
Streaming complexity of CSPs with randomly ordered constraints∗

Raghuvansh R. Saxena† Noah Singer‡ Madhu Sudan§ Santhoshini Velusamy¶

Abstract

We initiate a study of the streaming complexity of constraint satisfaction problems (CSPs) when the
constraints arrive in a random order. We show that there exists a CSP, namely Max-DICUT, for which random
ordering makes a provable difference. Whereas a 4/9 ≈ 0.445 approximation of DICUT requires Ω(

√
n) space

with adversarial ordering, we show that with random ordering of constraints there exists a 0.483-approximation
algorithm that only needs O(log n) space. We also give new algorithms for Max-DICUT in variants of the
adversarial ordering setting. Specifically, we give a two-pass O(log n) space 0.483-approximation algorithm for

general graphs and a single-pass Õ(
√
n) space 0.483-approximation algorithm for bounded-degree graphs.

On the negative side, we prove that CSPs where the satisfying assignments of the constraints support
a one-wise independent distribution require Ω(

√
n)-space for any non-trivial approximation, even when the

constraints are randomly ordered. This was previously known only for adversarially ordered constraints.
Extending the results to randomly ordered constraints requires switching the hard instances from a union of
random matchings to simple Erdős-Renyi random (hyper)graphs and extending tools that can perform Fourier
analysis on such instances.

The only CSP to have been considered previously with random ordering is Max-CUT where the ordering
is not known to change the approximability. Specifically it is known to be as hard to approximate with
random ordering as with adversarial ordering, for o(

√
n) space algorithms. Our results show a richer variety

of possibilities and motivate further study of CSPs with randomly ordered constraints.

1 Introduction

In this paper we consider the streaming complexity of solving constraint satisfaction problems (CSPs) approxi-
mately with randomly ordered constraints. We introduce these terms below before turning to the context and
our work. Readers familiar with these topics may safely skip to Section 1.1.

Constraint satisfaction problems: A constraint satisfaction problem (CSP) is described by a family of
predicates F ⊆ {f : Zk

q → {0, 1}} where k, q ∈ N and Zq = {0, . . . , q − 1}. Given such a family F , an instance
Ψ of the problem Max-CSP(F) on n variables is described by m constraints C1, . . . , Cm where for i ∈ [m],
Ci = (fi, j(i) = (j1(i), . . . , jk(i))) with fi ∈ F and j(i) is a sequence of k distinct elements of [n]. An assignment
to the n variables is given by a ∈ Zn

q . The assignment satisfies Ci if Ci(a) := fi(aj1(i), . . . , ajk(i)) = 1 and the

value of the assignment on the instance Ψ is given by valΨ(a) = 1
m

∑
i∈[m] Ci(a). The goal of Max-CSP(F) is

to compute valΨ := maxa∈Zn
q
{valΨ(a)}. We will also be interested in approximation algorithms ALG: Given

α ∈ [0, 1], an α-approximation algorithm to Max-CSP(F) is one whose output satisfies α · valΨ ≤ ALG(Ψ) ≤ valΨ
for every instance Ψ.

Many natural problems can be expressed as CSPs. One example of particular interest to this paper is
the problem Max-DICUT = Max-CSP({DICUT}), where the predicate DICUT : Z2

2 → {0, 1} is defined by
DICUT(x, y) = (1 − x)y (with the arithmetic being over Z2). Max-DICUT can equivalently be viewed as a
graph problem in which variables correspond to vertices and constraints correspond to edges. The goal is then to
estimate the size of the highest-value “directed partition” (i.e., {0, 1}-assignment) of the vertices, where the value
of a partition is the number of edges from 1-vertices to 0-vertices.

∗The full version of the paper can be accessed at https://arxiv.org/abs/2207.07158. In this version, we omit many of the proofs.
†Microsoft Research. Email: raghuvansh.saxena@gmail.com
‡Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA, and Harvard College, Harvard University,

Cambridge, MA, USA. Supported by an NSF Graduate Research Fellowship (Award DGE2140739). Email: ngsinger@cs.cmu.edu.
§School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA. Supported in part by a Simons

Investigator Award and NSF Awards CCF 1715187 and CCF 2152413. Email: madhu@cs.harvard.edu.
¶School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA. Supported in part by a Google

Ph.D. Fellowship, a Simons Investigator Award to Madhu Sudan, and NSF Awards CCF 1715187 and CCF 2152413. Email:
svelusamy@g.harvard.edu.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4083

D
ow

nl
oa

de
d

03
/0

3/
23

 to
 7

1.
24

8.
16

1.
23

8
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://arxiv.org/abs/2207.07158

Streaming Algorithms: The class of algorithms we consider (and rule out) are randomized streaming
algorithms. Inputs to these algorithms arrive as a stream of elements, in our case a stream of constraints. We
consider algorithms that use some bounded amount of space, denoted s(n), to process the stream and produce their
output. They may toss their own coins to process the stream. In this work we focus mainly on algorithms whose
inputs are randomly ordered, i.e., given an instance m on variables with constraints C1, . . . , Cm, a permutation
π : [m] → [m] is chosen uniformly at random and the constraints arrive in the order Cπ(1), . . . , Cπ(m). We say
that an algorithm is correct if it outputs a correct answer1 with probability 2/3, where the probability is both
over internal coin tosses and over the random arrival order of the input.

1.1 Previous work. The recent years have seen a significant amount of research on the streaming complexity
of approximating CSPs with adversarial order of arrival. We refer the reader to Chou, Golovnev, Sudan and
Velusamy [5] for some of the history. (See also [21] and [23] for some broader surveys.) One key result from
this line of research is a dichotomy result for “sketching algorithms” to approximate all CSPs, while getting
dichotomies in the more general streaming context for many subclasses. A sketching algorithm is a streaming
algorithm that works by compressing substreams into small summaries called sketches with the feature that the
sketch of a concatenation of two streams can be obtained from sketches of the two component streams. All known
algorithms for CSPs (with proven guarantees on approximation) are sketching algorithms motivating the current
work. In this work we consider a weakening of the input model, to random ordering of constraints, to explore the
possibility of other algorithms, or to rule them out.

Turning to random order in graph streaming problems, Kapralov, Khanna, and Sudan [13] gave a
polylog(n)-space random-order streaming algorithm for polylog(n)-approximating the maximum matching
problem; Kapralov, Mitrović, Norouzi-Fard, and Tardos [16] improved the exponent in the approximation factor.
Another line of works [17, 19] explores “generic” ways in which sublinear-time algorithms for graph problems
can be transformed into random-ordering streaming algorithms; the latter work establishes provable separations
for random-ordering streaming from adversarial-order streaming for problems including estimating the number
of connected components and the minimum spanning tree weight. Most relevantly, in the context of CSPs,
Kapralov, Khanna, and Sudan [14] showed that the CSP Max-CUT = Max-CSP({CUT}) where CUT : Z2

2 → {0, 1}
is defined by CUT(a, b) = a+ b cannot be nontrivially approximated by o(

√
n)-space streaming algorithms even in

the random-order setting. But other than [14], the previous works on random-order streaming have not studied
CSPs, and in particular, none of the previous works suggest that random order of arrival could lead to any
algorithmic improvement.

1.2 Main results. In this paper, we present both positive (i.e., algorithmic) and negative (i.e., hardness) results
on the usefulness of randomly-ordered streams for approximating CSPs, in comparison to adversarially-ordered
streams.

1.2.1 Positive results. Our main positive result asserts that there exists a constraint satisfaction problem
where random arrival of constraints provably leads to better approximation with o(

√
n) space.

Theorem 1.1. There exists a O(log n)-space streaming algorithm that outputs a .483-approximation to the
Max-DICUT value of directed graphs on n vertices whose edges arrive in a random order.

This theorem is restated as Theorem 3.1 and proved in Section 3.1.
The result above should be contrasted with the result of Chou, Golovnev and Velusamy [6] who show that for

every ϵ > 0, a streaming algorithm that achieves a (4/9 + ϵ)-approximation of Max-DICUT requires Ω(
√
n) space

when the constraints are ordered adversarially. (Note 4/9 = 0.444) Their lower bound holds in the general
setting of streaming algorithms, with a matching upper bound using a sketching algorithm. Our algorithm is not
a sketching algorithm. This is the only result to our knowledge for a streaming CSP (even with assumptions on
arrival order) where a non-sketching algorithm outperforms known sketching algorithms.

Indeed the ideas from this algorithm help in contexts other than just the random arrival order and we describe
some of these consequences next.

1Recall that approximation algorithms are not required to output any one fixed answer. An answer is correct on input Ψ if it lies
in the interval [α · valΨ, valΨ].

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4084

D
ow

nl
oa

de
d

03
/0

3/
23

 to
 7

1.
24

8.
16

1.
23

8
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1.2.2 Positive results in other streaming models. The algorithm used to prove Theorem 1.1 can also be
straightforwardly adapted to the setting of two-pass algorithms with adversarial order as asserted below.

Theorem 1.2. There exists a O(log n)-space two-pass streaming algorithm that outputs a .483-approximation to
the Max-DICUT value of directed graphs on n vertices under adversarial ordering of edges.

This theorem is restated in more detail as Theorem 3.2 and proved in Section 3.2. The 2-pass algorithm
answers an open question in [5], perhaps with an unexpected answer.

Finally, we also show how the algorithm can be further modified to get the same approximation to Max-DICUT
using Õ(

√
n) space with a single-pass streaming algorithm in bounded-degree graphs with adversarial ordering of

edges.

Theorem 1.3. There exists a Õ(
√
n)-space streaming algorithm that outputs a .483-approximation to the

Max-DICUT value of bounded-degree directed graphs on n vertices under adversarial ordering of edges.

Theorem 3.3 actually gives a more detailed relationship between the space needed and the maximum degree
of the graph. It implies the theorem above and is proved in Section 3.3. We remark that [6] show that o(

√
n)

space algorithms cannot get better than a 4/9-approximation and their proof actually holds even when the input
graphs are of bounded-degree. Thus Theorem 1.3 establishes the significance of the

√
n-space threshold — again

a result that may be somewhat surprising.

1.2.3 Negative results. Returning to our main quest of understanding streaming CSPs in the random-ordering
setting and motivated by the algorithmic potential demonstrated by Theorem 1.1 above, we re-explore negative
results on streaming to see whether they might also apply to the random arrival ordering model. We show that
for a broad class of constraint satisfaction problems, the known hardness results on streaming algorithms with
adversarial ordering do indeed extend (with substantial changes in the analysis) to the case of randomly ordered
constraints. We define the class of problems considered and the approximation lower bound achieved below,
starting with the latter.

