
MLTL Multi-type (MLTLM):

A Logic for Reasoning about Signals of Different Types ⋆

Gokul Hariharan1,∗[0000−0002−3447−2183],

Brian Kempa1[0000−0003−2239−4218], Tichakorn Wongpiromsarn1[0000−0002−3977−122X],

Phillip H. Jones1[0000−0002−8220−7552], and Kristin Y. Rozier1[0000−0002−6718−2828]

Iowa State University

*gokul@iastate.edu, bckempa@iastate.edu,

nok@iastate.edu, phjones@iastate.edu, kyrozier@iastate.edu

Abstract. Modern cyber-physical systems (CPS) operate in complex systems of sys-

tems that must seamlessly work together to control safety- or mission-critical functions.

Capturing specifications in a logic like LTL enables verification and validation of CPS

requirements, yet an LTL formula specification can imply unrealistic assumptions, such

as that all signals populating the variables in the formula are of type Boolean and agree

on a standard time step. To achieve formal verification of CPS systems of systems,

we need to write validate-able requirements that reason over (sub-)system signals of

different types, such as signals with different timescales, or levels of abstraction, or

signals with complex relationships to each other that populate variables in the same

formula. Validation includes both transparency for human validation and tractability

for automated validation, e.g., since CPS often run on resource-limited embedded

systems. Specifications for correctness of numerical algorithms for CPS need to be

able to describe global properties with precise representations of local components.

Therefore, we introduce Mission-time Linear Temporal Logic Multi-type (MLTLM), a

logic building on MLTL, to enable writing clear, formal requirements over finite input

signals (e.g., sensor signals, local computations) of different types, cleanly coordinating

the temporal logic and signal relationship considerations without significantly increas-

ing the complexity of logical analysis, e.g., model checking, satisfiability, runtime

verification (RV). We explore the common scenario of CPS systems of systems oper-

ating over different timescales, including a detailed analysis with a publicly-available

implementation of MLTLM.

We contribute: (1) the definition and semantics of MLTLM, a lightweight extension

of MLTL allowing a single temporal formula over variables of multiple types; (2) the

construction and use of an MLTLM fragment for time-granularity, with proof of the

language’s expressive power; and (3) the design and empirical study of an MLTLM

runtime engine suitable for real-time execution on embedded hardware.

1 Introduction

Design and verification of safety-critical systems, such as aircraft, spacecraft, robots, and auto-

mated vehicles, requires precise, unambiguous specifications that enable automated reasoning

such as model checking, synthesis, requirements debugging, runtime verification (RV), and

checking for satisfiability, reachability, realizability, vacuity, and other important properties

⋆ Artifacts for reproducibility appear at: http://temporallogic.org/research/

NSV2022/. Funded in part by NSF:CPS Award #2038903, NSF:CAREER Award #1664356,

and NASA Cooperative Agreement Grant #80NSSC21M0121

2 Hariharan et al.

of system requirements. Modern, cyber-physical systems-of-systems present a unique chal-

lenge for specification, and consequently for scalable verification and validation, due to their

distributed and hierarchical nature. To seed automated reasoning for CPS systems-of-systems,

we need to be able to seamlessly construct global properties combining local phenomena and

coordinate requirements for numerical computations like supervision and signal processing

over data and variables of different types and sampling frequencies.

Due to the popularity of timelines in operational concepts for CPS systems-of-systems

LTL provides an intuitive way to precisely specify system requirements. The relative com-

putational efficiency of automated reasoning (e.g., model checking, satisfiability checking)

adds to the appeal of LTL as a specification logic. Since CPS specifications most often

need to describe finite missions with referenceable time steps, variations of LTL over finite

signals (sometimes also called “traces”) emerged with intervals on the temporal operators.

Variations on Metric Temporal Logic (MTL)[28], such as Signal Temporal Logic (STL)[16]

and Mission-time Linear Temporal Logic (MLTL)[29,23] vary widely in the types of fi-

nite bounds they introduce on LTL’s temporal operators and the complexity of automated

reasoning (e.g., model checking, satisfiability checking) over these logics. MLTL, which

adds finite, closed, integer bounds on LTL’s temporal operators, has emerged as a popular

specification logic for complex CPS systems-of-systems such as the NASA Lunar Gateway

Vehicle System Manager [12], and a JAXA autonomous satellite mission [27]; see [24] for

a collection of MLTL patterns over a weather balloon, automated air traffic management

system, sounding rocket, and satellite. Again, we see the selection of MLTL center on the

balance of expressiveness with computational efficiency; MLTL efficiently reduces to LTL

[23] and recent work has contributed very efficient, flight-certifiable, encodings of MLTL for

runtime verification in resource-limited embedded hardware [20].

However, realistic requirements for CPS systems-of-systems need to combine variables

of different types in the same requirement. For example, a requirement specified as an LTL

formula may implicitly presume that the input signals populating its atomic propositions share

a common notion of a time step. But we struggle to write a single formula to describe a global

property about a system where different sub-systems operate at different times, or, more

generally, over different types with a non-obvious comparison function. For one example, this

problem emerges when we try to specify global safety properties of deep-space-exploring craft.

One subsystem of the spacecraft may regulate monthly cycles to wake from hibernation and ex-

ecute course corrections whereas another subsystem may operate on the nanosecond frequency

to make hyper-sensitive adjustments; it is not obvious how to efficiently reason about these in

the same formula. Numerical computations and reasoning on embedded hardware are essential

features of CPS, yet they present even more challenges for combining multiple types in a single

specification. During long, complex, numerical simulations having a monitor verify statistical

patterns in generated data will help detect errors or non-convergence in the early phases, saving

computational resources, manual inspection and inefficient postmortem analysis [14,15].

