geometric or topological features. The goal of this work is to identify some
types of problems where PH performs well or even better than other methods in
data analysis. We consider three fundamental shape analysis tasks: the detection
of the number of holes, curvature and convexity from 2D and 3D point clouds
sampled from shapes. Experiments demonstrate that PH is successful in these
tasks, outperforming several baselines, including PointNet, an architecture inspired
precisely by the properties of point clouds. In addition, we observe that PH remains
effective for limited computational resources and limited training data, as well
as out-of-distribution test data, including various data transformations and noise.
For convexity detection, we provide a theoretical guarantee that PH is effective
for this task in R%, and demonstrate the detection of a convexity measure on the
FLAVIA data set of plant leaf images. Due to the crucial role of shape classification
in understanding mathematical and physical structures and objects, and in many
applications, the findings of this work will provide some knowledge about the types
of problems that are appropriate for PH, so that it can — to borrow the words from
Wigner 1960 — “remain valid in future research, and extend, to our pleasure"”, but
to our lesser bafflement, to a variety of applications.

1 Introduction

Persistent homology (PH) is an extension of homology, which gives a way to capture topological
information about connectivity and holes in a geometric object. PH can be regarded as a framework
to compute representations of raw data that can be used for further processing or as inputs to learning
algorithms. There have been numerous successful applications of PH in the last decade, from
prediction of biomolecular properties [18}/19L|110], face, gait and activity recognition [[58}/66}/70./122]
or digital forensics [|6], to discriminating breast-cancer subtypes [97], quantifying the porosity of
nanoporous materials [69], classifying fingerprints [50]], or studying the morphology of leaves [71]
At the same time, the reasons behind these successes are not yet well understood. Indeed, the data
used in real-world applications is complex, so that there are numerous effects at play and one is often
left unsure why PH worked, i.e., what type of topological or geometric information it captured that
facilitated the good performance.

'A database of applications of persistent homology is being maintained at [[51].
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The title of our manuscript is inspired by a famous paper from 1960, “The unreasonable effec-
tiveness of mathematics in the natural sciences” [112], in which Wigner discusses, with wonder,
how mathematical concepts have applicability far beyond the context in which they were originally
developed. The same, we believe, is true for persistent homology. While this method has been applied
successfully to a wide range of application problems, we believe that for PH to remain relevant, there
is a need to better understand why it is so successful. Thus, we distinguish between the usefulness
of PH for applications, which has been attested in hundreds of applications and publications, and
its effectiveness, namely that PH is capable of producing an intended or desired result. Thus, here
we initiate an investigation into the effectiveness of PH, or in other words, we investigate what is
seen by persistent homology: Given a data set, i.e., a point cloud, which underlying topological
and geometric features can we detect with PH? This question is related to manifold learning and,
specifically, topological and geometric inference: Given a finite point cloud X of (noisy) samples
from an unknown manifold M, how can one infer properties of M [11,/12,125,[29]? Obtaining a
representation of a shape that can be used in statistical models is an important task in data analysis
and numerous approaches to modeling surfaces and shapes [[104].

To pursue our investigation, we set out to identify some fundamental data-analysis tasks that can be
solved with PH. Since PH is inspired by homology, which provides a measure for the number of
components, holes, voids, and higher-dimensional cycles of a space — to which we collectively refer
as “topological features” —, we start with the obvious question of whether PH applied to a point cloud
sampled from a geometric object can detect the number of (1-dimensional) holes of the underlying
object. Unlike homology, however, PH registers also the persistence of topological features across
scales, and can thereby capture geometric information, such as size or position of holes. We therefore
also investigate how well PH can detect fundamental geometric notions of curvature and convexity.
For each of the three problems, we first discuss theoretical results that provide a guarantee that PH
can solve these tasks. Detection of convexity with PH has not been investigated in the literature
to date, and we prove a new result. To investigate how well the PH pipeline works in practice, we
compare its performance against several baselines on synthetic point-cloud data sets. As a first
machine learning (ML) baseline we take an SVM trained on the distance matrices of point clouds.
We further consider fully-connected neural networks (NN) with a single or multiple hidden layers,
also trained on distance matrices. As a stronger baseline we consider a PointNet trained on the point
clouds directly. PointNet [1,[88] is designed specifically for point cloud data. Similar architectures
with convolutional (and fully-connected and pooling) layers have been applied for Betti-number and
curvature estimation [52,[81]. For convexity detection, we also evaluate the performance of PH on
real-world data. The theoretical guarantees above imply that the results for PH would generalize to
new data.

