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ABSTRACT

Intelligent understanding of human motions during lifting mini-
mizes overexertion injuries by offering continuous monitoring and
early intervention for people attempting heavy lifts at home or
work. Standardized lift assessment methods such as the revised
National Institute for Occupational Safety and Health lift equation
require physical therapy expertise and lack subject perceptions of
strenuousness in attempting lift tasks. We provide one of the first
approaches to perform non-intrusive automated detection of stren-
uousness, weight lifted, and subject’s knowledge of weight using
joint motions of subjects from multi-view high-speed color videos
as subjects lift varying weights, with and without prior weight
knowledge. We show average accuracies of 81.32% and 77.23% by
using convolutional neural networks to automatically detect low
versus high weight and strenuousness. Our work informs mon-
itoring technologies for individuals engaged in heavy lifting in
manufacturing, warehousing, nursing, and emergency response.
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1 INTRODUCTION

A large number of activities and occupations involve potentially
injurious interactions with objects. Pervasive artificial intelligence
(AI) that is human-aware, yet non-intrusive and seamless, plays
an important role in ensuring safety during strenuous interactions
while allowing people to conduct activities with minimal impact
on performance and efficiency. In 2019, 9.8% of all nonfatal oc-
cupational injuries and illnesses as reported to the U.S. Bureau
of Labor Statistics, and 12.5% of transportation and warehousing
injuries, were classified as ‘overexertion in lifting or lowering’,
ranking fourth among all 20 categories of injury [13]. Workers sus-
taining these injuries were out of work for a median of 13 days [14].
Nursing assistants [6], blue-collar workers in warehousing and
manufacturing [15], and first responders such as firefighters and
emergency personnel [2, 3, 7] routinely cite back and musculoskele-
tal injuries in performing lifting of people or heavy objects as part
of the requirements of the job. Musculoskeletal injuries reduce the
lifespan of workers in these occupations [12], which is especially
of concern in rural areas, where aging populations rely on the
longevity of work lifespans for sustenance and support of commu-
nity members. Women and older workers are more likely to report
lower back pain [23], and be impacted in reduction of work lifespan
and inclusivity due to time lost from work [9]. Pervasive Al in
home and work environments that continuously monitors people
for strenuous activity such as heavy lifts can improve quality of
life by performing early detection of injury potential, demonstrat-
ing concern through sympathetic human-computer interfaces, and
signalling for assistance.

Assessment of lifting activities to date has been largely manual,
conducted by physical therapy experts in controlled environments.
Workplace assessments are usually sporadic. The most common
form of lift assessment occurs by leveraging the revised National
Institute for Occupational Safety & Health (NIOSH) lift equation
(RNLE) [22], that provides recommended weight limit (RWL) using
measurements of a series of parameters related to object weight,
joint positions, frequency of lifts, duration of lift, and hand-to-object
coupling quality, as subjects attempt a lift in a controlled setting.
The lift index (LI), computed as a ratio of the actual weight carried
to the RWL, provides an estimate of injury risk. Manual collection
of data related to the lift equation is time-intensive, requires phys-
ical therapy expertise for complex factors such as the quality of
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coupling, and is unlikely to occur frequently, if at all, in unstruc-
tured environments on the job. While automated approaches exist
to estimate the parameters of the RNLE using wearables [1, 5, 17—
20], not all parameters of the RNLE may be relevant for every form
of lift that subjects may encounter on the job, e.g., performing a
single-handed lift or encountering a hazard during a lift, such as a
slip or fall. Importantly, the RNLE fails to provide knowledge of per-
ception of the lift task from the perspective of the human, i.e., how
strenuous did the person perceive the task to be or whether they
had prior knowledge of the object’s weight. Subjects’ perceptions
of weight are likely to impact how they lift weights. Intelligent
monitoring systems are more likely to be successful at offering
assistance if they are cognizant subjects’ perceptions of lift.

In this work, we perform non-intrusive analyses of human lift
to facilitate automated prediction of task parameters such as prior
weight knowledge, task-based weight recognition, and strenuous-
ness by using data captured with high-speed color cameras as part
of a human subjects’ study with N = 23 subjects. Each subject at-
tempts multiple randomized 2-handed lifting of identical cartons of
4 different weights, with and without being informed of the weight
prior to lift. We track subject posture using OpenPose [4] to garner
an understanding of subject-to-subject variabilities in adaptation
of human posture to varying weights during lift. We obtain av-
erage accuracies of 81.32% and 77.23% in performing low versus
high weight and strenuousness detection, and 58.01% in performing
4-class weight prediction from body posture.

