Post-Lift Analysis of Thermal Imprint for Weight and Effort
Detection

Austin Dykeman
dykemaa@clarkson.edu
Clarkson University
Potsdam, NY, USA

Gurpreet Kaur
gukaur@clarkson.edu
Clarkson University
Potsdam, NY, USA

Joseph Judge
judgejc@clarkson.edu
Clarkson University
Potsdam, NY, USA

Owen Talmage
otalmage@delsys.com
Delsys
Natick, MA, USA

Priyo Ranjan Kundu Prosun
prosunp@clarkson.edu
Clarkson University
Potsdam, NY, USA

Sean Banerjee
sbanerje@clarkson.edu
Clarkson University
Potsdam, NY, USA

Natasha Kholgade Banerjee
nbanerje@clarkson.edu
Clarkson University
Potsdam, NY, USA

ABSTRACT

Warehousing and manufacturing environments are seeing a pro-
liferation of various body-mounted and environment biosensing
mechanisms to assess elements of worker activity indicative of
signs of fatigue. In this work, we provide one of the first inves-
tigations of thermal imaging technologies to perform automated
detection of object weight and subject perceptions of weight using
thermal imprints left behind upon interactions with objects of vary-
ing masses. We use data recorded from multi-viewpoint thermal
cameras when subjects lift and lower weighted cartons with aware-
ness of the weight, as well as blind, i.e., without prior weight knowl-
edge. We demonstrate statistically significant differences across
weight classes in mean thermal intensity of thermal imprints on
regions of interest extracted around packages in post-lift thermal
images for 24 subjects performing 10 randomized interactions each
with 0 Ib, 15 Ib, 30 Ib, and 45 Ib weights. Using convolutional
neu-ral networks trained to be subject independent, we show
average accuracies of 75.83% and 70.25% for weight and subject-
reported strenuousness detection for weight-blind lifts, and
accuracies of 73.84% and 68.92% for weight-aware lifts. Our work
plays an impor-tant role in strengthening multi-modal algorithms
for monitoring workers for signs of fatigue.
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1 INTRODUCTION

Workers in blue collar environments such as manufacturing and
warehousing are at risk for work-related musculoskeletal disorders
(WMSDs) due to engagement in repetitive lifting and lowering
interactions with heavy objects [5, 6, 11, 21]. Current manufacturing
and warehousing environments are seeing an increase in a variety of
sensing technologies for tasks such as detection of sub-optimal
posture and fatigue, including wearable biosensors to measure, e.g.,
heart rate or electromyography (EMG) signals [1, 13, 14, 19, 20], and
at-a-distance monitoring through off-the-shelf cameras [24, 25].

Much existing work on fatigue monitoring largely tends to rely
on fatigue predictors extracted from physiological or biomechani-
cal measurements, and use subject perceptions as a validation tool,
rather than incorporating subject perceptions directly in fatigue
monitoring. Subject perceptions of fatigue, especially in long-term
activity, may not necessarily align with short-range parameters
drawn from physiological measurements. Additionally, the existing
work performs an overall detection of fatigue, rather than learning-
driven detection of finer parameters of the task, e.g., weight lifted.
Given the potentially complex dependency of subject perceptions
of the task on the task type, task parameters, and subject demo-
graphics, task parameters and subject task perceptions should be
taken into account in decision-making for fatigue management.

In this paper, we investigate the potential of thermal cameras
to facilitate worker activity monitoring by using them to perform
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automated non-intrusive detection of weight lifted and subject per-
ceptions of effort performed during lifting of weight as subjects
interact with objects of varying masses. Thermal cameras with
sensitivity in the human temperature range offer considerable ben-
efits in person activity tracking [8], due to well-defined intensity
differences between human targets and background environments.
However, clear benefit of thermal sensors is manifested if multiple
tasks can be performed via a single sensor, e.g., if thermal-based
human tracking in a warehouse environment may be coupled with
detection of signs for fatigue.

We leverage the capability of thermal sensors to record thermal
imprints on objects in the environment as an indirect mechanism
to monitor the potential for fatigue by automatically detecting the
weight lifted and the subject’s perceived effort in lifting the
weight. By performing assessment after the interaction, rather than
during the process, our approach enables providing information
on the extent to which an individual should continue performing
a par-ticular or similar activity based on how strenuous they
perceive the activity just performed. Through automated
continuous moni-toring of weight lifted in warehouse
environments, our work can be incorporated into holistic artificial
intelligence (Al) algorithms that detect the potential for workers
to be fatigued. Our work can also be used to detect need for
assistance through imprints after cursory attempts on lift.

Our work analyzes the thermal imprint left behind after interac-
tions in the form of lifting, lowering, and releasing identical pack-
ages in four weight classes—0 Ib, 15 Ib, 30 Ib, and 45 Ib. We assess the
potential for post-lift data to inform on weight and subject-reported
effort by analyzing thermal images of hand-prints left behind after
box release due to heat transferred from the hands of the subject to
the box. Our hypothesis is that thermal images show higher intensi-
ties when individuals grasp and lift heavier objects based on higher
heat transferred from greater pressure application and longer dura-
tion of interaction. We evaluate the hypothesis by analyzing the
relationship between object weight and mean thermal imprint in-
tensity on the box surface, and conclude that inter-class intensity
differences are statistically significant. Based on our findings, i.e.,
that a positive relationship exists between weight and thermal in-
tensity, we provide convolutional neural networks (CNNs) that
predict weight and effort in the form of subject-reported strenu-
ousness during lifting from the input thermal imprint images. We
provide an average accuracy of 75.83% and 70.25% on detection of
weight and effort when the subject lacks weight knowledge, and
ac-curacy of 73.84% and 68.92% when the subject has prior
knowledge of weight being lifted.