Previous works provide some options for special cases of this problem, with significant

complexity drawbacks. These largely center on two philosophies: higher-order logics reason-

ing over sets of formulas (instead of one formula combining different types), and annotations

to deal with multiple time granularities across formula variables, though not necessarily other

combinations of different types. Examples of distributed sets of specifications count on locally

evaluating sub-system-level synchronous [6] or asynchronous [5,26] signals; this set can

MLTL Multi-type 3

coordinate through a global formula evaluated over the local formulas [6]. HyperLTL focuses

on specifications over sets of formulas over signals of the same type [9], oppositely from this

work where we focus on constructing single formulas that seamlessly reason over signals of

different types.

The particular instance of different types in the form of input signals over different

time granularities that comprise parts of the same, single temporal logic specification arises

frequently in CPS; see [17] for a survey. Most previous works focus on developing well ex-

pressible languages to define temporally distributed specifications precisely. Again, this often

comes with higher-order reasoning (see for example [18]) and complexity penalties; e.g., [10]

introduces the notion of temporal universes and uses a set-theory representation of different

timescales to abstract notions of time granularities. Propositional Interval Temporal Logic

(PITL) adds chop (“;”) and project operators to LTL to increase expressivity for time granulari-

ties over infinite signals; another variation adds temporal relations like “just before” [11]. First-

Order Theory (FOT) enables writing time-granular specifications to account for continuous-in-

time events and relate them to discretized-in-time representations [3]. Other methods include

using automata to represent time-granularity [21,22] and using spider-diagram representations

for time-granular specifications [7], and a two-dimensional metric temporal logic that can

be potentially used to represent time granularities [4]. Table 1 collects this related work.

Time-granular logic Syntax elements Ref.

PITL empty, proj, “;”, �, ♦ [8]

Non standard FOT ∀, <e , <w, <1, ∃ [3]

ITL <, m, O, s, f etc. [1]

Euzenate’s extension 6×6 table of operators [11]

Automata representation Automata [21,22]

Spider diagrams Spider diagrams [7]

2D MTL internal eternal Li, Le etc. [4]

Monodic SOL Layered representation of FOT [18]

Table 1: Various time-granular specification languages and their syntax elements.

None of the existing solutions enable directly and intuitively specifying linear temporal

logic over finite signals containing different types. We need a logic designed for this use,

that enables direct specification of common CPS requirements, e.g., for supervision or signal

processing, without kludgey syntax that makes correct specifications hard to write, unintuitive

constructions that make specifications hard for CPS designers to validate, or introducing com-

plexity blow-ups that make verification techniques like model checking or runtime verification

intractable. Therefore, we build upon the popular logic MLTL to create MLTLM, a logic for

intuitively and directly expressing bounded temporal logic formulas whose variables may be of

different types, including different time granularities. The syntax of MLTLM matches that of

MLTL except for the single addition of a signal-type label on each temporal operator to signify

the output type of that operator. Figure 1 depicts an example MLTLM specification workflow.

We contribute: (1) a formal definition for the logic MLTLM (Mission-time Linear Tempo-

ral Logic Multi-type), including syntax and semantics (Sec. 3); (2) a translation of MLTLM

to MLTL with a proof of correctness, enabling use of existing MLTL automated reasoning

engine (Sec. 4.1); (3) an open-source implementation of a direct encoding of MLTLM for

4 Hariharan et al.

(a) Workflow when using LTL/MLTL

(b) Envisioned workflow using MLTLM

Fig. 1: Iteration workflow for CPS runtime verification of project requirements describing

the system and specification in simple lexical language. (a) Traditionally, modifications

to the system or specification at any level restarts the cycle. (b) We propose that project

management first verify a top view specification in a simple syntax while iteration of the

detailed specification is contained to system engineering. The automated assistant will provide

hints on suggesting the right projection between types.

MLTL Multi-type 5

runtime verification, released as an extension of the flight-certifiable R2U2 engine (Sec. 4.2).

We choose R2U2 because it is currently the only runtime verification engine that enables

real-time analysis of complex algorithms, such as those for numerical software verification,

in real time on embedded hardware [30,20].

Sec. 2 gives a prelude to the conventional single type temporal logic, MLTL, and gives

background on R2U2 – an industry-used runtime verification engine for CPS that we will

build upon to monitor MLTLM specifications. Sec. 3 defines our new logic, MLTLM, provid-

ing semantics, examples, properties, and use-cases. Sec. 4 discusses comparisons to a single

signal-type logic, and optimization opportunities for automated reasoning using MLTLM.

Finally, Sec. 5 discusses conclusions and scope for future work.

2 Preliminaries

This section formalizes signals and trajectories, overviews MLTL which is extended into

MLTLM in Sec. 3, and R2U2 which is adapted to monitor MLTLM in Sec. 4.2.

2.1 Signals and Trajectories

Definition 1. (Signal) A signal σ over an atomic proposition p is defined as the finite

sequence σ=a0,a1,... where σ[i]=ai∈{true,false} indicates whether p holds at the discrete

time instance i. All signals have a type, written σA for a signal σ with type A.

Definition 2. (Trajectory) A trajectory π over atomic propositions p0,...,pn is a set of signals,

i.e., π={σ0,σ1,...,σn} where σi is a signal over pi. π
A
p [i] refers to the ith value of the signal

of type A over atomic proposition p in π.