We say that an algorithm is trivial if its output is a constant (independent of the input). For a class of
constraints F , define ρmin(F) to be the minimum (strictly, infimum) value valΨ over all instance Ψ of Max-CSP(F).
(A priori, ρmin(F) might not be computable given F , but it is shown to be computable in [5].) Clearly, an algorithm
that outputs ρ = ρmin(F) on every instance is a valid, but trivial, ρ-approximation algorithm for Max-CSP(F).
Motivated by this [5] define a problem to be approximation-resistant to a class of algorithms if for every ϵ > 0
it does not have a (ρ + ϵ)-approximation within the class. Our next theorem proves a broad class of CSPs to
be approximation-resistant to o(

√
n)-space single pass streaming algorithms, even with a random ordering of

constraints.
We now turn to the class of problems covered by our theorem. We say a distribution D over Zk

q has uniform
marginals if when we sample a = (a1, . . . , ak) ∼ D, each ai is distributed uniformly over Zq. We say a predicate
f : Zk

q → {0, 1} supports one-wise independence if there exists a distribution D supported on f−1(1) whose
marginals are uniform. We say a family F supports one-wise independence if every f ∈ F supports one-wise
independence. We say a family F weakly supports one-wise independence if there exists F ′ ⊆ F supporting
one-wise independence with ρmin(F ′) = ρmin(F). Our theorem below asserts the approximation resistance of
Max-CSP(F) on randomly ordered instances when F weakly supports one-wise independence.

Theorem 1.4. For every k, q ∈ N and F s.t. F ⊆ {f : Zk
q → {0, 1}} that weakly supports one-wise independence,

Max-CSP(F) is approximation resistant to o(
√
n)-space streaming algorithms in the random order model. That

is, for every ϵ > 0, there exists τ > 0 such that every streaming algorithm which (ρmin(F) + ϵ)-approximates
Max-CSP(F) in the random-order model uses at least τ

√
n space on instances with n variables.

We assert that all known families that are known to be approximation-resistant to o(
√
n)-space single pass

streaming algorithms, even under adversarial ordering, weakly support one-wise independence [5]. Such problems
include Max-CUT (and thus our result subsumes that of [14]), Max-qUniqueGames, Max-qColoring, and Max-kOR.2

Our result thus strengthens our understanding of approximation resistance for the broadest class of problems
where it was previously understood.

2Indeed, the question of proving random-ordering approximation-resistance for Max-qUniqueGames was posed by Guruswami and
Tao [8, §5] when they proved adversarial-ordering hardness, and thus, we answer an open question of theirs.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4085

D
ow

nl
oa

de
d

03
/0

3/
23

 to
 7

1.
24

8.
16

1.
23

8
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1.3 Technical contributions. Next, we describe some of the technical contributions of our results, beginning
with the positive (algorithmic) side.

1.3.1 Positive results. All streaming algorithms for CSPs in previous works [9, 6, 4, 5, 2] have been based
on measuring generalizations of the “total bias” of CSP instances defined originally in [9]; this quantity, even in
its richest form from [5], is a sum over the variables of some form of “bias”, and can be computed using norm-
sketching algorithms [10, 12, 1]. Bias, in turn, roughly measures whether, considering each constraint in which a
variable appears independently, the variable prefers to take one value more often than others. More concretely, in

the case of Max-DICUT, given a directed graph, the bias(i) of vertex i is simply out-deg(i)−in-deg(i)
out-deg(i)+in-deg(i) , where out-deg(i)

and in-deg(i) denote the out- and in-degrees of i, respectively. Thus, bias(i) is a real number between −1 and 1;
if bias(i) ≈ 1, i has mostly out-edges, so we should assign it to 0, while if bias(i) ≈ −1, it has mostly in-edges, so
we should assign i to 1. The total bias of a Max-DICUT instance sums variables’ biases weighted by their total
degree. This quantity was defined in [9], and was observed to equal the ℓ1-norm of the vector whose i-th entry is
out-deg(i)− in-deg(i), and thus it can be measured in the streaming setting.

Thus, a key contribution of our work is the first new algorithmic paradigm for streaming CSPs since the
approach of [9]. This should be contrasted with the fact that many works [8, 15, 6, 4, 5, 22, 3] have made
significant progress on the hardness front. Instead of estimating the total bias of the input graph, we build a
snapshot of the graph: Specifically we merge vertices with (roughly) the same bias and estimate the fraction of
edges that go from vertices of different bias. To get this snapshot information, we look at a representative sample
of edges and consider the biases of their endpoints. Here is where we use the random arrival order of edges: We
can sample typical edges at the beginning of the stream, and then we measure the bias of their endpoints over
the rest of the stream. (So really our algorithm just needs the first few edges to be random, and the rest of the
stream could even be ordered adversarially!)

Using this bias information to produce a cut is not trivial, but fortunately for us a previous work of Feige
and Jozeph [7] analyzed exactly this question. They studied “oblivious algorithms” for Max-DICUT, which are
algorithms which randomly assign each vertex independently based solely on its bias, and showed the existence
of an αFJ-approximation algorithm for some αFJ ∈ (0.483, 0.4899). Our theorem follows by appealing to their
result. We remark that based on the trivial reduction from Max-CUT, Max-DICUT’s approximability for o(

√
n)-

space algorithms with randomly ordered constraints is at most 1/2. And while [7] showed that oblivious algorithms
cannot do better than 0.4899-approximations, it is quite possible that other quantities that can be easily estimated
with random arrival orders (such as the number of copies of O(1)-vertex subgraphs, such as paths) could lead to
1/2-approximation algorithms.

The idea of computing a snapshot of the graph and then using that (via the Feige-Jozeph analysis [7]) to
approximate the Max-DICUT value of a graph turns out to work in other streaming models as well. For instance,
in the two-pass setting with adversarial ordering of the edges, we can pick a random sample of edges in the first
pass and then use the second pass to compute the bias of the endpoints of the edges. This leads to an O(log n)
space streaming 2-pass algorithm achieving the same approximation factor for Max-DICUT even in the adversarial
arrival setting. In the case of bounded-degree graphs we are also able to compute snapshots with Õ(

√
n)-space

when the edge arrival order is adversarial. This does require some additional care, as there’s no obvious way to
sample random edges. Instead, the general plan is to sample roughly

√
n random (positive-degree) vertices, and

estimate the snapshot based on edges in the induced subgraph on these vertices. One important implication of
the bounded-degree assumption here is that it limits the dependence between which edges are included, and after
some careful analysis this leads to a single-pass Õ(

√
n)-space algorithm for bounded-degree graphs achieving the

same approximation factor for Max-DICUT.

1.3.2 Negative results. Turning to the negative results that form the technical meat of this paper, we
comment briefly on where previous works used the adversarial ordering and what we need to do to overcome
it. Starting with [14], all hardness results for streaming Max-CSP(F) problems have been based on constructing
so-called “YES” and “NO” distributions over instances which have high and low values, respectively (with high
probability), and showing that these are indistinguishable by reducing from a one-way communication problem.
Designing these distributions is typically a trade-off between desired properties for the streaming lower bound
(e.g., optimizing the value gap between YES and NO instances) and technical considerations in terms of how
to prove the appropriate communication lower bounds (and whether they even hold at all!). The distributions

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4086

D
ow

nl
oa

de
d

03
/0

3/
23

 to
 7

1.
24

8.
16

1.
23

8
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

themselves result from a two-fold process: First, sample a random hypergraph, and then treat each hyperedge as
a CSP constraint by labeling it with an appropriate predicate f ∈ F . Indeed, this “labeling” is the only difference
between the YES and NO distributions; typically, in the NO distribution the labels are completely random,
while in the YES distribution they are selected to be consistent with some global assignment.

Now, consider the communication problem in which we split up hypergraph edges and labels among T = O(1)
of “players”, and the players must distinguish between the YES and NO cases. At a high level, the technical
complexity of such problems is closely connected to the structure of the hypergraphs that the players receive. In
particular, it becomes necessary to analyze a counting problem involving Zq-labelings of edge-vertex incidences
with sum constraints at vertices and density constraints on edges (see Eq. (5.4) below for a technical statement). In
previous works aside from [14], each player’s input hypergraph was a random (partial) hypermatching. Crucially,
hypermatchings (of any particular size) are unique up to renaming of vertices. While this significantly simplifies
the combinatorial analysis, it is not appropriate for proving random-ordering streaming lower bounds. This is
because, in the communication-to-streaming reduction, the resultant stream of constraints is the concatenation
of constraints contributed by each player; these streams will have the property that in each successive “chunk”
of ≈ 1/T constraints, no variables are repeated, which is unlikely in a randomly-ordered stream. Thus, it is
necessary to draw the players’ input hypergraphs from a different distribution. In the case of Max-CUT, with
alphabet size q = 2 and arity k = 2, Kapralov et al. [14] instead worked with general random graphs. Such
graphs are no longer unique up to renaming of vertices; there are many different equivalence classes, and each
behaves differently in the proof of the lower bound. However, [14] manages this difficulty by showing that (1)
cycles are unlikely, and (2) conditioned on cycle-freeness, each equivalence class corresponds to a union of paths
with a certain length profile. It turns out that both the k = 2 and q = 2 assumptions are significantly helpful the
analysis of [14]. If k > 2, we lose the decomposition into unions of paths, while if q > 2, we need to worry about
different Zq-labelings even of the same path, and thus the length of paths comes into play.

Nevertheless, in our work, we manage to generalize to arbitrary k, q ∈ N by conducting a careful combinatorial
analysis of connected component sizes in random hypergraphs (see Section 6). This allows us to develop
streaming hardness results for all CSPs weakly supporting one-wise independence (Theorem 1.4). Indeed, we
show that perfectly satisfiable instances (i.e., those with value 1) are indistinguishable from random instances
with independent, uniformly random constraints!

1.4 Subsequent work. In a subsequent work [20], we design an algorithm which 0.483-approximates the
Max-DICUT value of arbitrary directed graphs under adversarial ordering of edges. This extends the result of this
paper for bounded-degree graphs (Theorem 1.3). The core of the algorithm in [20] is still the “bias snapshot”
algorithm of Feige-Jozeph [7]. However, the challenge is now dealing with edges whose endpoints have widely
varying degrees. In [20] the algorithm now considers many sparsifications of the input graph in parallel, with a
wide range of parameters; correspondingly, the analysis of [20] roughly shows that the Feige-Jozeph algorithm [7]
is “robust” to a variety of errors which result in this process, and is much more involved.

2 Preliminaries

For n > 0, we use 0n to denote the all zeros vector of length n and S(n) to denote the set of all permutations
mapping the set [n] to itself. Let Σ be a set, n ∈ N, and π ∈ S(n) be a permutation. For σ ∈ Σn and i ∈ [n], we
use σi to denote coordinate i of σ and π(σ) to denote the vector σπ(1), σπ(2), . . . , σπ(n). For σ ∈ Σ∗, we use |σ|
to denote the number of coordinates in σ.