2 RELATED WORK
2.1 Automated Assessment of Lift Injury Risk

Much automated lift assessment focuses on automating computa-
tion of RWL and LI using wearable or RGB-D sensors. Spector et
al. [18] use the Microsoft Kinect RGB-D sensor to automatically
compute the input parameters of the RNLE from skeletons estimated
from Kinect data in order to circumvent manual measurement of the
parameters. While horizontal, vertical, and distance measurements
are fairly straightforward to acquire from the skeleton, their work
does not clarify how hand-to-object coupling quality is derived,
which has a complex breakdown according to the RNLE application
manual [22]. Given the complexity of directly estimating the RNLE
input parameters, several approaches instead use machine learning
to directly predict RWL and LI using input from wearable sensors or
motion capture. Ground truth values of RWL and LI are computed
by manual measurement of the RNLE input parameters, or using
motion capture [19, 20] with the coupling parameter set to ‘good’.
Varrecchia et al. [20] use surface electromyography (sEMG) sen-
sors installed on the trunk for 20 subjects to estimate the LI using
neural networks. They improve accuracy in a later study [19] by
using motion capture data for the same subjects to estimate energy
parameters fed as additional input to the networks. Wang et al. [21]
use motion history images of a subject’s silhouette to detect lifting,
and hand and feet location, and to use them in RWL prediction.
The work of Snyder et al. [17] uses deep convolutional neural
networks (CNNs) to classify risk of injury in terms of the LI as low,
medium, and high from accelerometer and gyroscope data using
a NIOSH dataset [1] of 10 subjects fitted with 6 wearable inertial
measurement units (IMUs) for whom risk is pre-calculated using
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Figure 1: Subject 20 performing a lift from the west, north,
and east views from the Point Grey cameras.

the RNLE as part of the ground truth. Donisi et al. [5] provide a
similar approach to detect LI by evaluating a variety of off-the-shelf
machine learning (ML) algorithms using data collected in-house
from a single IMU installed on the lower back for seven subjects.
While these approaches provide an estimate of risk, they do not
factor in the subject’s perceptions of the task. Additionally, for
those approaches that use automated estimation of RNLE input
parameters [18-20], the hand-to-object coupling quality is typi-
cally manually set to a single value, whereas for real-world tasks,
the coupling factor has a far more complex dependence on object
size, regularity of object geometry, presence of cutouts or handles,
location of the object to facilitate grasp, and quality of grasp [22].

2.2 Automated Object Weight Prediction

Very few approaches exist for automated weight prediction upon
lift. Palinko et al. [16] provide classifiers that enable a robot to
estimate the weight of a tabletop object using data from the robot’s
force and torque sensors, as the robot attempts lift. Their work
cannot be directly ported to at-a-distance assessment of humans
performing lift. While force sensors may be installed on the object,
propagation to everyday objects proves unscalable.

Lastrico et al. [11] use deep learning to estimate carefulness and
weight from motion capture and optical flow data of users handing
over four transparent glasses to a robot. Two glasses are weighted
down with coins and screws. One weighted and non-weighted
glass is filled with water to the brim inducing subjects to move
these glasses with care. The authors find high success at detecting
carefulness, but limited success with weight prediction. In their
work, users have visual access to the glass contents. Our work
predicts perceptual and physical parameters of lift with opaque
containers where subjects do not have access to the box contents,
and lack knowledge of the weight in one lift session.

