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Abstract—The Internet of Things (IoT) platforms bring sig-
nificant convenience for increased home automation. Especially,
these platforms provide many new features for managing multiple
IoT devices to control their physical surroundings. However,
these features also bring new safety and security challenges.
For example, an attacker can manipulate IoT devices to launch
attacks through unexpected physical interactions. Unfortunately,
very few existing research investigates the physical interactions
among IoT devices and their impacts on IoT safety and security.
In this paper, we propose a novel dynamic safety and security
policy enforcement system called IOTSAFE, which can capture
and manage real physical interactions considering contextual
features on smart home platforms. To identify real physical
interactions of IoT devices, we present a runtime physical in-
teraction discovery approach, which employs both static analysis
and dynamic testing techniques to identify runtime physical
interactions among IoT devices. In addition, IOTSAFE constructs
physical models for temporal physical interactions, which can
predict incoming risky situations and block unsafe device states
accordingly. We implement a prototype of IOTSAFE on the
SmartThings platform. Our extensive evaluations demonstrate
that IOTSAFE effectively identifies 39 real physical interactions
among 130 potential interactions in our experimental environ-
ment. IOTSAFE also successfully predicts risky situations related
to temporal physical interactions with nearly 96% accuracy and
prevents highly risky conditions.

I. INTRODUCTION

Internet of Things (IoT) technologies are revolutioniz-
ing home automation. The rise of smart home development
platforms, such as Samsung SmartThings [38] and Google
Android Things [2], enables fast development of smart home
IoT applications (apps). Despite the convenience offered by
IoT technologies, new safety and security concerns emerge in
smart home environments [30], [3]. Recent research reveals
many safety and security problems on either IoT devices and
platforms, such as device firmware flaws [37], [12], protocol
flaws [23], [36], [27], [46], information leakage [22], [9], mali-
cious applications [21], [42], [6], and side channel attacks [35],
[33]. In particular, the safety and security problems caused by
interactions of IoT apps/devices have attracted much attention
recently [18], [11], [29], [10], [14].

The interactions in an IoT environment (e.g., a collection
of apps and devices working together to form a smart home
environment) can be broadly classified into two categories:

• Cyberspace interactions: Apps interact through a com-
mon device or system event in the cyber space (e.g.,
switch.on/off or home-mode). For example, an app
turns on the light after sunset, and another app unlocks
the door when the same light is turned on [11]. These
two apps interact via the light.on event on the same
device and share a common device attribute (i.e., software
variable) in the cyber space of an IoT platform. We use the
term cyberspace interaction to refer to cross-app interactions
where multiple apps subscribe/operate the same device.
• Physical interactions: One unique feature of IoT is that app-

s/devices could make impacts on the physical environment.
Such physical impacts enable apps that subscribe different
devices to externally interact with each other through shared
physical environment channels (e.g., temperature, lumi-
nance, and humidity) [18], [7], instead of through a common
device attribute. For instance, a heater-control app turns on a
heater, and a temperature-control app opens windows when
the temperature sensor detects that the temperature is higher
than a pre-defined threshold. In this case, the temperature
channel connects the heater and the temperature sensor to
generate a physical interaction.

Cyberspace interactions can lead to unsafe and insecure
states in a multi-app IoT system. To evaluate whether an IoT
environment is safe and secure, and operates correctly, Sote-
ria [10] and IoTSan [29] develop a set of reference policies1

in terms of the safety, security, and functionality in the IoT
environment. Then, they use model checking techniques to
verify the desired safety/security properties by assuming mul-
tiple apps are installed together to operate the same devices.
Soteria and IoTSan mainly focus on identifying unsafe or
insecure conditions created by cyberspace interactions, e.g.,
when multiple apps change the same device attributes in
conflicting or unexpected manners.

Physical interactions can also leave users in unsafe and
unexpected situations, and could potentially be exploited by
adversaries to launch IoT attacks. For example, given a
temperature-triggered window control app, a burglar may
manipulate the temperature to maliciously trigger a window
opening action, which can lead to a potential break-in. To
capture potentially risky physical interaction chains across
apps, IoTMon [18] performs a static analysis of 185 official
SmartThings apps and identifies 162 hidden inter-app interac-
tions through physical surroundings. However, static analysis
based approaches only capture potential safety and security
problems, rather than runtime policy violations in real-world

1Policies here represent properties that an app must satisfy to make sure
an IoT environment is safe and secure, which can be defined by IoT users or
developers.
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IoT deployments. Different from static analysis of multi-app
IoT environments in [10], [29], [18], [14], IoTGuard [11] is a
dynamic policy enforcement system for IoT environments. It
blocks unsafe and undesired states by monitoring the runtime
behaviors of IoT apps. However, like Soteria and IoTSan, IoT-
Guard mainly considers cyberspace interactions in multi-app
IoT environments, without capturing real physical interactions
among different IoT devices. Another limitation of IoTGuard
is that it enforces policies when device states are approaching
to unsafe conditions (e.g., the temperature is already close to a
critical level), which is often too late to prevent from damaging
impacts on smart home environments. In this work, we fill this
gap and focus on dynamic physical interaction control with
risky situation prediction in multi-app IoT environments.

There are several challenges in characterizing real physical
interactions in smart home environments. Regarding the first
challenge, existing static approaches [10], [29], [18], [14]
cannot be applied to identify real physical interactions. For
example, IoTMon [18] uses text mining of app descriptions
to identify common physical channels between IoT devices
and then discover all potential physical interactions among
devices. Thus, it cannot be applied to detect real-time physical
interactions in dynamic physical interaction control. In fact,
multiple factors, such as spatial location, device influence
range, and environment condition, can affect device physical
interactions. For instance, if a heater and a temperature sensor
are placed in different rooms, it is likely there is no physical in-
teraction between them. Another major challenge is to consider
the temporal aspect of physical interactions. Some physical
interactions among IoT devices may happen immediately, e.g.,
turning on a light immediately triggers an illuminance sensor.
On the contrary, there exist physical interactions happening
slowly but continuously. For example, only when a toaster
keeps running for a sufficiently long time, it will cause a smoke
alert. However, it is non-trivial to capture these contextual
features of IoT physical interactions.

In this work, we present IOTSAFE, a dynamic safety and
security policy enforcement system for multi-app IoT environ-
ments to protect users from unsafe and insecure IoT device
interactions in a preventive manner. We design a real physical
interaction discovery approach employing both static analysis
and dynamic testing techniques to efficiently capture real-
world physical interactions among IoT devices. The goal of our
dynamic testing is to test run-time physical interactions with
respect to both spatial/temporal effects and device/condition
restrictions of IoT environments, and meanwhile minimize
the overhead (e.g., time consumption) of the whole process.
IOTSAFE also builds physical models for temporal physical
interactions to predict future states and enforces safety/security
policies if a risky situation is likely to happen.

Our main technical contributions are summarized as fol-
lows:

• We propose an approach to capture real physical interac-
tions among IoT devices, which are missed in previous
approaches to IoT security. Our method employs both static
analysis and dynamic testing techniques to discover run-time
physical interactions considering contextual features of IoT
environments, and also minimize the overhead of the testing
process.

• Our system predicts the risky situations that are caused by
temporal physical interactions based on physical models,
generates warnings and suggestions to users to prevent un-

(a) Unexpected Physical Interaction

(b) Continuous Physical Interaction

Fig. 1: Examples of risky physical interactions.

safe/insecure situations from happening, and thus effectively
improves the safety and security of IoT environments.
• We evaluate our system on the SmartThings platform run-

ning in real-world smart home environments. We identify
39 real physical interactions among 130 static interactions
in a typical three-room home structure. For the dynamic
policy enforcement, our system successfully predicts risky
situations related to temporal physical interactions with
nearly 96% accuracy and prevents 53 highly risky conditions
with given 36 user policies.

II. MOTIVATION & THREAT MODEL

A. Problem Statement

In an IoT environment, physical interactions among IoT
devices can lead to unsafe and insecure situations that could
be potentially exploited by attackers [18]. Figure 1(a) shows
an example of the inter-app physical interaction in a smart
home environment where an attacker exploits a robot vacuum
to trigger window opening via the motion channel. Suppose
three apps, a robot control app, a window control app, and a
home mode control app, have been installed in the smart home
environment. The window control app opens the window in
a room when its temperature exceeds 85F. The home mode
control app sets the home mode to “STAY” when a movement
is detected. In this example, the temperature is raised above
85F to trigger a window opening action, which may leave
home in a potentially unsafe situation, such as beak-in. To
eliminate such a potential risk, a safety policy, “Do not open
window when no one is at home”, is set. Enforcing this
policy can prevent the window opening action being triggered
by the temperature sensor when no movement is detected at
home. However, the attacker can bypass this safety policy by
exploiting the robot vacuum or its control app, such as setting
the robot vacuum to work at 12:00pm, to change the home
mode through an unexpected physical interaction, where the
robot vacuum’s movement can be detected by a motion sensor.
Then, the home mode control app changes the home mode to
“STAY”, which allows the window opening action although
no one is at home.

The current policy enforcement systems in IoT environ-

2



ments [11] also ignore continuous effects of physical interac-
tions, which may miss or delay the policy enforcement and
result in unsafe situations. The continuous effect means some
devices are still capable of changing environment parameters
even after they have been turned off. As shown in Figure 1(b),
in an infant room, a temperature control app turns on a heater
when the temperature is below 70F. Suppose the user sets
a safety policy “Turning off heaters when the temperature
exceeds 82F” to prevent that the temperature of the infant
room is too high. However, after turning off the heater, the
infant room could still reach to a higher temperature, such as
85F, and maintain it for about half an hour (as demonstrated
in Section V-C). The continuous effect of the heater may lead
to unsafe situations, and harm the baby in the infant room.

Therefore, it is crucial to identify real physical interactions
to correctly enforce the safety and security policies in IoT
environments. The existing work, IoTMon [18], performs a
static analysis of apps to identify potential physical interactions
without considering the deployment context information of IoT
devices in real IoT environments. Thus, IoTMon cannot be
directly applied to detect real-time physical interactions for
runtime policy enforcement. In addition, identifying real phys-
ical interactions need to consider more complex factors, such
as room structure, device influence range, and environment
condition.

1) Challenges in Identifying Real Physical Interactions:
Enforcing safety and security policies at runtime can mitigate
the risk caused by IoT device physical interactions through
blocking unsafe and undesired IoT device states/actions. To
address such a dynamic policy enforcement problem, the
policy enforcement system needs to be aware of real physical
interactions among IoT devices. We identify four challenges
in capturing real physical interactions of IoT devices, as
demonstrated in Figure 2.