For a set S, we use ∆(S) to denote the set of all distributions whose support is S. We use the name of a
distribution to denote its probability mass function (i.e., for s ∈ S and D ∈ ∆(S), D(s) denotes Prt∼D[s = t]).
For k > 0 and sets S1, S2, . . . , Sk, we use ∆unif(S1, S2, . . . , Sk) to denote the set of all distributions on the product
set S = S1 × S2 × . . .× Sk for which the marginal distribution on the set Si, for all i ∈ [k] is uniform. We simply
write ∆unif(S) if the product decomposition is clear from context.

2.1 Definitions.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4087

D
ow

nl
oa

de
d

03
/0

3/
23

 to
 7

1.
24

8.
16

1.
23

8
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

2.1.1 The random-order streaming model. Let Σ be an alphabet set. A Σ-stream is a string σ ∈ Σ∗. A
deterministic streaming algorithm ALG for Σ-streams is defined by the tuple:

ALG = (S,mdfy, out),

where: (1) S = ∥ALG∥ is the space/memory required by the algorithm ALG, (2) mdfy = Σ× {0, 1}S → {0, 1}S
is the function the algorithm uses to update its state upon reading a symbol from the stream, and (3) out =

{0, 1}S → {0, 1}S is the function the algorithm uses to compute its output from its state at the end of the stream.
We shall suppress arguments on the right hand side when they are clear from context. We define a randomized
streaming algorithm on Σ-streams to be a distribution over deterministic streaming algorithms. Additionally, the
space required by a randomized streaming algorithm is the maximum space required by a deterministic algorithm
in its support.

Execution of a streaming algorithm. Let Σ be an alphabet set and ALG be a (deterministic) algorithm
for Σ-streams. For a stream σ ∈ Σ∗ with m = |σ|, the algorithm ALG acts on σ in m steps as follows. At the
beginning (before step 1), the algorithm is the state s0 = 0S . Then, for i ∈ [m], the algorithm reads the symbol
σi and uses it to update its state by defining si = mdfy(σi, si−1). Finally, after m steps, the algorithm outputs
the value out(sm).

Note that all the states of the algorithm and its final output are determined by its input σ. For i ∈ [m], we

write ALG(σ, i) ∈ {0, 1}S to denote the state after step i of the algorithm on input σ. We define ALG(σ, 0) = 0S

for convenience. Finally, we write ALG(σ) ∈ {0, 1} to denote the output of the algorithm on input σ.
Computation using streaming algorithms. Let Σ be an alphabet set and f : Σ∗ → {0, 1} be a (possibly

partial) function. For p > 0, we say that a randomized streaming algorithm A computes the function f in the
random-order streaming model with probability p if for all σ ∈ Σ∗, we have:

Pr
ALG∼A,π∼S(|σ|)

(ALG(π(σ)) = f(σ)) ≥ p.

Distinguishing using streaming algorithms. Let Σ be an alphabet set and (Y ,N) be a pair of
distributions over Σ∗. For δ ≥ 0, we say that a deterministic streaming algorithm ALG distinguishes between Y
and N with advantage δ in the random-order streaming model if∣∣∣∣ Pr

σ∼Y,π∼S(|σ|)
(ALG(π(σ)) = 1)− Pr

σ∼N ,π∼S(|σ|)
(ALG(π(σ)) = 1)

∣∣∣∣ ≥ δ.

We say that ALG distinguishes between Y and N with advantage δ in the worst case streaming model if:∣∣∣∣ Prσ∼Y
(ALG(σ) = 1)− Pr

σ∼N
(ALG(σ) = 1)

∣∣∣∣ ≥ δ.

We may sometimes refer to a pair (Y ,N) of distributions as a streaming problem and say that “ALG solves
the (Y,N)-problem” instead of saying that “ALG distinguishes between Y and N”. The two notions of
distinguishability are equivalent if the distributions Y and N are sufficiently symmetric:

Lemma 2.1. Let Σ be an alphabet set and D be a distribution over Σ∗ such that for all σ ∈ Σ∗ and π ∼ S(|σ|),
we have D(σ) = D(π(σ)). Then, for all τ ∈ Σ∗, we have:

Pr
σ∼D

(σ = τ) = Pr
σ∼D,π∼S(|σ|)

(π(σ) = τ).

Proof. Let D′ be the distribution on N obtained by sampling σ from D and outputting |σ|. We can view the
process of sampling σ from D and then sampling π from S(|σ|) as the process of first sampling an integer m ≥ 0
from D′, then sampling a permutation π from S(m) and finally, a string σ from D conditioned on the fact that

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4088

D
ow

nl
oa

de
d

03
/0

3/
23

 to
 7

1.
24

8.
16

1.
23

8
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

|σ| = m. Moreover, as π(σ) = τ can happen only if m = |τ |, we get (using m = |τ |):

Pr
σ∼D,π∼S(|σ|)

(π(σ) = τ) = D′(m) · Pr
π∼S(m),σ∼D||σ|=m

(π(σ) = τ)

= D′(m) · 1

m!
·
∑

π∈S(m)

Pr
σ∼D||σ|=m

(π(σ) = τ)

= D′(m) · 1

m!
·
∑

π∈S(m)

Pr
σ∼D||σ|=m

(
σ = π−1(τ)

)
= D′(m) · 1

m!
·
∑

π∈S(m)

Pr
σ∼D||σ|=m

(σ = τ)

= D′(m) · Pr
σ∼D||σ|=m

(σ = τ)

= Pr
σ∼D

(σ = τ).

Corollary 2.1. (Random order to worst-case) Let Σ be an alphabet set and (Y ,N) be a pair of distribu-
tions over Σ∗ such that for all σ ∈ Σ∗ and π ∼ S(|σ|), we have Y(σ) = Y(π(σ)) and N (σ) = N (π(σ)). Then,
for all δ ≥ 0 and any deterministic streaming algorithm ALG from Σ-streams, we have that ALG distinguishes
between Y and N with advantage δ in the random-order streaming model if and only if ALG distinguishes between
Y and N with advantage δ in the worst case streaming model.

We shall also need the following connection between computation and distinguishing using streaming
algorithms (which is sometimes referred to generally as “Yao’s minimax principle”):

Fact 2.1. Let Σ be an alphabet set, f : Σ∗ → {0, 1} be a partial function, and p > 0. If there exists a randomized
streaming algorithm A that computes the function f in the random-order streaming model with probability p, then
for all distributions Y and N supported on f−1(1) and f−1(0) respectively, we have a deterministic streaming
algorithm ALG, ∥ALG∥ ≤ ∥A∥ such that ALG distinguishes between Y and N with advantage 2 ·

(
p− 1

2

)
in the

random-order streaming model.

2.2 The Max-CSP(·) problem. Throughout this subsection, we let q, k ∈ N and F be a non-empty set of
predicate functions mapping Zk

q → {0, 1}. Let n ≥ k ∈ N. An instance Ψ of Max-CSPn(F) is given by a sequence:

Ψ = (fi,Mi)i>0 ∈
(
F × {0, 1}k×n

)∗
,

where, for all i ∈ [|Ψ|], the matrix Mi is a k × n partial permutation matrix, i.e., a matrix with 0, 1 entries and
exactly one 1 in each row and at most one 1 in every column. Let m = |Ψ|. Intuitively, Ψ can be seen as a
sequence of m constraints, with constraint i ∈ [m] requiring that the function fi when applied to the k variables
indicated by Mi evaluates to 1. Here, for j ∈ [k] the jth variable indicated by Mi is the unique column that has
the 1 in row j of Mi.

Value of Ψ. For an assignment x ∈ Zn
q of the n variables, the fraction of satisfied constraints is given by:

(2.1) valΨ(x) =
1

m
·
∑
i∈[m]

fi(Mix).

We define the value of Ψ to be the largest fraction of the constraints that can be satisfied by an assignment:

(2.2) valΨ = max
x∈Zn

q

valΨ(x).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4089

D
ow

nl
oa

de
d

03
/0

3/
23

 to
 7

1.
24

8.
16

1.
23

8
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

The function ρmin(·). The best lower bound on the value of every instance of Max-CSP(F) is given by:

(2.3) ρmin(F) = inf
n∈N

Ψ instance of Max-CSPn(F)

valΨ.

The following lemma, taken from [5], gives an equivalent formulation of the function ρ(·) above that is slightly
more amenable to analysis.

Lemma 2.2. ([5], Proposition 2.12) Let q, k ∈ N be given and F be a non-empty set of functions mapping
Zk
q → {0, 1}. It holds that:

ρmin(F) = min
D∈∆(F)

max
D′∈∆(Zq)

E
f∼D

a∼D′k

[f(a)].

Approximation resistance. Let n ≥ k ∈ N and ϵ > 0. Define the partial function aprxF,n,ϵ on instances
Ψ of Max-CSPn(F) to be 1 if valΨ = 1 and 0 if valΨ ≤ ρmin(F) + ϵ. We are now ready to define the notion of
approximation resistance.

Definition 2.1. (Approximation resistance) Let q, k ∈ N be given and F be a non-empty set of functions
mapping Zk

q → {0, 1}. Let s : N → R be a monotone function. We say that Max-CSP(F) is approximation

resistant to o(s) space in the random order streaming model if for all ϵ > 0 and p > 1
2 , there exists τ > 0 such that

for all n ∈ N and all randomized streaming algorithms A that compute aprxF,n,ϵ in the random-order streaming
model with probability p, we have ∥A∥ ≥ τ · s(n).

One-wise independence. We say that a function f : Zk
q → {0, 1} supports one-wise independence if there

exists a distribution D ∈ ∆unif

(
Zk
q

)
that is supported on f−1(1). Similarly, we say that a family F of functions

(strongly) supports one-wise independence if all functions in the family support one-wise independence. Finally,
we say that a family F weakly supports one-wise independence if there exists a non-empty sub-family F ′ ⊆ F
that strongly supports one-wise independence and satisfies ρmin(F) = ρmin(F ′).

2.3 One-way communication protocols. Let XA and XB be two sets. We will treat these sets as the inputs
sets for Alice and Bob respectively. We now define one-way communication protocols between Alice and Bob,
where the inputs of the parties come from the sets XA and XB respectively, and Alice sends a single message to
Bob. We start by defining deterministic protocols. Such a protocol is defined by a tuple:

Π = (L,msg, out),

where: (1) L = ∥Π∥ is the length of the protocol Π, (2) msg : XA → {0, 1}L is the function Alice uses to

compute her message, and (3) out : XB × {0, 1}L → {0, 1} is the function Bob uses to compute his output. We
shall suppress the arguments on the right hand side when they are clear from context. We define a randomized
protocol to be a distribution over deterministic protocols with the same input sets. The length of a randomized
protocol is defined to be the maximum length of the deterministic protocols in its support.

Execution of a protocol. Let XA and XB be sets and Π be a deterministic protocol with inputs sets XA

and XB . For xA ∈ XA and xB ∈ XB , we define the output Π(xA, xB) ∈ {0, 1} of the protocol Π on inputs xA

and xB as:
Π(xA, xB) = out

(
xB ,msg

(
xA
))
.

