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Abstract

In many different species, it has been observed that nucleotide com-
positions are not identical on the genic and even genomic scale. This
observation contradicts a commonly held assumption in most maximum
likelihood based phylogenetic estimation methods - that the process gov-
erning DNA evolution is identical across lineages. We show that when
DNA evolution is nonhomogeneous, topological estimation and continuous
parameter estimation are impacted both by alignment quality and model
misspecification due to the homogeneity-across-lineages assumption.

1 Introduction

Nucleotide composition biases can be found in the genomes of a variety of or-
ganisms, such as grasses [?], insects [?], and birds [?]. Knowing when and where
these compositional biases arise in the evolutionary history of these organisms
is of interest since G4C bias is hypothesized to have significance in biological
processes. Computational methods can be applied to more widely available
genomic data to provide a better idea of this history. Molecular phylogenet-
ics is used to reconstruct evolutionary relationships between organisms using
biomolecular sequence data such as DNA.

Maximum likelihood based phylogenetic estimation uses a stochastic model
of sequence evolution to evaluate the probability of a tree topology given the
observed sequence data. A common simplifying assumption is that the base
composition and relative substitution rates are identical throughout the tree.
However, the observation that nucleotide composition can vary across lineages
demonstrates that these assumptions do not hold in biological data. Nonhomo-
geneous substitution models relax this assumption and allow for base composi-
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tion and relative substitution rates to vary across the phylogeny, and have been
implemented before in nhPhyML [?] and PAML [?].

Alignment error has been shown to impact downstream phylogenetic infer-
ence and estimation [?]. However, how alignment quality impacts estimation
when sequence evolution is nonhomogeneous is not well studied. While it is
likely that alignment quality will have an impact on estimation in this more
complicated model, the question of what does this mean for empirical data re-
mains. For example, how are estimates of base composition and substitution
rates when using nonhomogeneous substitution models for maximum likelihood
estimation? Furthermore, do more sophisticated models of DNA evolution ac-
counting for nonhomogeneity improve estimates?

2 Materials and Methods

The objective of this study is to characterize the effect of alignment quality and
model misspecification in the problem of phylogenetic estimation when evolution
is nonhomogeneous and nonstationary.

Data Availability Statement Data and scripts used are available at https:
//gitlab.msu.edu/liulab/nonhomogeneous-substitution-model-study-data-scripts.

2.1 Methods for MSA and phylogenetic estimation

Preliminaries. Let T = (V, E) be a rooted tree with labeled leaves X C V
and root p € V. Each edge e = (u,v) € E where u,v € V has a length d(e).
An edge (u,v) is a leaf edge if either u or v is a leaf, otherwise it is an internal
edge. Deleting an edge e from a tree T gives two subtrees T3 = (V1, E7) and
Ty = (Va, E3). The vertex sets V; and V; are disjoint, and V4 U Vo = V. The
same can be said for their respective leaf sets, so {X1, X2} is a bipartition of
X. Let this be denoted as b(e) = {X1, Xa2}.

Multiple sequence alignment. There are a variety of multiple sequence
alignment methods available. For this study, we selected a range of commonly
used methods. We aligned simulated and empirical datasets using MAFFT [?]
version 7.475, MUSCLE [?] version 5.0.1428, Clustal Omega [?] version 1.2.4,
Clustal W [?] version 2.1, and FSA version [?] 1.15.9. Each method was run
using their respective default settings.

Phylogenetic estimation. We use the general time reversible (GTR) model
for phylogenetic estimation. The GTR model specifies that there are sepa-
rate base frequencies 77, wo, T4, T which sum to 1, as well as rate parameters
a,b,c,d,e, f. We use the same conventions as used by ?. That is to say, a
corresponds to T <> C, b corresponds to T' <+ A, cto T <> G, d to C < A, e
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toC < G, and f to G+ A. f is fixed to 1 and the remaining rate parameters
are relative to f. The rate matrix @ is as follows:

arc bmap  cmg
Q= anr . dmay eng
T\ brp  dm, fra

crr  eme.  [fTa

With the diagonals set to Qs = — >, ,; Qij. The transition probability matrix
is given by P(t) = exp(—Qt) and is used to calculate likelihoods for a phy-
logenetic tree. Typically in phylogenetic estimation using Markov models of
substitution, the rate matrix is assumed to be constant over the whole tree. We
refer to models under this assumption as homogeneous, or having no shifts.