Finally, we note that our goal is not to claim the superiority of PH compared to other approaches
in the literature, in particular, with the state-of-the-art methods for each of the problems. We do
not necessarily expect that on well-specified mathematical problems PH will beat state-of-the-art
algorithms that have been specifically designed for those tasks. Instead, what we think is interesting
and remarkable is that PH can in fact solve tasks it is not specifically or uniquely designed for.
Moreover, an advantage of PH is that it can reveal, e.g., both topology and curvature at the same time,
avoiding the need to employ and combine state-of-the-art models for each of the tasks.

Related work In spite of the growing interest in PH, so far there is only limited work in the
direction that we pursue here. There is indeed theoretical evidence that the number of holes of the
underlying space can be detected from PH (under some conditions about the target space, the sample
density and closeness to the space) [32,/63|/77]], and there is significant interest in investigating how
well this works in practice [30]. However, so far there are only few available results. Some works
demonstrate that PH can be used to detect the number of holes, but only on individual toy examples
(e.g. [90], [25, Figure 19], [65, Figures 9-20], [29, Figures 2, 3, 6, 11, 12]) without looking into
the statistical significance between different classes of data, or the accuracy of some classification
algorithms on a comprehensive data set. There are also some works where PH is used to estimate
the Betti numbers on a possibly larger data set, but only with the goal of using this information to
e.g., study the behavior of deep neural networks [76] or ensure topologically correct dimensionality
reduction [82] or image segmentation [56], so that the soundness of this estimation is not investigated,
which is the focus of our work. Some insights about PH and curvature have been obtained in the
literature, starting with an illustrative example in [39} Figure 12] which shows that PH on the filtered
tangent complex can distinguish between letters (C and I) that have the same topology, since their



curvature is different. Recently, [17] show both theoretically and experimentally that PH can predict
curvature (with computational experiments replicated in [[107]]), which inspired us to investigate this
problem in more detail. Regarding the important geometric problem of classification between convex
and concave shapes, we were not able to identify any previous works investigating the applicability
of PH to this task.

Some further recent work investigating the topological and geometric features seen by PH are the
following. Bubenik and Dtotko [16] show that using PH of points sampled from spheres one can
determine the dimension of the underlying spheres. A connection has also been established between
PH and the magnitude of a metric space (an isometric invariant) [[79]]. There have been several efforts
in using PH to estimate fractal dimensions, such as [95] in which Schweinhart proves that the fractal
dimension of some metric spaces can be recovered from the PH of random samples.

Main contributions Our contributions can be summarized as follows.

+ We prove that PH can detect convexity in R? (Theorem .

* We define a new tubular filtration function (medium through which PH is extracted from data), that
is crucial for the detection of convexity (Definition [J).

» We demonstrate experimentally that PH can detect the number of holes (Section [3), curvature
(Section E), and convexity (Section E) from synthetic point clouds in R? or R3, outperforming
SVMs and fully-connected networks trained on distance matrices, and PointNet trained on point
clouds. For convexity detection, we also show that PH obtains a good performance on a real-world
data set of plant leaf images.

* We demonstrate experimentally that PH features allow to solve the above tasks even in the case of
limited training data (Section [3), noisy (Section [3) and out-of-distribution (Section [3) test data, and
limited computational resources (Section 3} Section[d] Section[5).

* We provide insights about the topological and geometric features that are captured with long and
short persistence intervals (Section[6), and formulate guidelines for applications that are suitable
for PH (Section[7).

