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Abstract—This work presents a Hybrid Low-Rank Natural
Gradient Descent method, called HyLo, that accelerates the
training time of deep neural networks. Natural gradient descent
(NGD) requires computing the inverse of the Fisher infor-
mation matrix (FIM), which is typically expensive at large-
scale. Kronecker factorization methods such as K FA C  attempt to
improve NGD’s running time by approximating the FIM with
Kronecker factors. However, the size of Kronecker factors
increases quadratically as the model size grows. Instead, in
HyLo, we use the Sherman-Morrison-Woodbury variant of NGD
(SNGD) and propose a reformulation of SNGD to resolve its
scalability issues. HyLo uses a computationally-efficient low-rank
factorization to achieve superior timing for Fisher inverses. We
evaluate HyLo on large models including ResNet-50, U-Net, and
ResNet-32 on up to 64 GPUs. HyLo converges 1.4×-2.1× faster
than the state-of-the-art distributed implementation of K FA C  and
reduces the computation and communication time up to 350×
and 10.7× on ResNet-50.

Index Terms—Natural Gradient Descent, Deep Neural Net-
works, Optimization

I. INTRODUC T I ON

Second-order methods specifically natural gradient descent
(NGD) [1] have gained traction in recent years as they acceler-
ate the training of deep neural networks (DNN) by capturing
the geometry of the optimization landscape with the Fisher
Information Matrix (FIM) [2]. These methods demonstrate
improved convergence compared to first-order techniques such
as stochastic gradient descent (SGD) as they compute the
inverse of FIM and use it to precondition the gradients before
parameter updates [1]. However, because the Fisher matrix is
large and scales with the model size, finding its inverse is a
major bottleneck in NGD methods.

Recent work [3] shows that Kronecker-Factored Approx-
imate Curvature (KFAC) can reduce the computation cost
of FIM by approximating the FIM for a batch of samples
with a block diagonal matrix, where blocks correspond to
layers. Other variations of K FAC  have been proposed, e.g.
E K FAC  [4], which improve the accuracy of approximation

* Both authors contributed equally to the work.
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further by rescaling the Kronecker factors, or KBFGS [5],
a Kronecker-based Quasi-Newton method that uses Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) [6] updates to accel-
erate KFAC .  Amongst these work, to our knowledge, only
the original K FAC  method [3] has been implemented on
large-scale distributed platforms [7]–[11]. Osawa et. al. [12]
proposes a memory-optimized implementation of K FAC  by
distributing the layers’ factor computations across workers.
Ueno et. al. [7] improves on [12] by using a custom 21-bit
floating point format for communication amongst work-ers
and to overlap communication with the computations
involved in the backward pass. Pauloski et. al. [9] proposes
a communication-optimized implementation of K FAC  by re-
ducing the frequency of communications among workers and
increasing the granularity of KFAC ’s  computations. K A I S A
[8] improves on [12] and [9] by proposing a hybrid approach
to choose between a communication-optimized and a memory-
optimized implementation of KFAC.  Because K A I S A  is based
on KFAC,  its scalability is limited by the computation and
communication costs of computing the inverse and eigen
decompositions of the Kronecker factors.

Sherman-Morrison-Woodbury-based NGD (SNGD) meth-
ods, recently introduced in [13], [14], leverage the structure
of FIM for overparametrized models to use a matrix inversion
technique called Sherman-Morrison-Woodbury (SMW) iden-
tity. This reduces the computation cost of inversion in NGD
methods for small batch sizes. As a result, SNGD methods
perform better than K FAC  approaches when the batch size is
relatively smaller than the layer dimension. However, SNGD
methods are not suitable for distributed settings because inver-
sion becomes a performance bottleneck as the overall batch
size grows linearly with the number of workers. Also, SNGD
approaches only support fully-connected layers and have not
been extended to Convolutional Neural Networks (CNNs).

This work presents HyLo, a hybrid low-rank NGD method,
that approximates the FIM with low-rank matrices using a
gradient-based switching heuristic to decide when to
switch between a Khatri-Rao-based Interpolative Decomposi-
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Fig. 1: HyLo vs K FAC  and standard SNGD. HyLo reduces the computation and communication time of SNGD methods. It first
factorizes the per-sample inputs and output gradients using Khatri-Rao-based interpolative decomposition and importance
sampling. Then the reduced-size factors are gathered on workers to efficiently approximate the kernel matrix.

tion (KID) and Khatri-Rao-based Importance Sampling (KIS).
HyLo is more scalable than K FAC  and SNGD methods
and has a lower communication/computation cost because of
operating on low-rank matrices that are significantly smaller
than Kronecker factors. Our contributions are:

• A  novel Khatri-Rao-based interpolative decomposition, as
well as an importance sampling approach that leverages
the low-rank structure of FIM for fast factorization and
inversion.

• A  gradient-based switching strategy that determines when
to switch between Khatri-Rao-based interpolative decom-
position and importance sampling to maintain a good
balance between accuracy and running time in NGD
methods.

• HyLo uses the Sherman-Morrison-Woodbury formula-
tion, hence we also present the first extension of the
Sherman-Morrison-Woodbury NGD method to convolu-
tional neural networks.

• A  distributed implementation of HyLo which improves on
the state-of-the-art distributed implementation of KFAC,
i.e. KAISA,  1.4× on 64 GPUs and is 1.7× faster than
SGD on ResNet-50. We reduce the computation and
communication cost of NGD 350× and 10.7× compared
to K A I S A  for ImageNet-1k on 64 GPUs.

I I . MOT I VAT I O N

In this section, we motivate our approach by analyzing
the scalability of second-order optimization methods. We first
provide background on deep neural networks (DNNs) as well
as first- and second-order optimization methods and then

compare the computation and communication complexity of
K FAC  and SNGD methods at scale. Finally, we show that
HyLo outperforms NGD methods in distributed settings for
models with large layers and large global batch sizes. Here,
global batch size refers to the total number of data points
(cumulative over workers) used per iteration and will be
discussed further in Section II-B.

A. Background
A  deep neural network consists of L  layers; each layer has

parameters, i.e., weights, that are learned during the training.
For simplicity, we consider a fully-connected layer with input
and output dimensions d. The optimal parameters of a layer are
obtained by minimizing the average loss L  over the training
dataset:

N

L(w )  = ℓ(w, xi ) (1)
i = 1

where { x i } N is a dataset with N  data points and w is the
parameter to be learned. Typically, a batch of m samples is
used to compute the loss.

Stochastic gradient descent (SGD). Stochastic gradient
descent is a first-order optimization method that uses the
average gradient gt of the loss function for a batch, to update
the estimate of the parameters wt at time t with the learning
rate λ:

wt +1 =  wt −  λgt (2)

(see e.g. [15], [16]).
Natural gradient descent (NGD). Natural gradient descent

belongs to the class of second-order methods. It uses the Fisher
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Information Matrix (FIM) as a preconditioner for the gradient

wt +1 =  wt −  λ (F t  +  α I )−1 gt (3)

where F t  is the Fisher Information Matrix (FIM) at the iterate
wt and α is the damping factor which is used to stabilize the
training [1]. The FIM is an approximation of the Hessian and
contains information about the curvature. Here, FIM is defined
as 12:

F (·)  =  
m 

X
�L ( · , x i )�L ( · , x i )� =  

m
U�U (4)

where U =  [�L(w, x1 ), . . . , �L(w, xm )]� and F t  =  F (wt ). We
refer to the matrix U � R m × d       as the Jacobian matrix. It
contains the gradients for each sample in the batch, i.e., U =
[U1, U2, ..., Um]� where Ui is the gradient of the sample i. The
Jacobian matrix has a row-wise Khatri-Rao structure, i.e.