In Sec. 3, we impose that binary logical operators can only operate on signals of the same type.

We assume that types represent properties such as frequency that are homogeneous across a

type. Related work in linear temporal logic use “traces” or “computations” [2,9], which is typi-

cally described as a sequence of sets of atomic propositions. In contrast, we generalize “traces”

by allowing member signals to be of different types and call them collectively as a trajectory.

2.2 MLTL

MLTL is a variant of LTL [2] on finite signals with closed temporal bounds [29,30] on natural

numbers.

Definition 3. (MLTL Syntax [29]) The syntax of an MLTL formula ϕ over a set of atomic

propositions AP is recursively defined as:

ϕ := true | p | ¬ϕ1 | ϕ1∧ϕ2 | ϕ1UIϕ2

where p∈AP, ϕ1 and ϕ2 are MLTL formulas, I :=[lb,ub] is a closed interval bound, such

that lb and ub are natural numbers such that lb≤ub.

Abstract Syntax Tree (AST) The AST representation of an MLTL formula has nodes of logical

operators and leaves of atomic propositions connected to represent the recursive structure of

the expression from Def. 3.

6 Hariharan et al.

Definition 4. (MLTL Semantics [29]) The evaluation of an MLTL formula ϕ on a trajectory

π where all signals have uniform type produces a signal σ defined recursively on the signals

σ1 and σ2 representing the evaluation of its child subformula(s) ϕ1 and ϕ2 respectively.

σ[i] :=







































πp[i] if ϕ=p

¬σ1[i] if ϕ=¬ϕ1

σ1[i]∧σ2[i] if ϕ=ϕ1∧ϕ2

true iff |σ1|,|σ2|>(i+ub) and

∃j∈ [i+lb,i+ub] such that σ2[j]= true

and ∀k<j where k∈ [i+lb,i+ub],σ1[k]= true

if ϕ=ϕ1U[lb,ub]ϕ2

Other common operators are defined via equivalences, i. e., false ⇔ ¬true, future

♦Iϕ⇔true UI ϕ, globally �Iϕ⇔¬(♦I¬ϕ), and next ©ϕ⇔�[1,1]ϕ.

2.3 R2U2

The Realizable, Responsive, Unobtrusive Unit1 (R2U2) is an MLTL based RV engine for

flight mission systems [29] used in robotics [20], NASA drone aircraft [19,31], and is being

evaluated for use on the Lunar Gateway space station [12]. R2U2 is Realizable: implemented

on real hardware, Responsive: reports specification violation immediately, and Unobtrusive:

uses existing data sources instead of modifying the system to add instrumentation. R2U2

features specification reconfiguration and real-time performance with guaranteed memory

bounds to better support the needs of flight systems. We have developed our MLTLM verifica-

tion engine upon R2U2, which is an open-source RV engine with well-documented industrial

use to provide users with a seamless move to multi-type logic. The R2U2 based MLTLM

verification engine we develop upholds all existing guarantees of R2U2.

3 Mission-time Temporal Logic Multi-type (MLTLM)

We develop the foundations of MLTLM in this section. MLTLM is a lightweight extension

to MLTL that enables temporal reasoning over system trajectories composed of signals of

different types.

Definition 5. (MLTLM Syntax) The syntax of an MLTLM formula ϕ over a set of atomic

propositions AP is recursively defined as:

ϕ := true | p | ¬ϕ | ϕ1∧ϕ2 | ϕ1UJϕ2

where p∈AP, ϕ1 and ϕ2 are MLTLM formulas, and J :=[lb,ub,A] is a finite interval bound

such that lb and ub are natural numbers, lb≤ub<∞, and A is a label indicating the signal

type over which an MLTLM temporal operator evaluates.

Notably, MLTLM syntax is MLTL syntax with signal types associated with temporal operators.

1 r2u2.temporallogic.org

MLTL Multi-type 7

Definition 6. (MLTLM Semantics) The evaluation of an MLTLM formula ϕ on a trajectory

π produces a signal σ of type A defined recursively on the signals σ1 and σ2 representing the

evaluation of its child subformula(s) ϕ1 and ϕ2 respectively.

σA[i] :=



















πAp [i] if ϕ=p

¬σA1 [i] if ϕ=¬ϕ1

σA1 [i]∧σ
A
2 [i] if ϕ=ϕ1∧ϕ2

σA1 [i..]U[lb,ub]σ
A
2 [i..] if ϕ=ϕ1U[lb,ub,A]ϕ2

where σ[i..] is the subsequence of signal σ starting from discrete point i and all operators are

evaluated according to the rules of Def. 4.

Note that when evaluating the fourth case in Def. 6, the signal types produced by subformulas

ϕ1 and ϕ2 must be projected into signals of the type associated with the temporal operator.

Additional common operators like implication, disjunction, and globally are constructed by

standard equivalence relations as in MLTL, with all derived temporal operators inheriting the

type specifier on their interval bounds. If the relationship between types can be expressed as

a function that converts the type of signals, that function is called a projection.

Definition 7 (Projection). The projection function TB

A
(σA) takes the signal σ of type A and

returns a new signal of type B.

We will examine several projection functions, however writing MLTLM formulas requires

only assurance their existence, not their definition; this provides a separation of concerns we

leverage to ease specification writing and linearize verification workflow. For example, con-

sider a formula ϕ specifying that ϕ1 should hold every hour for 10 hours, and ϕ2 should hold

every second for 100 seconds. In MLTLMϕ could be written as�[0,9,hour]ϕ1∧�[0,99,second]ϕ2.