This is because, when the inputs are xA and xB , the string msg
(
xA
)
is the message sent by Alice to Bob, and

therefore, out
(
xB ,msg

(
xA
))

is the output computed by Bob upon receiving this message.
One-way communication problems. We define a communication problem to be a pair of distributions3

(Y ,N) on the same product set XA × XB . A protocol for the (Y ,N)-problem is a one way communication
protocol where Alice’s input comes from the set XA and Bob’s input comes from the set XB . Let (Y,N) be a
communication problem and Π be a randomized communication protocol for the (Y ,N)-problem. For δ ≥ 0, we
say that Π solves the (Y ,N)-problem with advantage δ if we have:∣∣∣∣∣∣ Pr

(xA,xB)∼Y
Π∼Π

(
Π(xA, xB) = 1

)
− Pr

(xA,xB)∼N
Π∼Π

(
Π(xA, xB) = 1

)∣∣∣∣∣∣ ≥ δ.

3Note that this matches our notation for distributional streaming problems. Nonetheless, the difference will be clear from context.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4090

D
ow

nl
oa

de
d

03
/0

3/
23

 to
 7

1.
24

8.
16

1.
23

8
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

2.4 Analytical tools. We now introduce some tools from probability and Fourier analysis which will be helpful
in the proofs of the lower bounds.

2.4.1 Random variables. Let ∥Y −N|tv denote the total variation distance between two distributions Y and
N .

Lemma 2.3. (Triangle inequality) Let Y,N ,Z ∈ ∆(Ω). Then

∥Y −N∥tv ≥ ∥Y − Z∥tv − ∥Z −N∥tv.

Lemma 2.4. (Data processing inequality) Let Y,N be random variables with sample space Ω, and let Z be
a random variable with sample space Ω′ which is independent of Y and N . If g : Ω × Ω′ → Ω′′ is any function,
then

∥Y −N∥tv ≥ ∥g(Y, Z)− g(N,Z)∥tv.

We will use the following concentration inequality from [15].

Lemma 2.5. ([15, Lemma 2.5]) Let X =
∑n

i=1 Xi, where Xi are Bernoulli {0, 1}-valued random variables
satisfying, for every k ∈ [n], E[Xk | X1, . . . , Xk−1] ≤ p for some p ∈ (0, 1). Let µ = np. Then for all ∆ > 0,

Pr[X ≥ µ+∆] ≤ exp

(
− ∆2

2(µ+∆)

)
.

We also need the following concentration inequality that we prove using Lemma 2.5.

Lemma 2.6. Let X =
∑n

i=1 Xi, where Xi are Bernoulli {0, 1}-valued random variables satisfying, for every
k ∈ [n], E[Xk | X1, . . . , Xk−1] ≥ p for some p ∈ (0, 1). Let µ = np. Then for all ∆ > 0,

Pr[X ≤ µ−∆] ≤ exp

(
− ∆2

2(n− (µ−∆))

)
.

Proof. Follows immediately from Lemma 2.5 on the random variables Yi = 1−Xi, q = 1− p, and ν = nq (since
X ≤ µ−∆ is equivalent to Y ≥ ν +∆).

2.4.2 Fourier analysis over Zq. Let q ≥ 2 ∈ N, and let ω
def
= e2πi/q denote a (fixed primitive) q-th root of

unity. Here, we summarize relevant aspects of Fourier analysis over Zn
q ; see e.g. [18, §8] for details.4 Given a

function f : Zn
q → C and s ∈ Zn

q , we define the Fourier coefficient

f̂(s)
def
=
∑
x∈Zn

q

ω−s·xf(x)

where · denotes the inner product over Zq. For p ∈ (0,∞), we define f ’s p-norm

∥f∥p
def
=

∑
x∈Zn

q

|f(x)|p
1/p

.

We also define f ’s 0-norm

∥f∥0
def
=
∑
x∈Zn

q

1f(x)̸=0

(a.k.a. the size of its support and the Hamming weight of its “truth table”). Also, for ℓ ∈ {0}∪ [n], we define the
level-ℓ Fourier (2-)weight as

Wℓ[f]
def
=

∑
s∈Zn

q :∥s∥0=ℓ

|f̂(s)|2.

These weights are closely connected to f ’s 2-norm:

4[18] uses a different normalization for norms and inner products, essentially because it considers expectations instead of sums
over inputs.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4091

D
ow

nl
oa

de
d

03
/0

3/
23

 to
 7

1.
24

8.
16

1.
23

8
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Proposition 2.1. (Parseval’s identity) For every q, n ∈ N and f : Zn
q → C, we have

∥f∥22 = qn
n∑

ℓ=0

Wℓ[f].

Moreover, let D def
= {w ∈ C : |w| ≤ 1} denote the (closed) unit disk in the complex plane. The following

lemma bounding the low-level Fourier weights for functions mapping into D is derived from hypercontractivity
theorems in [3]:

Lemma 2.7. ([3, Lemma 2.11]) There exists ζ > 0 such that the following holds. Let q ≥ 2, n ∈ N and consider
any function f : Zn

q → D. If for c ∈ N, ∥f∥0 ≥ qn−c, then for every ℓ ∈ {1, . . . , 4c}, we have

q2n

∥f∥20
Wℓ[f] ≤

(
ζc

ℓ

)ℓ

.

Lemma 2.8. Let U = U(Zm
q). Then for all Z ∈ ∆(Zm

q),

∥Z − U∥2tv ≤ q2m
m∑
ℓ=1

Wℓ[Z].

Finally, we need the following useful inequality, which bounds the total variation distance between a
distribution Z and the uniform distribution by Fourier weights of the probability mass function of Z:

Proof. We have

∥Z − U∥tv =
qm

2
∥Z − U∥1.

Thus by Cauchy-Schwartz,
∥Z − U∥2tv ≤ q2m∥Z − U∥22.

Finally, we apply Parseval and observe that Ẑ(0) = Û(0) = 1 while for all s ̸= 0, Û(s) = 0 by symmetry.

2.5 Hypergraphs. Let 2 ≤ k, n ∈ N. A k-hyperedge on [n] is a k-tuple e = (e1, . . . , ek) ∈ [n]k of distinct
indices, and a k-hypergraph (a.k.a. “k-uniform hypergraph”) G on [n] is a sequence (e(1), . . . , e(m)) of (not
necessarily distinct) k-hyperedges. For α ∈ (0, 1), n ∈ N, let Gk,α(n) denote the uniform distribution over k-
hypergraphs on [n] with αn hyperedges.

Given a graph G with m edges e(1), . . . , e(m), we associate each hyperedge e(i) with a partial permutation
matrix Mi ∈ {0, 1}k×n, such that for each j ∈ [k], row j has a 1 only in position e(j)i. We associate to G an
adjacency matrix M ∈ {0, 1}km×n by stacking together M1, . . . ,Mm. Since they encode the same information,
we will often treat adjacency matrices and k-hypergraphs as interchangeable (and speak of drawing a matrix M
from Gk,α(n)).

For a k-hypergraph G on vertex-set [n] with hyperedges (e(1), . . . , e(m)), we define the vertex-hyperedge
incidence graph BG, which is a bipartite graph defined as follows: The left vertex-set is [n], the right vertex-set
is [m], and there is an edge between i ∈ [n] and j ∈ [m] iff i ∈ e(j).

2.6 Reservoir sampling in the streaming setting. Reservoir sampling is a term used to refer to a family
of randomized streaming algorithms that are used to sample uniform k random elements from the stream without
prior knowledge on the length of the stream. The simplest algorithm, known as Algorithm R, was created by
Alan Waterman in 1975. The algorithm runs in O(k) space and works as follows: it maintains a “reservoir” of
size k. Initially, the first k elements in the stream are stored in the reservoir. For i > k, when the i-th element of
the stream, denoted by ai, arrives, the algorithm generates a random number j between 1 and i, and if j ≤ k, it
replaces the j-th element in the reservoir with ai. It is not hard to show that if m elements have arrived in the
stream so far, then the probability of any one of them being in the reservoir is exactly k/m (see [24] for more
details).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4092

D
ow

nl
oa

de
d

03
/0

3/
23

 to
 7

1.
24

8.
16

1.
23

8
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

2.7 k-wise independent hash family. A k-wise independent hash family is a family of hash functions
H(n,m) = {h : [n]→ [m]} that satisfies the following properties:

• For every x ∈ [n] and a ∈ [m], and h ∼ H uniformly, Pr[h(x) = a] = 1
m , and

• For every distinct x1, . . . , xk ∈ [n], and h ∼ H uniformly, h(x1), . . . , h(xk) are independent random variables.

For every fixed k, it is well-known that for m = 2ℓ (or indeed any prime power) and any n, there are k-wise
independent hash functions H(n,m) which can be sampled using only O(log n+ logm) randomness [11].

3 Algorithms for Max-DICUT

We review the definition of Max-DICUT as an optimization problem on unweighted directed graphs. Let G = (V,E)
be an unweighted directed (multi)graph. G’s Max-DICUT value, denoted valG , is defined as the size of the largest
directed cut in the graph. Formally,

valG
def
= max

L,R:V=L⊔R
|EL→R| ,

where EL→R = {(i, j) ∈ E : i ∈ L and j ∈ R}. In this section, we prove the following three theorems for a
constant αFJ ≥ 0.483:

Theorem 3.1. (Random-ordering algorithm) Let ϵ > 0 and c > 0 be constants. There exists an O(log n)-
space single-pass streaming algorithm ALG such that for every directed graph G = (V,E) with |V | = n and
|E| ≤ nc, the following holds: On input the edges of G in a uniformly random order, ALG outputs an (αFJ − ϵ)-
approximation to valG with probability at least 2/3.

Theorem 3.2. (Two-pass algorithm) Let ϵ > 0 and c > 0 be constants. There exists an O(log n)-space two-
pass streaming algorithm ALG such that for every directed graph G = (V,E) with |V | = n and |E| ≤ nc, the
following holds: On input the edges of G in adversarial order, ALG outputs an (αFJ − ϵ)-approximation to valG
with probability at least 2/3.

Theorem 3.3. (Bounded-degree algorithm) Let ϵ > 0, c > 0 be constants. There exists an
O(D3/2

√
n log2 n)-space single-pass streaming algorithm ALG such that for every directed graph G = (V,E)

with |V | = n, |E| ≤ nc, and max-degree at most D, the following holds: On input the edges of G in adversarial
order, ALG outputs an (αFJ − ϵ)-approximation to valG with probability at least 2/3.