3 DATA COLLECTION

3.1 Recording Environment

We performed data collection using our in-house capture environ-
ment consisting of a circular space 22 feet in diameter. We used
three FLIR Point Grey BlackFly S cameras, each of which captures
8-bit color with a spatial resolution of 1440x1080 and a maximum
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Figure 2: Full lifts for Subject 24 attempting weight lift with 0 1b, 15 1b, 30 b, and 45 1b weights without weight knowledge.
0 second indicates first hand touch marking start of action. Last visible frame for the filmstrip indicates first hand release
marking end of action. Black boxes indicate no frame data due to end of interaction for that weight class.

temporal resolution of 226 frames per second (FPS). We lowered
the capture temporal resolution to 70 FPS as the Point Grey records
at low exposure for higher frame rates. The cameras were arranged
along cardinal directions of north, east and west representing the
front, right, and left views of a subject respectively. The high speed
of 70 FPS in contrast to conventional 30 FPS camera rates enables
the Point Grey cameras to acquire fine-grained information on
time taken for initial lift-off from the ground, accelerations as the
person lifts the object up, and detail on struggle during lift perfor-
mance. The three cameras were each connected to a corresponding
custom-built Intel Core i5-10600K powered computer, with 32GB
of RAM, and 8TB of SSD storage. The three computers were con-
trolled from a fourth computer that acts as a central control. We
used an in-house C# command line application for data capture and
extraction. We used an overhead green light strobe programmed
to flash twice for synchronization across multiple computers. We
synchronized all cameras to the second falling edge of the light
strobe by detecting peaks in absolute differences between adjacent
frames for static patches on the ground. Figure 1 shows example
high-speed color images as a subject performs a lifting action.

3.2 Recruitment of Subjects

We performed recruitment through an email to students, faculty,
and staff at Clarkson University, United States. The study was ap-
proved by the Institutional Review Board (IRB) under protocol
number 21-03, and all methods were performed in accordance with
these guidelines. All research personnel on the study went through

the CITI Human Subjects Research training. We recruited 28 sub-
jects. Subjects visited the capture environment on two days to
perform lifts with objects of varying weights. On the control or
‘non-blind’ day, we informed each subject of the weight they were
lifting at each weight presentation. On the experimental or ‘blind’
day, subjects did not receive this information, to capture interaction
without prior knowledge of the weight. Each capture day took 90
minutes per subject. Non-blind and blind day assignments were
randomized across subjects. We obtained informed consent from all
subjects and provided a $25 monetary incentive upon completion.
Subjects completed a demographics questionnaire on age, gender,
height, weight, physical fitness regimen, and handedness.

3.3 Study Method

Upon providing informed consent, each subject was told that they
would interact with four weights, 0 Ib, 15 Ib, 30 Ib, and 45 lb, with
each weight being presented to them 10 times, for a total of 40
weight presentations. We randomized the presentation orders to
each subject, and varied randomizations across subjects. We pre-
sented weights as dumbbells distributed in bags put in a single
corrugated cardboard box of dimensions 18”x12”x4” on a dolly. On
the blind day, we asked subjects to look away when the weight dolly
was moved, and we moved the dolly at an even pressure and rate
to prevent subjects being primed with weight knowledge through
visual, auditory, or temporal cues during rolling motion. We locked
the casters after bringing the dolly to the center of the space. On the
non-blind day, we informed the subject of the weight. We informed
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the subject to attempt a box lift, hold it for around 2 seconds or as
comfortable, and lower the box when done. No other instructions
were provided to capture natural lift. After lift performance, we
requested the subject to rate strenuousness from 1 to 5 on the Likert
scale. For both days, we requested subjects to respond ‘Yes’ or ‘No’
to whether they needed assistance during lift. Except subject 30,
no subject reported need for assistance. Subject 30 reported need
for assistance for 8 45 1b weight presentations on the non-blind
day and all 10 45 1b weight presentations on the blind day. On the
blind day, we request subjects to provide a weight guess after lift
completion. We performed a post-capture validation check over
our entire data to remove spurious captures. We eliminated data for
5 out of the 28 subjects due to issues with capture quality, retaining
data for 23 subjects. For each lift, we manually identified the start
time as the frame corresponding to first hand touch, and the end
time as the frame corresponding to first hand release. At 2 days per
subject, 40 captures per subject on each day, and 3 viewpoints per
capture, we recorded a total of 5,520 high-speed videos.