In MLTL, ϕwould need to be written assuming a monitor rate, say seconds, then specifier

would write �[0,0]ϕ1∧�[3600,3600]ϕ1 ∧�[7200,7200]ϕ1 ∧··· and �[0,99]ϕ2. The formula is

longer and embeds the relation between hours and seconds. If the specification must be evalu-

ated at a monitor rate of minutes instead, the canonical encoding must be updated by the specifi-

cation author as discussed in more detail in Sec. 1 (Fig. 1). In contrast, in MLTLM, the top view

specification remains the same even in the face of implementation details like evaluation rate.

3.1 Equivalent MLTLM Formula for Every MLTL Formula

For a formula naming at most one type, all properties that hold in MLTL hold in MLTLM,

i.e., ♦[lb,ub,A]ϕ⇔true U[lb,ub,A] ϕ, �[lb,ub,A]ϕ⇔¬(♦[lb,ub,A]¬ϕ) and so on. The following

claim expresses that formulas expressible in MLTL form a subset of formulas expressible

in MLTLM. The claim attests that there is no loss in using MLTLM compared to MLTL. The

transformation is simple, and the formula is, at worst, the same length, though potentially

much shorter in MLTLM, as demonstrated in Sec. 4.3.

Claim. An equivalent MLTLM formula of the same length exists for every MLTL formula,

and this translation is possible in constant time.

Proof. We can represent any MLTL formula as an MLTLM formula by appending a signal

type to the interval bound of every temporal operator. This follows from the definition of

8 Hariharan et al.

MLTLM. The formula length, being the total number of operators plus atomic propositions,

is not affected by appending a type name to the temporal operators. Hence the resultant

MLTLM formula is of the same length as the MLTL formula.

3.2 Evaluation of MLTLM Formula

Evaluation of an MLTLM formula on a trajectory requires signals for all atomic propositions.

Evaluating an MLTLM formula naming at most one type over a trajectory is equivalent to

evaluating MLTL formulas over a trajectory containing only the required signals.

With projection, a new signal of a different type can be derived from an existing signal in

the trajectory. For example, the return of a high-rate sensor can be down-sampled to match the

type of low rate sensor. This “derived signal” evaluation is where all signals are first projected

to a common type before evaluation. Using signals, types, and projection, we can evaluate

a formula with mixed types by considering each subformula to represent the signal of its own

evaluation and projecting where necessary as explained further in the next section.

Critically, operator semantics are defined for any type, but only when the input(s) and

output types match. The inputs to the temporal logic operator must be projected to the written

type in the operator’s bound if needed. Fundamentally, MLTLM formulas represent a directed

graph of data flow between domains of MLTL connected by projections.

Tutorial Example Application of the MLTLM Semantics (Def. 6) To help clarify how

the semantics in Def. 6 are applied, we consider the formula �[1,2,B](�[2,4,A]p). The global

(�) operator is a common unary temporal operator derived from the definition of U by the

equivalence relation �[lb,ub,A]ϕ⇔ ¬(true U[lb,ub,A] ¬ϕ). This is the same as adding the

following case to the MLTLM semantics:

σ[i] :=true iff σA1 [j]=true ∀j∈ [i+lb,i+ub], if ϕ=�[lb,ub,A]ϕ1.

Applying Def. 6, the evaluation of formula �[1,2,B](�[2,4,A]p) depends on the type of any

known signals for p and the desired output type. Let us consider generating a signal of type

B from the above formula, and that πAp is known for p. In Fig. 2a, the known signal for p, σA1 ,

is input to �[2,4,A] whose satisfaction signal, σA2 , is input to �[1,2,B], finally generating σB1
which meets the required output of type B.

Now let us consider another case with the same formula where we need an output signal

of type C, and know πBp . In Fig. 2b, evaluating the subformula �[2,4,A]p requires a signal

for p in type A per the semantics, but we only know p in type B. This implies a projection

TA

B
(σB1)=σ

A
1 before the result is input to�[2,4,A], generatingσA2 . Another type incompatibility

arises between σA2 and �[1,2,B], so it is again (implicitly) projected to a type B through

TB

A
(σA2)=σ

B
2 . Since the desired output type is C, there is one last projection TC

B
(σB3)=σ

C
1 .

3.3 Examples of Projections

Earlier in Sec. 3 we defined an abstract projection (Def. 7). This section will consider a couple

of useful projections and discuss some example specifications.

MLTL Multi-type 9

σB
2

�[1,2,B]

σB
1

TB

A

σA
2

�[2,4,A]

σA
1

p

(a)

σC
1 TC

B

σB
3

�[1,2,B]

σA
2

σB
2

TB

A

σA
1

�[2,4,A]

TA

B

σB
1

p

(b)

Fig. 2: Illustration of two possible evaluations of a given formula �[1,2,B](�[2,4,A]p)
.

Definition 8. (Modulo-Reduction Function) The function fs : σ
A → σB implements the

projection TB

A
(σA) by modulo-reduction with positive integer stride s when:

fs(σ
A)=σB such that σB[i]=σA[i·s] (1)

The modulo-reduction function outputs every sth value from the input signal.

Definition 9. (Majority-Reduction Function) The function gs : σ
A → σB, implements the

projection TB

A
(σA) by majority-reduction with positive integer stride s when:

gs(σ
A)=σB such that

σB[i]=

{

true if N0({j∈ [i·s,(i+1)·s] :(σA[j]=true)})≥⌊s/2⌋

false otherwise

(2)

where N0(·) is the set cardinality.