• Spatial Context. Spatial context refers to the location
information of IoT devices. The interaction between devices
are sensitive to the location or room status. For example, in
Figure 2(a), the temperature channel enables an interaction
between the heater and the temperature sensor, and possibly
leads to an unexpected action of opening the window.
However, the interaction between the heater and sensor are
highly relying on their locations. A temperature sensor is
unlikely to detect the temperature change caused by the
heater if they are not in the same room.

• Temporal Context. Some physical interactions among de-
vices may happen immediately, while there exist physical
interactions happening slowly. For example in Figure 2(b),
turning on a light immediately triggers an illuminance
sensor event. On the contrary, the temperature sensor can
only observe increased temperature after a heater running
for a sufficiently long time. Intuitively, the temperature,
humidity, and smoke physical channels usually take time
to remarkably change the physical status.

• Implicit Effect. Two types of implicit effects exist in
smart home environments. One is that a device action
may have multiple physical impacts on other devices. For
example, in Figure 2(c), the thermostat.heating not
only increases the temperature, but also implicitly reduces
the humidity. Another type of implicit effects is caused
by the physical interactions that current static analysis
methods [11], [18] cannot identify. Because the current
static analysis methods mainly discover physical interactions
based on app descriptions, they can only find physical

a) Spatial context

b) Temporal context

c) Implicit effect

d) Joint effect
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Fig. 2: Challenges of identifying real physical interactions

interactions associated with the physical channels explicitly
defined in a device control app. For example, in Figure 1(b),
the robot control app mainly explains the cleaning functions
of a robot vacuum in its description, but does not provide
any description about its potential effect on the motion
physical channel.
• Joint Effect. If there are multiple devices functioning

together, the joint physical influence differs from the be-
havior of individual devices. e.g., when a heater and a
thermostat’s heating function at the same time as shown in
Figure 2(d), the temperature is increased rapidly to trigger
the window.open.

Physical interactions in a real IoT setting are often context-
sensitive, and these contextual factors make capturing real
physical interactions non-trivial. Existing works [10], [29],
[18], [14] are unable to capture real physical interactions
among IoT devices because they do not consider the run-time
physical environment of IoT platforms. The physical influence
of a device varies based on context, such as environmental
attributes and surrounding devices. As such, we need a sys-
tematic dynamic testing method to identify real and context-
sensitive physical interactions among IoT devices in order to
support dynamic enforcement of safety and security policies.

2) Challenges in Temporary Physical Interaction Control:
One challenge for the temporal effect is that devices (e.g.,
heaters) may have continuous effects after being turned off,
which makes the policy violation possible even after the
enforcement of a control policy. As shown in Figure 1(b), the
temperature in an infant room may exceed 82F after the heater
being turned off, which could leave the infant room in a risky
situation.

Another challenge for the temporal effect is caused by the
long reporting interval of commodity IoT sensors. Most smart
home sensors feature low cost and long battery life, which
inevitably results in long reporting intervals. For example,
regarding the temperature channel, the Aeotec MultiSensor
6 [4] has a report interval from 10 minutes to 1 hour, and
Zooz 4-in-1 Sensor’s report interval [5] ranges from 8 minutes
to 1 hour. With such long report intervals, if a critical policy
violation happens, the system may not enforce the policy in a
timely manner. Using highly sensitive sensors may avoid the
long interval issue, but they are often very expensive with high
energy consumption. For example, a sensitive Marcell sensor
costs $179 and can only last 2 days.
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Because of the continuous effect combined with a low
reporting rate of sensors, it is desirable to model and predict
the physical effect of certain IoT devices so as to early
assess their physical influences before they make any damaging
consequences.

B. Threat Model

In this paper, we mainly consider the indirect attack caused
by physical interactions where the failure of the safety and
security policy enforcement can happen in the smart home
platform. The failure is mainly due to the unexpected or
unreal physical interaction of IoT devices that can cause the
false/delayed enforcement of safety and security policies.

We assume the unexpected physical interactions are caused
by malicious apps or compromised devices under certain con-
straints, which include: 1) attackers may not have a permission
to directly control sensitive apps (a window control app);
and 2) sensitive devices (a lock) are possibly more robust
and cannot be easily compromised by attackers. By only
exploiting physical interactions, attackers can indirectly control
sensitive devices through other less-sensitive apps and easily-
compromised devices. We assume attackers can launch their
attacks through: 1) vulnerable or malicious IoT apps, which
contain vulnerable implementations or malicious code that can
be easily exploited by attackers to gain access remotely to
control devices; and 2) vulnerable devices (a smart plug),
which contain design flaws that can be abused to trigger
surrounding devices through unexpected physical interactions.

Due to the unawareness of physical interactions, current
smart home policy enforcement systems may falsely enforce
or delay the enforcement of safety and security policies. For
example, when a high temperature is detected, the policy
enforcement system may enforce the window opening policy to
open windows instead of turning off heaters. It is also possible
to have delayed enforcement of safety and security policies due
to sensor reporting limitations in the smart home platform.
This false or delayed enforcement can also be caused by
continuous, implicit, and joint effects of physical interactions,
which cannot be directly identified by current static analysis
approaches.

In addition, we assume IoT platforms and policy enforce-
ment systems are tamper-proof and trustworthy, and cannot be
penetrated. Also, we consider the safety and security policies
defined by users or developers are trustworthy. We further
assume those safety and security policies are conflict-free.

III. SYSTEM OVERVIEW

Figure 3 shows the workflow of IOTSAFE, which is com-
posed of four major components: i) App Analysis; ii) Real
Physical Interaction Discovery; iii)Runtime Prediction; and iv)
Policy Specification and Enforcement.

App Analysis: The purpose of this module is to analyze
control flows in apps to facilitate IOTSAFE’s physical interac-
tion discovery through dynamic testing and collect app’s user
settings/configurations at runtime (¶). The static control flow
of typically apps involves trigger conditions, actions, and user
settings of apps. The code analysis module extracts trigger
conditions and corresponding actions as “static interaction”
flows and generates a static interaction graph. It also provides
coarse-grained device groups based on the room information
of devices (configured by IoT users). At the end, the static

Fig. 3: IOTSAFE system overview.

analysis module collects user configurations when apps are
deployed and generates fine-grained interaction graphs.

Real Physical Interaction Discovery: This module aims at
efficiently identifying real physical interactions given smart
home settings. After apps are deployed, IOTSAFE uses app
configurations (e.g., a temperature threshold that triggers a
heater’s action) and room information to generate testing
cases (·). Based on the generated cases, IOTSAFE identifies
device physical interactions by performing dynamic testing
with respect to device/condition restrictions. The dynamic
testing includes both sequential testing and parallel testing (¸).
The spatial, implicit and joint effects are analyzed by a
comprehensive sequential testing process. The parallel testing
is introduced to reduce the time consumption of the testing
process. IOTSAFE generates a directed interaction graph, which
includes device states and their transitions. We also provide a
method to avoid testing risky devices’ behaviors and use online
usage data to identify their interactions.

Runtime Prediction: This module initializes and maintains
physical models to characterize temporal effects of physical
interactions. It also monitors runtime events from the data col-
lector and compares the current status with the physical inter-
action model to predict future status (¹). During the dynamic
testing process, IOTSAFE records the temporal interaction data
for related sensors. Hence, the modeling process first initializes
physical models based on the data collected during the testing
phase. For untested devices and newly added devices, IOTSAFE
uses online usage data to train their interaction graphs and
physical models. If the user modifies apps’ settings, IOTSAFE
also updates interaction graphs based on the new locations,
trigger conditions, or actions. During normal usage, IOTSAFE
continues to update the physical models when more device
data is received.

Policy Specification and Enforcement: The policy enforce-
ment mechanism uses a control server that is in charge of iden-
tifying policy violations by checking app events and actions
against a set of user-defined policies. IOTSAFE first requires
users to setup their policies through a policy management app,
which can be based on given policy templates, or write their
own policies (º). The data collection component/app collects
runtime information from devices and sends data to both
runtime prediction and violation detection modules. Violation
detection is based on comparing current/predicted situations
with user-defined policies (»). If a violation is about to
happen immediately or within a period, the policy enforcement
component takes actions to relieve from the risky situation,
e.g., sending warnings or turning off the related heater to avoid
a high-temperature situation (¼).
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IV. SYSTEM DESIGN

A. App Analysis

The purpose of static analysis is to identify basic po-
tential interactions for dynamic testing. The static analysis
is composed of code analyzer and interaction graph builder.
Different from existing works [18], [29], [11], our static
analysis targets practically deployed apps in a smart home,
where user settings and the room information of devices are
known. IOTSAFE first performs a code analysis to extract the
dependency graph of deployed apps. It also instruments codes
for the user setting extraction and policy enforcement module.
Then the interaction graph builder uses specific user settings,
such as devices id, trigger conditions, and room information
to build inter-app interaction graphs.

1) Code analysis and instrumentation: The code ana-
lyzer [18] first extracts the inter-procedural dependency of
devices within an app by static analysis. Combined with a
physical channel analysis, the analyzer could build inter-app
dependency between apps and devices. Then it patches the
app’s source code for runtime data collection, such as sending
device ids and user configurations. It also adds extra logic
for runtime interaction control [25]. Different from existing
work [18], we need to consider the runtime user setting
information (e.g., room and device IDs) in the static analysis,
which helps optimize the dynamic testing process. Besides,
similar to the code instrumentation implemented in [25], [11],
we instrument apps with policy enforcement functionalities for
physical interaction control.

1 <name: "Turn on It When Water Detected">
2 def installed()
3 { subscribe(waterSensor1, "waterSensor",

waterHandler)

4 info = getdeviceInfo()

5 sendRequest(info)
6 }
7 def waterHandler(evt)
8 { actions = "switch.on()"

9 resp = sendRequest(evt,actions)

10 if(resp == 1) {switch.on()}
11 }

12 def sendRequest(param)
13 { def result = true
14 result = httpGet(url, path) {param}
15 return result //Server Response
16 }

17 def getdeviceInfo()
18 { def deviceInfo = []
19 settings.waterSensor1.each{
20 deviceInfo << it.displayName
21 deviceInfo << it.deviceId}
22 return deviceInfo
23 }

Listing 1: An example of app instrumentation.