But first, we build some notation. The bias of a vertex i ∈ V with respect to a directed graph G = (V,E),

denoted biasG(i), is defined as biasG(i) =
out-degG(i)−in-degG(i)

out-degG(i)+in-degG(i) , where out-degG(i), in-degG(i) respectively denote the

out-degree and in-degree of i in G. Now, we define the density matrix of a graph with respect to a partition of
its vertices into bias intervals. Given any vector t = (t1, . . . , tℓ) ∈ [−1, 1]ℓ satisfying −1 = t1 < · · · < tℓ = 1,
consider the partition of the vertices V into blocks of vertices V = V1 ⊔ · · · ⊔ Vℓ where for every r ∈ [ℓ − 1],
Vr = {i : biasG(i) ∈ [tr, tr+1)}, and Vℓ = {i : biasG(i) = 1}. Now the density matrix of G with respect to t,
denoted by MG,t, is an ℓ× ℓ matrix of natural numbers defined as MG,t(i, j) = |EVi→Vj

|, for every i, j ∈ [ℓ], i.e.,
the (i, j)-th entry of MG,t counts the number of edges in G between vertices with biases in the intervals [ti, ti+1)
(or 1 if i = ℓ) and [tj , tj+1) (or 1 if j = ℓ).

The following lemma was proved in [7] and it shows that there exists a vector t such that for every directed
graph G, the density matrix of G with the respect to the canonical partition PG,t can be used to get a good
approximation to the Max-DICUT value of G.

Lemma 3.1. ([7]) There exists a constant αFJ ∈ (0.483, 0.4899), ℓFJ ∈ N, a vector of bias thresholds tFJ =
(t1, . . . , tℓ) ∈ [−1, 1]ℓFJ , and a vector of probabilities pFJ = (p1, . . . , pℓ) ∈ [0, 1]ℓ such that for every directed graph
G,

αFJ · valG ≤
ℓFJ∑

i,j=1

pi(1− pj)MG,t(i, j) ≤ valG .

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4093

D
ow

nl
oa

de
d

03
/0

3/
23

 to
 7

1.
24

8.
16

1.
23

8
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

We observe that algorithmically, the estimate for valG in this lemma corresponds to assigning each vertex in
block Vi to L w.p. pi and R w.p. 1− pi, independently of all other vertices.

As a corollary of Lemma 3.1, we show that in order to get an (αFJ − ϵ)-approximation for the Max-DICUT
value of G, it suffices to obtain an additive ±ϵ′m approximation for every element of MG,t, for ϵ

′ = O(ϵ).

Corollary 3.1. Let αFJ, ℓFJ, tFJ,pFJ be as in Lemma 3.1. Let G be a directed graph and let m denote the number
of edges in G. Let ϵ ∈ (0, αFJ) and ϵ′ = ϵ

8(ℓFJ)2
. If there exists N ∈ RℓFJ×ℓFJ such that for every i, j ∈ [ℓFJ],

MG,t(i, j)− ϵ′m ≤ N(i, j) ≤MG,t(i, j) + ϵ′m,

then
(αFJ − ϵ)valG ≤

∑
i,j∈[ℓFJ]

pi(1− pj)N(i, j)− ϵ

8
m ≤ valG .

Proof. Omitted; see full version.

In the following subsections, we describe how to estimate MG,t in a number of different settings: O(log n)-
space single-pass streaming algorithm under random ordering of edges (Section 3.1), O(log n)-space two-pass
streaming algorithm under adversarial ordering (Section 3.2), and O(D3/2

√
n log2 n)-space single-pass streaming

algorithm for degree-D bounded graphs under adversarial ordering (Section 3.3). These algorithms share the
same central principle: First, let H = (V,E′) be a subgraph of G = (V,E) (i.e., E′ ⊆ E). Given bias thresholds
−1 = t1 < · · · < tℓ = 1, let MH⊆G,t ∈ Nℓ×ℓ denote the matrix with entries MH⊆G,t(i, j) = |E′

Vi→Vj
| where

V1 ⊔ · · · ⊔ Vℓ is the partition of V with respect to bias in G. (Note that this is distinct from the matrices MG,t
and MH,t because it counts edges in H but measures bias with respect to G.) Now the strategy of all three
algorithms is to somehow sample a “representative” subgraph H of G, and then estimate MG,t from MH⊆G,t

simply by multiplying every entry by a scale factor m(G)
m(H) (where m(G) = |E| and m(H) = |E′|). There are two

questions associated with this approach, which we answer differently in each setting:

1. How do we sample a subgraph H with “representative” proportions of edges from EVi→Vj
for each i, j ∈ [ℓ]?

In Sections 3.1 and 3.2, H consists of random edges from G, while in Section 3.3, H is the subgraph induced
on random vertices from G. In both cases, we show that (for a sufficiently large sample size), H is “sufficiently
representative” with high probability using concentration bounds.

2. How do we remember the “global bias” (i.e., the bias in G) of vertices we sample in H? In the single-pass
setting, we measure biases “online”: Each time we see a new vertex appear as an endpoint in an edge, we
decide whether to track its bias over the rest of the stream or not, and if we decide not to, it cannot have
positive degree in H. The two-pass setting obviates this limitation, since we can decide which vertices to
track in the first pass and then actually track them in the second pass.

3.1 O(log n)-space random-ordering (single-pass) algorithm. In this subsection, we prove Theorem 3.1
by showing that Algorithm 1 is an (αFJ − ϵ)-approximation streaming algorithm for computing Max-DICUT
value when the edges of the input graph G are randomly ordered and uses space at most O(log n). Algorithm 1
uses Algorithm 2 as a subroutine to estimate MG,t within a small additive error and then uses this estimate to
compute an (αFJ − ϵ)-approximation to the Max-DICUT value of G. We now describe and analyse Algorithm 1
and Algorithm 2.

Algorithm 1 Random-Order-Dicutϵ(n,σ):

Input: n ∈ N and a stream σ = (e(1), . . . , e(m)) representing randomly ordered edges of G on n vertices.
1: Let ℓFJ, tFJ, pFJ be from Lemma 3.1. Let k and m0 be fixed according to Lemma 3.2 corresponding to

ℓFJ, tFJ, and ϵ′ = ϵ
8(ℓ2FJ)

.

2: Store the first m0 edges that arrive in the stream.
3: Let N ← Random-Order-Estimate-MG,t(n,σ, tFJ, k).
4: if m < m0 then
5: Compute MG,tFJ

directly from the stored edges and N ←MG,tFJ
.

6: Output
∑ℓFJ

i,j=1 pi(1− pj)N(i, j)− ϵ
8m.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4094

D
ow

nl
oa

de
d

03
/0

3/
23

 to
 7

1.
24

8.
16

1.
23

8
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

We are now ready to describe our first algorithm for estimating MG,t.

Algorithm 2 Random-Order-Estimate-MG,t(n,σ, t, k)

Input: the number n of vertices of a directed graph G, a stream σ = (e(1), . . . , e(m)) representing randomly
ordered edges of G, bias thresholds −1 = t1 < · · · < tℓ = 1, and a parameter k ∈ N.

1: Store the first k edges (e(1), . . . , e(k)) of the stream. Let H denote the corresponding subgraph.
2: Over the remainder of the stream, track the following:

• for every vertex i with positive degree in H, the degrees out-degG(i) and in-degG(i),

• and the total number m of edges in the stream.

3: After the stream ends, compute the following:

• for every i with positive degree in H, biasG(i),
• and the matrix MH⊆G,t.

Output: N ∈ Rℓ×ℓ, where for every i, j ∈ [ℓ], N(i, j) = m
k MH⊆G,t(i, j).

Now the following lemma asserts the correctness of the estimate in Algorithm 2 for a sufficiently large choice
of k:

Lemma 3.2. For every ℓ ∈ N and threshold vector t ∈ [−1, 1]ℓ and ϵ′ > 0, there exists k,m0 ∈ N such that for
every directed graph G = (V,E) with m = |E| ≥ m0 edges, with probability 2

3 , the matrix N output by Algorithm 2
on input G satisfies, for every i, j ∈ [ℓ], the inequalities

MG,t(i, j)− ϵ′m ≤ N(i, j) ≤MG,t(i, j) + ϵ′m.

Proof. Omitted; see full version.

Finally, we prove Theorem 3.1.

Proof. [Proof of Theorem 3.1] Consider Algorithm 1. We fix ℓFJ, tFJ,pFJ, αFJ according to Lemma 3.1. For
the choice of k ∈ N in Lemma 3.2 that corresponds to ℓFJ, tFJ, and ϵ′ = ϵ

8(ℓFJ)2
, we run Algorithm 2 with the

parameters tFJ, k on the input graph G. For m ≥ m0, Lemma 3.2 implies that with probability 2
3 , the output

N of Algorithm 2 entrywise approximates MG,tFJ
up to an additive ±ϵ′m. For m < m0, Algorithm 1 computes

MG,tFJ exactly. Now Corollary 3.1 implies that the output of Algorithm 1 is an (αFJ − ϵ)-approximation to the
Max-DICUT value of G as desired.

Finally, we show that Algorithm 1 can be implemented in O(log n) space. Since m0 is a constant, it takes
only O(log n) space to store the first m0 edges. Algorithm 2 can be implemented in O(log n) space since it takes
O(log n) space to store k edges and we use a simple counter in step 2 that uses O(log n) space for m that is
bounded by poly(n).

3.2 Two-pass O(log n)-space adversarial-ordering algorithm. In this subsection, we show how the
random-ordering algorithm presented in Section 3.1 can be modified to work with adversarial input ordering
given two passes over the input stream to prove Theorem 3.2.

Proof. [Proof of Theorem 3.2] Let ALG denote the (αFJ − ϵ)-approximation algorithm for Max-DICUT in the
random ordering setting (Algorithm 1). Consider the following algorithm ALG′: In the first pass ALG′ uses
reservoir sampling (see Section 2.6) to randomly sample k edges from the stream; this requires O(k) space.5

In the second pass, it runs the remainder of Algorithm 2 with parameters tFJ, k to obtain N and outputs∑ℓFJ

i,j=1 pi(1− pj)N(i, j)− ϵ
8m. The same proof of correctness, as well as the space analysis for Algorithm 1 works

here as well. We conclude that with probability at least 2/3, ALG′ outputs an (αFJ − ϵ)-approximation to the
Max-DICUT value of G.