* We provide data sets that can be directly used as a benchmark for our tasks or other related point-
cloud-analysis or classification problems. We provide computer code to construct more data and
replicate our experiments.

2 Background on persistent homology

Homology is a topological concept that attempts to distinguish between topological spaces by
constructing algebraic invariants that reflect their connectivity properties [90], i.e., k-dimensional
cycles (components, holes, voids, ...). The number of independent k-dimensional cycles is called
k-th Betti number and denoted by ;. For example, the circle has Betti numbers 5y = 1, 51 = 1,
B2 = 0, and for a torus, we have By = 1, 51 = 2, B2 = 1.

Persistent homology is an extension of this idea [[123] that has found success in applications to data.
To calculate PH from some data X, we must first build a filtration, i.e., a family of nested topological
spaces { K, }rer which, in a suitable sense, approximate X at different scales » € R. Typically,
X = {x1,29,...,2,} is a point cloud in R%, and K, is a simplicial complex, a set of simplices
o (which we can think of as vertices, edges, triangles, ...) such that if 0 € K, and 7 C o, then
T € K, [39]. A common choice is K, = VR(X,r), where VR(X, ) is the Vietoris-Rips simplicial
complex, in which ¢ = {z1,...,2,} € VR(X,r) when dist(z;,z;) < rforall 1 <i,j < m.
PH can then be summarized with a persistence diagram (PD), a scatter plot with the x and y axes
respectively depicting the scale » € R at which each cycle is born and dies or is identified (i.e.,
merges) with another cycle within a filtration. The length | = d — b of a persistence interval (b, d)
measures the lifespan — the so-called “persistence” — of the corresponding cycle in the filtration.

Instead of working directly with persistence diagrams, these are often represented by other signatures
that are better suited for machine learning frameworks. A common choice is a persistence image
(PD) [2] (discretized sum of Gaussian kernels centered at the PD points), or a persistence landscape
(PL) (functions obtained by “stacking isosceles triangles" above persistence intervals, with height
reflecting their lifespan) [15]. The steps for extracting PH features are visualized in Appendix [B.2]
For good choices of filtration and signature [[103], there are theoretical results that guarantee that PH



is stable under small perturbations [26L98]. After the PH signature is calculated, statistical hypothesis
testing [[10,/15], or machine learning techniques such as SVM or k-NN [?2,/48,|78] can be used on
these features to study the differences within the data set of interest. It is important to note that PH is
very flexible, as different choices can be made in every step of the pipeline, regarding the input and
output of PH, as detailed in the remainder of this section.

2.1 Approximation of a space at scale r € R

Instead of the Vietoris-Rips complex, other types of complexes can be used to approximate the data
X at the given scale € R. For instance, since Vietoris-Rips simplicial complex is large [80], one
might rather choose the alpha complex [46] (for a visualization, see Appendix[C.2), which is closely
related to the Vietoris-Rips complex [63]], but consists of significantly less simplices and is faster to
construct when the dimension of the ambient space is 2 or 3 (for details, see Appendix [A.4). If data
X is an image rather than a point cloud, or if the point cloud can be seen as an image without losing
important information, cubical complexes [59] might be a more suitable choice, where vertices, edges
and triangles are replaced by vertices, edges and squares (for a visualization, see Appendix [E.T).

2.2 Filtration

A filtration { K, }.cg of a point cloud in R4 can be constructed from any function f : R? 5 R
by considering K, to be the sublevel set of f thresholded by r € R: {y € R? | f(y) < r}. The
underlying filtration function in the common PH pipeline introduced above is the distance function
Sx : RY — R, where §x (y) = min{dist(y,z) | € X} is the distance to point cloud X. Indeed,
the Vietoris-Rips simplicial complex V R(X,r) approximates the sublevel set

Ky =6%" (=00, 7)) = {y € R? | 6x(y) < r} = UgexB(z, ),

where B(z,r) is a ball with radius r centered around z € X [27].