Figure 2 shows filmstrips for a subject attempting lift with the
four weight classes studied in this work. The time instant ‘0 seconds’
corresponds to the manually marked location of the start of the
interaction based on first hand touch on the box. All filmstrips end
at the manually marked first hand release after lowering. As shown
by the figure, the entire lift and lowering process takes longest for
the highest weight class of 45 Ib at 12.67 seconds, and least time for
the lowest weight class of 0 1b at 7.67 seconds. While the time taken
for the intermediate classes of 15 Ib and 30 1b is similar, with the
subject reaching standing pose by around 6.13 seconds, we observe
differences in positioning of individual joints prior to the lift which
provide clues as to the weight lifted. For instance, during the upward
phase of the lift, at 3.07 seconds, the subject’s hips are higher for the
15 Ib weight than for the 30 Ib weight, indicating that the subject’s
lower body moves upward faster for the lower weight. Since we
note lift completion as the time of first hand release, for the 45 Ib
weight, the subject spends more time in the lowermost posture and
retains contact with the weight while beginning return to standing.
We notice this for several subjects, presumably attributed to need
for carefully lowering and stabilizing the box.

4 POSTURE-BASED PREDICTION

Subjects’ posture over time as they interact with objects has the
potential to inform how heavy the weight may actually be and how
heavy they may perceive the weight by identifying signs of strug-
gle, delay in lifting, or differences in lift rate. We represent subject
posture by extracting skeletons from the Point Grey images cap-
tured from each viewpoint using the OpenPose [4] library. Figure 3
shows OpenPose skeletons aligned to frames from the east, north,
and west viewpoints of a subject. We analyze predictive ability of
the posture by using 1D convolutional neural networks (CNNs) on
time series data corresponding to the motion of key joint locations
during the initial phase of the lift, i.e., during hold and attempt to
perform lift-off, in order to assess potential for early intervention.
We define the initial phase as the first 200 frames of the Point Grey
data, i.e., the first 2.857 seconds starting from point of first hand
touch manually marked as discussed in Section 3. Our use of 1D
CNNss is motivated by recent observations of their success for time
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Figure 3: OpenPose skeleton aligned to Subject 30 for east,
north, and west viewpoints.

series [8, 10], with higher accuracies demonstrated over traditional
time series architectures, e.g., recurrent neural networks [10].

We use the ankle, knee, hip, shoulder, and wrist joints on the
right side of the subject as key joints from the east viewpoint. We
choose the same joints on the left side of the subject from the west
viewpoint. We select the torso and left and right shoulder locations
from the north viewpoint that captures the front of the subject.
With 6 joints each from the east and west viewpoints, and 3 from
the north viewpoint, we have 15 joint locations across all views.

Figure 4 shows filmstrips of Subject 24 during the first 3 sec-
onds of lift for the four weight classes. The figure reaffirms the
observations in Figure 2 that lift-off from the ground occurs sooner,
and upward movement occurs at a faster rate with lower weights.
Subtle differences are seen in the 30 1b and 45 Ib filmstrips, where
toward the end of the 3 second period, the hip and knees start
moving upward for the 30 Ib weight, whereas they remain closer
to the ground for the 45 Ib weight. Figure 5 shows filmstrips of
0 1b and 45 1b lifts for Subject 24 on blind and non-blind days. For
the 0 Ib weight, we notice that the slope of the motion trajectory
for the right wrist is sharper for the blind lift than for the non-
blind lift. As shown by the inset, the hand location changes from
a ‘safe’ under-package positioning to a positioning at the side of
the package. These features suggest that the subject may have been
prepared for a higher weight class, and then been surprised by the
empty package, resulting in sudden faster upward movement and
hand posture adjustment. For the non-blind lift, the lower slope and
non-changing hand posture suggest controlled motion, i.e., that
the subject may have been prepared a priori for the 0 Ib weight.
For the 45 1b weight, lift-off from the ground occurs later for the
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Figure 5: First few seconds of lift for Subject 24 for 0 1b and 45 1b weights with and without weight knowledge (red line shows
manually marked trajectory of wrist).

blind lift than for the non-blind lift, indicating that the subject may and may have needed to adjust posture and timing for the higher
have been prepared for an intermediate weight during the blind lift, weight. We expect the 1D CNNss to learn to distinguish trajectory
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Figure 6: Plots of y-coordinates for a selection of joints extracted from each camera viewpoint for the 4 weight classes. (b) 1D
CNN for joints-based prediction of weight, strenuousness, and weight knowledge.

features pertaining to differences in lift-off and upward motion
across weights and blind/non-blind days.