5Note that if the length of the stream is known a priori, there is a simpler sampling procedure. In the first pass, ALG′ can sample

every edge in the stream with probability 2k
m

. Let S denote the number of edges that were sampled. With high probability, |S| ≥ k.
Now, ALG′ can choose a random subset of k edges from S.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4095

D
ow

nl
oa

de
d

03
/0

3/
23

 to
 7

1.
24

8.
16

1.
23

8
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

3.3 O(D3/2
√
n log2 n)-space adversarial-ordering algorithm for degree-D bounded graphs. In this

subsection, we prove Theorem 3.3 by showing that Algorithm 3 is an (αFJ−ϵ)-approximation streaming algorithm
for computing Max-DICUT value of degree-D bounded graphs and uses space at most O(D3/2

√
n log2 n). The

basic idea is to sample a subset of the vertices of the input graph G and estimate MG,t using the density matrix for
the induced subgraph MH⊆G,t. However, there are a few issues that ensue. Firstly, we need to deal with the case
where most of G’s vertices are isolated (i.e., they have degree zero); we manage this by only sampling vertices which
have positive degree, by using a hash function on these vertices. This, in turn, requires estimating the number
m of edges in the stream, which is not known a priori. For an estimate m̂ that satisfies m̂ ≤ m < 2m̂, with high
probability, Algorithm 4 estimates MG,t correctly within a small additive error. Algorithm 3 runs Algorithm 4 for
various estimates of m and using the correct output from Algorithm 4, it computes an (αFJ − ϵ)-approximation
to the Max-DICUT value of G. We now describe and analyse Algorithm 3 and Algorithm 4.

Algorithm 3 Bounded-Degree-DicutD(n,σ):

Input: n ∈ N and a stream σ = (e(1), . . . , e(m)) representing randomly ordered edges of G on n vertices.
1: Let ℓFJ, tFJ, pFJ be from Lemma 3.1. Let C1 and k be fixed according to Lemma 3.3 corresponding to

ℓFJ, tFJ, and ϵ′ = ϵ
8(ℓ2FJ)

.

2: Store the first 2C2
1D edges that arrive in the stream.

3: for every integer b from 0 to ⌊log(nD/2)⌋ do
4: N̂b ← Bounded-Degree-Estimate-MG,t(n,σ, tFJ, k, 2

b)

5: if N̂b is not Fail then
6: N ← N̂b.

7: if m < 2C2
1D then

8: Compute MG,tFJ
directly from the stored edges and N ←MG,tFJ

.

9: Output
∑ℓFJ

i,j=1 pi(1− pj)N(i, j)− ϵ
8m.

Algorithm 4 Bounded-Degree-Estimate-MG,t(n,σ, t, k, m̂)

Input: the number n of vertices of a directed graph G, a stream σ = (e(1), . . . , e(m)) representing adversarially
ordered edges, a vector t = (t1, . . . , tℓ) ∈ [−1, 1]ℓ, and parameters k, m̂ ∈ N, where m̂ is a power of 2.

1: Sample a random hash function π : [n]→ [m̂] from a 4-wise independent hash family H(n, m̂) (see Section 2.7).
2: For the remainder of the stream, track the number of edges m that arrive.
3: Define s← k

√
m̂.

4: Initialize n̂← 0.
5: Initialize H ← (V, ∅), where V is the vertex set of G.
6: for each edge e(t) = (u, v) in the stream do
7: if π(u) ≤ s then
8: Track the bias of u. Increase n̂ by 1 if this is the first edge incident on u.

9: if π(v) ≤ s then
10: Track the bias of v. Increase n̂ by 1 if this is the first edge incident on v.

11: if π(u) ≤ s and π(v) ≤ s then
12: Add e to H.
13: if n̂ > (5s ·min{n, 4m̂})/m̂ then
14: Halt and output Fail.

15: if m < m̂ or m ≥ 2m̂ then
16: Halt and output Fail.

Output: N ∈ Rℓ×ℓ, where for every i, j ∈ [ℓ], N(i, j) = m
µ MH⊆G,t(i, j) where µ = ms2/m̂2.

The correctness of Algorithm 4 conditioned on the estimate m̂ being approximately accurate is asserted in
the following lemma:

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4096

D
ow

nl
oa

de
d

03
/0

3/
23

 to
 7

1.
24

8.
16

1.
23

8
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemma 3.3. For every ℓ, threshold vector t ∈ [−1, 1]ℓ, and ϵ′ > 0, there exists C1 = C1(ϵ
′) > 0 such that the

following holds. Let G be a graph with n vertices, m edges, and max-degree ≤ D such that m ≥ 2C2
1D, and let

m̂ ∈ N be such that m̂ ≤ m < 2m̂. Then with probability 2
3 (over the choice of the permutation π), the matrix N

output by Algorithm 4 on input G (with parameters k = C1

√
D, m̂) satisfies, for every i, j ∈ [ℓ], the inequalities

MG,t(i, j)− ϵ′m ≤ N(i, j) ≤MG,t(i, j) + ϵ′m.

Proof. Omitted; see full version.

Finally, we prove Theorem 3.3.

Proof. [Proof of Theorem 3.3] Consider Algorithm 3. We fix ℓFJ, tFJ,pFJ, αFJ according to Lemma 3.1 and k
according to Lemma 3.3 corresponding to ℓFJ, tFJ, and ϵ′ = ϵ

8(ℓFJ)2
. Since the max-degree of G is at most D, the

number of edges m is at most nD/2. Observe that for every m, there is a unique b ∈ [0, ⌊log(nD/2)⌋] such that

2b ≤ m < 2b+1. Namely, for b̂ = ⌊logm⌋, we have 2b̂ ≤ m < 2b̂+1. For b = b̂, the algorithm executes Algorithm 4

with m̂ = 2b̂. For m ≥ 2C2
1D, Lemma 3.3 implies that with probability 2

3 , the output N of Algorithm 4 entrywise
approximates MG,tFJ up to an additive ±ϵ′m. For m < 2C2

1D, Algorithm 3 computes MG,tFJ exactly. Now
Corollary 3.1 implies that output of Algorithm 3 is an (αFJ − ϵ)-approximation to the Max-DICUT value of G as
desired.

Finally, we show that Algorithm 3 can be implemented in O(D3/2
√
n log2 n) space. The first 2C2

1D edges
in the stream can be stored in O(D log n) space. Since Algorithm 3 executes Algorithm 4 O(log n) times, it
suffices to prove that Algorithm 4 can be implemented in O(D3/2

√
n log n) space. Firstly, it takes O(log n)

space to store π (see Section 2.7 for an example construction). Moreover, we can maintain the counter
for the number of edges using O(logm) space. We have n̂ ≤ (5s · min{n, 4m̂})/m̂. Every tracked vertex
contributes only O(D log n) space to store its degree and neighborhood. Therefore, Algorithm 4 requires at

most O
(
D3/2 log n ·min{n, m̂}/

√
m̂
)
≤ O(D3/2 log n ·

√
n) space. Hence, Algorithm 3 can be implemented in

O(D3/2 log2 n
√
n) space.

4 Lower bounds for Max-CSP in the random-ordering setting

4.1 The generalized Uniform Randomized Mask Detection (RMD) problem. We now define the
Generalized-Uniform-RMD problem, the main focus of our lower bound. We shall define both a communication
version and a streaming version. In either case, we need to define a pair of distributions. As the two pairs are
rather closely related, we define them together.

Definition 4.1. (Generalized-Uniform-RMD) Let q, k ∈ N be given and F be a non-empty set of functions
mapping Zk

q → {0, 1}. Let α > 0 and n ∈ N be parameters and DY ∈ ∆
(
F ×∆unif

(
Zk
q

))
be a distribution

with finite support6. For all integers 0 ≤ t ≤ αn and both versions, we now define a distribution HF,DY ,α(n, t) as
follows:

1. For both versions:

(a) Sample a vector x∗ uniformly at random from Zn
q .

(b) For all i ∈ [αn], sample a matrix Mi ∈ {0, 1}k×n
uniformly and independently from the set of all partial

permutation matrices7.

(c) For all i ∈ [αn], sample a pair (fi, Di) independently from DY .

(d) For all i ∈ [αn], sample a vector b(i) ∈ Zk
q independently from Di if i ≤ t and uniformly and

independently from the set Zk
q if i > t.

(e) For all i ∈ [αn], set z(i) = Mix
∗ − b(i).

6Observe that DY is a finite support distribution over pairs, the second element of which is itself a distribution.
7Recall that a partial permutation matrix is a matrix with 0, 1 entries and exactly one 1 in each row and at most one 1 in every

column.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4097

D
ow

nl
oa

de
d

03
/0

3/
23

 to
 7

1.
24

8.
16

1.
23

8
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

2. Output as follows:

(a) For the communication version, define M (respectively, z) to be the matrix (resp., vector) obtained
by stacking all the Mi (resp., z(i)) on top of each other. Also, define the vector D to be the vector
consisting of the pairs (fi, Di)i∈[αn]. Output the pair (x∗, (M, z,D)). (The first element of the pair x∗

forms the input for Alice and the second element (M, z,D) forms the input for Bob.)

(b) For the streaming version, output the stream (fi,Mi, z(i))i∈[αn]. (Note that the length of the stream is

αn and each symbol is a triple (fi,Mi, z(i)).)

For both versions, the problem Generalized-Uniform-RMDF,DY ,α(n) is defined to be the pair of distributions
(HF,DY ,α(n, αn),HF,DY ,α(n, 0)). We shall often refer to HF,DY ,α(n, αn) as the “yes” distribution and denote it
by Y and HF,DY ,α(n, 0) as the “no” distribution and denote it by N . The remaining distributions will only be
needed for the streaming version and will be used as “hybrids”.

We note that in the communication version of Definition 4.1, the matrix M given to Bob is the adjacency
matrix of a graph sampled from the distribution Gk,α(n) (see Section 2.5).

We now define what it means to solve the Generalized-Uniform-RMD communication problem arising from
the pair (F ,DY) with non-trivial advantage. The main emphasis of the definition is the advantage one can get
as α → 0. It is natural to expect the advantage to shrink with α, and the definition below requires that the
advantage only shrinks linearly with α.

Definition 4.2. (Solving Generalized-Uniform-RMD with non-trivial advantage) Let q, k ∈ N be given
and F be a non-empty set of functions mapping Zk

q → {0, 1}. Let DY ∈ ∆
(
F ×∆unif

(
Zk
q

))
be a distribution

with finite support and s : N → R be a function. We say that the pair (F ,DY) can be solved with non-trivial
advantage using o(s) communication if there exists δ > 0 such that for all α, τ > 0, there exist infinitely many
n ∈ N for which there exists a (randomized) protocol Π that solves the Generalized-Uniform-RMDF,DY ,α(n)-problem
with advantage δ · α and satisfies ∥Π∥ ≤ τ · s(n).

4.2 Proof of Theorem 1.4. In this section, we state two theorems that together imply Theorem 1.4. These
theorems are then proved in the following sections. First, we have the following communication lower bound on
the Generalized-Uniform-RMD problem.

Theorem 4.1. Let q, k ∈ N be given and F be a non-empty set of functions mapping Zk
q → {0, 1}. Let

DY ∈ ∆
(
F ×∆unif

(
Zk
q

))
be a distribution with finite support. Then, (F ,DY) cannot be solved with non-trivial

advantage using o(
√
n) communication.

We also show why the above communication lower bound implies that certain CSPs are approximation
resistant.