The majority-reduction function outputs the majority value of every s values of the input signal.

3.4 Example Specifications Across Timescales

We consider a few example specifications taken from literature on time-granularities [17,25],

and modify or extend them to the context of RV.

1. “Verify that John is present for 8 hours at a stretch each day for the next 6 days.”
This specification can be represented in MLTLM as:

�[0,5,day](♦[0,16,hour]�[0,7,hour]john-present) (3)

The specification says that eventually, from the 0th to the 16th hour, there exists an hour

such that John is present from the 0th to the 7th hour. The eventually operator has a time

going from 0 to 16, and the global operator from 0 to 7, and the total time adds to 0 to

23 hours, which is a 24 hour period (a day).
This specification is verified on a daily basis, based on the type of the root node of the

AST for Eq. (3), the �[0,5,day]. The day type must be projected from the hour type used

by the subformula. The satisfaction of the formula depends on the projection used to go

from the hourly type to the daily type.

10 Hariharan et al.

2. “Verify that for at least one day in a year the plant works every hour”

♦[0,364,day]�[0,23,hour]plant-works

3. “Verify that every day the plant is in production for some hours”

�[0,364,day]♦[0,23,hour]plant-production

4. “Verify that the plant is monitored by the remote system every minute of every hour for

the next 24 hours”

�[0,23,hour]�[0,59,minute]system-monitored

5. “On all days of the year, the plant works for at least 12 hours”

We represent this in MLTLM using the majority-reduction function (Def. 9), with

A≡hour and B≡day as

�[0,364,day]�[0,0,hour]plant-works

6. “Verify that the system deviates at most for a minute every hour for the next 24 hours.”

We can represent this in MLTLM by modifying the cardinality relation in Eq. (2) to “>1”

and using the resultant function with A≡hour and B≡day as the projection,

�[0,23,hour]�[0,0,minute]system-deviates

4 Equisatisfiable Formula in MLTL and an Implementation of an

MLTLM monitor with the Modulo-Reduction Projection

The previous section introduced MLTLM and demonstrated how it could simplify the work-

flow and specifications across timescales. We now illustrate space and time optimization

possibilities by implementing an MLTLM RV engine. The generic syntax and semantics of

MLTLM separates the specification from the signal type, i.e., the specification remains the

same irrespective of the signal type. It is apparent from the semantics (Def. 6) that the output

signal type is determined only in the fourth case with the temporal operator. For example, the

formula p∧q represents multiple output signal types depending on the trajectory types used

for p and q, whereas the formula �[0,0,A](p∧q) has a single output type A irrespective of the

trajectory types used for p and q. An implementation needs a single output type, and hence

we consider a subset of MLTLM formulas that have a temporal operator at the root of the

AST, and assume that the type on the root temporal operator is the desired output type.

Furthermore, to make the evaluation of an MLTLM formula complete, two more ingredi-

ents are essential, (a) the placement of projections in the AST of an MLTLM formula and (b)

defined projections between type signals. Consider the MTLTM formula, �[0,0,A](p∧q). Let

us assume that only a signal of type B is available from p and a signal of type C is available

from q, as denoted in Fig. 3a. From the semantics Def. 6, it is clear that a conjunction is al-

lowed only between signals of the same type, which implies that there are implicit projections

to match signal types in the conjunction as shown in Fig. 3b.

MLTL Multi-type 11

We have two (out of many) options here to match types, (a) to project to a common

signal type D at the conjunction, and then to a type A to match type in �[0,0,A] (Fig. 3b), and

(b) place a projection to type A at the conjunction, then a second projection is not needed

to match types in �[0,0,A] (Fig. 3c). While option (a) is of interest in the broader scope of

applications with MLTLM like signal processing, option (b) is the situation with the minimal

number of projections. The generalization for this minimal projection placement is to impose

that signals are projected to the type of the closest ancestor node with a type. All nodes in

the unique path connecting a node to the root of the AST are ancestor nodes of the node (the

node inclusive). In this example, the closest ancestor of the conjunction is �[0,0,A] whose type

is A. We further assume that all such projections exist to evaluate a formula.

�[0,0,A]

∧

σB

p

σC

q

(a)

�[0,0,A]

σA

TA

D

σD

∧

σD σD

TD

B

σB σC

p

TD

C

q

(b)

�[0,0,A]

σA

∧

σA σA

TA

B

σB σC

p

TA

C

q

(c)

Fig. 3: The evaluation of an MLTLM formula depends on the placement of projections to

match types in binary operators.

We consider only the modulo-reduction function (Def. 8) as it is not possible to cover

all scenarios in this paper. We develop a theory to derive equisatisfiable MLTL formula for an

MLTLM formula with a class of logical projections and then develop a translator based on it

with the modulo-reduction projection (Def. 8). We then compare the memory and time needed

to evaluate formulas using MLTLM and MLTL. In summary, we find that MLTLM reflects on

profound savings in memory compared to its closest single-type logic. The results presented

herein are only preliminary observations of optimization possibilities using MLTLM.

4.1 The Translator

Theorem 1. (Expressive Equivalence of MLTL and MLTLM with Logical Projections) Let F
be a projection expressible in MLTL, then F is a logical projection. Let A be a type and ψ be

an MLTL formula that outputs signals of type A. For every MLTLM formula ϕ such that for

every type t in ϕ there exists a chain of logical projections from t to A, the signal generated

by ϕ is equivalent to another signal generated by ψ.