2 RELATED WORK

2.1 Fatigue Detection in Industrial Settings

A number of approaches use wearable sensors to perform fatigue
detection; a systematic review may be found in Ahn et al. [1]. Ma-
man et al. [20] use a chest-strapped heart rate monitor and four
inertial measurement unit sensors attached on the right ankle, right
wrist, hip, and torso for physiological data collection. Similar to our
experiments, they request participants to pick and load 10 kg, 18 kg,
26 kg cartons onto a dolly and transport and palletize the cartons at
a destination. They hand-define features indicative of fatigue, e.g.,
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heart rate reserve (HRR), acceleration, and jerk, and use logistic and
linear regression to respectively detect fatigue and predict its level.
Maman et al. [19] builds upon this work to make recommendations
on using wearable sensors to detect fatigue. Unlike our work that
predicts subject ratings, Maman et al. use subject ratings only to
validate results.

Jebelli and Lee [14] perform a similar comparison of subject
perceptions to features from electromyography (EMG) sensors. A
challenge remains that while hand-crafted features from indepen-
dent sensors may align with subject perceptions of fatigue under
lab-specific settings, they may deviate under complex tasks or long
duration activity. Jebelli et al. [13] use a wearable wrist biosen-
sor that acquires multiple physiological signals, and provide 87%
accuracy in distinguishing low-intensity (standing and talking),
medium-intensity (cleaning, finding tools, and cutting sheets), and
high-intensity (drywall install and heavy material movement) ac-
tivities. The method focuses on activities that involve significant
postural changes, rather than activities involving similar posture.

Papoutsakis et al. [24, 25] present the sustAGE system that pro-
vides 70% accuracy in classifying ergonomically sub-optimal pos-
tures from OpenPose [4] skeletons estimated from RGB videos of
line workers using graph convolutional networks. They also use
heart rate sensors to demonstrate a correlation between estimated
risk for strain and increase in heart rate. Their method focuses on
differences in posture, rather than variations in weight lifted or
in predictions of subject perception of effort in situations where
whole-body posture is unlikely to demonstrate separability, e.g.,
lifting and lowering in the same manner.

2.2 Using Thermal Imprints on Object Surfaces

Traditionally, thermal sensors have been used for applications such
as person and animal identification and tracking, and monitoring
of buildings and food quality, where the target displays obvious
differences in temperature from the environment [8]. A number
of approaches have investigated the benefit of using the thermal
imprint that are left behind through human interactions on the
environment. Work exists to enable natural surface interaction by
tracking left-behind thermal imprint, with the work spanning track-
ing of finger motion across the surface and classification of swipe
pressure [7, 12, 16, 17, 22, 23, 27]. Work has also been performed on
detecting material characteristics based on thermal imprint proper-
ties, such as strength of imprint and imprint dissipation delay [9]
and frictional force [28]. Recent work has used thermal imprints
on object surfaces to detect human hand hold on cups [15], and to
capture and predict grasp profiles and hand pose on objects [2, 3].

3 DATA COLLECTION
3.1 Capture Setup

To capture thermal information on subject interaction with objects
of different weights, we use a set of three Sierra Olympic Viento-
G Gig-E Vision thermal cameras placed along the east, west, and
north directions of a circular space of diameter 22 feet. Each camera
has a spatial resolution of 640x480, and captures images at a frame
rate of 30 frames per second (FPS). To ensure continuous capture
with minimal frame drops, we disable fast field correction on the
thermal cameras. We use a 9mm lens with each camera, and store
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16-bit PNG images. The cameras record auto-white-balanced non-
radiometric thermal images, with typical thermal intensity ranges
between 4,900 to 5,600.

We connect each thermal sensor to a custom-built computer
with an AMD Ryzen 2700X processor, 16GB of RAM, 4.5TB of SSD
storage, and an NVIDIA GTX 1080Ti GPU. The three computers act
as subordinate capture computers, and are controlled via a central
control machine via a C# command-line application developed at
our lab. The command-line application enables user-driven real-
time capture and storage of 16-bit PNG images. We use individual
computers per camera to minimize latency and frame drops that are
likely to arise as more cameras are connected to the same computer.

Each thermal camera s paired with an RGB-D sensor on the same
computer, namely a Microsoft Azure Kinect. We use a DHCP server
to perform initial synchronization of each computer’s internal clock.
Within each computer, we synchronize the thermal and RGB-D
sensors by recording millisecond epoch timestamps for images
captured at each time instant by the two cameras. Across the color
cameras of the RGB-D sensors, we program an overhead green
light to automatically flash on and off twice prior to the start of a
subject’s interaction. We use inter-frame subtraction, thresholding,
and averaging to obtain the rising and falling edges of light flash,
and detect the synchronization frame as that for the second falling
edge. While the thermal cameras have an external trigger, relying
on a hardware trigger mechanism may prevent proliferation to
commercial off-the-shelf cameras, e.g., StereoLabs ZED which lacks
a hardware trigger and instead uses Precision Time Protocol (PTP)
to synchronize across multiple sensors.