For code instrumentation, we mainly instrument two sec-
tions, 1) the device configuration for interaction graphs, and
2) the app’s action commands for runtime policy enforcement,
which we have gathered a list of device commands from Sam-
sung SmartThings documents [39]. Similar to ContexIoT [25],
our static analysis searches for exact commands from an app’s
source code and instruments additional control logic to targeted
functions and commands. The newly added control logic sends
commands and related device information to a control server

and waits for responses. Listing 1 provides the pseudo-code
of “Turn on It When Water Detected” app as an example to
illustrate our app analysis and instrumentation. This app turns
on a switch when water is detected by a leakage sensor. In
this example, we add extra functions for the data collection in
the installed() function, which collects user setting infor-
mation and sends them to the server for the interaction graph
generation. The getdeviceInfo() function collects device
configuration information and passes it to the httpPost()
function. For the runtime policy enforcement, we instrument
additional control logic for the waterHandler() function.
The instrumented code in the “sendRequest() function
sends the “switch.on” action and the related water sensor event
to the server and wait for a response. It has a return value,
which can be used to receive the response from the policy
enforcement server. Only if the server approves the following
action, the app resumes executing the switching on commands.

2) Interaction Graph Generation: Existing works [18],
[29], [11] have proposed methods for building inter-app de-
pendency graphs. Our work considers more information such
as user settings, room information to build a more fine-grained
interaction graph. The interaction graph generation contains
two main functions. First, it extracts specific user settings,
device ids, and room information. Second, it divides the whole
static interaction graph into separated sub-graphs based on
additional user settings.

The configuration information needs to be extracted from
each deployed app, including i) device id; ii) numerical val-
ues (i.e., thresholds) in trigger conditions; and iii) numerical
values for attributes in actions (e.g., cooling temperature
settings for thermostat); and iv) room tag information. As
shown in Listing 1, we insert the configuration collection
code in the installed() function of each app. The in-
serted getdeviceInfo() function collects device subscrip-
tion event information, sends it to the server through the
sendRequest() function. Based on received configurations,
the server can extract runtime user configuration information,
such as device id, numerical conditions, and room information.
This sendRequest function does not need a response from
server as runtime action enforcement.IoTSafe divides the ex-
isting static interaction graph into multiple sub-graphs. If a
device can interact with devices in multiple rooms(e.g., AC
with multiple room tags), then we add them to each room’s
sub-graph. As shown in Figure 4, the solid lines indicate
cyberspace interactions, and the dotted lines are potentially
physical interactions. Each node represents a device or a
system variable. The trigger condition is also added to each
path, such as “Temp>85F”. In the end, the static analysis
module outputs multiple static interaction graphs, which will
be used for dynamic physical interaction testing.

B. Real Physical Interaction Discovery

After generating the static interaction graph, IOTSAFE gen-
erates testing cases for each group of devices. However, many
unreal physical interactions are existing and we also need to
identify implicit and joint physical interactions. Hence, we
propose to explore a new dynamic testing approach to identify
real physical interactions among IoT devices. Different from
traditional dynamic testing methods, two following challenges
need to be addressed in our dynamic testing for real physical
interaction discovery.
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• Temporal Interaction Testing: Different from traditional
software testing, testing physical interactions between IoT
devices takes time, especially for capturing temporal inter-
actions. Some slowly-changing physical interactions may
need a long time to be identified, such as temperature
and humidity. For example, to observe the influence of
temperature related physical actions, such as turning on/off
a heater, we need to wait for more than 15 minutes before
observing any temperature changes. Since there may exist a
considerable amount of testing cases, testing all cases one
by one will prevent the normal usage for a long time. Hence,
testing an IoT platform requires minimum effects on normal
usability. To this end, our dynamic testing approach needs to
optimize the time cost by choosing the right testing action
sequence and parallelizing independent physical testings.

• Safe & Secure Testing: Another distinction from software
dynamic testing is that our dynamic testing is implemented
on real devices and has an influence on real home environ-
ments. There are two kinds of restrictions on testing IoT
device physical interactions: 1) Device restrictions: some
devices, such as locks and sprinklers, may cause a dangerous
situation if tested directly. The testing process shall not
involve these sensitive devices. 2) Condition restrictions: the
environment condition during testing should be within a safe
range. If a certain physical condition exceeds the safe range,
it may cause damages to the home property, e.g., a high
temperature or humidity environment in the storage room.
Our system needs to arrange the testing process adaptively
to avoid unsafe/insecure conditions.

Our physical interaction discovery module aims at auto-
matically inferring real IoT device interactions through testing
the influences of a device’s actions on other devices’ states.
Our dynamic testing process includes two stages, testing case
generation and dynamic testing. The testing case generation
module provides all testable cases based on static analysis
results. During the dynamic testing, IOTSAFE automatically
tests devices’ actions in a parallel manner and collects the
sensors’ readings. After that, parameters of physical models
are calculated based on these testing data.

1) Testing Case Generation for Grouped Devices: In gen-
eral, a testing case is a combination of all device states in
a group where these devices are in the same room and may
interact via physical channels. The room information can be
obtained from a device’s room tag during the static analysis in
Section IV-A. Suppose there are n devices in a testing group,
we define States(Di) to represent all possible working modes
for device i (denoted as Di), such as heating, cooling, fan and
off for a thermostat. Let state(Di) denote a working mode
of Di, where state(Di) ∈ States(Di). Suppose there are n
devices in a testing group. A testing case is a combination
of a selected device Di’s possible working modes {D1.off ,
· · · , state(Di), · · · , Dn.off}, where all the other devices
except Di are in the off state. The generated testing cases only
have one device in the working mode at the same time, which
reduces the influence from other devices in the same physical
channel. The objective of our dynamic testing is to reduce the
overall testing time while covering all possible device actions.

To address the safe/secure testing challenge, we exclude
sensitive devices during the testing case generation. Since we
still need to capture interactions for restricted devices, which
are excluded from testing, we adopt two workaround solutions.
The first one is that we provide potential static interactions
and let users verify their presence in practice. The second

Fig. 4: An example of static interaction graph.

one is to use runtime data to verify static interactions during
normal usage, which will be introduced in Section IV-C. To
address the challenge of testing temporal interactions, we use
the device’s working mode instead of specific setting values to
generate testing cases. For example, the States(thermostat)
has four working modes, including heating, cooling, vent, and
off. These modes are extracted from the Samsung SmartThings
capability document during the static analysis. Using these
modes instead of the specific temperature values, we can
reduce its testing cases to 4 cases.

For devices connected to smart plugs, our system views
these smart plugs as integral parts of their connected devices.
For example, if a fan is connected to a smart plug, we consider
this plug as a fan. Since most smart plugs have limited
functions, such as turning on or off, IOTSAFE views these
devices with only two states (on and off).

Initially, all devices are in the off state. The testing
case generation starts from randomly selecting a device and
choosing a working mode of that device. If the device has
more working modes other than on and off, we generate new
testing cases by traversing all working modes of that device.
Otherwise, in the next testing case, we turn off the previously
selected device and turn on another device with a randomly
chosen working mode. Note that the testing case generation
excludes the sensitive device working modes for safety consid-
eration. Revisit the example in Figure 4, where devices within
the same room are included in the static interaction graph.
Suppose users define a sensitive device state set Savoid for any
action related to locks, and thus the unlock action is excluded
from the testing cases. In Figure 4, testing cases contain
all following possible states to be tested: AC.off/cooling,
humidifier.on/off, heater.on/off, and robot.on/off. One example
testing case is (humidifier.off, AC.off, heater.off, robot.on).

2) Dynamic Testing: After generating all possible testing
cases, we need to test them to identify the spatial, joint,
and implicit effects of physical interactions among devices.
To further reduce the testing overhead, IOTSAFE optimizes
the testing process in two aspects: i) sequential testing; and
ii) parallel testing. For safety considerations, IOTSAFE allows
users to set a safe range for sensitive physical channels, e.g.,
temperature and humidity. During the dynamic testing, our
system monitors physical channel conditions and prevents from
exceeding the safe ranges. In Appendix D, we demonstrate the
effectiveness/necessity of the safety ranges for the dynamic
testing.

To bootstrap the testing, IOTSAFE first conducts cali-
brations for devices to capture normal fluctuations of sen-
sors. We measure sensor readings’ differences and time in-
tervals between two adjacent sensor report intervals. Let
SensV al(Di, state, t) denote the sensor reading directly re-
lated to device Di with a specific working mode state at
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time t. We measure ∆SensV al(Di, state, t1, t2), which is the
sensor reading difference for Di’s current working mode state
between two adjacent sensor report intervals at time t2 and t1.
It represents the normal fluctuation of a sensor. We use it as
a baseline to filter false interactions caused by environment
noises. We also collect the sensor report interval information
in the calibration phase. During the dynamic testing, if the
difference of a device’s sensor reading is greater than the
baseline fluctuation, we identify a real physical interaction.

Sequential Testing. The main purpose of sequential testing
is to test all non-parallelizable testing cases and identify de-
vices’ spatial, temporal, joint, and implicit physical interactions
efficiently. The non-parallelizable cases indicate these cases
that may potentially affect the same physical channels. The
optimization of sequential testing focuses on reducing testing
overhead by choosing the proper testing sequence, which is
started by matching devices’ trigger conditions from apps.
Another optimization is to reduce the conflicting influence
between adjacent testing cases.

We first define the testing overhead Tcost as the time
needed for the whole testing process, which is the sum of
testing each case’s time cost Σ(tcasei), where casei represents
a testing case with only one device Di in the working mode,
and tcasei represents the time needed for testing casei. How-
ever, due to the continuous effect, the order of testing cases
makes a difference on the effectiveness of the testing process.
Our objective is to optimize the order of testing cases to
minimize the testing overhead Tcost. Given a testing case with
one specific device Di in the working mode, tcasei is mainly
affected by Di’s working time, denoted by twork, which is
related to the associated sensor’s report interval.

The testing time of casei is calculated as the following:

tcasei =

{
twork, Di 6∈ Dtemp.

twork + toff , Di ∈ Dtemp.
(1)

In each testing process, we record Di’s working time as twork

and the idle time after this device being turned off toff .
Dtemp is the set of devices related to temporal channels,
such as temperature, humidity, and air quality. For devices
related to non-temporal channels, twork can be relatively short.
However, to ensure observing the physical effect from sensors,
our system makes twork equal to one sensor report interval. In
IOTSAFE, toff is chosen to be the same as the related sensor’s
report interval. Based on our observation, one sensor interval
(usually 15 minutes) is enough to identify the continuous
effect. Hence, our system records at least two sensor reports
for a temporal channel related testing case.