12 Hariharan et al.

Proof Sketch. The full proof is available in supplementary material posted online2. We give an

example sketch over two signal types B and C related by a logical projectionF(σB)=σC. We

use the semantics of MLTLM (Def. 6) to prove by induction on the structure of the formula that

any MLTLM formula that has temporal operators with both typesB andC can be reduced to an

equisatisfiable formula all of whose temporal operators are of typeB. An MLTLM formula of a

single type can be reduced to an MLTL formula by merely removing the type from the formula.

We complete the proof by assuming that a formula of the form ϕ=ϕ1U[lb,ub,C]ϕ2 can be

equivalently expressed with type B in its AST root using the logical projection. For example,

we can show that the modulo-reduction projection (Def. 8) can be equivalently expressed as

an MLTL formula without a projection to type C using the function p(ϕ) where

p(ϕ)=©lb
B (ϕ2

∨(ϕ1∧©
s
Bϕ2)

∨(ϕ1∧©
s
Bϕ1∧©

2s
B ϕ2)

∨(ϕ1∧©
s
Bϕ1∧©

2s
B ϕ1∧©

3s
B ϕ2)

...

∨(ϕ1∧©
s
Bϕ1∧©

2s
B ϕ1∧©

3s
B ϕ1 ··· ∧©

(m−1)s
B

ϕ1∧©
ms
B ϕ2)),

(4)

where ©B=�[1,1,B] is the next operator (and hence, ©s
B
=�[s,s,B]), andm=⌊(ub−lb)/s⌋.

We then extend this to all cases in the semantics (Def. 6). Thus, any MLTLM formula ϕ with

mixed signal types B and C has an equisatisfiable formula q(ϕ), where the entire formula

has a single type, B, defined recursively by

q(ϕ):=



















ϕ, if ϕ has only one type, B in the entire formula,

p(q(ϕ1)U[lb,ub,C]q(ϕ2)), if ϕ=ϕ1U[lb,ub,C]ϕ2,

¬q(ϕ1), if ϕ=¬ϕ1,

q(ϕ1)∧q(ϕ2), if ϕ=ϕ1∧ϕ2.

(5)

It is straightforward to extend this analysis to multiple types that have transitional chain of

connected projections. We showed that we could derive an equisatisfiable formula verifiable

in the image type for any MLTLM formula when using the logical projections. We implement

a translator from MLTLM to MLTL using the theory discussed.

We developed three translators from MLTLM to MLTL based on the recursive formula

Eq. 5. The three translators are based on succinct and expanded versions of Eq. 4 the most

succinct (to our best capability) being translator 3, and the most expanded being translator

1. The translator’s details and proof of correctness will be reported elsewhere in the interest

of space. We confirm, however, that verdicts from the three translators on a well-established

MLTL engine (R2U2 [20]) and its extended MLTLM monitor developed by us (discussed

in Sec. 4.2) produce consistent outputs for the same inputs with more than 70 randomly

generated formulas.

2 http://temporallogic.org/research/NSV2022/

MLTL Multi-type 13

4.2 An Efficient MLTLM Engine

We implement an RV engine for specifications in MLTLM on top of R2U2 (see Sec. 2, and

[20]). Certain notes on how specifications are written out for verification using R2U2 are

relegated to supplementary material online3. We skip the details of the implementation in the

interest of space and report it elsewhere. We summarize the implementation briefly.

As we mentioned many times in this article, if a sensor data is only of interest every

hour, then the second-to-second information can be dropped out; and the modulo-reduction

function (Def. 8) does this operation. The MLTLM engine has added projection operators

(see Def. 7) at appropriate places according to the semantics of MLTLM (Def. 6) using the

closest ancestor type projection discussion in Sec. 4 (Fig. 3). The modulo-reduction projection

operator drops the appropriate signal values not needed in evaluating a formula and reports

the output signal type corresponding to the type in the root of the AST.

4.3 Optimization Results

In Sec. 3.1 we showed that every MLTL formula could be expressed in MLTLM in the same

length. This section analyzes how long are the intuitive translations to MLTL compared to

MLTLM. We do not claim rigorous proof on the shortest possible formula length but rather

compare the most intuitive and succinct translations. We note that the translations contain

expressions of the form (see Eq. 4),

ϕ1∧©
s
Bϕ1∧©

2s
B ϕ1∧©

3s
B ϕ2,

which to the best of our knowledge cannot be made any shorter in LTL and MLTL [32].

We randomly draw MLTLM formulas using the procedure in [13] and plot the length

of the shortest intuitive MLTL translations. The randomly drawn formulas are parametrized

by the probability of drawing a temporal operator (P), the maximum difference between the

lower and upper bounds (M), and the maximum signal length (T). We will fixM=T=6
in our study here. Furthermore, the memory and time also depends on stride, s of the modulo-

reduction function (see Eq. (1)). In real systems specifications may reason over say, seconds,

minutes, hours and days, which correspond to s=60, and 24. However, as we mentioned

previously, we are reporting preliminary observations on optimization possibilities, and we

use four signal types, which we will call A, B, C and D, where (see Eq. (1) for fs(σ)), with

f2(σ
A) = σB, f3(σ

B) = σC, f4(σ
C) = σD,

with stride lengths s=2,3,4. Note that the memory savings will be much larger with a larger

stride like s=60 (e.g., from second to minute).