However, nucleotide composition biases have been observed in biological
data. To account for rate and composition differences across lineages, each
edge e has an associated set of parameters 6(e) that define the rate matrix for
that edge. We use a GTR model for the branch models. The traditional homo-
geneous model is the case where 6(e) is fixed, i.e. 6(e;) = 6(e;) for all e;,e; € E.
For heterogeneous models, we considered two different classes: which we refer to
as single-shift and all-shift. For all-shift, 6(e) is independent for each edge. For
single-shift, there are exactly two sets of parameters, Ogsnie and Opackground and
some restrictions on which edges they apply to. There is a shift edge, eshiey € F,
and all edges descending from it all have 6(e) = Ospig,. Any remaining edges are
Obackground- We will also refer to homogeneous models as no-shift interchange-
ably. In nonhomogeneous models, rooting can impact likelihood values since
these models are not time-reversible, so rooted trees are used.

RAxML [?] version 8.2.12 was used to perform maximum likelihood esti-
mation under a homogeneous GTR model. PAML [?] version 4.9 was used
to perform maximum likelihood estimation under fixed tree topologies using a
branch model. Since PAML does not support tree search under nonhomoge-
neous models, we wrote a wrapper script to perform local tree topology search,
using PAML to evaluate the log likelihood of a topology.

Single-shift search. While a fully nonhomogeneous branch model can ac-
count for very general nucleotide substitution processes, it is highly parameter-
ized. Also, it approaches the no common mechanism model, which is known
to be statistically inconsistent [?]. In single-shift, there are exactly two sepa-
rate sets of substitution model parameters estimated, and instead is search for
a placement of the different rate matrix on the phylogeny. We use a brute-
force approach of local search to determine which assignment of the shift model
maximizes likelihood.

Performance assessments. We use Robinson-Foulds distance [?] to assess
topological difference between trees. Let S(T') = {b(e)|e € F, e is an internal edge}.
The Robinson-Foulds distance between two unrooted trees T and T” is the sym-
metric difference of S(T') and S(T”). A way to extend RF distance to rooted
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trees is to consider the bipartition representation for labeled nodes (i.e. XU{p}).
So for the two subtrees 77,75 induced by deleting an edge e € E, if p € V7 then
the edge representation becomes ' (e) = {X1U{p}, X2} and vice versa if p € V5.
For identifying root placement, we say two trees T' and T’ have identical roots,
p and p’ respectively, if the leaf sets of the subtrees induced by deleting the
respective root nodes are identical.

We take the L1 norm of the relative errors for substitution model parameters
to assess model parameter estimation performance in the simulation study. For

the base frequencies, this would be » .. ,car ’”"‘f” .

i

To assess how well the shift subtree is being predicted in the single-shift
model, we use the size of the maximum agreement subtree (MAST) between
the true and estimated shift subtrees. The MAST problem is to find a subtree
given a set of trees .7 with the largest subset of leaves that also agrees with all
the trees in 7.

For evaluating alignment quality, we use sum-of-pairs false positive and false
negative rates, denoted SP-FP and SP-FN respectively. SP-FP is calculated as
the proportion of homologies in the estimated alignment and not in the true
alignment. SP-FN is the same, but the other way around.

2.2 Simulation study

Model tree generation. Model trees were sampled using INDELible [?] un-
der a birth-death process. Non-ultrametricity was introduced using a procedure
described in 7 with deviation factor ¢ = 2.