Theorem 4.2. Let q, k ∈ N be given and F be a non-empty set of functions mapping Zk
q → {0, 1} and weakly

supporting one-wise independence. There exists a distribution DY ∈ ∆
(
F ×∆unif

(
Zk
q

))
with a finite support such

that if (F ,DY) cannot be solved with non-trivial advantage using o(
√
n) communication, then Max-CSP(F) is

approximation resistant to o(
√
n) space in the random order streaming model.

An (outline of) the proof of Theorem 4.1 is in the following section. We omit the proof of Theorem 4.2; see
the full version.

5 Proof of Theorem 4.1

In this section we prove that the Generalized-Uniform-RMD communication problem arising from (F ,DY) cannot
be solved with non-trivial advantage using o(

√
n) communication. The central element in the proof is to look

at the distribution of Bob’s input z conditioned on Alice’s message and the matrix M , and to argue that the
distributions are close in the YES and NO cases. By definition, the distribution in the NO case is uniform over
Zkm
q and so what needs to be really shown is that in the YES case also this distribution is close to uniform.

Note that Alice’s message specifies a set A ⊆ Zn
q such that x∗ ∼ Unif(A). Lemma 5.1 roughly relates the

distance of the conditional distribution of z (in the YES case) to the Fourier spectrum of the indicator of the set

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4098

D
ow

nl
oa

de
d

03
/0

3/
23

 to
 7

1.
24

8.
16

1.
23

8
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A and to a somewhat complex combinatorial parameter associated with the random hypergraph described by M
(see Eq. (5.4)). More precisely Lemma 5.1 bounds this distance provided M is “cycle-free” according to a natural
notion of cycle-freeness for hypergraphs that we introduce below. We then state two lemmas upper-bounding
the expectation of the combinatorial parameter (Lemma 5.2) and the probability of a cycle (Lemma 5.3), whose
proofs are deferred to Section 6. We use these bounds to complete the proof of Theorem 4.1.

The proof outline described above follows the same structure as that of [14] with two significant differences.
First, the definition of cycle-freeness is different in our work and this difference has a quantitative effect in that the
probability of being cycle-free increases to Θ(α2) in our setting compared to Θ(α3) in their work. This difference is
significant in the context of “non-trivial advantage”. Directly following the proof in [14] would have led to a Θ(α)
advantage and we make some changes in the proof of Theorem 4.1 to show that despite the higher probability
of cycle-freeness, protocols with non-trivial advantage require Ω(

√
n) communication. The second difference is in

the combinatorial quantity of interest which sees differences due to the higher values of k and q, and the richness
of the distributions DY that we need to handle. The analysis of the combinatorial quantity is also more complex
and we describe the differences in the next section.

5.1 Indististinguishability via Fourier analysis. Conditioned on a set A ⊂ Zn
q of x∗’s corresponding to an

Alice message, a k-hypergraph M ∈ {0, 1}kαn×n, and a vector D = ((f1, D1), . . . , (fm, Dm)) ∈ (F ×∆unif(Zk
q))

m,

let ZA,M,D ∈ ∆(Zkαn
q) denote the conditional distribution of Bob’s input z in the YES case, i.e.,

ZA,M,D(z) = Pr
x∗∼U(A),b∼D1×···×Dm

[z = Mx∗ − b].

For a k-hypergraph G, let cf(G) denote the event that G is cycle-free in the sense that its point-hyperplane

incidence graph BG contains no cycles. Let S ̸=1
def
= {s ∈ (Zk

q)
αn : ∀i ∈ [αn], ∥s(i)∥0 ̸= 1}. Then for ℓ ∈ [n], we

define the quantity

(5.4) hk,α(ℓ, n)
def
= max

v∈Zn
q ,∥v∥0=ℓ

(
E

M∼Gk,α(n)

[
1cf(M) ·

∣∣{s ∈ S ̸=1 : M⊤s = v
}∣∣]) .

Lemma 5.1. (Fourier-analytic reduction) Fix n ∈ N, α ∈ (0, 1/100k), and a vector

D = ((f1, D1), . . . , (fm, DM)) ∈ (F ×∆unif(Zk
q))

m.

Then

E
M∼Gk,α(n)

[1cf(M) · ∥ZA,M,D − U(Zkαn
q)∥2tv] ≤

q2n

|A|2
kαn∑
ℓ=1

hk,α(ℓ, n)W
ℓ[1A]

where hk,α(ℓ, n) is defined as in Eq. (5.4).

Proof. Omitted; see full version.

5.2 Properties of random hypergraphs. Now we state two lemmas about the distribution Gk,α(n) which
we will prove in Section 6 below:

Lemma 5.2. For all 2 ≤ q, k ∈ N, there exists ch <∞ and α0 > 0 such that for all α ∈ (0, α0),

hk,α(ℓ, n) ≤
(
chℓ

n

)ℓ/2

.

Lemma 5.3. For every k ≥ 2, there exists ccf <∞ and α0 ∈ (0, 1) such that for all n ≥ k and α ∈ (0, α0),

Pr
G∼Gk,α(n)

[¬cf(G)] ≤ cα2.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4099

D
ow

nl
oa

de
d

03
/0

3/
23

 to
 7

1.
24

8.
16

1.
23

8
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

5.3 Putting the ingredients together Modulo these lemmas, we can now prove Theorem 4.1:

Proof. [Proof of Theorem 4.1] Omitted; see full version.

Remark 5.1. Even a weaker bound in Lemma 5.2 of (chℓ
2/n)ℓ/2 would have sufficed for us to prove Theorem 4.1.

On the other hand, we also note that the lemma can be strengthened even further and our proof could actually
yield any ch > 0 by choosing α0 small enough. We omit this optimization in Section 6.

6 Hypergraph analyses

In this section we analyze the quantities of interest in random hypergraphs. In Section 6.1 we analyze the
probability that a random hypergraph has a cycle — this analysis is straightforward (and included mainly for
completeness). In Section 6.2 we analyze the quantity hk,α(ℓ, n) which takes more work. An overview is included
in the beginning of Section 6.2.

6.1 Proving Lemma 5.3: Upper-bounding the probability of cycles.

Proposition 6.1. Let 2 ≤ k ≤ n ∈ and α ∈ (0, 1). For every u, v ∈ [n] and j ∈ [αn],

Pr
G∼Gk,α(n)

[u, v ∈ e(j)] =

(
k
2

)(
n
2

) ,
where G has hyperedges e(1), . . . , e(αn).

Proof. Omitted; see full version.

Proof. [Proof of Lemma 5.3] Omitted; see full version.

6.2 Proving Lemma 5.2: Upper-bounding hk,α(ℓ, n). In what follows we fix a vector v ∈ Zn
q with support

U ⊆ [n] and upper bound the quantity EM∼Gk,α(n)

[
1cf(M) ·

∣∣{s ∈ S ̸=1 : M⊤s = v
}∣∣]. For M ∈ supp(Gk,α(n)) let

X(M) = 1cf(M) ·
∣∣{s ∈ S ̸=1 : M⊤s = v

}∣∣ so that the quantity of interest is EM∼Gk,α(n) [X(M)]. To analyze this
expectation, first in Proposition 6.2 we give combinatorial conditions on M under which X(M) = 0. Further
we give a simpler upper bound on X(M) in terms of the connected component structure of M when X(M)
is potentially non-zero. Roughly, this proposition bounds X(M) by some function of the size of the connected
components of M that are incident to the set U . Lemmas 6.1 to 6.4 then analyze the probability that the
components have large size. The resulting bounds are put together to prove Lemma 5.2 at the end of this section.

We now turn to proving Lemma 5.2. Throughout this section, the vertex-hyperedge incidence graph B = BM

corresponding to a k-hypergraph M (from Section 2.5) will be the central object of interest. While we refer to
vertices of M as “vertices”, the vertices of B are referred to as either “left vertices” (corresponding to vertices of
M) or “right vertices” (corresponding to hyperedges of M). Similarly we use “hyperedges” to refer to edges of M
and “edges” to refer to edges of B. In this interpretation, the i-th hyperedge e(i) of M is the neighborhood of the
i-th right vertex of B. Thus, sampling a random hypergraph M ∼ Gk,α(n) is equivalent to sampling B by setting
each right vertex’s neighborhood to be a uniform and independent subset of k left vertices. The vector v can be
viewed as a Zq-labelling of the left vertices of B, while the vector s is a Zq-labelling of B’s edges. The condition
s ∈ S ̸=1 means that no right-vertex of B has degree exactly one, and the condition M⊤s = v implies that the left
vertices of B are each labelled by the sum (modulo q) of the labels of incident edges of B. The condition that U
is the support of v implies that U is exactly the set of left vertices with non-zero labels.

Now consider the connected component decomposition of B, which induces a partition V1, . . . , Vt′ of B’s left
vertices [n]. Since U ⊆ [n] is a subset of B’s left vertices, B’s partition of [n] further induces a partition of U into
subsets U1, . . . , Ut for t ≤ t′. (This partition is given by intersecting each Vi with U and throwing it away if the
intersection is empty. Thus, each component Ui of U is contained in a single connected component of B.)

Note that this partition (given U and B) is essentially unique up to renaming of the parts. We formalize this
as follows. We say that U1, . . . , Ut is a canonical partition of U if each Ui contains the least numbered vertex
of U that is not contained in ∪j<iUj . (Note that every partition U1, . . . , Ut can be converted into a canonical
one by renumbering the parts. Furthermore given U and B this partition is unique.) We let cc-part(B,U), for

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4100

D
ow

nl
oa

de
d

03
/0

3/
23

 to
 7

1.
24

8.
16

1.
23

8
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

“connected component partition”, denote this canonical partition of U induced by B. We say that B partitions
U into t connected components if cc-part(B,U) has t parts.

Given a subset U ′ ⊆ U contained in a unique connected component of B, we say it has L-type ℓ if ℓ = |U ′|,
and R-type r if the connected component of B containing U ′ has exactly r right vertices. These numbers satisfy
the inequality ℓ ≤ kr since every left vertex must touch at least one right vertex. More generally, if B partitions U
into connected components cc-part(B,U) = (U1, . . . , Ut), we say cc-part(B,U) is of L-type (ℓ1, . . . , ℓt) if ℓi = |Ui|
for every i ∈ [t]. We say cc-part(B,U) is valid if ℓi ≥ 2 for every i. We say cc-part(B,U) is of R-type (r1, . . . , rt)
if in B, the connected component containing Ui has exactly ri right vertices for every i ∈ [t], and cc-part(B,U) is
of R-total-type r if

∑
i∈[t] ri = r.

The following proposition fixes a graph M and give conditions on when the quantity 1cf(M) ·∣∣{s ∈ S ̸=1 : M⊤s = v
}∣∣ is non-zero; moreover, when it is non-zero, it gives an upper bound.