U =  A  � G (5)

where A  � R m × d  and G  � R m × d  are the per-sample layer’s
inputs and output gradients and � is the row-wise Khatri-Rao
product.

Kronecker Factorization Methods (KFAC). K FAC  approxi-
mates the FIM with a block diagonal matrix, each block corre-
sponds to a layer. Then the inverse of a block is approximated
using the Kronecker product of two matrices C1 , C2 � R d × d

called the Kronecker factors, γ is the factor damping parameter

( F  +  α I ) −1  ≈  (A�A +
 
γ I )

 }
�(G

 
G  +  γ I ) −

}
(6)

C 1 C 2

SMW-based Natural Gradient Descent Methods (SNGD).
SMW-based NGD methods, which we call SNGD, leverage the
structure of FIM in Equation 4 for overparametrized models as
well as the Khatri-Rao structure of Jacobian in Equation 5
while using the SMW identity to obtain the inverse update:

( F  +  α I ) −1  =  
α

 
I  −  U� 

AA�

 
�

 
GG�

 
+  α I

}
−1 U

     
(7) K

where � is the element-wise matrix product. We refer to K  =
AA� �GG� + α I  as the kernel matrix throughout the paper.
The kernel matrix is symmetric positive semi-definite and has
a dimension of the global batch size.

B. Complexity Analysis of Distributed NGD Methods

In this section, we discuss the efficient distributed imple-
mentations of K FAC  (adopted from K A I S A  [8]) and standard
SNGD methods and provide an analysis of the communication
and computation costs when executed on a multi-GPU cluster;
we refer to each GPU as a worker from here on. Figure 1

1Note that FIM is sometimes defined differently [17], such assumptions do
not affect our findings.

2For simplifying the notations, we drop the index t.

illustrates the distributed implementation of K FAC  [8] and
standard SNGD methods.

Distributed KFAC. Figure 1 shows the distributed imple-
mentation of K FAC  on P  workers, which involves five stages.
On each worker (1) per-sample inputs A i  and output gradients
G i  are computed using forward and backward passes on the
network; (2) the Kronecker factors are computed according to
Equation 6; (3) the Kronecker factors are communicated to
other workers and their average is computed; (4) the
Kronecker factors are inverted for worker’s assigned layers;
(5) the inverted factors are broadcast to other workers.

Distributed SNGD. To our knowledge SNGD methods have
not been implemented on distributed platforms, so we show a
communication-optimized implementation for SNGD based on
the strategies proposed by [9] for second-order methods in
Figure 1, and list the steps involved in the following. On each
worker i, (1) the per-sample inputs A i  and output gradients G i

are computed during forward/backward passes on the network
for a batch size of m; we refer to m as the local batch size,
these matrices have a size of m ×  d; (2) the matrices A i  and
G i  are then gathered on the worker to create matrices A  and G
which have size P m × d. We refer to P m as the global batch
size since it shows the total number of samples used in each
iteration of the training; (3) the kernel matrix of layer ℓ, K ℓ  is
computed and inverted using SNGD inversion in Equation 7.
(4) The inverted Kernel matrices K − 1  are broadcast to other
workers.

The computation cost in distributed K FAC  includes com-
puting and inverting the Kronecker factors in steps 2 and 4
with a total cost of O(d3 +  md2). K FAC  communicates the
Kronecker factors and their inverses in steps 3 and 5 leading
to an overall communication cost of O(d2). SNGD computes
the kernel matrix inversion in step 3 which has a computation
cost of O(P 3m3 +  P 2m2d) and communicates the per-sample
inputs/output gradients and inverses in steps 2 and 4 with a total
cost of O(P 2m2). KFAC ’s  computation and communication
cost is proportional to the layer dimension and has a cubic time
complexity while SNGD’s cost grows with a cubic rate with
respect to the global batch size.

C. Distributed HyLo vs. KFAC and SNGD

From the complexity analysis in Section III.B, we observe
that K FAC  becomes inefficient for large layers and SNGD
fails to scale for large global batch sizes. In many deep
learning models, the layer dimension is large and hence K FAC
becomes inefficient [18]. Figure 2 shows the distribution of
layer dimension across the most popular deep learning models
which shows the layer dimension is large for many layers in
a model.

Figure 3 compares HyLo to standard SNGD and K FAC
empirically for the ResNet-50 model on 8 to 64 GPUs. While
SNGD’s running time is significantly less than K FAC  on 8 and
16 GPUs, it fails to scale on 64 GPUs since the global batch
size increases and hence does its overall cost. However, HyLo
outperforms both K FAC  and SNGD on all settings because its
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Fig. 3: Computation and communication time of KFAC,  HyLo
and Standard SNGD on ResNet-50 for the iterations that the
second-order information is updated. Running time of K FAC
and SNGD grows at scale. HyLo reduces the overall time by
28× and 20× compared to K FAC  and SNGD.

overall cost is not adversely affected by the global batch size
or the layer dimension.

I I I . H Y L O : A N E FFI C I E N T I M P L E M E N TAT I O N OF T H E
H Y B R I D L OW- R A N K SE C O ND-ORDE R METHOD

We propose a hybrid low-rank second-order Method, called
HyLo, that uses a Khatri-Rao-based interpolative decompo-
sition and an importance sampling method to improve the
performance of NGD methods on distributed platforms. HyLo
belongs to the class of SNGD methods, however, it scales
efficiently for large global batch sizes. Algorithm 1 shows
the steps in HyLo. It first uses a Gradient-based Switching
Heuristic (lines 2-3) that decides when to switch between
Khatri-Rao-based Interpolative Decomposition (KID) (lines 4
to 13) and Importance Sampling (KIS) (lines 16 to 24) to
reduce the size of per-sample inputs A i  and output gradients

G i  and hence the computation and communication overheads
associated with them. In the following, we will first explain
KID and analyze its computation/communication complexity
and then discuss the importance sampling step. The gradient-
based switching heuristic is explained at the end.