1. Generate a rooted model tree using INDELible with the default settings
2. For every branch:

2.1 Choose z ~ U(—1In(2),1n(2))
2.2 Scale the branch length by exp(z)

3. Let L be the maximum root-to-tip distance for the tree and H be the
desired height.

4. Scale each branch length by H/L

5. Select a subtree to evolve under the shifted substitution model containing
as close to half of the leaves.

Table 1: GTR model parameters used for evolving sequences in the simulation

study.
Parameter T C A G CoT | AT | G&T | A«C | C+G | A=G
Shift 0.216 | 0.237 | 0.317 | 0.230 | 5.847 | 3.186 | 1.214 | 3.437 | 1.307 1.0

Background | 0.183 | 0.226 | 0.058 | 0.534 | 1.505 | 0.367 | 0.141 | 0.412 | 0.094 | 1.0
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Figure 1: Flowchart of simulation study steps. A model tree is first generated
under a birth-death process using INDELible, and then sequences are generated
under that model tree with a nonhomogeneous model. The ungapped sequences
are aligned using MAFFT, MUSCLE, ClustalW, Clustal Omega, and FSA. Ev-
ery estimated alignment, as well as the true alignment, is then used to perform
tree estimation. Tree estimation is done using three different classes of model:
0-shift, or homogeneous, is done using RAxML. Single-shift and all-shift, both
nonhomogeneous across lineages, are performed using PAML to calculate likeli-
hood scores and continuous parameter optimization. Finally, the resulting trees
from each alignment and tree estimation method pair is compared against the
model tree. For the single shift model, shift placement is evaluated by com-
puting the size of the maximum agreement subtree (MAST) for the true and
estimated shift subtrees.
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Simulating sequence evolution. Model conditions were the same as those
used in ? to include a range of sequence divergence in the simulation study. IN-
DELible was used to generate sequences under a GTR-based branch model using
the phylogenies generated as described earlier. ? found GC content variation in
the avian phylogeny. The GTR model parameters were empirically estimated
using single-copy orthologs from ? for the subset of species (Calypte anna, Al-
ligator mississippiensis, Melopsittacus undulatus, Corvus brachyrhynchos, and
Manacus vitellinus) included in ?’s study. To estimate these parameters, we
aligned the single-copy orthologs using MAFFT with the default settings. Then,
we used a single-shift model to estimate parameters on each individual aligned
sequence. Then, we looked at the two sets of substitution rates estimated, and
observed that the ratio between them was bimodal. The first peak ranged from
a 1- to 10-fold difference, and the second ranged from a 10000- to 100000-fold
difference. We chose GTR model parameters based on the estimated parameters
in the first mode.

2.3 Empirical study

Grass dataset. The distribution of GC content in monocots is bimodal [?],
which is not the case for other plants. This pattern is notably strong in rice.
We applied nonhomogeneous substitution model based phylogenetic tree esti-
mation to a set of 8 taxa: Oryza sativa japonica [?], Sorghum bicolor [?], Carex
cristatella, Carex scoparia, Juncus effusus, Juncus inflexus [?], Ananas comosus
[?], and Musa balbisiana [?]. We identified 1900 single-copy orthologs using
orthofinder [?] with the default settings. We aligned the sequences individually
using MAFFT, MUSCLE, Clustal Omega, Clustal W, and FSA with the default
settings. We performed phylogenetic estimation under a single-shift model for
every individual gene. We also concatenated the aligned gene sequences and
ran the same analysis.

3 Results

3.1 Simulation study

Impact of alignment accuracy. In both topology estimation and substi-
tution model parameter estimation, the true alignments perform the best, as
would be expected. Across all methods and levels of sequence divergence, topo-
logical inference using estimated alignments yields significantly more error. In
figure 77, we see a correlation between topological error and alignment accuracy
in more divergent model conditions. We also see this trend is maintained in the
20-taxa model conditions.

Impact of model misspecification. Nonstationary nucleotide composition
and nonhomogeneous substitution rates can reflect an evolutionary adaptation.
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Table 2: Model conditions and summary statistics for ground truth and esti-
mated alignments.