Figure 6(a) shows trajectories for the y-coordinates of the right
hip and knee, left wrist, and torso taken from the east, west and
north views for the first 200 frames. As the figure demonstrates,
upward motion along the y-axis occurs earlier for lighter weights,
and later for heavier weights, to the extent that the wrist and torso
show minimal motion for the 45 Ib weight. During lift, the subject
performs a slight dip with their hip before lifting a heavier weight,
presumably in order to gain balance during weight lifting. Times
to lift for the 0 and 15 Ib weights are close to each other, though
wrist and torso rises occur faster for the 0 Ib weight. While the
figure shows y-coordinates, in this work, we use both the x- and
y-coordinates. Prior to feeding the trajectories to the network, we
center each trajectory about the trajectory mean in order to remove
the effect of location and physical differences such as height. With
2 coordinates per joint for 30 joints and 200 frames of data, each
sample to the 1D CNN is fed as a matrix of size 30x200.

Figure 6(b) shows our 1D CNN architecture. The 30X200 input
is subjected to 1D convolution with size 3 filters, followed by batch
normalization, application of a rectified linear unit (ReLU) activa-
tion, and size 2 max pooling to yield a feature map of size 8x100.
The feature map is similarly subjected to convolution, batch nor-
malization, activation, and max pooling to generate a 4x50 feature
map which is then restructured into a dense fully connected layer
corresponding to the number of classes. We use the 1D CNN to
predict the following outputs.

(1) 4-Class Weight: We use joint data from the skeletons to assess
potential for prediction of the 4 weight classes, i.e., 0 1b, 15 b,
30 1b, and 45 Ib.

(2) Binary Strenuousness: Strenuousness ratings from the sub-
jects demonstrate an imbalance with several subjects largely
providing low ratings. To mitigate the imbalance, we predict
strenuousness as a binary output, i.e., ‘Low’ if the ratings are 1
or 2, and ‘High’ if the ratings are 3 to 5.

(3) 3-Class Weight: We find that some subjects perceive the high

weights, i.e., 30 Ib and 45 Ib to be similar. The 30 Ib was perceived
as being 45 1b 27 times, while the 45 b weight was perceived as
being 30 1b 7 times. For instance, Subject 21 mis-perceived the
30 Ib to be 45 1b 4 out of 10 times. Since finer distinction between
weights may be challenging, we perform coarse predictions by
classifying weights into 3 classes, as 0 Ib in the first class, 15 lb
in the second class, and 30 Ib and 45 1b in the third class.
Binary Weight: For the same reason as (3), we also predict
weight as a binary output similar to strenuousness with low
representing weights of 0 1b or 15 lb, and high representing the
30 Ib and 45 Ib weights.
Subject’s Prior Knowledge of Weight: We train 1D CNNs
that predict whether the subject had prior knowledge of weight
as a binary output, i.e., ‘No’ or ‘Yes’. Data for no knowledge
comes from the blind capture, while data for the presence of
knowledge comes from the non-blind capture.

We perform two types of predictions, one where the 1D CNN

is agnostic of the subject and one where the 1D CNN has prior

awareness of the subject built in. The user-agnostic 1D CNN is
trained using data from users that are not present in the test set, and
enables creating generalizable predictors that may be propagated
to novel subjects. The user-aware 1D CNN is trained by using data
from the subjects present in the test set, with care taken to ensure
mutual exclusivity of test and training data. User-aware 1D CNNs
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weight using blind data only.

have value in environments where an Al agent observes a set of
individuals over time, e.g., in a manufacturing facility or in an older
adults’ home, and the agent can be provided pre-deployment data
about the individual through a set of trial exercises. Within each
type of 1D CNN, we conduct three forms of prediction—one that
uses data from captured solely during the blind study i.e. without
subject’s knowledge of weight, one that uses data captured solely
during the non-blind study, and one that combines the data from
the two studies in training and in test. For the first two forms, we
do not provide prediction of subject’s weight knowledge.