The ordering of testing cases in the sequential testing is
based on a comparison between current physical conditions
with other untested cases’ device trigger conditions, which
helps the system to find the most suitable case to continue.
For example, if the room temperature is already lower than
60F, then testing the heater makes more sense than testing the
AC cooling. IOTSAFE uses a greedy algorithm to decide the
best suitable cases. The trigger conditions of devices’ working
states are defined in user apps. The comparison here only
considers the trigger conditions that are related to a particular
physical channel. For example, if a heater’s trigger condition
is “when time is 18:00”, then our system does not consider
this condition. If one device state is related to multiple trigger
conditions and then the system compares all of them. If there
are multiple cases matching the current home environment, our
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Fig. 5: Parallel testing for single-room and cross-room devices.

tool chooses the case with the closest trigger condition based
on the greedy algorithm. If all cases are not satisfied or have
no trigger condition, then our system just randomly chooses
one to continue the testing.

After the testing starts, IOTSAFE chooses the next testing
case. Here the main issue is that we need to consider the
conflicting influences between device states. For example, if
we use the AC heating function right after the AC cooling
function, the heating mode may need an extended time for
the AC to warm up. Some conflicting working states may
even cancel out others’ physical influence (e.g., heating and
cooling).

Single-room Parallel Testing. To further reduce the testing
overhead, IOTSAFE also parallelizes single-room testing cases
with potentially independent physical channels. As shown
in Figure 5, we have three multi-purpose sensors, sensor1,
sensor2, and sensor3, which can monitor both temperature
and illuminance. The bottom line of Figure 5 shows the sensor
report timeline of each sensor, where two individual reports
from sensors represent a combined report interval. Each case’s
testing time needs to cover the combined report interval of
all related sensors, which guarantees that the working time
covers all sensors’ intervals. The interaction channel for the
light bulb is illuminance and the heater is the temperature,
respectively. Hence, testing cases of lights and heaters can
run simultaneously in Room1 (shown as yellow arrows in
Figure 5), which reduces the time overhead of the dynamic
testing process. The green arrow represents the idle time
Toff in Equation 1 for the testing case related to temporal
channels. IOTSAFE first identifies cases that can be parallelized
in each room. Then, for testing cases related to an individual
independent channel, it runs sequential testing.

One challenge here is that parallel testing may miss device
interactions with potential implicit effects. For example, if
a heater and a humidifier are tested at the same time, then
the heater’s humidity influence will be suppressed by the
humidifier. To avoid such issues, potentially correlated physical
channels (e.g., humidity and temperature channels) are prede-
fined in IOTSAFE. We combine testing cases with correlated
physical channels into a sequential testing chain instead of
parallel testing.

Cross-room Parallel Testing. The cross-room parallel
testing is used for reducing testing overhead by parallelizing
different rooms’ sequential testing. We start from testing cases
with any cross-room device (i.e., a device with a multiple-

7



Living Room
X

Humidifier.on Door.unlock

Mode.stay

AC.off
Humidity<20

AC.cooling Heater.on
T<70Temp>85

Robot.on
time=12:00 motion

humidity<20

Fig. 6: Dynamic testing results.

room tag) and compare their user triggering settings with
current conditions. If any cross-room testing case fits the
current condition, we test this case at first. If multiple cases
satisfy the current condition, we use a greedy algorithm to
choose the most suitable case, which is the same process as
the sequential testing. For example, if an AC should be heating
at 70F, and cooling at 80F. When the current temperature is
73F, our system chooses the heating testing case instead of the
one with cooling action.

The cross-room devices’ testings are shown as pink arrows
in Figure 5. For cross-room devices, the challenge here is
that sensors in different rooms usually report events asyn-
chronously. Hence, we need a synchronization scheme to guar-
antee the event collection from multiple sensors. We introduce
a waiting time to guarantee the coverage for the longest sensor
interval. We solve the synchronization problem by choosing
a proper starting time, ending time, which leads to an extra
waiting time (shown as green arrows in Figure 5). Taking
Figure 5 as an example, Room1 has two sensors, and Room2

has one sensor, where sensor1 and sensor2 have longer sensor
report intervals than sensor3. IOTSAFE first obtains sensors’
reporting times (e.g., s1, s2, and s3 in Figure 5) in the sensor
calibration process. During the runtime testing, each case needs
to last at least one sensor report interval (i.e., getting two
adjacent reports) in each room, which is based on the longest
report interval of multiple sensors, i.e., sensor1’s interval plus
sensor2’s interval. Hence, the pink arrow for the “AC.heating”
covers one interval for both sensor1 and sensor2, and it also
covers multiple intervals for sensor3 in Room2. For cases
interacted by temporal channels, there are also green arrows
representing the waiting time Toff after the device being
turned off. After one cross-room testing is over, the system
waits for Toff and then starts the next testing case. The system
records the difference between the two reports to build the
physical influence model of this device. After finishing the
cross-room testing cases, the system starts single-room testing
cases.

3) Real Interaction Graph: After the testing process, we
generate real physical interaction paths by removing unreal
paths in the static interaction graph and adding additional
implicit interactions. As shown in Figure 6, the solid green ar-
rows indicate real physical interactions while the dotted arrows
represent unreal interactions in a smart home environment.

C. Runtime Prediction

Because of the continuous (slowly-changing) effects of
temporal channels, a device can still violate safety policies
even after the enforcement of a control policy. The low report-
ing rate of commodity IoT sensors makes such situations even
worse, e.g., Zooz 4-in-1 Sensor [5] reports temperature every
15 minutes by default. Therefore, IOTSAFE needs an early

detection for unsafe physical conditions to ensure the policy
enforcement in a timely manner. Our prediction mainly con-
cerns the physical channels of temperature, humidity, smoke,
and water level. IOTSAFE’s prediction module includes two
parts: i) the offline physical channel modeling, and ii) the
runtime policy violation prediction for proactively alerting
dangerous physical conditions.

1) Physical Modeling: We describe our physical models
for air-related physical channels, e.g., temperature, humidity,
smoke. We first present a general model for these physical
channels, and then give detailed parameters for specific chan-
nels.

The general model of air-related physical channels [13],
[19], [32], [41], [40] can be described as follows:

∆SensV al(Di, state, t1, t2) =
∆Q(Di, state, t1, t2)

β
, (2)

where ∆SensV al(Di, state, t1, t2) denotes the changed sen-
sor value from time t1 to t2 for Di with working mode
state. It can be calculated from periodical sensor reports.
∆Q(Di, state, t1, t2) represents the amount of channel quan-
tity change for Di with working mode state from time t1
to t2. For example, for temperature-related devices, it reflects
the total amount of changed surrounding heat from t1 to t2.
For the humidity channel, it means the change of water vapor
amount. β is the product of multiple air-related parameters,
such as density, room volume, heat or water capacity, etc.
Taking the humidity channel as an example, the model needs
to calculate the change of water vapor quantity in the air.
We model the humidity difference by calculating the water
vapor provided by a related device (e.g., humidifier) and
calculating β by the air’s specific humidity capacity (water
vapor pressure) and temperature. Given ∆Q(Di, state, t1, t2)
and β, we can calculate ∆SensV al(Di, state, t1, t2), which
predicts the sensor value at t2.

We show details of the calculation for temperature re-
lated devices. Here, ∆Q(Di, state, t1, t2) represents the heat
gain/loss caused by the operation of Di during the period
between t1 and t2. The specific room temperature prediction
model for a device (e.g., heater) can be represented as follows:

∆Q(Di, state, t1, t2) = Pi · (t2 − t1), (3)

where Pi can be calculated by the influence of a temperature
related device Di, or known by its default power. We can get
it from a device’s power reading or the connected smart plug’s
power meter. For the temperature channel, we identify that the
room temperature is fairly even. While the humidity channel
has a distance factor for specific humidity device distances,
which is detailed in Appendix D. We use data collected during
the dynamic testing process to generate the offline physical
model for each device and estimate the distance factor between
devices and sensors.

2) Offline Model Initialization: By collecting all sensors’
readings and timestamps during the dynamic testing, we
initialize the parameter of each model, which is based on
the device working states and related sensors’ readings. The
data is collected and stored in a cloud server for modeling
process, where the server stores all devices’ state reports and
sensors’ readings. For example, an event “turn on the heater
at 10am, temperature has been changed from 70F to 73F in
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20 minutes” can be represented by a string of “Heater (on,
10:00), TemperatureSensor (70F, 10:00), (73F, 10:20)”.

min
∑
t

( ̂SensV al(Di, state, t)− SensV al(Di, state, t))
2

(4)
For each model, we calculate its parameters based on Equa-
tion (4). SensV al(Di, state, t) is the measured sensor read-
ing related to device Di with a working mode state at time t,
while ̂SensV al(Di, state, t) the predicted data based on the
physical model. We minimize the mean squared error (MSE)
for each device’s model and obtain the initial parameters of
each model. In Appendix E, we present more details about
the physical channel modeling. During the smart home usage,
we need to update the model due to adding new devices or
changes of the environment context. As new sensor reports are
received, we also periodically re-calculate model parameters.

3) Initialization for New Device or Restricted Device: For
new devices, our system generates testing cases for a single
device to identify the new device’s influence on others. We
initialize its model and then update the model during normal
usage. For restricted devices, we build potential interactions
among all related devices within the room. Then we initialize
and update its interaction graph and model based on the data
from daily usage. User settings refer to the specific trigger
conditions and triggered device actions in a smart home app.
Users may change the triggered device, the specific action,
and the location of the device. When a user updates the trigger
condition in an app, the system collects new condition settings
and updates the interaction graph. In this case, we perform the
new device initialization process.

D. Safety and Security Policy Specification

To properly enforce safety policies, we define our policy
language to facilitate the policy enforcement in a smart home
environment. These policies are defined based on typical IoT
policies with constraints on physical conditions. The policy
enforcement introduced in IOTSAFE utilizes physical prediction
models and considers additional enforcement conditions/ac-
tions when a possible violation is detected.

1) Policy Category: As mentioned in Section II-A, current
smart home safety properties or policies [11] do not consider
the physical influence of devices. To achieve fine-grained
control on temporal physical interactions, we present a policy
language for both temporal channel-specific interactions and
non-temporal interactions. We define the following two types
of policies for different interactions.

Control Policies for Temporal Interactions. We define
this type of policy to address potential violations that involve
temporal interactions. These policies are developed based on
use cases of one or multiple temporal channel related devices’
physical models to predict dangerous situations, e.g., high
temperature, humidity, air quality, or water level. Since a policy
contains two parts, the trigger condition and the enforced
action, we first let users define conditions that they want
to avoid or maintain as triggers. Then, the system identifies
conditions with temporal effects and enforces policies when
potential violations are predicted based on physical models.