Model # Tree Indel | . . . Estimated | Estimated | Estimated
condition | Taxa | height | probability Length ‘ ANHD ‘ Gappiness | Alignment SP-FP ‘ SP-FN ‘ length NHD gappiness
MAFFT 0.572 0.512 1478.6 0.389 0.326
MUSCLE 0.579 0.508 1518.5 0.413 0.342
10.A 10 0.47 0.13 2123.8 0.306 0.528 CLUSTALW | 0.746 0.683 1191.4 0.466 0.165
CLUSTALO | 0.734 0.682 1247.1 0.484 0.202
FSA 0.217 0.645 3609.3 0.280 0.715
MAFFT 0.683 0.629 1477.1 0.435 0.321
MUSCLE 0.667 0.602 1570.1 0.449 0.361
10.B 10 0.7 0.1 2315.8 0.364 0.564 CLUSTALW | 0.786 0.724 1186.0 0.496 0.155
CLUSTALO | 0.781 0.732 1248.7 0.504 0.198
FSA 0.236 0.603 4471.2 0.319 0.770
MAFFT 0.752 0.711 1484.5 0.484 0.328
MUSCLE 0.729 0.679 1573.1 0.499 0.364
10.C 10 1.2 0.06 2313.2 0.465 0.566 CLUSTALW | 0.822 0.768 1170.6 0.537 0.148
CLUSTALO | 0.823 0.780 1237.6 0.541 0.194
FSA 0.272 0.783 4992.4 0.377 0.795
MAFFT 0.828 0.807 1461.8 0.528 0.310
MUSCLE 0.794 0.766 1561.9 0.542 0.353
10.D 10 2 0.031 2202.8 0.553 0.538 CLUSTALW | 0.865 0.830 1143.0 0.573 0.119
CLUSTALO | 0.858 0.831 1222.9 0.565 0.177
FSA 0.384 0.864 5729.6 0.420 0.820
MAFFT 0.879 0.871 1529.2 0.569 0.342
MUSCLE 0.846 0.831 1590.5 0.589 0.366
10.E 10 4.4 0.013 2063.0 0.649 0.510 CLUSTALW | 0.897 0.872 1146.5 0.614 0.124
CLUSTALO | 0.884 0.865 1234.0 0.602 0.187
FSA 0.497 0.912 6196.2 0.477 0.836
MAFFT 0.420 0.388 1643.7 0.368 0.390
MUSCLE 0.404 0.351 1790.2 0.380 0.439
20.A 20 0.47 0.13 2410.3 0.301 0.581 CLUSTALW | 0.654 0.612 1278.6 0.449 0.216
CLUSTALO | 0.654 0.625 1306.3 0.471 0.233
FSA 0.536 4394.5 0.289 0.763
MAFFT 0.526 1670.7 0.433 0.394
MUSCLE 0.470 1863.0 0.445 0.456
20.B 20 0.7 0.1 2585.1 0.374 0.606 CLUSTALW 0.713 1261.2 0.509 0.198
CLUSTALO 0.708 1318.2 0.518 0.232
FSA 0.681 5959.0 0.349 0.819
MAFFT 0.752 1683.0 0.516 0.400
MUSCLE 0.684 1907.7 0.530 0.470
20.C 20 1.2 0.06 2895.8 0.484 0.649 CLUSTALW 0.822 1227.8 0.573 0.178
CLUSTALO 0.821 1303.2 0.570 0.226
FSA 0.838 8231.8 0.429 0.874
MAFFT 0.860 1691.4 0.569 0.403
MUSCLE 0.800 1890.0 0.585 0.466
20.D 20 2 0.031 2696.2 0.581 0.622 CLUSTALW 0.876 1181.6 0.615 0.148
CLUSTALO 0.875 1287.4 0.602 0.218
FSA 0.908 10177.9 0.486 0.899
MAFFT 0.940 1804.3 0.608 0.444
MUSCLE 0.898 1979.5 0.630 0.493
20.E 20 4.4 0.013 2723.6 0.667 0.629 CLUSTALW 0.933 1162.8 0.652 0.140
CLUSTALO 0.928 1283.8 0.637 0.221
FSA 0.942 11566.5 0.525 0.913

Estimates for base frequencies and substitution rates can be used to character-
ize such adaptations. For substitution model parameter estimation, using the
single-shift model yields the closest parameter estimates across all alignment
types. In figure 7?7 we can see that for topological estimation, depending on
the alignment and level of divergence, the single-shift model performs as well
as, but usually better than the underspecified model used with RAxML. The
overspecified model performs about as well as well as the homogeneous model
until the 20E model condition.