3.2 Subject Recruitment

To recruit subjects, we sent out a general email to students, faculty,
and staff at Clarkson University, United States, under IRB number
21-03. We requested each subject to visit the capture environment
in two sessions to perform lifting, lowering, and release interactions

with cartons of varying weights. We requested that subjects perform

the sessions be separated by at least 24 hours. In one of the sessions,

prior to each interaction with a carton, the subject was provided
knowledge of the weight lifted. In the other day, the subject received

no knowledge of the weight lifted prior to the interaction. We
refer to the sessions with and without weight knowledge as ‘non-
blind’ and ‘blind’ sessions respectively. We randomized the order
of non-blind and blind sessions across subjects. Each session was
completed within 90 minutes. 28 subjects visited the lab for capture.
We acquired informed consent from each subject before the study.
Upon completing both sessions, each subject was compensated in
the monetary amount of $25.

3.3 Study Protocol

During each session, the experimenter informed each subject that
they would interact with four weights—0 Ib, 15 Ib, 30 Ib, and 45 lb—,
with 10 presentations per weight, yielding 40 weight presentations.
All 40 weight presentations were randomized across the subject.
We varied randomizations across subjects and across sessions. Each
weight was presented as a carton of size 18"x12"x4” containing
enough dumbbells to sum up to the corresponding weight class.
The experimenter used a dolly to facilitate movement of cartons
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between presentations. To ensure that visual, auditory, vibrational,
or temporal aspects of motion did not provide clues to the subject
on the weight, the experimenter requested the subject to step away
from the interaction location, and moved the dolly with consistent
pressure and movement rate, determined by the maximum weight.
The experimenter positioned the dolly at the center of the capture
point, such that it was nearly equidistant from the three thermal
cameras, locked the casters to restrict motion, and requested the
subject to stand behind the dolly facing the north camera. In the
non-blind session, the experimenter provided prior knowledge of
the weight to the subject.

Subject directions for interaction performance consisted of lift-
ing the weight, holding it for around 2 seconds or as comfortable,
lowering the weight back on the dolly, and releasing after lowering.
No other instructions were provided, e.g., the subject was free to
use any stance, grip on the object, and time duration of lift, hold,
lowering, and release. The experimenter also provided recommenda-
tions on safe posture during the interaction. All but one interaction
was performed using a two-handed grasp, and the exception was
performed using a one-handed grasp. After the interaction, the
experimenter requested the subject to rate how strenuous they
found the interaction on the Likert scale from 1 to 5, with 1 being
least strenuous and 5 being most strenuous. In the blind session,
the subject was requested to provide a post-guess of weight. The
experimenter ensured that adjacent captures were spaced by no less
than 90 seconds to permit heat diedown and return of the box to
the ambient temperature. We obtained the heat diedown duration
through empirical testing prior to the start of our data collection.

We eliminated data from 4 subjects due to issues with capture,
storage, and data loss, and retained data from the remaining 24
subjects as our thermal dataset. For each interaction, we manually
marked the start and end times of the lift as the timestamps of
the color images in the north-facing camera corresponding to first
hand touch and first hand release. For each color image, we use
the color-thermal synchronization and cross-color synchronization
to propagate start and end times to all thermal images. With 24
subjects, 2 sessions, and 40 captures per subject per session, we
obtained data for 1,920 interactions. At 3 views per interaction,
we obtained 5,760 thermal videos. Figure 1 shows sample thermal
images from the three cardinal directions as a subject performs a
lifting, lowering, and release action with a box. Time instant ‘0
seconds’ corresponds to the manually marked location of start at
first hand release. The last three frames demonstrate the hand
imprint left behind on the carton after release, especially in the left
and right views of the subject.

4 EXTRACTING POST-LIFT THERMAL DATA

We obtain post-release thermal images by searching past the man-
ually labeled hand-release location for a thermal frame where the
subject has moved their hand away from the box. For most captures,
we find that after 1 second, the subject hand shows no overlap with
the box pixels in the thermal image. For a few captures, we find
the overlap-free point to be at 1.5 second after first-hand-release.
Typically, in these captures, the subject is still struggling with re-
leasing the box with both hands, e.g., if the box is too heavy and
placement on the dolly is challenging.
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Figure 1: Frames from west, north, and east viewpoints showing Subject 7 performing lift, lowering, and release of a 30 Ib

carton.
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Figure 2: Flowchart demonstrating approach to extract thermal frames with hand imprint for the right viewpoint. The same

approach is used for the left viewpoint.

The Sierra Olympic Viento-G cameras perform automated white
balancing, a common setting for lower-end thermal imagers. For
each thermal image, we correct white balancing by using a refer-
ence image to mark the hottest and coldest regions, and scaling the
thermal image in each capture linearly to equalize the hottest and
coldest regions across all captures. In our capture environment, the
hottest region tends to be a thermal camera belonging to the oppo-
site view, while the coldest region tends to be the floor. Figure 2(a)
shows a thermal frame after performing linear contrast adjustment.

Given the thermal image in each capture, we perform a close crop
of the image around the region of the box by using the reference
image to define the crop region, and cropping thermal frames in
all captures to match the reference region. Figure 2(b) shows an
example of a close crop. Since subject feet are often close to the
box, we use the reference frame to define a mask region around the
box shown in red in Figure 2(c). To ensure high-fidelity retention
of hand prints without cut-off, we perform a binary thresholding

of the image as shown in Figure 2(c), and obtain all connected
components, which largely tend to be imprints and feet. We keep
those components that have an area larger than 3 square pixels, and
have a low overlap with the reference mask of less than 50% the
size of the component. The process largely eliminates subject legs
and feet and retains imprints within the vicinity of the reference
mask as shown in Figure 2(d). We perform a final morphological
dilation operation to remove mid-range components on the body.
We use the retained components to mask the thermal image.