Control Policies for Instant Interactions. These policies
are developed based on the use cases of one or multiple
devices with non-temporal physical interactions, e.g., motion

and illuminance. We define this type of policy to address po-
tential violations related to devices’ instant physical influence.
This policy is simply combined with one or multiple device
states as trigger conditions and changing other devices’ status
for actions. Such a policy also defines specific behavior of
sensitive platform variables, e.g., time, location, and home
mode. We first let users define a device status as a trigger
condition (e.g., motion.detected), and then define a targeted
device status for an action (e.g., light.on).

2) Policy Definition: We describe the detailed definition
of our policy language, which supports both temporal and
non-temporal (instant) interaction controls. We illustrate the
syntax of our policy language in Figure 7. Users can refine
existing policy templates or define new policies using this
policy language. Expression (E) could be formed over device
id (d), device state (s), and value (v) . The expression is a list
of device states. Multiple expressions can also be composed
together (E◦E), which are used by policies to combine multiple
actions together. The violation detector collects expression
states and uses them as a predicate. The enforced action
contains device ID (d), device actions (a), or policy actions.
The device ID is the targeted device id’s string. The device
action is a command needed for the device to implement (e.g.,
on/off). The policy actions contain approving/denying apps’
requests, and implementing an action (e.g., heater.off during
high-temperature alert, or sending a warning to users).

Expression
E ::= | d | s | v
Predicate
P ::= E ◦ E | P |P | P&P | ¬P
Action
A ::= implement|approve|deny
Policy
C ::= A | if P : C else : C | (C |C )

Fig. 7: The syntax for expressing safety and security policies.
For example, in Figure 1(b), the policy is “Turning off

the heater and send a warning when the temperature is above
85F”. IOTSAFE uses the temperature physical model to obtain
the predicted temperature value. If the predicted temperature
is above 85F, the policy enforcement module will trigger this
policy and the heat.off action, even the sensor has not reported
the violated reading. According to the syntax, the trigger
condition expression contains three elements, the device ID
is “sensor1”, the state is “value”, and the trigger condition
value is “85”. The conditions are “device id == sensor1” and
“sensor1.value > 85”. It contains two “implement()” actions,
which are the “heater.off” and “push (temperature warning)”.
If no violation is predicted, the system does not enforce any
actions, but only skips the policy and records this temperature
report.

1 if (device_id==‘‘sensor1’’)&&(sensor1.value>85):
2 implement(heater.off);
3 implement(push(temperature warning));

Fig. 8: An example policy “Turn off the heater and send a
warning when the temperature is above 85F”.

E. Policy Enforcement.

The dynamic policy enforcement is implemented in two
aspects. The first one is wildly adopted by existing works [25],
[11]. The system instruments an “if” condition and an “http
request” before all commands in an app. If the server approves
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such action under the current context, the server will send back
an “approve” message to the app. Otherwise, this action will
be denied.

The second enforcement scheme targets policy enforcement
with prediction. IOTSAFE uses a monitor app to send all
devices’ events to the server and waits for responses. It uses
an “http request” to ask for enforcement actions periodically
(e.g., every minute), which ensures timely enforcement for any
predicted violation. If a violation is predicted, the enforcement
module sends related policies’ commands to the monitor app.
The data collector first receives runtime data from the monitor
app, which includes all events from devices. Based on reported
data, if a violation is predicted, our system considers it as an
expected risky situation. Hence it sends a warning to users and
triggers corresponding actions.

Our policy enforcement module has additional enhance-
ments for policies. The first one is trigger condition enhance-
ment. It searches for all related devices from the interaction
graphs, which can trigger this policy. Then it asks users for
more fine-grained trigger condition definition to avoid unex-
pected triggering, e.g., the robot tr use case 2 in Section V-D.
The second policy enforcement targets similar actions from
other devices. If the system detects multiple devices that can
interact with the same physical channel, such as heaters and
AC.heating, the system asks users to enforce policies on other
devices’ actions. In the case of Figure 1(b), if multiple heating
devices are working, the system will not only implement the
“heater.off”, but also ask users whether it needs to turn off
other heating devices.

V. IMPLEMENTATION AND EVALUATION

We have implemented a proof-of-concept prototype system
of IOTSAFE based on the Samsung SmartThings platform [21].
We studied a total of 45 official SmartThings applications [17]
with respect to cyberspace and physical interactions to demon-
strate the effectiveness of IOTSAFE. We selected 21 represen-
tative IoT apps (based on their functions and user studies [16],
[28]) and deployed them in our smart home environment
with various configurations. We set up the policy enforcement
server based on a Web server running on the Google cloud
platform [24]. It is a lightweight server and can be deployed
on small devices, such as a Raspberry Pi. We chose Google
cloud because it provides a public IP address that our app can
communicate with. All apps send events related information,
such as sensor reports and action requests, to the policy
enforcement server.

The implementation of IOTSAFE includes three main parts:
i) the static analysis tool; ii) the policy enforcement server, and
iii) three special SmartThings apps. The static analysis tool
instruments apps and extracts static interactions. The server
provides functions such as collecting and storing devices’
states, policy storage/consultation, and physical condition pre-
diction. The special SmartThings apps have three different
purposes/functionalities: as the data collector, runtime mon-
itor, and policy manager. The collector provides the device
deployment information and user settings for dynamic testing.
The monitor subscribes to all devices’ events and sends them
to the server during dynamic testing and normal usage. It also
takes corresponding actions when the server sends commands.
The policy manager helps users setting his/her policies and
gives hints about potentially related devices.

Users are involved only in two steps: i) choosing testing/re-
stricted devices, and ii) setting user policies. The dynamic
testing process and model training process are fully automatic
and users only need to choose the avoided devices. To simplify
the policy specification process for users, we provide a set of
36 pre-defined policy templates for users in Table IX. For the
policy specification module, our tool provides three options:
(1) users can directly enable some general safety policies (such
as policies #1 to #6 in Table VIII), which have been pre-defined
in IOTSAFE; (2) users can customize all 36 reference policies,
listed in Table IX, by changing corresponding device actions,
which only requires operations through the user-friendly UI of
our tool; (3) users can also define new policies. After the safety
policies are defined, the prediction and policy enforcement
modules work in an automatic manner.

A. Smart Home Testbed Setting

Our system focuses on the real smart home/indoor en-
vironment, which typically has an average of 11 devices,
according to a Deloitte US report [1]. In order to make our
testbed more realistic, we deployed 23 different types of IoT
devices and a total number of 33 devices in 7 testing groups,
which include real deployments in single room and three-room
apartments. Table IX in Appendix C shows the detailed apps
and configurations of these 7 testing groups. The three-room
apartment includes a living room, a bedroom, and a bathroom,
which simulates a multi-app smart home environment as shown
in Figure 9 (for Group 4 in Table IX). In addition, we extracted
user routines from real-world IoT user datasets [28] [16], and
built corresponding IoT apps in three groups (i.e., Groups 5-7).
We tested these three groups based on current home layouts to
demonstrate the effectiveness of IOTSAFE for practical smart
home settings.

Some common types of IoT devices were deployed in
multiple places in our experiments. For example, window
switches (#18) in Figure 9 were deployed in both the living
room and the bedroom with different device IDs. Since these
IoT devices were deployed in three different rooms, their
influence areas were constrained by the home structure and
deployment locations. We deployed 21 official SmartThings
apps (ST1-ST21 listed in Table IX) in our experimental
environment (where the detailed settings can be found in
Appendix B). We defined 36 safety and security policies for
physical interaction control with considering general IoT safety
and security requirements.

For each testing group, we setup the baseline by manually
examining physical interactions between devices. To this end,
each device worked separately for a period (two sensor report
intervals) to identify possible temporal device interactions
and then waited for another sensor interval to examine its
continuous effect. The longest sensor report interval we chose
is 15 minutes. Based on our experimental results, this interval
is long enough to identify devices’ temporal influences.

For the policy enforcement, we enabled 14 general safety
and security policies from Table VIII in Group 4 and Group 7.
The monitor updates devices’ states to the server per minute
and takes actions based on the server’s response. IOTSAFE
enforces proper policies based on devices’ states and the
predicted conditions. We conducted two case studies based on
the settings of Group 4 and Group 7 in Table IX.
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Fig. 9: One of our smart home testbeds for Group 4 and 7
where 33 devices were deployed in three different rooms.

B. Real Physical Interaction Identification

The objective of this experiment is to identify real physical
interactions among devices. We compared our results against
IoTMon [18], which derives potential physical interactions
based on static analysis. IoTMon discovers all potential phys-
ical interactions by stitching apps if they share common
physical channels. The real physical interactions are identified
by IOTSAFE through both static analysis and dynamic testing.

TABLE I: Physical interaction discovery.
Group Potential Real Joint Implicit Temporal FP of FN of

ID Interact. [18] Interact. Interact. Interact. Interact. Static Analysis Static Analysis
1 17 12 12 6 12 5 6
2 13 5 1 1 0 8 1
3 41 19 18 9 16 22 9
4 130 39 38 17 26 91 17
5 32 14 8 4 4 18 2
6 46 17 6 8 13 29 8
7 42 22 11 6 18 20 6

Table I lists the results of physical interaction discovery. It
also reports the False Negative (FN) and False Positive (FP)
results of the static analysis approach [18]. The implicit in-
teractions are actually false negatives of static analysis, which
are interactions identified by dynamic testings but ignored by
the static analysis. With an increasing number of apps in a
smart home environment, the ratio of false positives to the total
interactions is increasing. This is because the potential physical
interactions do not consider physical environment constraints
and thus introduce many false static physical interactions,
which are potential interactions identified by the static analysis
but not detected by the dynamic testing. These false positive
results are caused by limitations of the static analysis, such as
wrong interaction analysis, missing room layouts and device
distance.

As shown in Table I, we list potential interactions derived
from the static analysis, real interactions identified by IOTSAFE,
and detailed categories of these physical interactions. Group 1
and Group 2 are both single room environments (the detailed
apps and device information are listed in Table IX). Group
3 is a two-room environment, which contains a living room
and a bedroom, and our dynamic testing shows that there are
more than 50% false positive physical interactions derived by
static analysis due to the increasing number of devices. Group
4 has the same structure as Group 3, but it is deployed with
more devices and apps. It involves 21 apps, containing 130
potential physical interactions. However, we only found 39 real
physical interactions, which contain 17 implicit interactions
(e.g., the opening window may change the ultraviolet level).
These implicit interactions are interactions from devices with

multiple-channel influences, like AC and stove. Group 5 has
the same home layout as Group 2, which involves 14 apps,
containing 32 potential physical interactions. We found 14 real
physical interactions, out of which 4 implicit interactions were
identified. In Groups 6 and 7, where we added more apps and
devices than that of Group 3, the number of real interactions
is increased to 17 and 22, respectively. The number of implicit
interactions is 8 and 6 respectively, which are mainly caused
by devices such as windows, AC, and stoves.