Proposition 6.2. For a fixed v ∈ Zn
q with support U ⊆ [n] and a fixed k-hypergraph M , the quantity

1cf(M) ·
∣∣{s ∈ S ̸=1 : M⊤s = v

}∣∣ is non-zero only if M is cycle-free, and cc-part(B,U) is a valid partition.
Furthermore, for every r ∈ N, if M is cycle-free and cc-part(B,U) is a valid partition of R-total-type r, we
have 1cf(M) ·

∣∣{s ∈ S ̸=1 : M⊤s = v
}∣∣ ≤ qkr.

Proof. Omitted; see full version.

Now, we state several lemmas regarding the probability of a random graph M partitioning sets in various
ways, building towards Lemma 6.4 below which bounds the probability that cc-part(BM , U) is a valid partition
of R-total-type r.

Lemma 6.1. Let n/2 + 1 ≤ n′ ≤ n and α ∈ (0, 1). Let M ∼ Gk,α′(n′) for α′ = αn/n′ and B = BM . Then for
every u ∈ [n′],

Pr
M
[B places u in a component of R-type at least r1] ≤ (2ek2α)r1 .

Proof. Omitted; see full version.

Lemma 6.2. Let α ≤ 1/(2e3k2), n/2 + 1 ≤ n′ ≤ n and r1 ∈ N. Fix a set U1 ⊆ [n′] with |U1| = ℓ1. Let
M ∼ Gk,α′(n′) for α′ = αn/n′ and let B = BM . Then

Pr
M

[B partitions U1 into a single connected component of R-type r1] ≤ (2ek2α)r1/2(2k(ℓ1 − 1)/n)ℓ1−1.

Proof. Omitted; see full version.

Lemma 6.3. Let α ≤ 1(2e3k2) and n ≥ 4. Fix r ∈ N, a set U ⊆ [n] and a canonical partition U1, . . . , Ut of U .
Let ℓ = |U | and ℓi = |Ui|. Let M ∼ Gk,α(n). We have

Pr[cc-part(B,U) = (U1, . . . , Ut) with R-total-type r] ≤ (32ek2α)r/2(2k/n)ℓ−t
t∏

i=1

(ℓi − 1)ℓi−1.

Proof. Omitted; see full version.

Lemma 6.4. Let α ≤ 1(2e3k2), n ≥ 4 and ℓ ≤ n/(4ek). Fix r ∈ N, a set U ⊆ [n] with |U | = ℓ. Let M ∼ Gk,α(n)
and B = BM . Then

Pr
M

[cc-part(B,U) is valid and has R-total-type r] ≤ 2(32ek2α)r/2(32ekℓ/n)ℓ/2.

Proof. Omitted; see full version.

Given these lemmas, we are now prepared to prove Lemma 5.2.

Proof. [Proof of Lemma 5.2] Omitted; see full version.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4101

D
ow

nl
oa

de
d

03
/0

3/
23

 to
 7

1.
24

8.
16

1.
23

8
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

References

[1] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming Algorithms via Precision Sampling. In 2011
IEEE 52nd Annual Symposium on Foundations of Computer Science, pages 363–372. doi:10.1109/FOCS.2011.82.

[2] Joanna Boyland, Michael Hwang, Tarun Prasad, Noah Singer, and Santhoshini Velusamy. On sketching approxima-
tions for symmetric Boolean CSPs. In Amit Chakrabarti and Chaitanya Swamy, editors, Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques, volume 245 of LIPIcs, pages 38:1–38:23. Schloss
Dagstuhl — Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.APPROX/RANDOM.2022.38.

[3] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, Ameya Velingker, and Santhoshini Velusamy. Linear Space
Streaming Lower Bounds for Approximating CSPs. In Proceedings of the 54th Annual ACM Symposium on Theory
of Computing.

[4] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. Approximability of all Boolean
CSPs with linear sketches. URL: https://arxiv.org/abs/2102.12351, arXiv:2102.12351v7.

[5] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. Approximability of all finite CSPs
with linear sketches. In Proceedings of the 62nd Annual IEEE Symposium on Foundations of Computer Science.
IEEE Computer Society. doi:10.1109/FOCS52979.2021.00117.

[6] Chi-Ning Chou, Alexander Golovnev, and Santhoshini Velusamy. Optimal Streaming Approximations for all Boolean
Max-2CSPs and Max-kSAT. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science, pages
330–341. IEEE Computer Society. doi:10.1109/FOCS46700.2020.00039.

[7] Uriel Feige and Shlomo Jozeph. Oblivious Algorithms for the Maximum Directed Cut Problem. 71(2):409–428.
doi:10.1007/s00453-013-9806-z.

[8] Venkatesan Guruswami and Runzhou Tao. Streaming Hardness of Unique Games. In Dimitris Achlioptas
and László A. Végh, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, volume 145 of LIPIcs, pages 5:1–5:12. Schloss Dagstuhl — Leibniz-Zentrum für Informatik. doi:

10.4230/LIPIcs.APPROX-RANDOM.2019.5.
[9] Venkatesan Guruswami, Ameya Velingker, and Santhoshini Velusamy. Streaming Complexity of Approximating Max

2CSP and Max Acyclic Subgraph. In Klaus Jansen, José D. P. Rolim, David Williamson, and Santosh S. Vempala,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, volume 81 of
LIPIcs, pages 8:1–8:19. Schloss Dagstuhl — Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.APPROX-RANDOM.

2017.8.
[10] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream computation. 53(3):307–

323. Conference version in FOCS 2000. doi:10.1145/1147954.1147955.
[11] A. Joffe. On a Set of Almost Deterministic k-Independent Random Variables. 2(1):161–162. doi:10.1214/aop/

1176996762.
[12] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. On the Exact Space Complexity of Sketching and Streaming

Small Norms. In Proceedings of the 2010 Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1161–1178.
Society for Industrial and Applied Mathematics. doi:10.1137/1.9781611973075.93.

[13] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from random streams. In
Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 734–751. Society for Industrial
and Applied Mathematics. doi:10.5555/2634074.2634129.

[14] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming lower bounds for approximating MAX-CUT.
In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1263–1282. Society for
Industrial and Applied Mathematics. doi:10.1137/1.9781611973730.84.

[15] Michael Kapralov and Dmitry Krachun. An optimal space lower bound for approximating MAX-CUT. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 277–288. Association for Computing
Machinery. doi:10.1145/3313276.3316364.

[16] Michael Kapralov, Slobodan Mitrović, Ashkan Norouzi-Fard, and Jakab Tardos. Space efficient approximation
to maximum matching size from uniform edge samples. In Proceedings of the Thirty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1753–1772. Society for Industrial and Applied Mathematics. doi:

10.5555/3381089.3381196.
[17] Morteza Monemizadeh, S. Muthukrishnan, Pan Peng, and Christian Sohler. Testable Bounded Degree Graph

Properties Are Random Order Streamable. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca
Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming, volume 80 of LIPIcs,
pages 131:1–131:14. Schloss Dagstuhl — Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2017.131.

[18] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 1st edition edition.
[19] Pan Peng and Christian Sohler. Estimating Graph Parameters from Random Order Streams. In Proceedings of

the 29th Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics.
doi:10.1137/1.9781611975031.157.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4102

D
ow

nl
oa

de
d

03
/0

3/
23

 to
 7

1.
24

8.
16

1.
23

8
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1109/FOCS.2011.82
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.38
https://arxiv.org/abs/2102.12351
http://arxiv.org/abs/2102.12351v7
https://doi.org/10.1109/FOCS52979.2021.00117
https://doi.org/10.1109/FOCS46700.2020.00039
https://doi.org/10.1007/s00453-013-9806-z
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.5
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.5
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.8
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.8
https://doi.org/10.1145/1147954.1147955
https://doi.org/10.1214/aop/1176996762
https://doi.org/10.1214/aop/1176996762
https://doi.org/10.1137/1.9781611973075.93
https://doi.org/10.5555/2634074.2634129
https://doi.org/10.1137/1.9781611973730.84
https://doi.org/10.1145/3313276.3316364
https://doi.org/10.5555/3381089.3381196
https://doi.org/10.5555/3381089.3381196
https://doi.org/10.4230/LIPIcs.ICALP.2017.131
https://doi.org/10.1137/1.9781611975031.157

[20] Raghuvansh R. Saxena, Noah Singer, Madhu Sudan, and Santhoshini Velusamy. Streaming beyond sketching for
Maximum Directed Cut. In submission. arXiv:2211.03916.

[21] Noah Singer. On streaming approximation algorithms for constraint satisfaction problems. URL: https://nrs.

harvard.edu/URN-3:HUL.INSTREPOS:37371750.
[22] Noah Singer, Madhu Sudan, and Santhoshini Velusamy. Streaming approximation resistance of every ordering CSP.

In Mary Wootters and Laura Sanità, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, volume 207 of LIPIcs, pages 17:1–17:19. Schloss Dagstuhl — Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.APPROX/RANDOM.2021.17.

[23] Madhu Sudan. Streaming and Sketching Complexity of CSPs: A survey (Invited Talk). In Miko laj Bojańczyk,
Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and
Programming, volume 229 of LIPIcs, pages 5:1–5:20. Schloss Dagstuhl — Leibniz-Zentrum für Informatik. doi:

10.4230/LIPIcs.ICALP.2022.5.
[24] Jeffrey S. Vitter. Random sampling with a reservoir. 11(1):37–57. doi:10.1145/3147.3165.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited4103

D
ow

nl
oa

de
d

03
/0

3/
23

 to
 7

1.
24

8.
16

1.
23

8
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

http://arxiv.org/abs/2211.03916
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37371750
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37371750
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.17
https://doi.org/10.4230/LIPIcs.ICALP.2022.5
https://doi.org/10.4230/LIPIcs.ICALP.2022.5
https://doi.org/10.1145/3147.3165

	Introduction
	Previous work.
	Main results.
	Positive results.
	Positive results in other streaming models.
	Negative results.

	Technical contributions.
	Positive results.
	Negative results.

	Subsequent work.

	Preliminaries
	Definitions.
	The random-order streaming model.

	The Max-CSP() problem.
	One-way communication protocols.
	Analytical tools.
	Random variables.
	Fourier analysis over Zq.

	Hypergraphs.
	Reservoir sampling in the streaming setting.
	k-wise independent hash family.

	Algorithms for Max-DICUT
	O(n)-space random-ordering (single-pass) algorithm.
	Two-pass O(n)-space adversarial-ordering algorithm.
	O(D3/2n2 n)-space adversarial-ordering algorithm for degree-D bounded graphs.

	Lower bounds for Max-CSP in the random-ordering setting
	The generalized Uniform Randomized Mask Detection (RMD) problem.
	Proof of thm:main-lb.

	Proof of thm:gurmd-comm-lb
	Indististinguishability via Fourier analysis.
	Properties of random hypergraphs.
	Putting the ingredients together

	Hypergraph analyses
	Proving lemma:cycle-ub: Upper-bounding the probability of cycles.
	Proving lemma:comb-ub: Upper-bounding hk,(,n).