5 EVALUATING RELATIONSHIP BETWEEN
THERMAL INTENSITY AND WEIGHT

Figure 3 shows example thermal images for various weights on
the blind and non-blind days for Subject 7 as generated by our
approach. Subject hand prints belonging to lower weights, espe-
cially 0 Ib, typically show lower intensities. The increase in thermal
intensity of imprint with increasing weight may be attributed to
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Figure 3: Thermal images upon box release for 4 lifts for the 4 weight classes from the east (right) and west (left) viewpoints

from blind and non-blind days for Subject 7.
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Figure 4: Box plots of mean thermal intensity versus weight
for (a) Subject 7 and (b) all subjects.

increased heat transferred to the object due to longer interaction
times during lifting and lowering, and to higher pressure. In Fig-
ure 4, we show box plots of mean thermal intensities for Subject 7
and for all subjects The box plots indicate positive dependence of
mean thermal intensity with increase in weights.

We use Friedman’s Test with Nemenyi post-hoc test to determine
if there is a statistically significant difference between intensity for
each weight class. The null and alternative hypothesis are:

Ho: There is no difference in mean thermal intensity for pairs of
weight classes.

Ha: One or more pairs of weight classes have differences in mean
thermal intensity.

We use the R programming language to conduct the statisti-
cal test and we reject the null hypothesis overall and in pairwise
tests. The Friedman test provides a p-value < 2.2e-16, and the Ne-
menyi test provides p-values of 1.4e-13, < 2.2e-16, < 2.2e-16, 2.8e-5,
4.3e-14, and 0.0011 for 0-15, 0-30, 0-45, 15-30, 15-45, and 30-45 com-
parisons using mean thermal intensity from blind lifts. For mean
thermal intensity from non-blind lifts, the Friedman test provides
a p-value < 2.2e-16, and the Nemenyi test provides p-values of
1.6e-13, < 2.2e-16, < 2.2e-16, 7.6e-6, 3.2e-14, and 0.00058 for 0-15,
0-30, 0-45, 15-30, 15-45, and 30-45 comparisons.
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weight.

6 USING NEURAL NETWORKS TO DETECT
WEIGHT AND EFFORT FROM IMPRINTS

Based on our findings of statistically significant differences between
mean intensities of different weight classes, we investigate the
ability of learning algorithms to leverage the intensity differences
for prediction of weight. We use 2D convolutional neural networks
(CNNSs) to enable self-learning of relevant features from raw data.
We use the 2D CNNSs to predict 4-class weight, i.e., the 4 weight
categories studied in this work of 0 Ib, 15 Ib, 30 Ib, and 45 Ib. We
found that subject-provided guesses on weight in the blind session
were confounded in 34 instances over the higher two classes. We
expect CNNSs to similarly confound adjacent weight classes. We
evaluate the predictive ability of coarser CNNs in two forms

* 3-class weight. We train CNNs to predict a ‘Low’ weight class
assigned 0 Ib weights, a ‘Mid’ weight class assigned 15 Ib weights,
and a ‘High’ weight class assigned 30 Ib and 45 Ib weights.

e 2-class weight. We train CNNSs to predict a ‘Low’ weight class
assigned 0 Ib and 15 Ib weights, and a ‘High’ weight class assigned
30 Ib and 45 Ib weights.

Our data collection reveals that subjects tend to predict high
strenuousness for higher weight classes, and lower strenuousness
for lower weight classes. In addition to weight prediction, we inves-
tigate the capability of the neural networks to predict effort invested
as subject-reported strenuousness. We observe a class imbalance
in strenuousness ratings on the 1 to 5 scale, with subjects largely
providing ratings toward the lower end of the scale. We handle the
imbalance by predicting 2-class strenuousness, where ratings of
2 and below were assigned to the ‘Low’ class, and ratings of 3 and
above were assigned to the ‘High’ class.

We were also interested in identifying whether thermal imprints
may reveal if the subject had prior knowledge of weight, e.g., based
upon the location or smearing of the imprint if an adjustment had to
be performed to account for a compensation of interaction without
weight knowledge. We show results of training CNNs to predict
the subject’s prior weight knowledge, where ground truth for
knowledge comes from the non-blind sessions, and ground truth
for lack of knowledge comes from blind sessions.

Figure 5 shows the neural network architecture that we use in
this work. The 2-channel input to the network takes in images
from the east and west views processed according to Section 5 and

resized to be of size 64x64. The architecture consists of three blocks
that each perform 3x convolution with stride 1 and padding to
retain image size, batch normalization, rectified linear unit (ReLU)
activation, and 2x2 max pooling. The three blocks consist of 32, 64,
and 128 convolutional filters respectively. Outputs from the third
block are accumulated via global average pooling to form a 128-
dimensional feature vector that is subjected to a dense layer that
generates a 32-dimensional vector, followed by a softmax layer with
as many nodes as the predicted number of classes. The predicted
class corresponds to the one with the highest softmax output.

We provide user-agnostic CNNs where the subjects from the test
set are not present in the training set, and user-aware CNNs where
data from a subject is distributed across the training and test set.
The purpose of the user-agnostic CNNSs is to enable generalization
to novel subjects without need for retraining. The user-aware CNNs
are useful in situations where prior knowledge of the user is avail-
able to an Al monitoring system, e.g., in a warehouse environment
where employees may go through a registration phase and provide
input data about lifting patterns.

