
1

Improving Usability and Trust in Real-Time

Verification of a Large-Scale Complex

Safety-Critical System∗

Brian Kempa, Chris Johannsen, Kristin Yvonne Rozier

Iowa State University, Ames, Iowa, USA; email: {bckempa,cgjohann,kyrozier}@iastate.edu

Abstract

Large-scale complex safety-critical systems are inher-
ently difficult to both verify in real-time and transpar-
ently validate. The iterative specification development
process is challenging when the performance and reli-
ability demands of target systems (e.g., flight software)
require strict behavior of verification tools which often
trade off usability for performance and conformance.
Providing both strict behavioral guarantees and effi-
ciency of this iterative process allows specification au-
thors and engineers to more quickly deploy their systems
and have more confidence in their verification efforts.

Our on-going work addresses this challenge by pro-
viding validation transparency for specification authors
during system development while maintaining necessary
performance during deployment by extending R2U2,
a real-time verification tool specifically designed for
resource-constrained systems. We also strengthen the
trust in R2U2 by providing a robust suite of tests to show
adherence to the strict requirements of safety-critical
flight software. These tasks are efforts toward transi-
tioning R2U2 from a research-grade tool to a flight-
software-grade tool suitable for use by real-time safety-
critical systems and thereby answer the calls for ex-
panded developmental-to-operational verification by,
e.g., the Vehicle System Management (VSM) team of the
NASA Lunar Gateway.

Keywords: Real-Time and Safety-Critical Systems, Run-
time Verification, Developmental Contract Verification,
Assume-Guarantee Contracts.

1 Introduction

Complex autonomous real-time systems such as robots,

rovers, satellites, and unmanned aerial systems (UAS) must

operate reliably for extended periods without human inter-

vention. Runtime verification is a family of techniques that

enable such systems to check themselves during operation

by identifying and correcting problems as they occur. The

legacy approach to runtime verification in software is to use

∗This work was supported in part by NASA Cooperative Agreement

Grant #80NSSC21M0121 and NSF CAREER Award CNS-1552934.

custom ad-hoc algorithms that are difficult to implement,

susceptible to errors, and extremely difficult to verify [1].

Large-scale complex safety-critical systems require both real-

time verification during system operation but also transparent

requirement validation during system development that can

carry through to runtime.

After an extensive survey of all currently-available verifica-

tion tools, the NASA Lunar Gateway Project selected the

R2U2 runtime verification engine for use in developing and

monitoring autonomous spacecraft software, starting with

the Vehicle System Manager (VSM) [1]. The choice was

based primarily on R2U2’s unobtrusive, flight-certifiable ar-

chitecture, proven capacity for real-time runtime verification

on-board safety-critical systems, and an open-source, exten-

sible C codebase that integrates into the NASA core Flight

System/core Flight Executive (cFS/cFE) [2] environment [3].

A hardware version of R2U2 that implements the same algo-

rithms as the C version previously embedded in the space left

over on the FPGA controlling NASA’s Robonaut2’s knee to

provide real-time fault disambiguation [4]. The three imple-

mentations of R2U2 (hardware/FPGA, C, and C++) have ver-

ified many previous safety-critical systems; see [5] for a tool

overview and summary of previous case studies. R2U2’s un-

derlying specification-monitoring algorithms were originally

created specifically to fulfill NASA’s needs for a Responsive,

Reliable, Unobtrusive Unit (hence the name R2U2) [6], and

optimized (with accompanying proofs of correctness) for the

Robonaut2 study [4].

While design-by-contract systems like SPARK have provided

formal verification in this domain [7], VSM focused on stand-

alone monitors for their verification efforts because they

sought runtime visibility of system status instead of design

time prescription of component correctness, therefore their

selected tool needed to be independent from the flight soft-

ware implementation [1]. The VSM team has an established

verification workflow that includes extensive requirement elic-

itation in the form of Assume-Guarantee Contracts (AGCs),

and the design-time verification technique of model check-

ing to verify AGCs against state-machine models of various

sub-systems. However, specification (of models and their

requirements) is the biggest bottleneck to verification of au-

tonomy [8]. Developing a system model of required fidelity to

fully leverage model checking involves significant effort and

Ada User Jour na l Vo lume XX, Number X, June 2022

B. Kempa, C. Johannsen, K. Y. Roz ier 3

Old Syntax

a0 && ((a1 && !a2 && !a3) || // AGC:

(!a1 && a2 && !a3) || // TRUE

(!a1 && !a2 && a3));

!a0; // AGC: INACTIVE

a0 && !((a1 && !a2 && !a3) || // AGC:

(!a1 && a2 && !a3) || // FALSE

(!a1 && !a2 && a3));

a0 = bool(s0) == 1;

a1 = bool(s1) == 1;

a2 = bool(s2) == 1;

a3 = bool(s3) == 1;