However, PH on such a filtration is very sensitive to outliers, since even a single outlier changes
dx significantly. In the presence of outliers, it is better to replace the distance function with the
Distance-to-Measure (DTM) dx , : R¢ — R, where § x,m(x) is the average distance from a number
of neighbors on the point cloud [5,27] (for a visualization, see Appendix [C.2). However, depending
on the task, there are many other filtration functions one could choose, such as rank [[84], height,
radial, erosion, dilation [48], and the resulting PH captures completely different information about
the cycles [[103]. For example, whereas PH with respect to the Vietoris-Rips filtration encodes the
size of the hole, PH on the height filtration informs about the position of the hole. For a more detailed
discussion about the influence of filtration, see Appendix

2.3 Persistence signature

Next to PIs and PLs, a plethora of persistence signatures has been introduced in the literature, e.g.,
Betti numbers [[57,/106]] or Euler characteristic 72| (across scales), or even scalar summaries such as
amplitude [48], entropy [35}/93], or algebraic functions of the birth and death values [41/62]. Some of
these signatures summarize the same information, but lie in different metric spaces [105]. Others,
however, such as the scalar summaries listed above, discard information compared to PDs, as it might
sometimes be useful to, e.g., only capture the (total or maximum) persistence of intervals, but not all
the detailed information about all birth and death values (see Appendix [F).

3 Number of holes

In this section, we focus on the task of (ordinal) classification of point clouds by the number of
1-dimensional holes. Research in psychology shows that global properties often dominate perception,
and, in particular, that topological invariants such as number of holes, inside versus outside, and
connectivity can be effective primitives for recognizing shapes [85]. Extracting such topological
information can therefore prove useful for many computer vision tasks. There are theoretical results
in the literature that ensure that PH with respect to the alpha simplicial complex can be successful
for this problem (Appendix [A.2)), and the computational experiments that follow demonstrate this
success in practice.



Data We consider 20 different shapes in R? and R?, with four different shapes having the same
number of holes (0, 1, 2,4 or 9). For each shape, we construct 50 point clouds each consisting of
1000 points sampled from a uniform distribution over the shape, resulting in a balanced data set of
1000 = 20 x 50 point clouds. A few examples of these point clouds are shown in Figure[I] The label
of a point cloud is the number of holes in the underlying shape.
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Figure 1: Number of holes data set.

PH pipeline For each point cloud X and scale r € R, we consider its alpha complex. We will look
into scenarios in which data contains noise, and therefore, instead of the standard distance function,
we consider Distance-to-Measure (DTM) as the filtration function. We extract 1-dimensional PDs,
that are then transformed to PIs, PLs, or a simple signature consisting only of lifespans | = d — b
of the 10 most persisting cycles (as there are at maximum 9 holes of interest in the given data
set and classified with an SVM. We consider a “PH simple" pipeline, which relies on the 10
lifespans, and a “PH" pipeline wherein grid search is employed to choose the best out of the three
aforementioned persistent signatures and the values of their parameters. For more details on the
pipeline, see Appendix [B.2/and Appendix[C.2.

Results We investigate the clean and robust test accuracy under four types of transformations
(translation, rotation, stretch, shear) and two types of noise (Gaussian noise, outliers). For more
details on these transformations, see Appendix We train the classifier on 80% of the original
point clouds, and test on the remaining 20% of the data either in its original form or subject to
transformations and noise. The results reported in Figure 2| (with detailed results across multiple runs
in Appendix [C.3) show that PH obtains very good test accuracy on this classification task, even in
the presence of affine transformations or noise, outperforming baseline machine- and deep-learning
techniques We reach a similar conclusion in case of limited training data and computational
resources (Appendix [C.4, Appendix [C.6). Firstly, the evolution of the test accuracy across different
amounts of training data demonstrates that PH achieves good performance for a small number of
training point clouds, which is not the case for other pipelines. Secondly, although the hyperparameter
tuning of the PH pipeline does take time (as we consider a wide range of parameters for the different
persistence signatures), it is still less than for PointNet. Moreover, Figure [2/ shows that even the
simple PH pipeline, where the SVM is used directly on the lifespans of the 10 most persisting cycles
(without any tuning of PH-related parameters) performs well.