Algorithm 1: HyLo: A  Hybrid Low-rank Natural
 Gradient Method

/ *  E  i s  t h e  number o f  epochs * /
1 for e : 1, ..., E do
2 R  =  |�∆e−1� −  �∆e−2�| /�∆e−2�

/ *  G r a d i e n t - b a s e d  h e u r i s t i c  * /
3 if R  ≥  η or learning rate decays then

/ *  T  i s  t he  # i t e r a t i o n s / e p o c h  * /
4 for t : 1, ..., T do
5 Compute per-sample inputs A i  and output

gradients G i

/ *  Compute K I D - f a c t o r s  w i t h
a l g o r i t h m  2 * /

6 A i  , Gi  , Yi =  KID(Ai , G i , r )
/ *  G a t he r  K I D - f a c t o r s  * /

7 A s  =  [As , ..., As ], Gs =  [Gs , ...Gs ], Y =
diag(Y1, ..., YP )

8 for ℓ : 1, ..., L do
9 if layer is assigned to worker then

/ *  I n v e r s i o n  * /
10 K ℓ =  ( A s A s       � G s G s      ) − 1

/       B r o a d c a s t       /
11 Broadcast(K −1)

12 update w using Equation 3 and Equation 8
13 ∆ e  =  ∆ e  +  gt

14 else
15 for t : 1, ..., T do
16 Compute per-sample inputs A i  and output

gradients G i

/ *  Compute K I S - f a c t o r s  w i t h
a l g o r i t h m  3 * /

17 [As , Gs ] =  K IS(A i , G i , r )
/ *  G a t he r  K I S - f a c t o r s  * /

18 A s  =  [As , ..., As ], Gs =  [Gs , ...Gs ]
19 for ℓ : 1, ..., L do
20 if layer is assigned to worker then

/       I n v e r s i o n       /

21 K − 1  =  (A s A s � � G s G s � +  α I ) −1

/       B r o a d c a s t       /
22 Broadcast(K −1)

23 update w using Equation 3 and Equation 9
24 ∆ e  =  ∆ e  +  gt

A. Khatri-Rao-based Interpolative Decomposition

HyLo per worker uses a Khatri-Rao-based interpolative
decomposition to reduce the size of per-sample inputs/output
gradients and hence the computation cost of the kernel matrix
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inversion and the communication cost of the gather and
broadcast steps (steps 3 and 5 in Figure 1). First, the matrices
A i  and G i  (line 5) are computed. In line 6, the per-sample
inputs and output gradients matrices are approximated with
smaller matrices, which we call KID-factors, using inter-
polative decomposition. Each worker then communicates the
KID-factors to other workers. We propose a Khatri-Rao-based
ID, shown in Algorithm 2, that leverages the structure of
Jacobian in Equation 5 to create the KID-factors. KID applies
the factorization to the Gram matrix A i A� � Gi G�,  shown in
line 1, which has a smaller size compared to individual
matrices A i  and Gi ,  and uses its decomposition to create the
KID-factors As ,  Gs ,  and Yi shown in line 4. In the second
step, shown in line 7 of Algorithm 1, As ,  Gs ,  and Yi are
gathered on the worker to create matrices A s  =  [As , ..., As ],
G s  =  [Gs , ..., Gs ] and Y =  diag[Y1, ..., YP ], where diag(.)
creates a block diagonal matrix. Each worker computes and
inverts the approximated kernel matrix for its assigned layers,
shown in lines 9-10. We use A, G  and Y to efficiently compute
the kernel matrix inversion. To reduce the inversion cost, we
apply the SMW formula [19] to the approximated kernel and
obtain:

( F  +  α I ) −1  ≈  
1  

I  −  U s� 
Y −  Y ( K − 1  +  Y )−1 Y U s  

(8)

where K  =  A s A s � � G s G s � and U s =  A s  � G s  are the
reduced size kernel and Jacobian. Once K  is inverted, it is
broadcast to all workers, as shown in line 11.

Algorithm 2: Khatri-Rao-based Interpolative Decom-
position

Input : Per-sample inputs and output gradients
matrices A i  � R m × d ,  G i  � R m × d ,  rank r.

Output: A s  � R r × d ,  G s  � R r × d  and the projected
approximation error matrix Yi � R r × r .

/ *  Form Gram m a t r i x  * /
1 Qi =  A i A� � G i G�

/ *  Compute row i n d i c e s  S  and p r o j e c t i o n  P :
Q i  ≈  P Q i ( S : )  * /

2      [P, S ] =  ID(Qi, r)
/ *  Compute the  r e s i d u e  * /

3      R  =  Qi −  P Qi ( S : )
/ *  Compute the  K I D - f a c t o r s  * /

4      A s  =  A i ( S : ) , G s  =  Gi ( S : ) , Y i  =  P �(R  +  α I ) −1 P
5 return A i  , Gi  , Yi

B. Khatri-Rao-based Importance Sampling
An alternative to reduce the size of per-sample inputs A i

and output gradients G i  is to use randomized sampling. HyLo
uses Khatri-Rao-based importance sampling [21], shown in
line 17 in Algorithm 1, to create the reduced-sized per-sample
inputs and gradients, called KIS-factors. We apply norm-
based sampling to reduce the size of A i  and G i  by choosing

the samples that contribute the most to approximating the
kernel matrix. The steps for importance sampling are shown
in Algorithm 3. It assigns scores using Euclidean norm to
each sample of a batch and selects from those accordingly.
The Khatri-Rao structure of Jacobian, (Equation 5), allows
for an efficient evaluation of scores. In particular, the score
for sample j  is obtained as the product of its input and
gradient norm, i.e., �Ai ( j : )��Gi ( j : )� where A i ( j : )  is the j -
th row of A i  and similarly for Gi .  Once the KIS-factors A
and G s  are created, they are gathered on the workers to form
A s  =  [As , ...As ] and G s  =  [Gs , ..., Gs ].

Each worker inverts the kernel matrix K  for its assigned
layers, shown in lines 20-21. K  is approximated with a smaller
matrix using A s  and Gs .  Hence the FIM is inverted by:

( F  +  α I ) −1  ≈  
α

 
I  −  U s �K −1 U s (9)

where K  =  A s A s � �Gs Gs � + α I  and U s =  A s  �Gs  are the
reduced size kernel and Jacobian. Once the kernel matrix for a
layer is inverted, it is broadcast to all workers, as shown in line
22.

Algorithm 3: Khatri-Rao-based Importance Sampling
Input : Per-sample inputs and output gradients

matrices A i  � R m × d ,  G i  � R m × d ,  number of
samples r.

Output: A i  � R r × d , G s  � R r × d

/ *  Compute norm o f  i n p u t s  and g r a d i e n t s  * /
1 for j  : 1, ..., m do
2 P j  =  �Ai ( j : )�,  Qj  =  �Gi ( j : )�

/ *  Compute sample s c o r e s  * /
3 Ω =  P  � Q

/ *  Choose r  samples  a t  random based on s c o r e s  Ω

* /
4 A s , G i  =  sample(Ai , Gi , Ω, r)

Table I  summarizes the complexity analysis of HyLo and
K FAC  [8] implemented on a distributed platform with P
workers for each step of the methods3. The computation
cost of HyLo involves the cost of factorization and inversion
step and is O r3 +  m3 +  (m2 +  r2)d . HyLo reduced the
computation cost compared to K FAC  and SNGD from O(d3)
and O(P 3m3) to O(r3 +  m3). HyLo also reduced the com-
munication cost compared to K FAC  and SNGD from O(d2)
and O(P 2m2) to O(r2).