Our primary goal is to investigate predictive ability when the
user lack awareness of the weight lifted, as packages in warehousing
environments may lack information on the mass of the internal
contents. As such we conduct a set of predictions that use training
and test data solely from the blind session. We are also interested in
analyzing predictive ability if a subject has access to information on
the weight lifted, e.g., if package contents can be seen, or if package
labels and/or warehouse organization provide clues to weight. For
this, we conduct a second set of predictions that use training and
test data solely from the non-blind session. For baseline comparison,
we also provide CNNs that use training and test data mixed from
the two sessions. We do not provide weight knowledge detection
for blind only and non-blind only CNNs.

We perform 4-fold classification for user-agnostic CNNs and
2-fold classification for user-aware CNNs. With thermal data from
24 subjects, we have 6 subjects per fold for user-agnostic CNNs
and 12 per fold for user-aware CNNs. We assign subjects to folds at
random. We perform ablation testing over batch sizes of 4, 8, and
16, learning rates of 1e-4 and 1e-5, and number of epochs of 25, 50,
75, and 125, and obtain results at the maximum accuracies for each
prediction output. The accuracy is obtained by counting the number
of true positives within each class and averaging over all classes.
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Figure 7: ROC curves for user-agnostic and user-aware pre-
diction of weight classes, strenuousness, and awareness of
weight using images on post-lift thermal signature from non-
blind data only.

We generate an ROC curve for each class by varying the threshold
above which samples for a class are labeled as belonging to the class,
computing the true positive rate (TPR) for the class, obtaining the
false positive rate (FPR) as the number of times that samples from
other classes are classified as belonging to the class in question,
and plotting the TPR against the FPR at varying thresholds.

7 RESULTS

We show ROC curves for each type of output and class using blind
data in Figure 6, non-blind data in 7, and mixed data in Figure 8.
We list the maximum accuracy in the title for each plot. Using
user-agnostic CNNs trained and tested with blind data, we observe
accuracies of 75.83% and 70.25% for 2-class weight and strenuous-
ness prediction, and 65.22% and 48.34% for 3- and 4-class weight
prediction. As shown by the confusion matrices for blind data in
Figure 9, 2-class weight prediction shows accuracies of 77.3% and
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74.3% for the low and high weight classes. Strenuousness predic-
tions are weighted more toward the lower class, where for more

examples, samples from the higher class are classified as belonging

to the lower class. We see this phenomenon recur in the 3- and

4-class weight prediction, where the lowest weight class is pre-
dicted with higher accuracy rising to 9% for 0 Ib weight in 4-class
prediction. We observe that the greatest misclassification occurs

for the 30 Ib weight class in 4-class weight, with most samples

misclassifying as belonging to adjacent weight categories. Building

in user-awareness improves classification accuracy, with greatest

improvements seen for the finer weight CNNs, at 69.42% and 54.59%
for 3- and 4-class weight prediction.

Comparing classifiers trained on blind and non-blind data sep-
arately, we observe that average accuracies using blind data are
generally higher than using non-blind data, with the exception
being 4-class weight prediction. Comparing the confusion matrices
for blind and non-blind data across Figures 9 and 10, we observe
that prediction for 2-class networks is biased against the higher
class, whereas predictions are more balanced for the networks that
use blind data. With higher weight categories, we observe a re-
verse trend for user-agnostic prediction. Accuracies for most higher
weight classes with non-blind data are higher at the risk of the
lower weight class. User-aware predictions are biased toward the
lower class, with lower predictions for most higher weight classes
in comparison to networks trained and tested with blind data.

A possible explanation for higher general performance using
blind data may be attributable to the subject being unbiased by prior
knowledge of weight, where effort performed depends largely on
performing the lift optimally based on the subject’s immediate per-
ception of the box weight on grasping. This behavior may manifest
as separable thermal signatures on the box. On the non-blind day
the subject may be biased by the prior knowledge and their own
perceived ability, and perform a sub-optimal grasp if they believe
they can easily lift a certain weight. The sub-optimal grasp may
generate weaker thermal signatures if, due to mis-perceived ability,
the subject fails to perform a firm grasp on a heavier box. Further
investigation will benefit from the use of surface electromyography
sensors to measure muscle activation during lifting and lowering,
and analysis of timing in movement during the lifting phase. Mix-
ing blind and non-blind data provides classifiers with the highest
accuracy, suggesting that higher quantities of data may benefit the
networks in learning class separation boundaries.

From the perspective of assessment of potential for injury, it is
more important for classifiers to detect heavier weights. Incorrect
detection of lighter weights may compromise usability, however,
may guarantee safety. Analyzing the ROC curves for higher weight
categories using mixed data in Figure'8, we observe that at an FPR
0f 0.3, TPRs of 0.8475, 0.8780, and 0.7206 are obtained for the highest
weight classes in 2-, 3-, and 4-class prediction.

We find detection of prior knowledge of weight to perform close
to chance for user-agnostic weight knowledge detection as seen
in Figure 8, indicating that differences in interaction patterns with
and without knowledge are too subtle for detection from post-lift
signatures. The accuracy for knowledge of weight for user-aware
prediction is higher, with a value of 69.55%. However, data being
collected on different days is a threat to validity for the results on
user-aware prediction of prior weight knowledge. While attempts
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Figure 8: ROC curves for user-agnostic and user-aware prediction of weight classes, strenuousness, and awareness of weight

using images on post-lift thermal signature.
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Figure 9: Confusion matrices to predict weight, strenuous-
ness, and, weight knowledge using blind thermal images.

were made to keep the orientation of the dolly consistent across days
and to randomize within-day standing patterns, chance variation
in body temperature and hold location across days may generate
separation between blind and non-blind data.