We generate results by performing n-fold cross validation, with
n = 4 folds for user-agnostic CNNs and n = 2 folds for user-aware

CNNs. With 23 users, we have 6 test users in 3 folds for the user-
agnostic CNNs and 5 in the fourth fold. The user-aware CNNs have
12 subjects in one fold and 11 in the other fold. Subject assignments
to folds are done at random. We perform ablation testing through
exhaustive search over batch sizes of 4, 8, and 16, learning rates
of 1e—3 and le—4 and 50, 75, and 150 epochs. We report results
with maximum accuracy from ablation testing. We obtain accuracy
by summarizing the number of times the highest output from the
network for an output class matches the class label. We also obtain
the receiver operating characteristic (ROC) curve for each output
class by treating its class probabilities as positive and the sum
of remaining classes probabilities as negative, and obtaining true
positive rates (TPRs) and false positive rates (FPRs) for varying
thresholds of separation.

5 RESULTS

Figures 7, 8, and 9 summarize ROC curves for each output and class
when using combined blind and non-blind or mixed data, blind
data only, and non-blind data only. Titles to each plot provide the
maximum overall accuracy. In both user-agnostic and user-aware
CNNg, highest prediction accuracy is provided by 2-class weight
prediction at 81.32% and 85.56% respectively using mixed data. The
next highest accuracy is reported by strenuousness detection at
77.23% and 82.58% for user-agnostic and user-aware CNNs using
mixed data. The prediction rate for strenuousness is lower than
binary weight, with maximum difference at 4.09%. Slightly lower
strenuousness detection compared to weight prediction may be
attributed to the subjectivity of ratings. With 3-class and 4-class
weights, the performance drops to 70.41% and 58.01% for user-
agnostic CNNs and 76.41% and 61.71% for user-aware CNNs using
mixed data.
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Figure 9: ROC curves for user-agnostic and user-aware pre-
diction of weight classes, strenuousness, and awareness of
weight using non-blind data only.

From the ROC curves in Figures 7, 8, and 9, we see that the
area under the curve is higher for 0 b and 45 1b, indicating that
elements of delay during lift may help discern if a person is lifting
something very light or very heavy. The accuracies for weight
knowledge prediction of 57.25% for user-agnostic and 59.42% for
user-aware are close to chance, indicating that separation based on
joint positions is difficult when using all weight classes together.
Results with training using blind and non-blind data separately
demonstrates that non-blind data shows higher accuracies than
mixed for weight and strenuousness prediction, while blind data
shows lower accuracies. This may be due to postural adjustment
in response to surprise when the actual weight does not match up
with an expected pre-lift weight as, e.g., in Figure 5.

For the purpose of analyzing need for intervention, it is of in-
terest to understand the trade-off between consistent intervention
at the risk of inconvenience to the subject or reduction in subject
independence versus non-intervention at the risk of safety. As-
suming that intervention is needed at a higher weight class and a
higher strenuousness level, we observe that at an FPR of 0.3, the
TPR for prediction of weight classes that are 30 1b and higher is
0.8669 for ‘High’ in 2-class weight prediction, 0.8746 for ‘High’ in 3-
class weight prediction, and 0.8246 for 45 1b in 4-class weight when
using user-agnostic classifiers with mixed data. TPR at FPR of 0.3
is 0.8291 for strenuousness prediction using mixed data. The high
value of TPR for 2- and 3-class prediction suggests that with some
compromise on convenience emphasis on safety can be increased.

Figures 10, 11, and 12 show confusion matrices for the various
prediction experiments. We observe that in 2-class weight predic-
tion, accuracies are higher for recognizing the lower class consisting
of 0 1b and 15 1b weights, than for the higher class, though the order
is flipped for user-aware blind prediction. Higher accuracies are
also observed for prediction of lower strenuousness. Highest accu-
racies are observed in the 3-class and 4-class confusion matrices
for the 0 1b weight, followed by the highest weight class, i.e., the
30 1b/45 1b class in the 3-class prediction and the 45 b class in the
4-class prediction. Confusion matrices for 3-class weight prediction
demonstrates the obvious expectation of the intermediate (15 1b)
class showing low accuracy. Confounding is higher on blind days
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than on non-blind days, and tends to occur with the highest class
with 30 Ib and 45 Ib weight. Interestingly, when the graininess is
increased to 4 classes, the 15 Ib weight confounds more with the
lower weight of 0 Ib than with higher weights.