C. Gradient-based Switching
HyLo chooses between Khatri-Rao-based interpolative de-

composition and importance sampling at the beginning of an
epoch. The accumulated gradient of the objective function
w.r.t the parameters is used as a metric to determine which
epochs benefit the most from KID (the method that has a
lower approximation error) or K I S  (the method with the lower

3 KIS has a computation complexity of O(m2  +  md) which is asymptoti-
cally smaller than KID and hence omitted.
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TA B L E  I: Comparison between the computation and communication complexities of distributed KFAC,  standard SNGD, and
HyLo on a system with P  workers for a fully-connected layer with input/output dimension = d. m is the batch size per worker for
K A I S A  and SNGD. r  is the rank of the kernel matrix and ρ =  r   is the number of samples per worker for HyLo. The storage
complexities for second-order methods along with ADAM and SGD is also provided.

HyLo
K FAC  [8]
SNGD
ADAM [20]
SGD

Computation
Factorization Inversion
O(m2 d +  m3 ) O ( r 3  +  r 2 d)
O(md2 ) O (d3 )
- O (P 3 m3  +  P 2 m2 d)
- -
- -

Communication
Gather Broadcast
O(ρd) O ( r 2 )
O (d2 ) O (d2 )
O(md) O (P 2 m 2 )
- -
- -

Storage

O (r d  +  r 2  +  d2 )
O (d2 )
O (P md +  P 2 m2  +  d2 )
O (d2 )
O (d2 )

computation complexity). From [22], epochs with a larger
change in their accumulated gradient, i.e., critical epochs,
contribute more to the training. Small gradient errors in critical
epochs can impair the training progress. Hence, our switching
method uses KID for critical epochs and importance sampling
for others. As shown in Algorithm 1 lines 2-3, an epoch is
critical when the learning rate decays or when the accumulated
gradient changes pass a threshold η:

�∆e� −  �∆e−1�
 
≥  η (10)

e−1

where �∆e� is the l2-norm of accumulated gradients for the
e-th epoch.

I V. H Y L O  F O R C O N VO L U T I O NA L N E U R A L N E T W O R K S

HyLo is an SNGD-based approach. Since, to our knowl-
edge, SNGD approaches are not formulated to support convo-
lutional neural networks (CNNs), in this section, we present
the first extension of SNGD methods to CNNs. First, we
briefly review convolutional layers and then propose an ef-
ficient formulation of SNGD for convolutional layers.

A  convolutional layer operates on large dimensional tensors.
In particular, the output tensor Y  of a convolutional layer is
obtained by applying convolution to its input X  and weights.
To simplify the notations, we assume X , Y  � R d × s × s ,  i.e.,
they contain d images of size s ×  s. Similarly, we denote the
corresponding output gradient with G.

The SNGD method in Equation 7 does not apply to CNNs
because convolutional layers typically operate on 4D tensors
while the SMW identity is only for matrices (2D tensors). We
extend the SNGD formulation to convolutional layers by first
expressing the convolution operation as a matrix multiplication
between reshaped input and output tensors. Formally, the
gradient for one sample is computed by X � · G  where X
=  i m2co l ( X )  and G  =  vec(G) in which i m2co l  unfolds a
three dimensional tensor to a matrix by reshaping its blocks
into 1-D vectors and vec reshapes the tensor G by flattening its
spatial dimension. Then the reshaped tensors are approximated
over their spatial dimensions. In particular, x̂  = S  X ( i : )  and
ĝ = G ( i : )  where X ( i : )  and G ( i : )  are the i-th row of X
and G  respectively. By concatenating the vectors x̂  and ĝ for
a batch of samples, the approximated per-sample inputs and
gradients matrices are obtained, i.e. X  =  [x̂�, ..., x̂� ]� and

TA B L E  II: Models and datasets used for experimental results.

Model Dataset Target GPU (#, type)
ResNet-50 ImageNet-1k 75.9% 64 V100
U-Net LGG Segmentation 91% 4 V100
ResNet-32 CIFAR-10 92.5% 32 K80
DenseNet CIFAR-100 75% 1 V100
3C1F Fashion-MNIST 93% 1 V100

G  =  [ĝ�, ..., ĝ�]�. The approximated Jacobian U is computed
with their row-wise Khatri-Rao product, similar to Equation 5.
Finally, we leverage this structure and reformulate SNGD:

( F  +  α I ) −1  ≈  
α

( I  −  U� 
C1  � C2  +  α I −1 U ) (11)

where C1  =  X X � and C2  =  GG�.

V. R E S U LT S

We compare the performance of HyLo on a cluster of 64
GPUs to K A I S A  [8], the state-of-the-art distributed implemen-
tation of KFAC,  and the efficient distributed implementation
of stochastic gradient descent and ADAM [20], used as a first-
order optimization method.4 To show that HyLo also improves
the performance for small batch sizes, we compare it on a
single-GPU to K FAC  and to other two more-recent methods
E K FAC  [4] and KBFGS-L  [23]. The methods E K FAC  and
KBFGS-L  do not have distributed implementations.

A. Methodology
The datasets and deep learning models listed in Table I I  are

used for the experimental results.
Datasets. We use datasets from image classification and seg-

mentation applications. ImageNet-1k [24] has 1000 categories
with approximately 1.3M training images and 50K validation
images. CIFAR-10 and CIFAR-100 [25] consist of 50K train-
ing images and 10K validation images in 10 classes. The LGG
Segmentation dataset [26] contains Magnetic Resonance (MR)
images of the brain. We use 3336 images for training and
332 images for validation. Fashion-MNIST [27] consists of a
training set of 60K images and a test set of 10K examples that
belong to 10 classes.

4The only work that attempts to implement SNGD is SENG [14], however,
their approach at a large scale does not communicate second-order information
and hence is not a (standard) NGD method.
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Models. We use state-of-the-art deep learning models listed
in Table I I  for the experimental results. For Fashion-MNIST
a network with three convolutional layers and one fully-
connected layer is used, hence called 3C1F. For other bench-
marks, the following DNN models are used: ResNet-50, U-
Net, ResNet-32 and DenseNet.

Target accuracy. Following lists our baselines for target
accuracy for different experiments: (1) For ResNet-50, we use
the MLPerf benchmark target results [28]; (2) For U-Net, we
use the target validation Dice similarity coefficient (DSC) [26].
(3) For ResNet-32, we use the target test accuracy reported in
[29]. (4) For DenseNet we use the test accuracy in [30]. (5)
For 3C1F we use the test accuracy of tuned SGD.

GPU Clusters. The results for ResNet-50 and U-Net are
obtained on the Mist cluster [31]. Mist has 54 nodes, each with
32 IBM Power9 cores with 256GB RAM and 4 NVIDIA V100
GPUs with 32GB memory and NVLink in between. Nodes are
connected via InfiniBand EDR. The results for ResNet-32 is
obtained on Amazon Web Services (AWS) P2.8xlarge system
which has 8 K80 GPUs with 12 GB memory. DenseNet and
3C1F are ran on a single V100 GPU.

Software. We use PyTorch 1.7.1, CUDA 10.2, CUDNN
7.6.5, and NC C L  2.7.8.
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Fig. 4: Test accuracy comparison between HyLo and KFAC,
EKFAC,  KBFGS-L,  ADAM and SGD for a) DenseNet b)
3C1F on single-GPU. The dotted line shows the target metric.