We summarize per-subject individual class accuracies in Tables 1
and 2 for agnostic and aware predictions respectively. Focusing on 2-
class weight classification, we observe that separability is higher.
For instance, in the case of Subject 14, as shown in Figure 12, thermal
maps for boxes from the lower classes are of visually lower intensity
than those from the higher classes. For subjects with lower average
classification accuracy, properties of the extracted thermal image
may influence separability. For instance, for Subject 25, as shown
in Figure 13, the box plots on the right demonstrate that mean
thermal intensities for the lower class on blind days are spread
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Figure 10: Confusion matrices to predict weight, strenuous-
ness, and, weight knowledge using non-blind data.

over a larger range, influencing separability of the lower class from
higher classes.

One factor influencing the separability may be that despite ef-
forts to perform normalization of the image with respect to hottest
and coldest regions as per Section 5, images from the blind day for
Subject 25 demonstrate a wide variability in normalized intensities
for the non-imprint regions of the box, especially on the left side.
We find that for some images of Subject 25, the box intensity
in the original non-preprocssed images approaches that of the
ground intensity, whereas in others, the ground appears cooler
than the box. The reason for the differences is likely due to non-
linear trun-cation of the box and ground intensities during gamma
correction by the camera at the time of white balancing, rather
than a true difference between the temperature of the box and the
ground. In the absence of control over white balancing, a likely
concern in
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Figure 11: Confusion matrices to predict weight, strenuousness, and, weight knowledge using mixed blind and non-blind
thermal images.
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Table 1: Per-subject accuracies for wuser-agnostic predictions (‘Lo’='Low’, ‘Hi’='High’, ‘Stren.’='Strenuousness’,

‘Knowl’=‘Knowledge’).
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Table 2: Per-subject accuracies for wuser-aware predictions (‘Lo’="Low’, ‘Hi’="High’, ‘Stren.’='Strenuousness’,

‘Knowl’='Knowledge’).
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Figure 12: Left and right hand thermal hand prints for Subject 14 on blind and non-blind days. As the subject interacts with
heaver weight classes, the thermal intensity increases. The boxplot on the right shows a positive trend in mean intensity.

consumer thermal cameras, a potential corrective approach may be
to segment out the imprint region, rather than perform detection
using the entire set of thermal intensities in the processed image.

The 4-class weight classification demonstrates challenges in sep-
arability for user-agnostic classification, where samples from most
users are classified in the lowermost class. These results conform
the summaries in the confusion matrices in 9, 10, and Figures 11.
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Figure 13: Left and right hand thermal hand prints for Subject 25 on blind and non-blind days, together with box plots of mean
thermal intensity. Some samples from the lower-weight object classes show higher mean thermal intensities on blind days
causing intensity distributions to span a larger range, and influencing separability from higher weight classes.

Figure 13 demonstrates that separability amongst the higher three
classes is lost for Subject 25 on the non-blind day. Mean average
intensities as per the box plots show similar within class mean, with
a lower mean and highest spread for the highest class. A potential
approach to address this issue may be to use a multi-step technique
that identifies coarse features of interest such as grab location prior
to extracting finer details on thermal patterns and intensity.

8 DISCUSSION

In this work, we have presented an approach that uses thermal
images after lift, lowering, and release interactions to perform de-
tection of weight and effort as subject-reported strenuousness. Our
work demonstrates that hand imprints as recorded by thermal cam-
eras provide promise in performing coarse separation of weight
and strenuousness by showing accuracies upwards of 73% and 68%.
Post-lift analysis enables informing monitoring systems on the ef-
fort perceived by the individual in performing a task, and whether
a similar task should be continued by the individual. Such monitor-
ing may be factored into higher-level Al algorithms that perform
continuous personnel management, by re-allocating individuals
from tasks that induce more fatigue and lower productivity to less
fatiguing tasks, and by moving persons who demonstrate lower
levels of fatigue to higher performance tasks, thereby ensuring
continuous optimal output.

While we demonstrate the promise of thermal imprints, our work
also reveals challenges in using off-the-shelf thermal cameras that
are worth future study, given the benefits of thermal cameras in
ensuring non-invasive at-a-distance monitoring. As discussed in
Section 7, we find that the non-linear white balancing of thermal
cameras influences normalization of input images, especially when
the cooler non-imprint portions of the box approach surrounding
temperatures. While the current approach uses a linear normal-
ization, estimating the parameters of a sigmoid gamma correction
function may improve accuracies. To focus on the features of the

thermal imprint rather than the box, it may also be beneficial to
segment out the region around the imprint using alpha matting.
As part of future work, we are interested in conducting studies of
the relationship of imprint temperature and weight by using radio-
metric cameras to eliminate the confounding factor of non-linear
white balancing. Another aspect of importance is that core and
skin temperatures vary across subjects, and even within a single
subject, continuous aerobic activity over time increases core and
skin temperature [10, 26] . While a single session was completed in
an hour and a half, for some subjects, the session may have resulted
in a rise in body temperature. The accuracies of imprint-based de-
tection may be improved if variabilities in body temperature can
be factored out, e.g., by performing a body-specific normalization
of the imprint using thermal pixels on the hand or the upper body.