Fig. 4a shows the cumulative formula length with randomly drawn formulas. At P=0.5,

the three translators produce MLTL formulas of nearly the same length (the dotted, dashed,

and dashed and dotted lines). However, Translator 3 performs slightly better with shorter

formula lengths. In contrast, the formula lengths of the MLTLM formulas are substantially

smaller. Hence, there is no loss in using MLTLM in comparison to MLTL (see Sec. 3), but

using MLTLM may result in much smaller and more intuitive formulas depending on the

projection function.

3 http://laboratory.temporallogic.org/research/NSV2022

MLTL Multi-type 15

On increasing the probability of choosing a temporal operator, the equisatisfiable formulas

in MLTL become significantly longer owing to the expansion to the base type as discussed

in Sec. 4.1. Fig. 5 shows the estimated resource and time requirements on hardware. The

memory to evaluate a formula is statically assigned in R2U2 [20] as dynamic memory is

often not permitted in flight software. Hence, we compare the amount of static memory that

needs to be assigned for equisatisfiable formulas in MLTLM and (translated) MLTL (Fig. 5a).

Similarly, the time taken for formula evaluation is directly proportional to the number of nodes

created in the AST. We call the nodes in the AST as observers (as seen in the Y axis labels

of Fig. 5b). We see that equisatisfiable formula require much lesser memory in MLTLM than

MLTL (Fig. 5a). Similarly, the evaluation time is also much faster for MLTLM as it needs

much lesser observers (Fig. 5b).

We end this section with a few remarks. We considered random formulas in this section,

and they may not be true representatives of real specifications that may have different results on

memory and time savings (Fig. 5). Nonetheless, the results show that there is great opportunity

to have short intuitive formulas that encode timescales directly in the formula to simplify the

workflow (Fig. 1), and in addition, an optimally configured RV engine for MLTLM is likely

to have profound memory savings making it more suitable for resource constrained hardware.

5 Conclusion

Writing specifications naturally needs reasoning across multiple signal types, be it signals

coming from different sensors at different rates, or belonging to observers in parallel universes

(distributed systems), or having a mix of continuous and discrete signals (hybrid systems). We

developed a multi-type logic to express such specifications, and then explored an application

to time granularities. As discussed, this serves multiple purposes: 1) for the user, specifications

are easy to write, 2) the theoretical satisfaction in different types is defined unambiguously, and

3) implementations can better utilize resources when compared with a single signal-type logic.

Moreover, we expect that MLTLM will simplify the workflow by keeping the syntax simple

and accessible, and postponing the nuances into the projection function. More importantly,

MLTLM separates the specification from signal type. For example, let us suppose that a

pressure sensor is changed in the Lunar Gateway, and it generates data in a different rate than

the old sensor, or perhaps in a different unit like Pascals in the place of atmospheric pressure.

Specifications for a single type logic would have to be changed to account for the signal type.

MLTLM side-steps this process: The signal type will not affect the specification in any manner.

In the future, we plan to have an automated assistant, that will allow a user to choose different

projections to use for different contexts in specifications, (like “at least”, “at most”, “only once”

etc.), and will also inform the user about the amount of memory he will need to dedicate/save

on the hardware (the memory needed may vary based on the type of projection). This will allow

the industrial verification community to seamlessly move to a time-granular logic. We will also

consider human authored MLTLM specifications on real systems to get a better perspective

on optimization opportunities. Lastly, the MLTLM monitor built upon R2U2 was validated

across a regression suite of specifications and trajectories, but the current implementation can

be improved to have tighter bounds on memory usage, which needs further investigation.

16 Hariharan et al.

References

1. Allen, J.F., Hayes, P.J.: A common-sense theory of time. In: Proceedings of the 9th International

Joint Conference on Artificial Intelligence - Volume 1. p. 528–531. IJCAI’85, Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA (1985)

2. Baier, C., Katoen, J.P.: Principles of model checking. MIT press (2008)

3. Balbiani, P.: Time representation and temporal reasoning from the perspective of non-standard

analysis. In: Proceedings of the Eleventh International Conference on Principles of Knowledge

Representation and Reasoning. p. 695–704. KR’08, AAAI Press (2008)

4. Baratella, S., Masini, A.: A two-dimensional metric temporal logic. Mathematical Logic Quarterly

66(1), 7–19 (2020). https://doi.org/https://doi.org/10.1002/malq.201700036

5. Bataineh, O., Rosenblum, D.S., Reynolds, M.: Efficient decentralized LTL monitoring framework

using tableau technique 18(5s) (2019)

6. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. In: Giannakopoulou, D., Méry, D. (eds.)

FM 2012: Formal Methods. pp. 85–100. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

7. Bottoni, P., Fish, A.: Policy specifications with timed spider diagrams. In: 2011 IEEE Sym-

posium on Visual Languages and Human-Centric Computing (VL/HCC). pp. 95–98 (2011).

https://doi.org/10.1109/VLHCC.2011.6070385

8. Bowman, H., Thompson, S.: A decision procedure and complete axiomatization of finite interval

temporal logic with projection. Journal of Logic and Computation 13(2), 195–239 (2003).

https://doi.org/10.1093/logcom/13.2.195

9. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez, C.: Temporal

logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) Principles of Security and Trust. pp.

265–284. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

10. Clifford, J., Rao, A.: A simple, general structure for temporal domains (1986)

11. Cohen-Solal, Q., Bouzid, M., Niveau, A.: An algebra of granular temporal relations for qualitative

reasoning. In: Proceedings of the 24th International Conference on Artificial Intelligence. p.