Training parameters. We train ResNet-50 for 50 epochs for
HyLo and KAISA,  90 epochs for SGD and 65 epochs for
ADAM with a batch size of 80 per GPU, similar to [8]. We
use a similar approach to [8] and train U-Net for 30 epochs
for HyLo and K A I S A  and 50 epochs for ADAM and SGD

with a batch size of 16 per GPU. ResNet-32 is trained for 100
epochs for HyLo and KAISA,  200 for SGD and 150 epochs
for ADAM with a batch size of 128 per GPU, similar to [8].
DenseNet and 3C1F models are trained for 60 epochs with a
batch size of 128. We use momentum, and tune the learning
rate and weight decay for all methods. For HyLo and K A I S A
damping is tuned. All the methods except SGD and ADAM
update the second-order information every few iterations. The
frequency of the update for HyLo is similar to that of K A I S A
and is chosen according to the authors’ default parameters for
KFAC,  EKFAC ,  and KBFGS-L.  We choose the parameter r  in
KID and K I S  as 10% of the global batch size in all experiments
unless otherwise stated.

B. Single-GPU Setting

This section shows the performance of HyLo on a single-
GPU for smaller models DenseNet and 3C1F. We compare
HyLo to KFAC,  EKFAC ,  KBFGS-L,  SGD, and ADAM. In
order to demonstrate the performance of HyLo, we compare
the single-GPU implementation of these methods for small
batch sizes.

Figure 4a shows the test accuracy vs. time on DenseNet
model. HyLo converges to the target test accuracy of 75% in
36.9 minutes while K FAC  and E K FAC  achieve an accuracy of
74.2% in 50 minutes. KBFGS-L  ,SGD, and ADAM, respec-
tively, achieve a lower accuracy of 73.2%, 73%, and 72.3%
with a time-to-convergence of 40.8, 38, and 38 minutes. HyLo
outperforms all methods in accuracy and is 1.4× faster than
KFAC.

To further demonstrate the generalization performance of
HyLo, we compare its test accuracy to KFAC,  EKFAC ,
KBFGS-L,  SGD, and ADAM for the 3C1F model tested
on Fashion-MNIST in Figure 4b. HyLo achieves the target
accuracy and outperforms KBFGS-L  with a margin of 1.5%
and K FAC  and E K FAC  with 0.95%. HyLo also accelerates
the end-to-end training time up to 3 ×  compared to K FAC  and
EKFAC .

C. Multi-GPU Setting

To demonstrate the performance of HyLo at scale, we
conduct experiments on ResNet-50, U-Net, and ResNet-32 on
up to 64 GPUs and compare HyLo with KAISA,  SGD and
ADAM. First, we show the end-to-end accuracy and time-to-
convergence and then analyze HyLo’s performance with
communication and computation cost breakdown.

Accuracy and time-to-convergence. Figure 5a compares
the test accuracy of HyLo to KAISA,  SGD and ADAM for
ResNet-50 model on 64 GPUs. HyLo converges to the target
accuracy in 64.8 minutes which is 1.4× faster than K A I S A
with 93.2 minutes , 1.7× faster than SGD with 106.7 minutes
and 1.3× faster than ADAM with 83.1 minutes. We also
show the test accuracy curve w.r.t epochs in Figure 6a. HyLo
improved the convergence and outperforms KAISA,  ADAM
and SGD in per-epoch accuracy.

HyLo outperforms KAISA,  ADAM and SGD with a large
factor for U-Net and ResNet-32 models as shown in Figure 5b



(a) ResNet-50 (b) U-Net (c) ResNet-32

Fig. 5: Test accuracy vs time for HyLo, KAISA,  ADAM and SGD. The dotted line is the target accuracy.

and Figure 5c. For U-Net, the time-to-convergence for HyLo
is 480s which is 2.4×, 1.6× and 2.4× faster than ADAM ,
K A I S A  and SGD respectively. For ResNet-32, HyLo reduces
the training time by factors 2.1×, 1.6× and 1.2× compared to
KAISA,  SGD and ADAM. Figure 6c and Figure 6b compare
the per-epoch accuracy of HyLo with KAISA,  SGD and
ADAM on ResNet-32 and U-Net. For ResNet-32, HyLo shows
a better convergence compared to SGD and ADAM and
outperforms K A I S A  in per-epoch accuracy.

Performance analysis. We compare the cost of different
steps involved in HyLo and K A I S A  to show the advantage
of HyLo when distributed. HyLo and K A I S A  on ResNet-50
are trained on ImageNet-1k on 64 GPUs and ResNet-32 for
CIFAR-10 is on 32 GPUS. Even though HyLo is a hybrid
approach, we intentionally report separate times for its KID
and K I S  methods to further examine their computation and
communication costs. The computation time consists of the
time for factorization and inversion steps and the communica-
tion time includes the gather and broadcast steps.

Computation cost. HyLo reduces the factorization time
compared to K A I S A  by 27× for KID and 350× for K I S
on ResNet-50, as shown in Figure 7a. The large speedup of
K I S  compared to K A I S A  is due to its low-cost norm-based
sampling which is efficiently computed with algorithm 3. The
KID iterations involve interpolative decomposition and hence
have a higher execution time. HyLo also reduces the inversion
time to 3ms which is �135× less than K A I S A  with 410ms. As
shown in Figure 2, ResNet-50 has large layers and hence
KAISA’s  inversion becomes inefficient. Figure 7b shows that
the speedups gained from HyLo are more significant for U-Net
model in which the inversion cost is reduced to 1.5ms which is
600× less than KAISA .

HyLo also reduces the computation time when the model
has layers with smaller dimensions. As shown in Figure 7c, the
time of the factorization and inversion steps for KID are 6ms
and 7ms which are 9 ×  and 47× faster than that of KAISA .  The
speedups gained on ResNet-32 are relatively smaller compared
to ResNet-50. This correlates with the observation in Figure 2
(which shows the layer dimension distribution) that ResNet-50
has larger layers.

Communication cost. The time for communicating the fac-
tors in the gather step is reduced by a factor of 9.4× for
KID and 10.7× for K I S  compared to K A I S A  on ResNet-

50, as shown in Figure 7a. The KID method transfers three
matrices, i.e. KID-factors, per layer and hence has a slightly
higher communication time in the gather step while K I S  only
communicates two matrices per layer. Finally, we observe that
the dominant communication time is in the broadcast step,
with 18ms for KID and 13ms for K I S  which are 36× and
48× less than that of K A I S A  with 664ms. Figure 7b shows
the communication time breakdown of HyLo and K A I S A  on
U-Net. The time for the gather step in HyLo is �1ms which is
�20× less than KAISA.  HyLo reduces the communication cost
of broadcast step 8 ×  compared to KAISA.  Figure 7c shows
the communication time breakdown of HyLo and K A I S A
for ResNet-32. The gather time is reduced compared to K A I S A
by factors 2.5× and 4 ×  for KID and K I S  methods. Both KID
and K I S  have similar times in the broadcast step and improve
over K A I S A  by a factor of 2.1×.