TABLE II: Interaction discovery broken down in Group 4.
Physical Potential Dynamic Online Implicit
Channels Interactions [18] Testing Updating Interactions

Temperature 56 10 2 5
Humidity 20 3 2 6

Smoke 4 1 1 1
Motion 6 3 2 2

Illuminance 42 4 1 1
Water 2 1 0 0

Ultraviolet 0 0 2 2

In Table II, we show the detailed physical interactions
identified in Group 4, which has the most complex device
interaction scenario. The temperature and illuminance channels
have nearly 50% unreal interactions derived by the static
analysis. Overall, we identified 17 implicit interactions, e.g.,
window shades may have an influence on the temperature. For
the temperature channel, there were 56 potential interactions
among devices. During the dynamic testing, we identified
10 real interactions. For the humidity channel, we identified
6 implicit interactions, mostly related to devices that could
change the temperature. These devices change humidity as well
as the temperature at the same time. We also found humidity
is highly sensitive to the spatial distance between sensors and
devices (e.g., humidifier), which is shown in Appendix E.

For the false positive interactions in Table II, these are
interactions identified by the static analysis but not in dynamic
testings. Taking the smoke channel as an example, the static
analysis gives 4 potential interactions but only one is real,
which leads to 3 false positives. Based on the similarity
between keywords, the static analysis approach gives poten-
tial interactions between the heater and the smoke channels.
However, since the heater could not cause the smoke problem
in the dynamic testing, we consider this interaction as a false
positive.

TABLE III: Summary of implicit and unreal interactions of
Group 4. 3represents real interactions identified by IOTSAFE,
© represents implicit interactions identified by IOTSAFE, and
7 represents unreal interactions derived by the static analy-
sis [18].

Devices Temperature Humidity Smoke Motion Illuminance Ultraviolet Water
AC 3 ©

Heater 3 © 7
Vent 3 3
Fan 3 7

Window 3 3 © 7 ©
Radiator 3 © 7

Humidifier 3
Coffee Machine ©

Robot ©
Stove © © 7
PC ©
TV ©

Air Fryer © 3
Light 3
Shade © 3 ©
Valve 3

We further summarize the related devices with implicit and
unreal interactions in Table III. There exist devices having
implicit effects that cannot be captured by the static anal-
ysis, e.g., coffee machine to the humidity sensors, stove to
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the temperature sensor, and TV to the illuminance sensor.
Most devices that change the temperature will also change
the humidity. This is because temperature and humidity are
physically related with each other and can be changed at the
same time.

C. Runtime Prediction

We measured the effectiveness of our modeling method for
temporal channels and we mainly focused on the temperature-
related devices. We list our experimental results in Table IV.
The average error is the average difference between predicted
temperature values and the sensor’s actual readings at runtime.
We measured 5 times of temperature sensor readings and the
predicted values for each group. The room temperature was
72F on average, which was used as a baseline to calculate
the error percentage. The sensor report interval means the
report intervals of used sensors. For example, two types of
temperature/humidity sensors have 8 or 15 minutes of report
intervals. Group 1 has only one room and all devices are
temperature related. It has the smallest error (1.0F) because of
its one-room layout and the small room size. Group 2 has no
temperature related device. Since Groups 3 and 4 have more
rooms and more environmental interference, their errors are
higher than that of Group 1. Group 5 has the same layout as
Group 2, but with more temperature-related devices, and Group
6 and 7 have the same layouts as Group 3. Hence, their model
prediction results are similar. In general, such an average error
is small and IOTSAFE would not miss the violation prediction
of risky situations.

We set 80F as the temperature threshold for policy violation
detection. IOTSAFE achieves 93% accuracy for temperature
related violation prediction in Group 1 (15 out of 16 risky
situations in total). The only missing case was because the
window was kept open while the heater was working, which
makes their joint effects harder to predict than common
scenarios.

TABLE IV: Effectiveness of the temperature channel model-
ing.

Device Sensor Time Average Error
Group Intervals (min) Error Percentage

1 15 1.0F 1.4%
2 15 N/A N/A
3 8,15 1.4F 1.9%
4 8,15 1.9F 2.6%
5 8,15 2.2F 3.1%
6 8,15 1.7F 2.4%
7 8,15 2.3F 3.2%

Taking Group 4 as an example, the system contains 170
sensor reports from Group 4. We set the temperature above 80F
as a risky situation and there were 55 risky reports. IOTSAFE
detected 49 out of 55 risky situations before they could happen,
and missed 7 of them. The false negative was because the
ground-truth temperature was just on the boarder-line of above
80F, while the predicted result was slightly lower than 80F.
If we introduced a 3-minute delayed time window, IOTSAFE
could give 4 more violation warnings and predict 53 risky
situations. The system also gives 8 false negatives and 107 real
negative results, which were mainly because of the borderline
issue (5 times) and the environmental interference (3 times).
In summary, the accuracy is about 96% for the true positive
rate and 7% for the false negative rate. Figure 10(b) shows an
example of the predicted temperature values compared to the
real sensor readings.

(a) Temperature Control without Model Prediction.

(b) Temperature Control with Prediction.

Fig. 10: Prediction results
TABLE V: Physical model accuracy based on prediction time.

Physical Prediction Lead Average Error
Channel Time (minute) Error Percentage

Temperature 45 3.3F 4.6%
Temperature 30 1.5F 2.1%
Temperature 15 1.0F 1.4%

Humidity 45 7.1% 11.8%
Humidity 30 3.4% 5.7%
Humidity 15 1.3% 2.2%

We also evaluated the lead time on the prediction accuracy
in Table V, where the lead time is defined as the advanced time
that prediction is conducted before the actual sensor readings
report a violation. We evaluated the temperature and humidity
channels based on the prediction lead time with 15, 30, and
45 minutes. We tested the model’s accuracy based on related
devices in Group 4 and compared the prediction accuracy with
different lead time. The error increases with an increase of
the prediction lead time, especially for the humidity channel.
Comparing with the temperature, humidity is very sensitive
to device states and changes rapidly if some device states
or environment conditions (e.g., air pressure) changed. The
humidity changed more rapidly than the temperature, making
the value error percentage higher than that of the temperature.
However, the average error is still small and it should not affect
the policy enforcement.

D. Case Studies

We conducted two case studies to demonstrate the effec-
tiveness of the policy enforcement in IOTSAFE against indirect
attacks that exploit temporal physical interactions.

Use Case I: We first examined the effectiveness of IOTSAFE
in enforcing safety policies at runtime by running a malicious
app based on the smart home setting of Group 4 in Table IX. In
Figure 11, an attacker exploited two compromised IoT devices
to open the window. The attacker first manipulated the vacuum
robot to trigger the “STAY” home mode (i.e., someone is at
home) in order to bypass the security policy “Do not open
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Fig. 11: Attack scenario in use case I.

window when no one is at home”. Then he/she manipulated
a heater to raise the temperature to trigger a window opening
action. IOTSAFE first detected the interaction between the robot
and the motion sensor. Then, our system gives hints to the
user to set additional trigger conditions. For example, if the
user sets an additional condition as “Do not trigger the family
mode when the robot is working”, the home mode app will be
blocked by the policy. As shown in the red cross in Figure 11,
our system can block malicious manipulation of the home
mode.

Use Case II: To demonstrate the effectiveness of physical
modeling based prediction of risky conditions, we conducted
the second case study to compare results from two enforcement
schemes based on the smart home setting of Group 7 in
Table IX. We introduced a malicious heater control app that
keeps heaters on all the time. We first tested a sequence of
heater/AC.heating cases without the prediction based on phys-
ical models. Assume the user set the policies “The temperature
should be below 80F. Otherwise, turn off all heating devices.”
and “Open the window when thetemperature is above 84F.”
As shown in Figure 10(a), the policy enforcement without
prediction was delayed around 11 minutes and the temperature
reached 82.4F. Even after turning off the heating devices, the
temperature still reached 84F and the high temperature could
remain 5 report intervals (75 minutes). In Figure 10(b), we
tested the same sequence with the prediction based on the
physical model. IOTSAFE turned off the heater 18 minutes
ahead and the home environment was kept from the high
temperature situation.

E. System Performance

Dynamic Testing Performance. We study IOTSAFE’s runtime
overhead of dynamic testings. We compared our parallel test-
ing design against a non-parallel testing method in terms of
the time consumption considering four groups of apps. The
non-parallel testing does not do parallel testing, which means
only one device can be tested at a time in the whole home. It
also does not have parallel testing among different channels’
testing cases during the single-room testing. Our experimental
results are shown in Table VI.

The sensor report intervals (by default in SmartThings)
are 5 minutes for light-related sensors, 8 or 15 minutes for
temperature, water and humidity sensors, and other sensors
(smoke, motion) are instant to report any changes immediately.
For Group 1, it has 17 potential interactions and costs 150
minutes to test 5 temperature related devices. Most of the
time was consumed by the 15-minute report interval from
temperature sensors. For the non-parallel testing, it took 150

minutes because this is a single room environment and only
one temperature channel was tested. Group 2 has four illumi-
nance related apps, and there are 13 potential interaction paths.
The testing process took 40 minutes on average (for 5 real
interactions). Group 3 has five temperature related apps and
two illuminance related apps, which resulted in 41 interactions.
The time consumption for the whole testing process was 90
minutes, while the non-parallel testing took 135 minutes. This
is a multiple-room and multiple-channel environment, IOTSAFE
can save time with the parallel testing. The time consumption
for testing Group 4 using our approach was 120 minutes, which
was reduced by almost 1.5 hours. In Group 5, it costed 110
minutes for our method. It saved 55 minutes because different
physical channels’ testing cases in the single room could be
tested simultaneously. Group 6 and Group 7 have similar
results as Group 4. Since they have similar apps and devices,
IOTSAFE took a similar time to complete the testing than that
of Group 4. The time consumption of them is less than that
of Group 5 because IOTSAFE implemented the parallel testing
for cases in different rooms and different channels. Hence,
our method can reduce the time consumption for 1-2 hours on
average.

TABLE VI: Time consumption of the dynamic testing.