3.2 Empirical study

Grass dataset For the concatenated analysis, the estimated topology was
identical for all alignment types except ClustalW. Furthermore, the placement
of the shift was identical for all alignment types except ClustalW. The estimated
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Figure 2: Topological error for every combination of alignment method and
maximum likelihood tree estimation method. Topological error is measured
with the normalized Robinson-Foulds distance of the model tree and the tree
estimated using a single-shift nonhomogeneous substitution model. Alignment
SP-FN and SP-FP are also reported.
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Figure 3: Alignment error (sum-of-pairs false negative rate) vs topological error
(normalized Robinson-Foulds distance). Results are aggregated for all alignment

types.

tree using a no homogeneous model with the concatenated MAFFT alignment
identifies Ananas comosus as more closely related to Oryza sativa than Sorghum
bicolor, which would be a very unconvential result. The tree estimated using a
homogeneous model on the MAFFT alignment does not make this placement,
and is in consensus with Clustal Omega, ClustalW, and Muscle estimated tree
topologies.
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Figure 4: Size of the MAST of the predicted shift subtree and the true subtree.

L. Correct root rate
Model condition  MLE method  ppyyp \AppT  MUSCLE CLUSTALW CLUSTALO  FSA

10A single shift 56.7% 23.3% 43.3% 26.7% 26.7% 23.3%
all shift 23.3% 20.0% 20.0% 23.3% 6.7% 20.0%
10B single shift 60.0% 16.7% 23.3% 13.3% 6.7% 20.0%
all shift 30.0% 6.7% 10.0% 3.3% 6.7% 0.0%
10C single shift 60.0% 16.7% 16.7% 10.0% 10.0% 16.7%
all shift 30.0% 13.3% 16.7% 3.3% 0.0% 6.7%
10D single shift 40.0% 20.0% 26.7% 6.7% 16.7% 6.7%
all shift 23.3% 3.3% 16.7% 0.0% 6.7% 3.3%
10E single shift 30.0% 10.0% 10.0% 6.7% 10.0% 3.3%
all shift 6.7% 3.3% 3.3% 3.3% 6.7% 0.0%
20A single shift 33.3% 20.0% 30.0% 13.3% 16.7% 36.7%
all shift 31.0% 6.9% 71% 6.7% 16.7% 17.2%
20B single shift 37.9% 17.2% 20.7% 6.9% 10.3% 24.1%
all shift 241% 13.8% 10.3% 0.0% 1% 10.3%
20C single shift 46.7% 20.0% 13.3% 13.3% 3.3% 0.0%
all shift 13.3% 6.7% 0.0% 6.7% 0.0% 3.3%
20D single shift 50.0% 13.3% 6.7% 13.3% 6.7% 3.3%
all shift 10.3% 3.3% 0.0% 3.3% 0.0% 0.0%
20E single shift 46.7% 16.7% 3.3% 6.7% 6.7% 0.0%
all shift 6.7% 0.0% 3.3% 3.3% 0.0% 0.0%

Table 3: Proportion of correct root placements by alignment and model condi-
tion.

For the per-gene analyses, figure 77 shows that on average, the topologies
estimated from different alignment methods have some disagreement. For con-
tinuous parameter estimates table 7?7 shows that for all alignments, estimated
shift and background models usually showed some difference in base frequencies
and substitution rate estimates.

Figure 77 shows that the topology estimated was identical across alignments.
The rooting for Clustal W was different, as was the shift placement.

4 Discussion

Alignment quality Our results from the simulation study supports that
alignment accuracy can have an impact on tree topology estimation. Sub-
stitution models accounting for nonhomogeneous and nonstationary sequence
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= TRUE-1shit £ MAFFT-1shift =01 MUSCLE-Lshift [ CLUSTALW-1shift [0 CLUSTALO-lshift [ FSA-1shift
BN TRUE-all shift @88 MAFFT-all shift B9 MUSCLE-all shift B8 CLUSTALW-all shift B8 CLUSTALO-all shift [ FSA-all shift
BEE TRUE-RAXML ~ BEEE MAFFT-RAXML  BEEl MUSCLE-RAXML  EEEI CLUSTALW-RAXML BN CLUSTALO-RAxML  EEEE FSA-RAXML
Base frequency estimation error
10 taxa 20 taxa