Scaling. To demonstrate the scalability of HyLo, Similar to
[8], we report the projected end-to-end training time speedup
for HyLo over SGD in Figure 8a. We measure the average
time-per-epoch for HyLo and SGD; the number of GPUs is
varied from 8 to 64 for ResNet-50 and 4 to 32 for ResNet-32
and U-Net. Also, to show the effect of the kernel matrix rank
on the scaling, r  is set (See Algorithm 1) to 10%, 20%, and
40% of the global batch size. For ResNet-50, we project the
training time to 90 epochs in SGD and 50 epochs in HyLo,
for ResNet-32 the training time is projected to 200 and 100
epochs for SGD and HyLo respectively, and for U-Net the
training time is projected to 30 and 50 epochs for HyLo and
SGD. The frequency of HyLo updates is scaled inversely with
the number of GPUs to keep the number of updates per
training sample constant. The speedup of HyLo improves over
SGD with an increasing number of GPUs. HyLo achieves �1.9×
speedup for ResNet-32 on 32 GPUs, �1.7× speedup for
ResNet-50 on 64 GPUs, and �1.3× speedup for U-Net on 32
GPUs. For a more accurate scalability analysis, in Figure 9 we
show the running time of HyLo vs its single-GPU time for
varying numbers of GPUs on ResNet-50, ResNet-32, and U-
Net models. Figure 9 shows that HyLo scales superlinearly
for ResNet-50 and U-Net and linearly for ResNet-32.

Analysis of rank and the switching method. HyLo is
built on the assumption that the Kernel matrix has a low-
rank structure, this property allows us to replace the per-
sample inputs and gradients matrices with KID/KIS-factors.
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Fig. 6: Test accuracy vs epoch for HyLo, KAISA,  ADAM and SGD. The dotted line is the target accuracy.
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Fig. 7: Computation and communication time of HyLo and K A I S A  on ResNet-50, U-Net, and ResNet-32 models. Computation
time is measured for factorization and inversion steps and communication time includes gather and broadcast times.

The following shows that the kernel matrix has a low-rank
structure when global batch sizes are large. We also provide
an analysis of our switching-based method which decides how
often to choose KID versus KIS .

Analysis of kernel matrix rank. For different batch sizes,
we analyze the rank distribution of the kernel matrix on
ResNet-50, ResNet-32, U-Net, and DenseNet models. We
compute the eigenvalue decomposition of the kernel matrix
for each layer and report its numerical rank, i.e., the number
of eigenvalues that contribute to 90% of their sum. The global
batch size ranges from 512 to 4096 for ResNet-50 and ResNet-
32. The kernel matrix maintains a low-rank structure for all
global batch sizes. Figure 10a shows the rank distribution on
ResNet-50, the median rank is 104, 164, 247, and 351 which
respectively, show a ratio of 20%, 16%, 12%, and 8.5 % of
the global batch size. Figure 10b for ResNet-32 shows that on a
large global batch size of 4096 we only require �2% of the
samples to approximate the matrix as the median rank is small,
89, compared to the batch size. For U-Net, the median rank
is 3, which is 5% of the global batch size. For the DenseNet
model, the rank distribution is similar to ResNet-32 with a
median of 9.

Analysis of switching method. We provide an analysis of
how often HyLo chooses KID versus KIS.  We compute the
norm of the gradient at each epoch on the ResNet-32 model

and report in Figure 11 for various layers. The gradient norm
changes rapidly in the initial epochs and also after the learning
rate decays at epochs 35 and 75. Hence, HyLo chooses KID
over K I S  in 20% of epochs, i.e., 1-10, 35-39, and 75-79. A
similar analysis leads to choosing KID in 30% of the epochs
on ResNet-50, in particular epochs 1-10 and 25-29.

In order to analyze the impact of KID and K I S  updates,
we measure the normalized gradient error for ResNet-50 and
ResNet-32 and report it in Figure 12. The normalized gradient
error measures the approximation error of KID and K I S  and
is defined as ϵ =  �ĝt −  gt�/�gt�, where ĝt is the gradient
computed with KID/KIS and gt is the gradient computed
without the KID/KIS approximations. As seen in Figure 12,
the KID error is around an order of magnitude smaller than
K I S  because its approximation provides a tighter error bound
for the Kernel matrix K  [32]. For ResNet-32, the gap between
the KID and K I S  error is much larger because it has a smaller
numerical rank (the upper bounds for the approximation error
can be found in Theorem 1 in [32] and Theorem 3.1 in [33]).

To further demonstrate the usefulness of the switching
strategy, we compare the performance of HyLo using two
different settings: 1) we alternate between K I S  and KID
randomly at each epoch with a probability of 50%, hence
called the Random method, 2) the original HyLo with its
switching method as described in section III. From Table I I I



(a) Speedup on ResNet-50. (b) Speedup on ResNet-32. (c) Speedup on U-Net.

Fig. 8: The speedup of HyLo over SGD for a) ResNet-50 b) ResNet-32 c) U-Net on different number of GPUs, r  is the rank.

TA B L E  IV: Memory overhead for different methods.

ResNet-50
ResNet-32
U-Net

HyLo
317.3 MB
35.5 MB
31.5 MB

K A I S A
713.9 MB
34.9 MB
603.2 MB

ADAM
306.7 MB
5.6 MB
93.2 MB

SGD
102.2 MB
1.9 MB
31.1 MB

Fig. 9: HyLo’s scalability on ResNet-50, ResNet-32 and U-
Net.

TA B L E  III: Comparison of test accuracy and time-to-
convergence between HyLo and Random.

Model      Accuracy(%) Time(s)
HyLo Random       HyLo Random

ResNet-50         75.6           75.29           3960           4258
ResNet-32        92.32          91.68            260              497
U-Net                   91              90.2             410              445

the Random method reaches a similar accuracy to HyLo for
ResNet-50 and gives a lower accuracy on ResNet-32 and
U-Net. However, Random is 7.5%, 91%, and 8.5% slower
than HyLo for ResNet-50, ResNet-32, and U-Net respectively
because it is using more KID updates which are slower than
K I S  but they have a better accuracy (see Figure 12).

Analysis of memory footprint. Table I V  provides the
memory footprint of all methods. HyLo’s memory usage is
2 ×  and 20× lower than K A I S A  on ResNet-50 and U-Net,
respectively, because the KID/KIS-factors are smaller than
Kronecker factors in KAISA.  HyLo’s memory footprint is 3 ×
less than ADAM on U-Net because the global batch size is
much smaller than the layer dimension in U-Net. Compared
to SGD, all methods have a higher memory footprint because
SGD only stores the gradient.

V I . R E L AT E D WO R K

Second-order methods specifically Natural Gradient Descent
(NGD) [1], [34]–[36] can accelerate training by improving
the convergence rate of DNNs, specifically, exact NGD [37]
methods have demonstrated improved convergence compared
to first-order techniques such as SGD [15]. Zhang et al. [37]
extend NGD to deep nonlinear networks with non-smooth ac-
tivations and show that NGD converges to the global optimum
with a linear rate. However, their method fails to scale to
large or even moderate size models primarily because it relies
heavily on backpropagating Jacobian matrices, which scale
with the network’s output dimension [38]. In [13] the authors
use Woodbury identity for the inversion of the Fisher matrix
and propose a unified framework for subsampled Gauss-
Newton and NGD methods. Their framework is targeted at
fully-connected networks and relies on empirical Fisher. This
requires extra forward-backward passes to perform parameter
updates [38], [39].