New Syntax

RVALID: resRactive => resRvalid;

taskAactive = bool(Aactive) == 1;

taskBactive = bool(Bactive) == 1;

taskCactive = bool(Cactive) == 1;

resRactive = bool(Ractive) == 1;

resRvalid =

exactly-one-of(active_tasks) == 1;

active_tasks = {taskAactive,

taskBactive,

taskCactive};

Input

Time
s0 s1 s2 s3

resRactive taskAactive taskBactive taskCactive

0 T T F F

1 T F T F

2 F F F F

3 T T T F

Old Output New Output

0:0 T RVALID:0 TRUE

1:0 F

2:0 F

0:1 T RVALID:1 TRUE

1:1 F

2:1 F

0:2 F RVALID:2 INACTIVE

1:2 T

2:2 F

0:3 F RVALID:3 FALSE

1:3 F

2:3 T

Figure 2: An example usage of R2U2 with the old and new syn-

taxes. The specification shown captures the system behavior

that when a shared resource R is active, exactly one task is us-

ing that resource. There is no native support for AGCs and vari-

able names in the old syntax so the specification must be written

without these features i.e., each case of the AGC must be explic-

itly written out and each variable uses a generic name. The new

syntax adds these features and as such is more human-readable

and easier to validate.

number to the input signal number, increasing the complexity

of writing, reading and validating specifications.

Our new syntax and tooling support human-readable labels for

formulas, variables, and subexpressions. Named subexpres-

sions allow specifications to resemble the requirements they

monitor more closely, while formula names carry through

to the output stream, both easing validation. Because the

VSM team selected R2U2 for its real-time performance and

bounded resource guarantees under flight software restric-

tions [1], these ergonomic improvements cannot impact the

deployed monitor performance. Most of these features only

affect the formula compiler, but human-readable output like

formula names requires auxiliary information and runtime ac-

tions. While development and deployment workflows utilize

the same specification files, R2U2 now stores auxiliary data

like formula names separately. Deployment monitors do not

compile the auxiliary output hooks or read the auxiliary data

files, leaving them strictly more performant than development

builds, under equivalent conditions.

Additionally, we added an option to dynamically map input

signals by the name used in the specification. This added input

robustness decouples specification authorship from engineer-

ing decisions until target integration, i. e., changing structure

definitions no longer requires specification modification.

3 Trust

Academic research software ("gradware") is developed under

different motivations than projects targeting third-party use,

and unpublishable custodial tasks (e.g., documentation, test-

ing) are often are not attended to beyond what is required for

peer acceptance. Software deployed in critical applications,

however, must meet a higher bar than standard software best

practices. As we convert R2U2 from a research tool to a flight-

certified component, we establish trust in R2U2’s output with

a hierarchical testing campaign, automated analysis-guided

peer-review, and adherence to open-source best practices.

3.1 Testing

Our new R2U2 test suite design supports fast iteration as

we react to VSM’s needs and meet established flight soft-

ware verification standards, bridging traditional and formal

methods.

Unit Tests: Following NASA’s standards for VSM flight

software, unit tests verify individual functions (e. g., queue

operations) and must exercise every line and branch. We

parameterize tests over the Cartesian product of the input

parameters, covering the input space without repeated code.

R2U2’s 66 unit tests currently cover 98.1% of the 577 exe-

cutable lines and 52.3% of the 2276 branches. The low branch

coverage results from a standard C macro idiom for debug

print statements that create a do-while structure that can never

repeat, generating an unreachable jump instruction. Crucially,

these spurious branches do not appear in deployment binaries.

Integration Tests: These black-box tests confirm implemen-

tation correctness by comparing the output of R2U2 with a

slower but simpler Python oracle over a benchmark set with

Ada User Jour na l Vo lume XX, Number X, June 2022

4 Usabi l i ty and Trust in Real -T ime Ver i f i ca t ion of a Safety-Cr i t i ca l System

2000+ combinations of formulas and input signals. We cu-

rate this collection to exercise all logical operators in varied

compositions, including published and randomly-generated

benchmark specifications. A core set of 50 acceptance tests

that cover common cases and check for regressions of pre-

vious issues runs in under a minute on consumer hardware.

Although the total space of formulas and inputs is infeasible

to cover exhaustively, we “fuzz” for edge cases beyond the

curated set with randomized inputs and formulas.

3.2 Automated Analysis and Review

GitLab provides version control; all changes automatically

trigger the Continuous Integration (CI) server, which scans

the source with linters and static analysis tools, builds a debug

binary with maximum compiler warnings, and runs both test

suites with the sanitizer runtimes linked to catch memory mis-

takes not detectable at compile time. We use CodeChecker2

to aggregate analysis results from Clang Tidy, CLang Static

Analyzer, Cppcheck, Infer, and cpplint. The CI report assists

in finding potential defects during code reviews. CI does

not measure performance since benchmarks are highly sensi-

tive to environmental context (e. g., working directory, cache

alignment, etc.) [12]. Instead, profile-guided optimization is

performed on integration target hardware.