Tables 1 and 2 show per-subject per-class accuracies for user-
agnostic and user-aware classification using mixed, blind, and non-
blind data respectively for 2-class and 4-class predictions. We omit
the 3-class predictions in the interest of space. 3-class per-subject
summaries mirror those of 4-class predictions. ‘NaN’ denotes cases
where no data was available for the subject, e.g., if the subject
consistently provided low ratings for every lift. For most subjects,
the lowest weight class shows highest accuracy, similar to the
trends observed in overall summaries from the ROC curves and
confusion matrices. Results for using blind and non-blind data
show similar trends, with lower values for blind and higher for
non-blind. In binary weight classification, Subjects 16, 21, and 31
show amongst the highest accuracies. In strenuousness, we see
highest average accuracies for Subjects 24 and 26. Subjects 14 and
29 perform worst for ‘High’ and ‘Low’ detection respectively for
user-agnostic CNN. Figure 13 shows a comparison of the trajectories
of the ycoordinates for the hip and wrist of two 45 Ib lifts of Subject
14 compared to the hip and wrist y-coordinates of 45 Ib lifts for well-
performing subjects 31 and 16. We observe that Subject 14 starts
their 45 1b lift early. Subject 16 ranks both lifts as 3, indicating that
the strenuousness may be intermediate rather than high. The figure
also shows trajectories for two 0 1b lifts of subject 29 compared to
the 0 Ib lifts of Subjects 31 and 16. Subject 29 appears to lift their
hips and wrists later than the other two subjects. Subject 29 also
performs a gentler raise, which appears to be more characteristic
of heavy objects for most subjects. Our classifier uses the general
trend of most subjects lifting heavier objects later to incorrectly
predict low weight for ground-truth heavy weights of Subject 14,
and high weight for ground-truth lighter weights of Subject 29. In
user-aware detection, strenuousness values are generally higher.
Trends of user-aware 2-class weight detection are similar to user-
agnostic detection. Multi-class weight predictions per user reflect
findings in the confusion matrices in Figures 10 to 12 where most
subjects show confounding of higher weights.

6 DISCUSSION

In this work, we have presented the first approach to understand
subject perceptions while lifting objects with the goal of inform-
ing ubiquitous monitoring systems on non-verbal cues related to
subject experiences with lift. Unlike prior work that has focused
on tabletop objects, our work focuses on large weight categories
in containers of volumes typical in lift and carry operations. We
demonstrate results of predicting weight, strenuousness, and prior
knowledge of weight from parameters such as joint locations at the
start of the lift. Our work analyzes two-handed lifts which tend to
be common for standardized rectilinear containers. We are inter-
ested in expanding the scope of objects carried to include diverse
geometries, aspect ratios, mass distributions, and flexibilities lifted
from varying heights and with various hand configurations.
While current accuracies are low, especially for fine-grained
weight prediction, continued progress on this work is essential due
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Figure 10: Confusion matrices to predict weight, strenuousness, and weight knowledge.
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Table 1: Per-subject accuracies for user-agnostic predictions (‘Lo’=Low’, ‘Hi’=‘High’, ‘Stren’=‘Strenuousness’,
‘Knowl’=Knowledge’). We exclude 3-class weight summaries as their results are similar to 4-class weight summaries.

to its impact in mitigating injury in workplace and home environ- joints, e.g., the head and the elbow, and in evaluating prediction
ments. As part of future work, we are interested in adding more with various viewpoint/joint combinations to determine the relative
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Table 2: Per-subject accuracies for user-aware predictions (conventions are same as in Table 1).
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Figure 11: Confusion matrices to predict weight and strenu-
ousness weight knowledge using blind lifts.

importance of the left versus right sides of the body, the anterior
versus posterior viewpoints, the dorsal versus ventral viewpoints,
and discriminative abilities of individual joints or joint groups, and
differences versus correlations across joints.

The differences in prediction accuracies for outputs such as
weight and strenuousness using blind data and non-blind data alone
suggest that there is a potential separation between the blind and
non-blind data, indicating that it should be possible to leverage the
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Figure 12: Confusion matrices to predict weight and strenu-
ousness using non-blind lifts.

data collected in this study to perform prediction of weight knowl-
edge. However, our classifiers demonstrate weight knowledge pre-
diction near chance. One reason for the near-chance performance
may be that the weight knowledge prediction networks combine
the data from multiple weight classes so that the signal representing
actual weight or strenuousness, e.g., large-scale changes in joint
locations during lift, may overpower the subtle signals related to
weight knowledge. Struggle may occur due to lack of perception
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ect 14 demonstrate earlier lift of 45 Ib weight in comparison

to well-performing subjects. Bottom: y-coordinate hip and wrist plots demonstrate later gentler-paced lifting of 0 1b weight for

Subject 29 in comparison to well-performing subjects.

without knowledge or due to mis-perception of weight with knowl-
edge, inducing the signals to appear similar. For future work, we are
interested in performing weight knowledge detection within each
weight class, rather than by combining all weight classes, as the
variations seen in Figure 5 show the potential of using trajectories
within each class for weight knowledge prediction.