Approximate NGD approaches such as [40]–[45] attempt to
improve the overall execution time of NGD with FIM inverse
approximation. For example, K FAC  [40] approximates each
block inverse using the Kronecker product of two smaller
matrices, i.e. Kronecker factors. However, these factors have
large sizes for wide layers and hence their inversion is expen-
sive. E K FAC  [41] improves the approximation used in K FAC
by rescaling the Kronecker factors with a diagonal matrix
obtained via costly singular value decompositions. Other work
such as KBFGS [42] further estimates the inverse of Kronecker
factors using low-rank BFGS type updates. WoodFisher [46]
estimates the empirical FIM block inverses using rank-one up-
dates, however, this estimation will not contain enough useful
curvature information to produce a good search direction [3].
Goldfarb et al. [42] follow the framework for stochastic quasi-
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Fig. 10: Distribution of the rank of kernel matrix on a)
ResNet-50 and b) ResNet-32. The kernel matrix has a low-
rank structure for all global batch sizes.

Fig. 11: Gradient norms throughout ResNet-32 training.

Newton methods and prove that KBFGS converges with a
sublinear rate for a network with bounded activation functions.

Distributed implementations of K FAC  methods have been
recently explored in [7]–[9], [11], [12], [47]. Ba et al. [11]

(b) ResNet-32

Fig. 12: Normalized gradient error for KID and KIS.

implement an asynchronous distributed K FAC  on a parameter
server. Their work assigns the factorization step in K FAC
to some of the workers while others compute inversions.
Their approach leads to a 5.9% accuracy loss on ImageNet-1k
compared to state-of-the-art target accuracies. Osawa et al.
[12] perform the factorization step on all workers and
compute the factor inverses using a model-parallel approach.
They apply mixed-precision computations (FP32 and FP16)
and use symmetry-aware communication to reduce the volume
of transferred data by only sending the upper triangular
part of Kronecker factors. Pauloski et al. [9] use a simi-lar
approach to [12] and implement K FAC  layer-wise, their
method achieves the MLPerf target accuracy and improves
training time over SGD. This work was further improved in
[7], by applying a custom 21-bit floating point format for
collective communications amongst GPUs and overlapping the
gather/broadcast steps with the backward pass computations.
K A I S A  [8] combines previous distributed K FAC  strategies
into one hybrid approach using a tunable memory footprint
approach to balance the memory and communication costs.
Ma et al. [47] provides an extensive analysis of distributed
K FAC  and shows that K FAC  does not exhibit good scalability
behavior and loses accuracy on large batch sizes.

V I I .  CO NC L U S I O N

In this work, we propose a distributed algorithm and imple-
mentation for Natural Gradient Decent methods which we call
HyLo. HyLo is based on a gradient-based switching approach



that decides when to use a Khatri-Rao-based interpolative de-
composition method and when to use importance sampling. As a
result, the computation and communication costs associated
with computing the Fisher matrix inverse in NGD methods
are significantly reduced on distributed platforms. HyLo also
supports convolutional neural networks as we extend the
SNGD formulation to support CNNs. Our results show that
HyLo outperforms state-of-the-art implementations of NGD,
such as KFAC,  KAISA,  EKFAC ,  KBFGS-L, on both single-
GPU and multi-GPU platforms.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

1 ABSTRACT
This artifact provides information to reproduce results shown in
the paper: “HyLo: A Hybrid Low-Rank Natural Gradient Descent
Method”. We explain how to run HyLo and compare it with KAISA
and SGD/ADAM. We provide one repository for HyLo and use the
code provided by KAISA for comparisons.

2 DESCRIPTION
Checklist (artifact meta-information)

(1) Algorithm: HyLo, KAISA, SGD and ADAM
(2) Program: Python
(3) Datasets: ImageNet-1k, LGG MRI, CIFAR-10, CIFAR-100,

Fashion-MNIST
(4) Run-time environment: Linux
(5) Experiment workflow: Download/Install HyLo and KAISA.

Download the datasets. Run the test scripts.

3 SOFTWARE DETAILS
The software version (in Anaconda) for all the experiments is as
follows:

(1) python==3.7.11
(2) pytorch==1.7.1
(3) cudatoolkit==10.2.89
(4) cudnn==7.6.5
(5) torchinfo==1.6.5
(6) tensorboard==2.4.1
(7) torchvision==0.8.2
(8) matplotlib==3.5.1
(9) scikit-image==0.18.3

(10) medpy==0.3.0

4 HARDWARE DETAILS
We use three systems for the experiments. SciNet Mist supercom-
puters and AWS P2 and P3 systems.

(1) Mist: each node has 32 IBM Power9 cores with 256GB RAM
and 4 NVIDIA V100 GPUs with 32GB memory, NVLink in
between.

(2) AWS-P2: we use P2.8xlarge systems which each node has 8
K80 GPUs with 12 GB memory.

(3) AWS-P3: we use P3.16xlarge equipped with 8 NVIDIA V100
with 32 GB memory connected via NVLink.

5 DATASETS
All the datasets are publicly available.

(1) ImageNet-1k is available from ILSVRC2012: https://image-
net.org/challenges/LSVRC/2012/2012-downloads.php.

(2) LGG MRI dataset can be downloaded from LGG:
https://www.kaggle.com/datasets/mateuszbuda/lgg-
mri-segmentation.

(3) CIFAR dataset are available in CIFAR
https://www.cs.toronto.edu/ kriz/cifar.html.

(4) Fashion-MNIST is provided in Fashion-MNIST
https://github.com/zalandoresearch/fashion-mnist.

6 EXPERIMENTS
(1) accuracy and time-to-convergence: For the single-GPU

setting, we compare the time-to-convergence and accuracy
of HyLo to KFAC, EKFAC, KBFGS-L, SGD, ADAM on 1 V100
GPU for DenseNet and 3C1F. Figure 4 shows the accuracy
vs. time. For the multi-GPU setting, we compare the time-
to-convergence and accuracy of HyLo to KAISA and SGD.
For U-Net model, instead of SGD, ADAM optimizer is used.
We conduct this experiment on 16 Mist nodes for ResNet-
50, 1 Mist node for U-Net and 4 AWS-P2 nodes for
ResNet-32 models. Figure 5 is the accuracy vs time and
Figure 6 is the accuracy vs epoch.

(2) profiling of communication-computation: We compare
the detailed timing of HyLo to KAISA. We profile the code for
detailed timings on AWS-P3 platform. For ResNet-50 model,
we use 64 GPUs, for U-Net we use 4 GPUs and for ResNet-
32 we use 32 GPUs. Each experiment is run for one epoch
and
the average time is reported. The results is reported in Figure
7.

(3) speedup analysis: We use AWS-P3 for ResNet-50 and U-
Net and AWS-P2 for ResNet-32. We change the number of
GPUs from 4 to 32 for this experiments. We run each method
for 3 epoch and project the timing for the the whole training.
The speedups are reported in Figure 8.

(4) scalability analysis: We use AWS-P3 for scalability of
ResNet-50 and ResNet-32 models. We change the number of
GPUs from 1 to 64 for ResNet-50 model and run HyLo for
3 epochs and project the timing for the whole training. For
ResNet-32, the number of GPUs are changed from 1 to 32.
The scalability is reported in Figure 9.