A 0 S A s o b

|Irelative errorl; (background)
ok N oW oA e oo

t% ssidae

10A 108 10C 10D 108 20A 208 20C 20D 20

o WAL s

10A 108 10C 100 10E 20A 208 20C 20D 20E
model condition model condition

Now
o o

~
o

|Irelative error||; (shifted)
I =
5 &

o
«

o

Figure 6: Base frequency estimation error as measured by the L1 norm of the
relative errors for each base frequency.

evolution can be used to study the origins and consequences of substitution
rate variation across lineages. From both the simulation and empirical study,
downstream estimates of substitution rates can vary between different alignment
methods.

FSA exhibits the most underalignment, as shown in table ??. This seems
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muscle clustalo clustalw fsa
nRF Mean Std Mean Std Mean Std Mean  Std
malflt 0.044 0.088 0.052 0.097 0.059 0.106 0.041 0.087

muscle 0.053 0.100 0.058 0.108 0.044 0.090
clustalo 0.059 0.105 0.052 0.095
clustalw 0.061 0.103

muscle clustalo clustalw fsa
nRF (rooted) Mean Std Mean Std Mean Std Mean  Std
mafft 0.171 0.191 0.188 0.200 0.191 0.198 0.191 0.205
muscle 0.192 0.204 0.191 0.203 0.198 0.206
clustalo 0.192 0.204 0.213 0.205
clustalw 0.217 0.207

Table 4: Aggregated statistics of Robinson-Foulds distance of gene trees esti-
mated using a single-shift model.

Base frequencies Substitution rates
2.00 -
0.40 4 alignment
B mafft
1.75 A B muscle

0351 [ clustalo
o 1.50 4 [ clustalw
TE 0.30 1 I fsa
= 1.25 4
5 0.25
1<
%’ 1.00
o 0.20
o
[ B
3 0151 0.75
©
>
&
= 0.50 A
-Cﬂ 0.10

0.05 A 0.25 A

0.00 - 0.00 -

T C A G CcT AT GT AC CG
Model parameter Model parameter

Figure 7: Box plot of the difference between background and shift model param-
eters estimated for each of the single copy orthologs. Median and interquartile
range is represented, whiskers are 1.5IQR and values outside of the whiskers are
not shown.

to negatively impact tree topology estimation far more than substitution model
parameter estimation. Conversely, MUSCLE and Clustal Omega perform rel-
atively well in the task of topology estimation among the selected alignment
methods, but poorly estimate background model parameters. However, there
isn’t an obvious pattern from the alignment summary statistics that would point
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S. bicolor S. bicolor S. bicolor M. balbisiana O. sativa
O. sativa O. sativa O. sativa A. comosus S. bicolor
A. comosus M. balbisiana A. comosus S. bicolor A. comosus
M. balbisiana A. comosus M. balbisiana O. sativa M. balbisiana
J. effusus J. effusus C. scoparia C. scoparia J. effusus
J. inflexus J. inflexus C. cristatella C. cristatella J. inflexus
C. scoparia C. scoparia J. inflexus J. effusus C. scoparia
C. cristatella C. cristatella J. effusus J. inflexus C. cristatella

0.4 0.2 0.0 0.4 0.2 0.0 0.4 0.2 0.0 0.6 0.3 0.0 0.4 0.2 0.0

(a) MAFFT (b) MUSCLE (c) ClustalO (d) ClustalW (e) FSA

Figure 8: Tree topologies for the grass dataset estimated using concatenated
MAFFT, MUSCLE, Clustal Omega, ClustalW, and FSA alignments respec-
tively. Branches that are predicted to have evolved with elevated G+C base
frequencies relative to the rest of the tree are highlighted in green.