Another confounding factor worth study is the influence of force
versus time of lift on the higher intensity of the thermal imprint for
heavier weights. Lifting activities with the heavier weights typically
take a longer duration in our study, than with the lighter weights.
Since the heat flow equation [29] is time-dependent, the longer
interaction duration may result in more heat being transferred to
the box, though the analysis may be complexified by diffusion to the
remaining carton and heat loss to the ambient environment. Studies
on swipe pressure on plane surfaces provides some qualitative
evidence that application of a higher force on a surface provides a
higher intensity of imprint than a lower force applied for the
same period of time, however, detailed studies are necessary to
examine the effect for interactions such as grab, lift, hold, lower,
and release. Future work should investigate the interplay of time,
force applied as measured by force sensors, object weight, and
interaction type, e.g., grab and release without movement, lifting
and lowering, dragging.

In this work, we focus on using the raw thermal imprint on the
package. However, work on using thermal cameras for behavior
monitoring can benefit from a more fine-grained analysis on the
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grab and movement patterns employed by the user based on the
weight of the carton. E.g., we notice that for higher weights, users
may grab the carton along the diagonal, while for lower weights
they may grab the carton symmetrically at the two sides. Users
also showed signs of struggle in lifting higher weights, and spent
more time at the lowering phase in careful stabilization of the box
prior to release, presumably also performing synergistic posture
stabilization. During lift, asymmetrical patterns may be observed
for individuals employing a higher effort level. To study spatial
grab location and box maotion, future work may benefit from ex-
tracting the 3D pose of the box, either using geometric techniques
such as perspective n-point [18] , or by tying the thermal cameras
with depth sensors, performing 3D cuboid extraction from depth
images, and texturing extracted cuboids with the thermal imprint.
This approach also provides the benefit of being view-independent
enabling propagation to unstructured spaces.

This work focuses solely on the post-lift thermal imprint in
images. However, the thermal data has the potential to provide
additional parameters of information, such as variability in skin
temperature, duration of interaction, and information on subject
posture during performance by enabling extraction of subject sil-
houettes. Future work should focus on extraction of multi-modal
parameters from thermal data to enable continuous assessment
for signs of fatigue. Future work can also investigate estimation
of large-scale parameters in industrial environments, e.g., ambient
temperature, sources of heat, and presence of other humans to sig-
nal for assistance, to enable holistic monitoring and intervention
for personnel in industrial settings.

ACKNOWLEDGMENTS

This work was funded by National Science Foundation grant 11S-
2026559.

REFERENCES

[1] Changbum R Ahn, SangHyun Lee, Cenfei Sun, Houtan Jebelli, Kanghyeok Yang,
and Byungjoo Choi. 2019. Wearable sensing technology applications in construc-
tion safety and health. Journal of Construction Engineering and Management 145,
11 (2019), 03119007.

[2] Samarth Brahmbhatt, Cusuh Ham, Charles C Kemp, and James Hays. 2019. Con-
tactdb: Analyzing and predicting grasp contact via thermal imaging. In Proceed-
ings of the IEEE/CVIF conference on computer vision and pattern recognition. IEEE,
Piscataway, NJ, 8709-8719.

[3] Samarth Brahmbhatt, Ankur Handa, James Hays, and Dieter Fox. 2019. Contact-
grasp: Functional multi-finger grasp synthesis from contact. In 2019 I[EEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, Piscat-
away, NJ, 2386—2393.

[4] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2019.
OpenPose: realtime multi-person 2D pose estimation using Part Afinity Fields.
IEEE transactions on pattern analysis and machine intelligence 43, 1 (2019), 172—
186.

[5] Lora Cavuoto and Fadel Megahed. 2016. Understanding fatigue and the im-
plications for worker safety. In ASSE Professional Development Conference and
Exposition. ASSP, Park Ridge, IL, 16-19.

[6] Viviane de Freitas Cardoso, Claudia Aparecida Stefane, Fernanda Cabegi de
Barros, Josiane Sotrate Gongalves, Leandro Corréa Figueiredo, and Tatiana de
Oliveira Sato. 2022. Influence of gender and age on musculoskeletal symptoms
in white-collar and blue-collar workers: a cross-sectional study. International
Journal of Occupational Safety and Ergonomics 1, 1 (2022), 1-10.

[7] Tim Dunn, Sean Banerjee, and Natasha Kholgade Banerjee. 2018.  User-
independent detection of swipe pressure using a thermal camera for natural
surface interaction. In 2018 IEEE 20th International Workshop on Multimedia
Signal Processing (MMSP). IEEE, Piscataway, NJ, 1-6.

[8] Rikke Gade and Thomas B Moeslund. 2014. Thermal cameras and applications: a
survey. Machine vision and applications 25, 1 (2014), 245-262.

Dykeman et al.

[9] Jacob Gately, Ying Liang, Matthew Kolessar Wright, Natasha Kholgade Banerjee,
Sean Banerjee, and Soumyabrata Dey. 2020. Automatic Material Classification
Using Thermal Finger Impression. In International Conference on Multimedia
Modeling. Springer, Berlin, Germany, 239-250.

[10] M Gleeson. 1998. Temperature regulation during exercise. International Journal
of Sports Medicine 19, S2 (1998), S96-S99.