3.3 Release Best Practices

Though R2U2 is already open source, code availability is

insufficient to ensure the project remains maintainable and

accessible for developers of R2U2 and projects incorporating

using it. Popular open-source libraries solve this problem

with a series of best practices R2U2 is adopting: an open Git

repository with full version history, public issue tracking, an

established open license, and documentation targeting both

users. These tasks are vital to transitioning any research-grade

software to software suitable for flight. Beyond the existing

in-line comments, we are preparing three documents: 1) a

user’s guide detailing the use of R2U2 (e.g., formula syntax,

output format, target platform integration), 2) a developer’s

guide with architectural decisions, code style, and algorithm

descriptions with proofs, and 3) an API reference autogener-

ated from the source using Doxygen.

4 Conclusion

NASA’s VSM team is actively developing specifications for

the Lunar Gateway using our tool chain. The new usability

and trust features are crucial for the transition of R2U2 from a

research-grade academic tool to one suitable for safety-critical

flight-software systems. We continue to collaboratively evalu-

ate user needs, modify the tool accordingly, and monitor the

effectiveness of delivered solutions. We are looking forward

to insightful experience reports and technical evaluations at

the end of the project.

Additionally we are working on: 1) Adding an optimization

pass to formula compilation that removes unnecessary in-

structions (e. g., double negations) and improves partial result

2https://github.com/Ericsson/codechecker

reuse to improve performance and reduce resource require-

ments. 2) Building a visual configuration utility for tuning the

static memory bound parameters that provides statistics on

formula resource usage. This is also useful when designing

new formula sets for a monitor with existing bounds.

References

[1] J. B. Dabney, J. M. Badger, and P. Rajagopal, “Adding

a verification view for an autonomous real-time system

architecture,” in AIAA Scitech 2021, p. 0566, 2021.

[2] NASA, “core Flight System (cFS) Background

and Overview.” Online: https://cfs.gsfc.nasa.gov/

cFS-OviewBGSlideDeck-ExportControl-Final.pdf, 2014.

[3] J. B. Dabney, P. Rajagopal, and J. M. Badger,

“Using assume-guarantee contracts in autonomous

spacecraft.” Flight Software Workshop (FSW) On-

line: https://www.youtube.com/watch?v=

zrtyiyNf674, February 2021.

[4] B. Kempa, P. Zhang, P. H. Jones, J. Zambreno, and

K. Y. Rozier, “Embedding Online Runtime Verifica-

tion for Fault Disambiguation on Robonaut2,” in FOR-

MATS, Proc. 18th, vol. 12288 of LNCS, (Vienna, Aus-

tria), pp. 196–214, Springer, September 2020.

[5] K. Y. Rozier and J. Schumann, “R2U2: Tool Overview,”

in RV-CUBES, vol. 3, (Seattle, WA, USA), pp. 138–156,

Kalpa Publications, September 2017.

[6] T. Reinbacher, K. Y. Rozier, and J. Schumann,

“Temporal-logic based runtime observer pairs for system

health management of real-time systems,” in TACAS,

Proc. 20th, vol. 8413 of LNCS, pp. 357–372, Springer,

April 2014.

[7] P. Neto, J. Tojal, J. Veríssimo, and S. M. de Sousa,

“Towards a formally verified space mission software

using spark.,” Ada User Journal, vol. 40, no. 4, pp. 243

– 246, 2019.

[8] K. Y. Rozier, “Specification: The biggest bottleneck in

formal methods and autonomy,” in VSTTE, Proc. 8th,

vol. 9971 of LNCS, (Toronto, ON, Canada), pp. 1–19,

Springer-Verlag, July 2016.

[9] J. B. Dabney, P. Rajagopal, and J. M. Badger, “Us-

ing assume-guarantee contracts for developmental ver-

ification of autonomous spacecraft.” Flight Software

Workshop (FSW) Online: https://www.youtube.

com/watch?v=HFnn6TzblPg, February 2022.

[10] K. Y. Rozier, “From simulation to runtime verifica-

tion and back: Connecting single-run verification tech-

niques,” in SpringSim, (Tucson, AZ, USA), pp. 1–10,

Society for Modeling & Simulation Int’l, April 2019.

[11] A. Hammer, M. Cauwels, B. Hertz, P. Jones, and K. Y.

Rozier, “Integrating runtime verification into an auto-

mated uas traffic management system,” Innovations in

Systems and Software Engineering: A NASA Journal,

July 2021.

Volume XX, Number X, June 2022 Ada User Jour na l

B. Kempa, C. Johannsen, K. Y. Roz ier 5

[12] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F.

Sweeney, “Producing wrong data without doing any-

thing obviously wrong!,” ACM Sigplan Notices, vol. 44,

no. 3, pp. 265–276, 2009.

Ada User Jour na l Vo lume XX, Number X, June 2022