Alignment  Which model T C A G CoT AT G T A« C Ceo G

malfft shift 0.294 0.176 0.313 0.217 1.245 0344 0.336  0.511  0.600
malfft background  0.234 0.254 0.243 0.269 1.087 0.420 0.313  0.432  0.585
muscle shift 0.294 0.178 0.311 0.217 1.233 0.389 0.380 0.580  0.676
muscle background  0.234 0.254 0.243 0.269 1.082  0.450  0.349  0.482  0.675
clustalo shift 0.295 0.179 0.309 0.218 1.194 0416 0406  0.627  0.722
clustalo background  0.234 0.253 0.243 0.269 1.071  0.460  0.359  0.503  0.705
clustalw shift 0.287 0.169 0.331 0.213 1.343 0.389 0410 0.585  0.615
clustalw background  0.246 0.241 0.251 0.262 1.111 0.450 0.341 0.479 0.575
fsa shift 0.291 0.178 0.316 0.215 1.251  0.350 0.341  0.513  0.605
fsa background  0.231 0.259 0.242 0.268 1.075  0.427 0.314 0427  0.579

Table 5: Model parameter estimates from the concatenated analysis

to some quality of the alignments resulting from these methods that leads to
this difference.

In the concatenated empirical study, there was consensus between all MSA
methods except ClustalW topologically as well as for shift placement. Even
when averaged across all loci, substitution rate estimates were highly variable
between alignment methods. The simulation study results suggest that it is more
difficult to estimate model parameters for the more basal substitution model.
From the standard deviation columns in 77, we see there’s less variance across
model parameter estimates for the model with a higher estimated G+C base
frequencies across loci. The model with elevated G+4-C typically corresponds to
the subtree containing Oryza sativa and Sorghum bicolor.

Branch model of substitution In the simulation study, phylogenetic esti-
mation using a branch model matching the number of shifts that the sequence
data was evolved under gives the best performance, as expected. Interestingly,
the all-shift model performs very closely to the no-shift model for topology es-
timation, except in the 20E model condition, where it performs slightly better
than the no-shift model. This difference in performance may indicate that the
improvement of these models is greater when there are more sequences being
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studied and they are more divergent. Though in most cases this seems to sug-
gest that the most general overparameterization doesn’t provide a significant
improvement in topological estimation over model misspecification.

A generalization of single-shift branch model, which we’ll call k-shift, can be
described with the aim to achieve the simplest explanation. This model would
make the tradeoff of having less continuous parameter estimation in exchange
for having a larger search space to explore, but signals of strong shifts might be
useful for narrowing this search space.

Limitations This study looks at a very specific case where exactly one change
has occurred in the phylogeny. We demonstrate that even in this simplified case,
all aspects of phylogenetic estimation are impacted by both alignment quality
and model misspecification. In this scenario, we assumed that there were exactly
two sets of substitution model parameters, and that one of those sets applied
to all the descending edges from a starting edge. As it is, the search space of
branch model assignments for each tree topology is O(n) where n is the number
of taxa. Natural extensions would be to allow for more sets of substitution model
parameters as well as less restrictions on what assignment of these models to the
branches are considered. These relaxations drastically increase the size of the
search space for model assignments to the tree topology, as well as the number
of continuous parameters to optimize for with the former. Because of this, this
study did not look at how a k-shift model would perform in the case that there
were potentially more sets of substitution model parameters.

A k-shift model is a natural extension, but would pose several challenges for
estimation on empirical data as well. Furthermore, these would also limit our
ability to look at realistic model conditions. One issue is in the availability of
empirical data with novel observations of multiple compositional shifts to gather
estimates from. Most studies only make note of two categories, usually high
GC and low GC. Another arises from how quickly the search space increases, as
finding multiple significant changes in internal branches would necessitate more
taxa to study.

5 Conclusions

In both the simulation and empirical studies, we looked at how both alignment
accuracy and model misspecification had an impact on downstream phylogenetic
inference and estimation. In our simulation study, we looked at a scenario
where there’s exactly one change in the substitution model that occurs in the
simulated tree, and that it occurs such that all descending edges also evolve with
that model. We showed that even in this simple case, MSA quality affected all
aspects of downstream phylogenetic estimation using a nonhomogeneous model,
from tree topology to continuous parameter estimation. Furthermore, we found
using a nonhomogeneous substitution model for maximum likelihood estimation
yielded closer to ground truth results than using a homogeneous substitution
model.
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In our empirical study, we observed an impact in tree topology estimation
when using a nonhomogeneous model versus a homogeneous substitution model,
supporting that the homogeneity-across-lineages assumption can affect estima-
tion even when dealing with large concatenated alignments. Furthermore, we
found that estimates using different alignments had a fair amount of disagree-
ment between their estimated gene tree topologies, and estimated continuous
parameters were even more sensitive to the alignment method used.
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Supplementary Online Materials