4 Curvature

This section considers a regression task to predict the curvature of an underlying shape based on a
point cloud sample. Estimating curvature-related quantities is of prime importance in computer vision,
computer graphics, computer-aided design or computational geometry, e.g., for surface segmentation,
surface smoothing or denoising, surface reconstruction, and shape design [23]. For continuous

2 Although a sphere has no 1-dimensional holes, its PD might consist of many short intervals which correspond
to the small holes on the surface. In addition, in the presence of noise, additional small holes might appear for
any point cloud. Hence, it is not a good idea to consider the cardinality [PD| of the PD as the signature.

3Interestingly, although PointNet was designed with the idea to be invariant to affine transformations, it
performs poorly when the test data is translated or rotated (and this is consistent with some previous results
[68,/111}|115]1174120]), or when it contains outliers. Traditional neural networks perform very poorly, which
might not come as a big surprise, since it was recently demonstrated that they transform topologically complicated
data into topologically simple one as it passes through the layers, vastly reducing the Betti numbers (nearly
always even reducing to their lowest possible values: 8 = 0 for k > 0, and So = 1) [76]. Of course, the choice
of activation function and hyperparameters might have an important influence on performance [76].
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Figure 2: Persistent homology can detect the number of holes.

surfaces, normals and curvature are fundamental geometric notions which uniquely characterize local
geometry up to rigid transformations [52]]. Recently, it has been shown that, using PH, curvature can
be both recovered in theory (Append, and effectively estimated in practice [17]. We run a
similar experiment, evaluating the PH pipeline against our baselines, and also taking a closer look
into the importance of short intervals.

Data A balanced data set is generated in the same way as in [17]: We consider unit disks D,
on surfaces of constant curvature x: (i) x = 0, Euclidean plane, (ii) < > 0, sphere with radius
1/4/k, and (iii) x < 0, Poincaré disk model of the hyperbolic plane. Curvature « lies in the interval
[—2, 2] so that a disk with radius one can be embedded on the upper hemisphere of a sphere with
constant curvature x (as it spherical cap). For each k € {—2,—1.96,...,—0.04,0,0.04,...,1.96},
we construct 10 point clouds by sampling 500 points from the unit disk D, with the probability
measure proportional to the surface area measure Section 2.7, Section 4.1]. A few examples with
k€ {-2,-1,-0.1,0,0.1,1, 2} are illustrated in FigureﬁﬂThese 101 x 10 = 1010 point clouds
are considered as the training data, whereas the test data set is built in a similar way for 100 values
of k chosen uniformly at random from [—2, 2]. The label of a point cloud is the curvature  of the
underlying disk D,;. Note that all these disks are homoemorphic: they are contractible, so that their
homology is trivial and homology is thus unable to distinguish between them [17].

shapes
curvature -2.00 -1.00 -0.10 0.00 0.10 1.00 2.00

Figure 3: Curvature data set.

PH pipeline For each point cloud X, we first calculate the suitable matrix of pairwise distances
between the point-cloud points: hyperbolic, Euclidean or spherical, respectively for negative, zero and
positive curvature Section 2.7]. The input for PH is the filtered Vietoris-Rips simplicial complexEl
We extract 0- and 1-dimensional PDs, which are then transformed into PIs, PLs or lifespans, to be
fed to SVM. More details on the pipeline are provided in Appendix [B.2 and Appendix [D.1}

Results  Figure 4 shows the mean squared errors for the PH and other pipelines, together with their
regression lines, with detailed results across multiple runs listed in Appendix[D.2] The results show
that PH indeed detects curvature, outperforming other methodsEl Next to the PH pipeline discussed

“The unit disks with negative curvature are here visualized on hyperbolic paraboloids. These saddle surfaces
have non-constant curvature, but they locally resemble the hyperbolic plane.