[11] Renée Govaerts, Bruno Tassignon, Jo Ghillebert, Ben Serrien, Sander De Bock,

Toon Ampe, llias EI Makrini, Bram Vanderborght, Romain Meeusen, and Kevin

De Pauw. 2021. Prevalence and incidence of work-related musculoskeletal dis-

orders in secondary industries of 21st century Europe: a systematic review and

meta-analysis. BMC musculoskeletal disorders 22, 1 (2021), 1-30.

Daisuke lwai and Kosuke Sato. 2005. Heat sensation in image creation with

thermal vision. In Proceedings of the 2005 ACM SIGCHI International Conference

on Advances in computer entertainment technology. ACM, New York, NY, 213-216.

Houtan Jebelli, Byungjoo Choi, and SangHyun Lee. 2019. Application of wearable

biosensors to construction sites. I1: Assessing workers’ physical demand. Journal

of Construction Engineering and Management 145, 12 (2019), 04019080.

Houtan Jebelliand SangHyun Lee. 2019. Feasibility of wearable electromyography
(EMG) to assess construction workers’ muscle fatigue. In Advances in informatics
and computing in civil and construction engineering. Springer, Berlin, Germany,
181-187.

Yijun Jiang, Sean Banerjee, and Natasha Kholgade Banerjee. 2019. Predicting

Human Grasp Locations on Cup Handles by Using Deep Neural Networks to

Infer Heat Signatures from Depth Data. In 2019 IEEE International Conference on

Multimedia & Expo Workshops (ICMEW). IEEE, Piscataway, NJ, 25-30.

Daniel Kurz. 2014. Thermal touch: Thermography-enabled everywhere touch

interfaces for mobile augmented reality applications. In Mixed and Augmented

Reality (ISMAR), 2014 IEEE International Symposium on. IEEE, Piscataway, NJ,

9-16.
Eric Larson, Gabe Cohn, Sidhant Gupta, Xiaofeng Ren, Beverly Harrison, Dieter

Fox, and Shwetak Patel. 2011. HeatWave: thermal imaging for surface user inter-

action. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, New York, NY, 2565-2574.

Xiao Xin Lu. 2018. A review of solutions for perspective-n-point problem in
camera pose estimation. In Journal of Physics: Conference Series, Vol. 1087. IOP
Publishing, Bristol, UK, 052009.

Zahra Sedighi Maman, Ying-Ju Chen, Amir Baghdadi, Seamus Lombardo, Lora A
Cavuoto, and Fadel M Megahed. 2020. A data analytic framework for physical
fatigue management using wearable sensors. Expert Systems with Applications
155 (2020), 113405.

Zahra Sedighi Maman, Mohammad Ali Alamdar Yazdi, Lora A Cavuoto, and
Fadel M Megahed. 2017. A data-driven approach to modeling physical fatigue in
the workplace using wearable sensors. Applied ergonomics 65 (2017), 515-529.
Nurhayati Mohd Nur, Siti Zawiah Dawal, and Mahidzal Dahari. 2014. The
prevalence of work related musculoskeletal disorders among workers perform-
ing industrial repetitive tasks in the automotive manufacturing companies. In
Proceedings of the 2014 international conference on industrial engineering and
operations management Bali, Indonesia. IEOM Society International, Southfield,
M, 1-8.

Kenji Oka, Yoichi Sato, and Hideki Koike. 2002. Real-time tracking of multiple
fingertips and gesture recognition for augmented desk interface systems. In
Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE International
Conference on. IEEE, Piscataway, NJ, 429-434.

Karri Palovuori and Ismo Rakkolainen. 2015. The heat is on: thermal input for
immaterial interaction. In Proceedings of the 19th International Academic Mindtrek
Conference. ACM, New York, NY, 152—154.

Konstantinos Papoutsakis, George Papadopoulos, Michail Maniadakis, Thodoris
Papadopoulos, Manolis Lourakis, Maria Pateraki, and Iraklis Varlamis. 2022.
Detection of Physical Strain and Fatigue in Industrial Environments Using Visual
and Non-Visual Low-Cost Sensors. Technologies 10, 2 (2022), 42.

Konstantinos Papoutsakis, Thodoris Papadopoulos, Michalis Maniadakis, Manolis
Lourakis, Maria Pateraki, and Iraklis Varlamis. 2021. Detection of physical strain
and fatigue in industrial environments using visual and non-visual sensors. In
The 14th PErvasive Technologies Related to Assistive Environments Conference.
ACM, New York, NY, 270-271.

MICHAEL F Roberts and C BRUCE Wenger. 1979. Control of skin circulation
during exercise and heat stress. Medicine and science in sports 11, 1 (1979), 36-41.
Elliot N Saba, Eric C Larson, and Shwetak N Patel. 2012. Dante vision: In-air and
touch gesture sensing for natural surface interaction with combined depth and
thermal cameras. In Emerging Signal Processing Applications (ESPA), 2012 IEEE
International Conference on. IEEE, Piscataway, NJ, 167—170.

Mitsuhiko Shimomura, Masahiro Fujiwara, Yasutoshi Makino, and Hiroyuki
Shinoda. 2022. Estimation of Frictional Force Using the Thermal Images of Target
Surface During Stroking. In International Conference on Human Haptic Sensing
and Touch Enabled Computer Applications. Springer, Berlin, Germany, 234-242.
David Vernon Widder. 1976. The heat equation. Vol. 67. Academic Press, Cam-
bridge, MA.

[12

[13

[14

[15

[16

[17

[18

[19

120

[21

[22

[23

[24

[25

126

[27

~
X2

[29