(5) rank analysis: We report the numerical rank of the kernel
matrix on 32 GPUs on Mist for HyLo. For ResNet-50 and
ResNet-32, we change the global batch size from 512 to 4096
and report the rank. We report the results in Figure 10.

(6) gradient norm analysis: We compute the gradient norm
of different layers for ResNet-32 for end-to-end training and
report it in Figure 11.

(7) gradient error analysis: We compute the gradient error of
KID and KIS for ResNet-32 and ResNet-50 and report it in
Figure 12.

(8) switching method: We compare accuracy and time-to-
convergence of HyLo and the random switching on ResNet-
50, ResNet-32 and U-Net, as shown in Table III.

(9) memory overhead: We compare memory overhead of
HyLo to KAISA, ADAM, SGD with ResNet-50, ResNet-32
and U-Net, as shown in Table IV.
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AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: DOI:10.5281/zenodo.6942342,https://

github.com/hylo-dso/hylo
Artifact name: HyLo source code with instructions on GitHub

Artifact 2
Persistent ID: https://c loud.sy labs. io/ l ibrary/hylo/dso/

a r t i f act
Artifact name: Singularity image with required packages

Artifact 3
Persistent ID: DOI:10.5281/zenodo.6910740,https://

github.com/hylo-dso/kfac-pytorch
Artifact name: KAISA source code

Reproduction of the artifact with container:

0. Clone the repository (should be on the src branch by default).

g i t  clone https://github.com/hylo-dso/hylo.git
cd hylo

1. Download the datasets (if not available locally). Please follow the
instructions from the oficial websites listed below to download the
datasets. The provided scripts assume that the datasets are stored
under the directory $SCRATCH and the singularity image (by default,
named artifact_init.sif) is downloaded into the directory hylo.

• ImageNet-1k (ILSVRC2012): https://image-net.org/
challenges/LSVRC/2012/2012-downloads.php (ImageNet
account required)

• LGG MRI: https://www.kaggle.com/datasets/mateuszbuda/
lgg-mri-segmentation

• CIFAR: https://www.cs.toronto.edu/~kriz/cifar.html
• Fashion-MNIST: https://github.com/zalandoresearch/

fashion-mnist

2. Set up the environment.

• Option 1: use the singularity image (for ppc64le architecture)
with all the requirements. To download the singularity image
from Sylabs (Sylabs account required):
If you have not login to singularity on the cluster, generate
a token on Sylabs, after running the command below, paste
it to the command line interface

s i ngu lar i ty  remote log in
Then pull the singularity image from remote:

s i ngu lar i ty  p u l l  - -arch ppc64le \
l i b r a ry : / / h y l o / d s o / a r t i f ac t : i n i t

• Option 2: a list of required packages (can be installed in an
Anaconda environment)
Please see the Software Details Section.

3. Update the scripts. .
The .sh scripts consists of 4 main parts:

a. setup of the environment (see the PRELOAD command),
b. setup of training configurations, e.g. model, dataset, hyperpa-

rameters (see the CMD command),
c. distributed system configurations, e.g. the list of allocated

nodes, master node, number of nodes

note: the scripts use TCP initialization by default. The url format
is tcp://$MASTER_ADDR:$MASTER_PORT, where the MASTER_PORT
is set to 1234 by default.

d. launch the processes on each node with
torch.distributed.launch (see the LAUNCHER command)
Things you might need to change:

a. If you are NOT using the singularity image, please update
the PRELOAD command to set up the environment accordingly. For
example, if you choose to install all requirements listed above in a
conda environment, say, named env, then the PRELOAD command
should be (or similar to):

PRELOAD="module load anaconda3;"
PRELOAD+="source activate env;"

b. On different number of GPUs, the hyperparameters are dif-
ferent. For example, the frequency - - f r e q  is scaled inversely with
the number of GPUs. The learning rate, damping, target damping,
weight decay might need to be adjusted.

c. The provided scripts forResNet-32 + CIFAR-10 assume that the
number of GPUs per node is 4 (nproc_per_node=4). Other scripts
assume that nproc_per_node=4. If the system you are using has
a different setting, please update nproc_per_node in the CMD and
LAUNCHER command accordingly.

4. End-to-End Training
The commands run end-to-end training of the model + dataset.

The accuracy and wall-clock time are written to a .csv file in the hylo
directory. The checkpoint files (.pth.tar) are stored in the directory
specified by the - - l o g - d i r  arg of the main-*.py scripts.
(i) interactive mode:
Example: CIFAR-10 + ResNet-32 (Classification)

sh scripts/train-resnet50-imagenet-end-to-end.sh
Example: ImageNet-1k + ResNet-50 (Classification)

sh scr ipts/train-resnet32-cifar10-end-to-end.sh
Example: Brain LGG + U-Net (Segmentation)

sh scr ipts/train-unet-brain-end-to-end.sh
(ii) submit job to compute nodes via sbatch
Example: CIFAR-10 + ResNet-32 (Classification)

sbatch -p compute_full_node -N ~ 8 - t  ~ 00:30:00 \
--gpus-per-node=4 --ntasks=1024 - J  ~ cf-rn32 \
-o cf-rn32.o%j --mail-type=ALL     \
scr ipts/train-resnet32-cifar10-end-to-end.sh

Example: ImageNet-1k + ResNet-50 (Classification)

sbatch -p compute_full_node -N ~ 16 - t  ~ 2:00:00 \
--gpus-per-node=4 --ntasks=2048 - J  ~ img-rn50 \
-o img-rn50.o%j --mail-type=ALL \
scripts/train-resnet50-imagenet-end-to-end.sh

Example: Brain LGG + U-Net (Segmentation)

sbatch -p compute_full_node -N ~ 1 - t  ~ 00:30:00 \
--gpus-per-node=4 --ntasks=128 - J  ~ lgg-unet \
-o lgg-unet.o%j --mail-type=ALL \
scr ipts/train-unet-brain-end-to-end.sh

note: for the baselines, we provide sample scripts
https://github.com/hylo-dso/kfac-pytorch (based on the ofi-
cial release of KAISA 1 and 2).
5. Analysis



HyLo: A Hybrid Low-Rank Natural Gradient Descent Method

To enable profiling, add - - p r o f i l i n g  to the training command,
e.g.

sh scripts/train-resnet50-imagenet-end-to-end.sh \
- - p r o f i l i n g

The outputs are written to .csv files.
To enable rank analysis, add --rank-analysis to the training com-
mand, e.g.

sh scr ipts/train-resnet32-cifar10-end-to-end.sh \
--rank-analys is

The outputs are written to .csv files.
To check the gradient norm trend throughout the training, add
--sngd and --grad-norm to the training command, e.g.

sh scr ipts/train-resnet32-cifar10-end-to-end.sh \
--sngd --grad-norm

The outputs are written to grad-norm.csv.
To check the gradient error of KID and KIS, add --grad-norm and
- -enable- id/ - -enable- i s  to the training command, e.g.

sh scripts/train-resnet50-imagenet-end-to-end.sh \
--grad-error  - -enable- id
sh scripts/train-resnet50-imagenet-end-to-end.sh \
--grad-error  - -e nab le - i s

The outputs are written to grad-error-*.txt files.