> Alpha complex is faster to compute, but involves Delaunay triangulation, whose unique existence is
guaranteed only in Euclidean spaces. To calculate PH, we rely on the Ripser software [102], which is at the time
the most efficient library to compute PH with Vietoris-Rips complex @ﬂ

Simple machine and deep learning techniques are able to differentiate between positive and negative
curvature, but perform poorly in predicting the actual value of the curvature of the underlying surface.



above, wherein a grid search is used to tune the parameters (Appendix [B.2), we also consider SVM
on the lists of lifespans of all persistence intervals (PH simple), and SVM only on the 10 longest
lifespans (PH simple 10), in order to investigate if all persistence intervals contribute to prediction.
We see that the performance drops if we only focus on the longest 10 intervals, so that the many short
intervals together capture the geometry of interest for this problem. Similarly as in Section |3} the grid
search across the different parameters for persistence signatures does take time (Appendix , but
Figure [ shows that SVM on a simple signature of all (0-dimensional) lifespans performs well. We
highlight that the data used here, as was the data in Bubenik’s work [17], is sampled from surfaces
with constant curvature. In future work it would be interesting to conduct similar experiments on
shapes with non-constant curvature.
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Figure 4: Persistent homology can detect curvature.

5 Convexity

In this section, we consider the binary classification task that consists of detecting whether a point
cloud is sampled from a convex set. Convexity is a fundamental concept in geometry [40], which
plays an important role in learning, optimization [9], numerical analysis, statistics, information theory,
and economics [91]]. Furthermore, points of convexities and concavities have been demonstrated as
crucial for human perception of shapes across many experiments [[94].

To the best of our knowledge, prior to our work PH has not been employed to analyze convexity, and it
is a task for which PH’s effectiveness might seem surprising. In the first decade after the introduction
of PH, it was seen primarily as the descriptor of global topology. Recently, there have been many
discussions and greater understanding that PH also captures local geometry [3]. However, it is still
suggested that the long persistence intervals capture topology (as was the case with the detection
of holes in Section [3), and many—even too many for the human eye to count—short persistence
intervals capture geometrical properties (as was the case with curvature prediction in Section ).
However, as we show in Theorem [T (proof in Appendix [A.T) and as our experiments suggest, it is
a single, and the second-longest persistence interval that enables us to detect concavity. A crucial
ingredient in our result is the introduction of tubular filtrations (Definition |D, which, to the best of
our knowledge, are a novel contribution to the TDA literature (details in Appendix [A.T).

Definition 1. Given a line o C R?, we define the tubular function with respect to « as follows:
To:R* S R
x > dist(z, a),
where dist(z, o) is the distance of the point x from the line .. Given X C R? and a line o, we are

interested in studying the sublevel sets of 7, i.e., the subsets of X consisting of points at a specific
distance from the line. We define

Xr={r€ X |1a(z) <7} ={z € X |dist(z,a) <7r}.



We call {X;, }rer., the tubular filtration with respect to .

Theorem 1. Let X C R? be triangulizable. We have that X is convex if and only if for every line o
in R? the persistence diagram in degree 0 with respect to the tubular filtration { X, r}reRs, contains
exactly one interval.

Data We construct a balanced data set by sampling 5000 points from convex and concave (non-
convex) shapes in R2. First, we consider the “regular" convex shapes of triangle, square, pentagon
and circle, and their concave variants, sampling 60 point clouds of each of the eight shapes, 480
point clouds in total. Next, we build 480 “random" convex and concave shapes, in order to be able
to investigate if an algorithm is actually detecting convexity, or only the different basic shapes. A
few examples are shown in Figure[5] To construct a random convex shape, we generate 10 points at
random, and then build their convex hull using the quickhull algorithm [108[]. We construct random
concave shapes in a similar way, but instead of the convex hull, we build the alpha shape [45,47]
with the optimized alpha parameter, which gives a finer approximation of a shape from a given set
of points. If the alpha shape is convex (i.e., if the alpha shape and its convex hull are the same), we
reconstruct the concave shape from scratch. A point cloud has label 1 if it is sampled from a convex
shape, and 0 otherwise.
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Figure 5: Convexity data set.