For the user-aware CNNs, we make the choice of training the
CNN with all subjects’ data in order to enable the CNN to acquire
sufficient information to learn network weights. Using all subjects’
data also enables the CNN to be applicable for a wide range of
subjects in an organization. Higher accuracy may be achievable by
having CNNs be individual-specific over time, which may be appli-
cable for monitoring in an environment with few people, e.g., the
home of an older adult. For fine-grained weight prediction, there
may be a benefit of performing regression rather than classification,
especially if regression provides outputs that are within a weight
uncertainty that cannot be perceived by the subject. Accuracies
may also be improved if 2D information from multiple viewpoints
is fused to generate a single 3D skeleton to yield a reduction in
data dimensionality without loss of information, making network
training more well-conditioned. While current convention for 3D
body-posture analysis is to use depth cameras due to their ability to
provide single-camera 3D information acquisition and their gener-
alizability, in this work, we choose to use the Point Grey BlackFly S
RGB cameras as we were analyzing the benefit of higher recording
speeds on detecting weight and strenuousness. Consumer depth
cameras are currently unavailable for temporal resolutions higher
than 30 FPS. As part of future work, we are interested in evaluating
joint combinations to assess single-camera generalizability, given
that some joints will be occluded from some viewpoints during lift.
We are also interested in evaluating prediction with reduced frame
rates to enable proliferation to lower frame-rate depth cameras and
to handle drop in acquisition rates under situations such as altered
lighting conditions or simultaneous acquisition and detection.

Important considerations for future work also include perform-
ing evaluations from the subject’s perspective, e.g., obtaining weight
guesses from the subject, and analyzing trends between subject-
reported weight and strenuousness, and actual weight. Future work
should also garner information on subject preference for continu-
ous intervention while compromising independence versus passive
monitoring at the risk of safety. A comprehensive understanding
of lift necessitates connecting subject perceptions with knowledge
from subject matter experts. In ongoing research, we are working
with a physical therapist to assign standardized lift assessment rat-
ings to our subjects’ lift performances and relate the assessments to
weight carried and subjects’ perceptions of lift. We plan to conduct a
full-scale study on relationship between lift parameters and subject
demographics such as age, gender, and physical fitness level.

Our work evaluates lift perceptions on a per-lift basis, however,
work in this domain will have the highest impact if intelligent
monitoring systems perform cumulative monitoring over various
timescales, ranging from short timescales of a single lift/lowering
action, medium scales of a few hours where a subject performs
several lift-and-carry operations as part of their work routine, and
longer scales over weeks, months, and years. Continuous strenuous-
ness prediction over a single lift/lower action via sliding windows
can prove beneficial, e.g., in controlled physical therapy or exercise
routines where the therapist/trainer may have the subject perform
the lifting activity on their own, and offer assistance at the top of
the lift to remove the lowering component. Continuous prediction
is also of benefit to assess fatigue during repetitive lift performance,
as occurs in warehouse environments. Prediction of long-term pa-
rameters such as fatigue may be facilitated by using alternative
modalities, e.g., surface electromyography sensors to measure mus-
cle activation during lift and thermal imagers to record temperature
changes during the lifting process. Mechanisms of investigation
for longer timescales should include interviews related to number
of injuries on the job, provision of recommendations to improve



CHASE’ 22, November 17-19, 2022, Washington, DC, USA

posture based on expert knowledge, and longitudinal studies on
continuity in following expert advice. Future work should also
leverage multimodal sensing technologies to analyze the relation-
ship between human performance of tasks and perceptions that
range beyond the physical properties of the task to concerns about
job security in the event of malperformance, and approaches to
mitigate such concerns through empathetic feedback for optimal
safety and productivity.
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