1 Supplementary Methods

Software commands used. INDELible [Fletcher and Yang, 2009] version
1.03 was run using the following settings to simulate model tree evolution

[TYPE] NUCLEOTIDE 1
[MODEL] mymodel
[submodel] JC
[TREE] mytree
[rooted] <# taxa>
[PARTITIONS] mypartition [mytree mymodel 1]
[EVOLVE] mypartition <# replicates> output

The trees are rescaled to have nonultrametric branch lengths and the follow-
ing control settings to simulate sequence evolution:

[TYPE] NUCLEOTIDE 1
[SETTINGS]
[output] PHYLIP
[MODEL] background
[submodel] GTR <CT> <AT> <GT> <AC> <CG>
[statefreq] <T> <C> <A> <G>
[indelmodel] USER <path to indel distribution>
[indelrate] <indel rate>
[MODEL] shift
[submodel] GTR <CT> <AT> <GT> <AC> <CG>
[statefreq] <T> <C> <A> <G>
[indelmodel] USER <path to indel distribution>
[indelrate] <indel rate>
[TREE] mytree <tree>
[treedepth] <specified tree height>
[BRANCHES] mymodel <tree with model placements defined>
[PARTITIONS] mypartition [mytree mymodel <sequence length>]
[EVOLVE] mypartition 1 sequence

The following command was used to perform MSA estimation with MAFFT
[Katoh and Standley, 2013] version 7.475
mafft <input sequence> <output alignment>



MUSCLE [Edgar, 2004] version 5.0.1428 was run with the following:

muscle -align <input sequence> -output <output alignment>

Clustal Omega [Sievers et al., 2011] version 1.2.4 was run with the following
clustalo -i <input sequence> -t DNA --threads 1 ><output alignment>
ClustalW [Larkin et al., 2007] version 2.1 was run with the following

clustalw2 <input sequence> -type=DNA -outfile=<output alignment>
FSA [Sievers et al., 2011] version 1.15.9 was run with the following

fsa <input sequence --maxram 8192 ><output alignment>

For single-shift search, PAML [Yang, 2007] was run with the following control

file:

RateAncestor =

fix_blength =

seqfile = <sequence_path>
treefile = <tree path>
outfile = <result output path>
noisy =
verbose =
runmode =
model =
Mgene =
ndata =
nhomo =
fix_kappa =
clock =
fix_alpha =
alpha =
getSE =

* GTR model

cleandata =
method =

O O OO OO ONOUIKF, ONOWW

The control file for the all-shift model is identical, except:

nhomo = 3
fix_kappa = 0

RAxML [Stamatakis, 2014] was run with the following command:

raxml -s <msa path> -n <name> -m GTRCAT -V -p <random number>

Grass dataset processing. To obtain single copy orthologs for the grass
dataset, we ran orthofinder using the following command:

2

orthofinder -f <path containing sequence files>

Supplementary Results and Discussion.

Simulation study runtime and memory usage. Memory usage for the
nonhomogeneous substitution model did not exceed 1 GB.
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Figure 2: Substitution rate error.

Estimation error For branch lengths, there wasn’t a clean way to quantify
error, in part because tree estimation and branch length estimation are heavily
intertwined. Comparing leaf-edge distances only captures roughly half of the
estimated branch lengths, but comparing pairwise distances does not consider
the topology in any way. Kuhner-Felsenstein distance [Kuhner and Felsenstein,
1994], shown in the middle panels in 3, takes topology into consideration, but is

difficult to interpret. For this reason we cannot draw any meaningful conclusions
about branch length estimation.
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Figure 3: Various measures for branch length estimation error. KF stands for
Kuhner and Felsenstein [1994].
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