PH pipeline To build a filtration, we consider cubical complexes filtered by tubular functions that
measure the distance of points from a certain line, see Definition|[I|for a precise definition. For a good
choice of line, multiple components would be seen in the filtration of a point cloud sampled from a
concave shape, at least for some values r € R (see also the illustrations in Appendix |A.1)). For this
reason we consider the cubical complex, rather than the standard Vietoris-Rips simplicial complex
wherein these separate components could be connected with an edge (for details, see Appendix [E.T).
To build an image from the point cloud, we construct a 20 x 20 grid and define a pixel as black if it
contains any point-cloud points, and white otherwise.

Since sources of concavity can lie anywhere on the point cloud, we consider nine different lines for
the tubular filtration function (for a visualization of the pipeline, see Appendix [E.I). For each of the
nine lines, we extract O-dimensional PD, as it captures information about the components. If the
point cloud is thus sampled from a convex shape, its PD will only see a single component for any
line, whereas there will be multiple components at least for some lines for points clouds sampled
from concave shapes. For this reason, for each of the nine lines, we focus our attention only on the
lifespan of the second most persisting cycle. We can consider this 9-dimensional vector as our PH
signature, but in our experiment choose an even simpler summary: the maximum of these lifespans,
since we only care if there are multiple components for at least one line. This scalar could even be
used as some measure of a level of concavity of a shape.

Results As already indicated, to gain some insights into how well the different approaches discrim-
inate convexity from concavity rather than differentiating between the different basic shapes, we
look at the classification accuracies under different conditions (Figure[6] with detailed results across
multiple runs in Appendix [E.2). We start with the easiest case, where both the train and test data
consist of the simple regular convex and concave shapes (Figure [3] first row), and then proceed to the
scenario where both train and test data are random shapes (Figure [5] second row). Next we proceed
to out-of-distribution test data, where we train on the regular and test on random shapes, or vice versa.
In every case, we train on 400 and test on 80 point clouds. The results show that PH is able to detect



convexity, surpassing other methods significantly in all scenarios except for PointNet in the scenario
on the data set of regular shapes which performs on par. Results reported in Appendix [E3]show PH
is also computationally efficient.
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train = regular, train = random, train = regular, train = random,
test=regular test=random test=random test=regular

Figure 6: Persistent homology can detect convexity.

The PH pipeline above makes a wrong prediction when concavity is barely pronounced, or if it is
missed by the selected tubular filtration lines (for details see Appendix[E-4). However, the accuracy of
PH can easily be improved simply by considering a finer resolution for the cubical complexes and/or
additional tubular filtration lines. The particular PH pipeline summarized in this section would also
make a wrong prediction if the data set would include shapes that have small or non-central holes,
e.g., a square with a hole in the top left corner. In this case, the accuracy could also be improved
by considering a finer cubical complex resolution and by considering additional non-central tubular
filtration lines within shapes, or by adding (the maximum lifespan of the) 1-dimensional PH which
captures holes. The pipeline is not limited to polygons, or connected shapes, and it can be generalized
to surfaces in higher dimensions (Theorem [I). In Appendix [G, we also consider the real-world
data set FLAVIA for which we demonstrate that a PH pipeline is effective in detecting a continuous
measure of convexity.

6 Implications for PH interpretation: topology vs. geometry

Here we discuss how our results contribute to the important and ongoing discussion about the
interpretation of long versus short persistence intervals. When PH was first introduced in the
literature, the long intervals were commonly considered as important or “signal”, and short intervals
as irrelevant or “noise” [38]. Subsequently the discussion has refined when it was shown that short
and medium-length persistence intervals have the most distinguishing power for specific types of
applications [8,99]. The current understanding is roughly that long intervals reflect the topological
signal, and (many) short intervals can help in detecting geometric features [3]. We believe that our
work brings new insight into this discussion. We give a summary of the implications of our work in
this section, and we provide a more detailed discussion in Appendix [F}