2869–2875. IJCAI’15, AAAI Press (2015)

12. Dabney, J.B., Badger, J.M., Rajagopal, P.: Adding a verification view for an autonomous real-time

system architecture. In: AIAA Scitech 2021 Forum. p. 0566 (2021)

13. Daniele, M., Giunchiglia, F., Vardi, M.Y.: Improved automata generation for linear temporal logic.

In: International Conference on Computer Aided Verification. pp. 249–260. Springer (1999)

14. Dinh, M.N., Abramson, D., Jin, C.: Runtime verification of scientific

codes using statistics. Procedia Computer Science 80, 1473–1484 (2016).

https://doi.org/https://doi.org/10.1016/j.procs.2016.05.468, international Conference on

Computational Science 2016, ICCS 2016, 6-8 June 2016, San Diego, California, USA

15. Dinh, M.N., Trung Vo, C., Abramson, D.: Tracking scientific simulation using online time-series

modelling. In: 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Com-

puting (CCGRID). pp. 202–211 (May 2020). https://doi.org/10.1109/CCGrid49817.2020.00-73

16. Donzé, A.: On signal temporal logic. In: Legay, A., Bensalem, S. (eds.) Runtime Verification. pp.

382–383. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

17. Euzenat, J., Montanari, A.: Time granularity. Handbook of Temporal Reasoning in Artificial

Intelligence (January 2005)

18. Franceschet, M., Montanari, A., Peron, A., Sciavicco, G.: Definability and decidability of

binary predicates for time granularity. Journal of Applied Logic 4(2), 168–191 (Jun 2006).

https://doi.org/10.1016/j.jal.2005.06.004

19. Geist, J., Rozier, K.Y., Schumann, J.: Runtime Observer Pairs and Bayesian Network Reasoners

On-board FPGAs: Flight-Certifiable System Health Management for Embedded Systems. In:

Proceedings of the 14th International Conference on Runtime Verification (RV14). vol. 8734, pp.

215–230. Springer-Verlag (September 2014)

MLTL Multi-type 17

20. Kempa, B., Zhang, P., Jones, P.H., Zambreno, J., Rozier, K.Y.: Embedding online runtime

verification for fault disambiguation on Robonaut2. In: Proceedings of the 18th International

Conference on Formal Modeling and Analysis of Timed Systems (FORMATS). Lecture Notes in

Computer Science (LNCS), vol. 12288, pp. 196–214. Springer, Vienna, Austria (September 2020)

21. Lago, U.D., Montanari, A., Puppis, G.: Compact and tractable automaton-based repre-

sentations of time granularities. Theoretical Computer Science 373(1), 115–141 (2007).

https://doi.org/https://doi.org/10.1016/j.tcs.2006.12.014

22. Lago, U.D., Montanari, A., Puppis, G.: On the equivalence of automaton-based representations of

time granularities. In: 14th International Symposium on Temporal Representation and Reasoning

(TIME’07). pp. 82–93 (2007). https://doi.org/10.1109/TIME.2007.56

23. Li, J., Vardi, M.Y., Rozier, K.Y.: Satisfiability checking for Mission-time LTL. In: Proceedings

of 31st International Conference on Computer Aided Verification (CAV). LNCS, vol. 11562, pp.

3–22. Springer, New York, NY, USA (July 2019)

24. Luppen, Z., Jacks, M., Baughman, N., Hertz, B., Cutler, J., Lee, D.Y., Rozier, K.Y.: Elucidation

and Analysis of Specification Patterns in Aerospace System Telemetry. In: Proceedings of the 14th

NASA Formal Methods Symposium (NFM 2022). Lecture Notes in Computer Science (LNCS),

vol. 13260. Springer, Cham, Caltech, California, USA (May 2022)

25. Montanari, A., Ratto, E., Corsetti, E., Morzenti, A.: Embedding time granularity in logical

specifications of real-time systems. Proceedings. EUROMICRO ‘91 Workshop on Real-Time

Systems pp. 88–97 (1991)

26. Mostafa, M., Bonakdarpour, B.: Decentralized runtime verification of LTL specifications in

distributed systems. In: 2015 IEEE International Parallel and Distributed Processing Symposium.

pp. 494–503 (2015)

27. Okubo, N.: Using R2U2 in JAXA program. Electronic correspondence (November–December

2020), series of emails and zoom call from JAXA to PI with technical questions about embedding

R2U2 into an autonomous satellite mission with a provable memory bound of 200KB

28. Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Cassez, F., Jard, C. (eds.)

Formal Modeling and Analysis of Timed Systems. pp. 1–13. Springer Berlin Heidelberg, Berlin,

Heidelberg (2008)

29. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer pairs for system

health management of real-time systems. In: Proceedings of the 20th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). Lecture Notes

in Computer Science (LNCS), vol. 8413, pp. 357–372. Springer-Verlag (April 2014)

30. Rozier, K.Y., Schumann, J.: R2U2: Tool overview. In: Proceedings of International Workshop

on Competitions, Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification

Tools (RV-CUBES). vol. 3, pp. 138–156. Kalpa Publications, Seattle, WA, USA (September 2017)

31. Schumann, J., Moosbrugger, P., Rozier, K.Y.: Runtime Analysis with R2U2: A Tool Exhibition

Report. In: Proceedings of the 16th International Conference on Runtime Verification (RV15).

Springer-Verlag, Madrid, Spain (September 2016)

32. Wolper, P.: Temporal logic can be more expressive. Information and Control 56(1), 72–99 (1983)