Group ID None-Parallel (minute) Our Method (minute)
1 150 150
2 40 40
3 135 90
4 215 120
5 165 110
6 180 105
7 190 135

New Device Initialization Overhead. We evaluated our phys-
ical model initialization for newly added devices. The device
initialization is for devices that are newly added or moved after
the original model initialization or have testing restrictions.
We did not run the entire dynamic testing process for a
newly added device, but only trained its model based on
daily usage data. Figure 12 shows the experimental results of
adding new devices into an existing home environment. The
X-axis shows the number of newly added devices in the smart
home environment, and the Y-axis shows necessary sensor
reports for initializing their models. The error bar represents
the maximum/minimum reports needed in each set of testing.

To initialize one single device’s model, IOTSAFE needs to
wait until this device being used one-time in the environment.
Hence, the initial time overhead is just one sensor report
interval, which is the same as the dynamic testing. With the
increasing number of devices, the overhead increases expo-
nentially because of the interference from each other increases.
Hence, IOTSAFE needs more data to initialize devices’ models.
For a normal room with four associated devices, it usually
needs 2-3 sensor reports (around 1 hour) based on the runtime
states of all related devices. The uncertainty of the report
amount was because, during normal usage, these devices might
work at the same time, which makes it harder to know the
influence of the new devices.

Server Runtime Overhead. For evaluating the overhead of the
runtime policy enforcement in IOTSAFE, we tested the average
response time of one policy enforcement in each group. The
response time is calculated as the time from requesting an
action to the enforcement of the action. We ran such tests
for 20 rounds in each group, and the time consumption for
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Fig. 12: Time consumption of new device initialization.

Groups 1-3 is 230ms on average, which will not affect timely
enforcement.

VI. RELATED WORK

Static Security Analysis. Many research efforts have been
undertaken by applying static analysis techniques in identify-
ing and improving IoT security and safety. Since it does not
require the dynamic execution of a program, it scales better
when performing a large-scale study. Fernandes et al. [20]
identified several security-critical design flaws (e.g., event
leakage and event spoofing) in the SmartThings platform.
They discovered that over 55% of SmartApps in the store
are over-privileged (as of 2016). In addition, the SmartThings
platform does not sufficiently protect event data that carry
sensitive information, resulting in event leakage and event
spoofing vulnerabilities. SAINT [9] tracks information flows
from sensitive sources to external sinks to find sensitive data
flows. SOTERIA [10] and IotSan [29] apply model checking to
verify user-defined safety, security, and functional properties.
Different from SOTERIA, IotSan focuses on revealing flaws
in the interactions between sensors, apps, and actuators, e.g.,
verifying conflicting and repeated commands from multiple
apps that subscribe the same sensor. Neither SOTERIA nor
IotSan considers the physical interactions in their analysis.
IoTMon [18] discovers potential physical interaction chains
across IoT applications and assesses the security/safety risk
of each discovered cross-app interaction. However, IoTMon is
unable to capture runtime policy violations in real-world IoT
deployments.

Runtime Policy Enforcement. Access control is a fundamen-
tal and challenging problem in IoT. In many instances, static
analysis of IoT apps provides useful information to guide
the runtime enforcement. SmartAuth [42] ensures the app’s
runtime behavior is consistent with its static analysis model
learned from the code description. SmartAuth mitigates the se-
curity risks of over-privileged IoT apps. To address the poten-
tial permission abuse and data leakage issues, FlowFence [22]
enforces developer-specified information flow policies, while
blocking all other undeclared flows. HoMonit [45] defines a
normal traffic behavior model by analyzing an app’s source
code and user interface. It detects malicious behaviors of apps
at runtime.

IoTGuard [11] supports the detection of policy violations
in multi-app environments by means of reachability analy-
sis. However, their reachability analysis is based on a static
merging of trigger-action rules extracted from individual apps.
The lack of physical reachability analysis leads to substantial
false positives for app interactions through physical channels,
resulting in over-alarmed and unnecessary action rejections

(which may also hurt the usability). In this work, we fill this
gap and specifically focus on dynamic security and safety
assessment with respect to real physical interactions in multi-
app IoT environments.

In Table VII, we compare our work with recent studies
in multiple perspectives, e.g., scope and method. Helion [28]
provides a method to extract normal routines from users’ daily
data. It could predict normal behavior and give alarms when
an abnormal event happens. Cobb et al. [16] provided a com-
prehensive overview about risky IFTTT applets for real users.
Peeves [7] proposed a method to build normal event sequences,
which can be used to detect malicious behaviors. These studies
provide a measurement for risky behavior detection from real
users’ perspective. However, they do not consider physical
interactions among devices and do not provide a runtime policy
enforcement mechanism.

TABLE VII: The comparison of IoTSafe with other IoT
systems.

Inter-app Real Physical Runtime Policy Physical Condition User PolicySystem Analysis Interaction Enforcement Prediction Correction
IoTSafe 3 3 3 3 3

IoTGuard [11] 3 3
Peeves [7] 3 3
Helion [28] 3 3 3
iRuler [43] 3 3

IoTMon [18] 3
Menshen [8] 3 3

HomeGuard [15] 3 3

iRuler [43] uses SMT and model checking to detect vulner-
abilities among IFTTT rules, especially in rule configurations
of IoT deployments. Menshen [8] builds and checks the Linear
Hybrid Automata (LHA) model for user rules to find violations
and generate fix suggestions for non-expert users. Home-
Guard [15] uses SMT models to check rules and configurations
to find cross-app interference threats among smart home apps.
Salus [26] leverages formal methods to localize faulty user-
programmable logics and uses model checking tools or SMT
tools to debug these logics. ProvThings [44] automatically
instruments IoT apps and device APIs to a centralized audit
IoT platform and generate data provenance that provides a
holistic explanation of system activities. These four studies
can identify inter-app interactions based on static analysis, but
they cannot capture real physical interactions during runtime.
Moreover, none of these systems can predict violations and
perform policy enforcement in a preventative manner.

VII. DISCUSSION

In this section, we discuss the limitations of IOTSAFE and
potential solutions to address these limitations.

Physical Interaction Discovery: Identifying physical in-
teraction based on static analysis suffers from the over-
estimation issue (i.e., high false positives). We point out that
it is necessary to discover real physical interactions through
dynamic analysis (e.g., dynamic testing). To the best of our
knowledge, this is the first study on dynamic testing based
physical interaction discovery in IoT. Physical interactions
among IoT devices are subject to both spatial and temporal
contexts of the smart home environment, such as deployed
locations of IoT devices, and even the outside environment.
In this work, we do not consider the impact of the outside
environment and temporal dynamics on physical interactions
(e.g., time and seasonal impacts). We leave the enhancement of
our approach by considering both outside environment impact
and temporal dynamics to our future work.
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Dynamic Testing Safety and Optimization: One distinc-
tive feature of the dynamic testing for identifying physical
interactions from the traditional software testing [12] is that
our dynamic testing process has physical impacts on the smart
home environment (e.g., temperature changes). Changing the
physical environment may lead to risky situations and cause
safety issues during the testing. Hence, certain functions of
devices cannot be tested or can only be tested in a restricted
range, which may miss some physical interactions (e.g., a
toaster to the smoke channel). Another challenge is the testing
overhead, which is related to the ordering of exploring/testing
possible paths. As part of our future work, we will formulate
this problem as an optimization problem to minimize the
testing overhead and ensure the testing safety.

Human Interaction: IOTSAFE mainly considers interac-
tions between devices and does not consider direct users’
interactions in the environment. A limitation of IOTSAFE is that
it requires a dynamic testing period, which can be interfered by
human activities. While human activities (e.g., walking, turning
on devices) may cause false-positive interaction results during
the dynamic testing. The prediction also does not consider the
physical influence from human activities. In our future work,
we plan to address this challenge on how to identify and predict
influences from human activities.

Applicability and Generality: Although we instantiate
IOTSAFE on the SmartThings platform, our design can be
potentially applied to other IoT platforms, such as the Open-
HAB [31] platform. The dynamic testing process is platform-
agnostic, and thus it can work across different IoT platforms.
IOTSAFE requires a real-world physical interaction discovery
phase, which takes time and incurs certain overhead. In addi-
tion, any false positive of the policy enforcement (e.g., a benign
action is incorrectly blocked) may hurt usability. In our future
work, we plan to perform user studies to evaluate the usability
of the dynamic testing process and policy enforcement in
IOTSAFE.

VIII. CONCLUSION

In this work, we have presented IOTSAFE, a novel IoT
dynamic security and safety assessment with physical inter-
action discovery. To our knowledge, this paper proposed the
first dynamic testing method for IoT physical interaction dis-
covery. Based on the identified physical interactions, IOTSAFE
generates devices’ physical models, which predict incoming
risky situations and blocks unsafe device states. We have
implemented a prototype of IOTSAFE on the SmartThings plat-
form. We have evaluated IOTSAFE in a simulated smart home
environment. IOTSAFE identifies 39 real physical interactions
out of 21 applications. IOTSAFE also successfully predicts 96%
highly risky conditions in our experiments.
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APPENDIX

A. Safety and Security Policies

We list 36 reference safety and security policies in Ta-
ble VIII. For the general safety and security policies, users
can directly enable them in IOTSAFE without device-specific
settings. Our system implements these policies to all related
devices within the same capability. Table VIII also gives
reference policies that users need to modify or assign specific
devices to enable such policies. The policies will be only
triggered by the associated sensors or devices.

B. Smart Home Testbed Setting

We installed 21 official SmartThings (ST) apps selected
from the SmartThings GitHub repository [34], which enables
automated tasks for the smart home environment, as shown
in Table IX. In the table, we list the setting (apps and their
configurations) for each testing group. We tested these apps
in seven groups with different configurations, which are set
according to app instructions and common sense. Each group
includes a set of apps that may be installed together in a smart
home environment. Groups 1-4 use apps and settings based on
our experiences and Groups 5-7 are generated based on the
user survey data from prior work [28], [16].

The first group (Group 1) contains 5 temperature-related
apps. We use this group to test the effectiveness on identifying
temperature-related physical interactions and detecting policy
violations between devices. The second group (Group 2) con-
tains 4 light management apps. It aims at learning interactions
between illuminance related devices, such as bulbs, shades
and light sensors. The third group (Group 3) contains 2 light-
related and 4 temperature-related apps. It is used to test cross-
channel physical interactions. The fourth group (Group 4)
contains 21 apps, which are used to test interactions related to
multiple physical channels. Apps in Group 5-7 are generated
from real users’ routines from existing user studies [28], [16].
We choose routines that are strongly/somewhat agreed by
real users. Group 5 contains 18 apps, including temperature,
motion, smoke, and light control apps. Group 6 contains 19
apps, including home mode, smoke, motion, temperature and
light control. Group 7 contains 21 apps, including temperature,
motion, home mode, smoke, humidity, and leakage control
apps. We configure apps with multiple devices based on the
descriptions of apps and the locations of devices as shown in
Figure 9.