Topology and long persistence Stability results guarantee that a number of longest persistence
intervals reflect the topological signal, i.e., the number of cycles [32]. These theorems give information
about the threshold that differentiates between long and short persistence intervals. In Section [3]
where we focus on the topology of underlying shapes, the experiments demonstrate that this threshold
can be learned with simple machine learning techniques. However, it is important to highlight that
the distinction between long and short persistence is vague in practice. Indeed, seemingly short
persistence intervals capture the topology in Section 3] but the second-longest interval is topological
noise in Section [5, since every shape in the data set has only a single component (although this
second-longest interval captures important geometric information, what enabled us to discriminate
between convex and concave shapes). These two problems also clearly indicate how the long intervals
that encode topology might or might not be irrelevant, depending on the signal of the particular
application domain.

Geometry and short persistence The current understanding is that (many) short persistence
intervals detect geometry. Section ] confirms that this indeed can be the case. However, we highlight
that all cycles can encode geometric information, such as the information about their size (with
respect to the Vietoris-Rips and related filtrations, as in Sections[3 and ) or their position (with



respect to the height or tubular filtration, as in Section[3)). This further implies that, depending on the
application, any number of short or intervals of any persistence can be important, which was clearly
demonstrated in Section |5) where we show that a single interval detects convexity.

7 Conclusions

Main contribution The goal of this work is to gain a better understanding of the topological and
geometric features that can be captured with persistent homology. We focus on the detection of
number of holes (Section [3), curvature (Section[d)), and convexity (Section [3)). Theoretical evidence
for the first two classes of problems has been established in the literature, and we prove a new result
that guarantees that PH can detect convexity (Theorem [I). We also experimentally demonstrate
that PH can solve all three problems for synthetic point clouds in R? and R3, outperforming a few
baselines. This is true even when there is limited training data and computational resources, and for
noisy or out of distribution test data. For convexity detection, we also show the effectiveness of PH in
a real world plant morphology application.

Relevance Firstly, the findings point the way to further advances in utilizing the potential of PH in
applications: we can expect PH to be successful for classification or regression problems where the
data classes differ with respect to number of holes, curvature and/or convexity. Detailed guidelines
are discussed in Appendix [F} Due to the crucial role of shape classification in understanding and
recognizing physical structures and objects, image processing and computer vision [[73[], our results
demonstrate that PH can—to borrow the words from Wigner [|112]—"“remain valid in future research,
and extend, to our pleasure”, and lesser bafflement, to a variety of applications. Secondly, the
results advance the discussion about the importance of long and short persistence intervals, and
their relationship to topology and geometry (Section [6). Topology is captured by the long intervals,
geometry is encoded in all persistence intervals, and any interval can encode the signal in the particular
application domain.

Limitations The results focus on three selected problems and data sets, and it would therefore
be interesting to consider other tasks. In addition, we do not have an extensive comparison of the
state-of-the-art for the given problems. Our work seeks to understand if PH is successful for a selected
set of tasks by benchmarking it against some well-performing methods.

Future research An in-depth analysis of the hypothetical applications discussed in this paper
(Appendix [F) and selected success stories of PH from the literature could further improve our
understanding of the topological and geometric information encoded in PH, and the interpretation
of persistence intervals of different lengths. Alternative approaches for detection of convexity with
PH (relying on higher homological dimensions, or multiparameter persistence) are particularly
interesting avenues for further work. Furthermore, even though our results imply that PH features
are recommended over baseline models for the three selected classes of problems, they also provide
inspiration on how to improve existing learning architectures. Further work could investigate deep
learning models on PH (and standard) features or kernels [14,/55,/89,/116], an additional network
layer for topological signatures, or PH-based priors, regularization or loss functions [[14134,36137,56|
113}[121].

Potential negative societal impact While we recognize that the applications of shape analysis can
take many different directions, we do not foresee a direct path of this research to negative societal
impacts.
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in the concluding Section[7, and in the end of curvature and convexity Sections [4
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them? [Yes]
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(d) Did you include the total amount of compute and the type of resources used (e.g., type
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(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]
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