C. Home Layouts

Figure 13(a) lists the room layout and device locations for
Groups 1, 2, and 5. The differences between groups are that
Group 2 does not use temperature related devices, such as AC
and heater. Figure 13(b) shows the room layouts for Groups
3, 4, 6 and 7. The detailed devices and apps deployment can
be found in Table IX.
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TABLE VIII: Safety and security policies (7 means a physical channel is involved in the policy, T represents temperature, H
represents Humidity, S represents smoke, W represents water leakage, SM represents soil moisture, MO represents motion, and
I represents illuminance)

No. Policy Description T H S AQ W SM MO I
General safety and security policies

1 All electrical appliances should be turned off when smoke is detected. 7
2 All window and blinds should be closed when home mode is away. 7 7 7
3 All lights should be on when home mode is vacation. 7 7 7
4 Open the window when a related room’s temperature is detected above the threshold and

there is people home. 7 7
5 Turn off the humidifier, if a related room’s humidity exceeds the threshold. 7
6 Turn on all air purifiers when air quality is below a threshold 7
7 Temperature should not exceed up-threshold when people are at home. 7 7
8 The water valve must shut off when the water/moisture sensor detects leak and no smoke detected. 7 7
9 When smoke is detected, an SMS/Push message should be sent to the owner. 7

10 The sprinkler valve should be ON when detecting smoke. 7 7
11 When there is water leakage, an SMS/Push message should be sent to the owner 7 7
12 When smoke is detected, the lights must be turned on in night mode, and the door must be 7 7 7

unlocked if someone is at home.
13 The alarm must sound when smoke or CO is detected. 7
14 The alarm must sound and an SMS/Push message should be sent to the owner, when motion is 7

detected and home mode is away.
Device-specific safety and security policies

1 A water valve should be opened when smoke is detected 7 7
2 Turn off the gas stove, if the smoke is detected. 7 7 7
3 Turn off the heater, if the smoke is detected. 7 7 7
4 The AC should be turned off when smoke is detected. 7 7
5 Turn on the vent when temperature is detected to above the threshold. 7 7
6 An AC is turned to heating when temperature is detected to be below the lower threshold 7 7
7 Turn on the heater, if the temperature is below the threshold. 7 7
8 The AC should be turned to cooling if temperature exceeds the upper threshold. 7 7
9 An humidifier is turned ON when humidity is detected to below the threshold. 7

10 An vent is turned ON when humidity is detected to above the threshold. 7 7
11 An air purifier is turned ON when air quality is below a threshold 7
12 Turn off the valve, if the water level exceeds the threshold. 7
13 Turn on the valve, if the water level is below the threshold. 7
14 The garden sprinkler should be ON when soil moisture is detected to be low 7 7
15 The garden sprinkler should be OFF when soil moisture is detected to be exceeded 7 7
16 Temperature should be within a predefined range when people are at home. 7 7 7
17 The heater should be turned off when temperature is above a threshold and no one is at home. 7 7 7
18 Soil moisture should be within a predefined range 7 7
19 A water valve should be closed when a water sensor’s state is wet. 7 7
20 The valve must be closed when water sensor is wet and when the water level threshold 7 7

specified by a user is reached.
21 The HVACs, fans, switches, heaters, dehumidifiers must be off when the humidity and 7 7 7 7

temperature values are out of the threshold specified by the user(e.g., a particular
degree above/below the threshold of temperature and humidity).

22 The sprinkler system must not be on when it rains, and when the soil moisture below a 7 7
threshold defined by a user. Flood sensor must activate the alarm when there is water.
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Fig. 13: Room layouts.

D. User Restrictions

To demonstrate the effectiveness of our dynamic testing
with user restrictions, we generated a testing case to compare
results of two testing methods. In Figure 14, we first tested
a sequence of humidity-related testing cases without any user
restriction. Each case turns on a humidifier for 10 minutes.
We have two sensors with report intervals of 8 minutes and 15

minutes, respectively. Then, we tested the same sequence with
a restriction “humidity < 85%”. In the first case, the humidity
was raised to 98% after 10 minutes. With the user restriction,
the system stopped the testing process when a sensor reading
of 88% humidity was reported, keeping the home environment
from risky physical situations.

Fig. 14: Example of user restriction function.
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TABLE IX: Detailed applications for each group.
Group App Type Description Amount

1 Home mode controls temperature devices 2
Temperature sensor controls heaters, AC, fan, and windows 3

2

Home mode controls lights and locks 2
Motion Sensor controls Lights 1

Light Sensor controls Window shades 2
Light Sensor controls lights 1

3

Home mode (away) controls window(close), AC(off), Heater(off) 1
Home mode (home) controls AC.cooling and AC.heating 1

Temperature Sensor controls window, heater, AC and alarm 2
Light Sensor controls Window shades 2

Light Sensor controls Lights 1

4

Humidity Sensor controls windows 2
Presence sensor controls Home mode 1

Home mode controls AC, windows, and heaters 2
Motion sensor controls lights 2
Light sensor controls Lights 1

Temperature sensor controls heaters, AC, windows, alarms and fan 3
Humidity sensor controls humidifier 1

Timer controls Home mode 2
Home mode controls lights and TVs 1

Smoke Sensor controls alarms and locks 1
Home mode and motion sensor control alarms 2

Home mode controls coffee and lights 1
Leakage Sensor controls valves 1

5

Home mode and Timer controls lights, AC, coffee, and alarms 6
Carbon monoxide sensor controls home mode 1

Motion sensor controls home mode 1
Light Sensor controls lights 2

Temperature sensor controls heaters, AC, windows, alarms and fan 3
Timer controls home mode and lights 3

Smoke Sensor controls alarms and home mode 1
Home mode and motion sensor control alarms 1

6

Home mode and Timer controls lights, AC, coffee, and alarms 6
Home mode and motion sensor control alarms 2

Presence sensor controls Home mode 2
Light Sensor controls lights 2

Temperature sensor controls heaters, AC, windows, alarms and fan 3
Timer controls home mode and lights 1
Home mode controls lights and TV 1

Smoke sensor controls alarms, locks and home mode 1
Leakage sensor controls home mode and plugs 1

7

Presence sensor controls Home mode 2
Home mode and motion sensor control lights, alarms 2

Home mode and Timer controls lights, AC, coffee, locks, heaters, and alarms 6
Motion Sensor controls lights 1
Light Sensor controls lights 2

Temperature sensor controls heaters, AC, windows, alarms and fan 3
Timer controls home mode and lights 2

Smoke sensor controls alarms, locks and home mode 1
Leakage sensor controls home mode and plugs 2

E. Physical Modeling

Here, we provide more details of the physical models. For
the air related physical channel modeling, we mainly focus on
building models for the temperature and humidity. We start
from the general model, which is presented in Section IV-C.
The general modeling of the air channels is listed as follows:

∆SensV al(Di, state, t1, t2) =
∆Q(Di, state, t1, t2)

β
, (5)

As mentioned in Section IV-C, ∆Q(Di, state, t1, t2) rep-
resents the amount of channel quantity changes of device Di

from time t1 to t2. The heat gain/loss Q from temperature-
related devices mainly has two types: 1) heat flow from devices
like the AC or window fans; and 2) heat radiation from devices
like heaters. For the heat radiation, the parameter Qi can
be calculated by using its power or connected smart plug’s
power multiplied by its working time. However, for devices
that we cannot directly know its power or for devices that have
airflow abilities, e.g., AC, we use the following equation [40]
to capture the heat from its air flows. These heat flows also
depend on several environmental parameters, including the
room temperatures, outside temperature, and specific attributes
of devices.

∆Qflow = ρ · Cair · Vair · (Tset − Troom) · (t2 − t1) (6)

Equation (6) describes the calculation of ∆Qflow for air flow
heating and cooling devices, where ρ is the density of the
air, Vair is the air volume flow rate in ft3/min, and Cair

is the specific heat capacity of the air. Tset is the output air

Fig. 15: Distance factor value for a humidifier.

temperature of the devices and Troom is the current room
environment temperature. For window fans, Tset is the outside
room temperature. (t2 − t1) is the working time of devices.
We list the detailed values of these parameters in Table X
in our experiments. Other air related physical channels like
air quality, smoke, and humidity can also be calculated in a
similar way.

We also build a model for the relative humidity channel.
The humidity also has two sources: 1) devices like humidifier
or kettle, and 2) air flow devices. The humidity gain/loss from
devices like a humidifier can be represented as follows:

∆Qhumidity = γd ·Hi · (t2 − t1) (7)

where ∆Q(Di, state, t1, t2) is the changed weight of water
vapor in the air. Hi is the water vapor rate of the device,
which can be calculated by readings from surrounding sensors,
or known by devices’ default parameters [41]. We also can
estimate the vapor evaporation rate from the humidifier’s power
meter/manual. γd is the distance factor, which represents the
distance between the vapor generation device and the location
of testing point (e.g., a humidity sensor). We define this
parameter because the humidity is sensitive to the distance
for these type of devices (e.g., kettle and humidifier). The
temperature is more evenly distributed in the room so it does
not need this factor. The parameter values of this factor with
the increasing distance is shown in Figure 15.

The humidity gain/loss ∆QHflow from a device like an
AC or window fan can be represented as follows [41]:

∆QHflow = ρ ·Hair · Vair · (Hset −Hroom) · (t2 − t1) (8)

We do not use the distance factor γd here because such devices
can evenly change the humidity in a room. QHflow represents
the air humidity gain/loss amount from the airflow, which is
the product of airflow volume Vair, air density ρ and absolute
air humidity capacity Hair. The absolute air humidity capacity
Hair is a physical attribute that changes with the temperature.
Hence our system stores a list of its default values for different
temperature ranges. Hset is the relative humidity of the airflow
and Hroom is the relative humidity of the room.

TABLE X: Common parameters in physical modeling.
Parameters Values

Density of air 1.2 kg/m3

Heat capacity of air 1.005 kj/kg◦C
Absolute humidity capacity of air(68F) 17.3 g/m3

Air flow rate of AC 150 ft3/min
Air flow rate of window fan 100 ft3/min

Evaporation rate of a humidifier 2.57g/min

In Table X, we list default parameters that are used for
calculating our physical models. For example, the air density
and capacity are used to calculate β in Equation (5).
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