
Desperately Seeking ... Optimal Multi-Tier Cache Configurations

Tyler Estro,1 Pranav Bhandari,2 Avani Wildani,2 and Erez Zadok1
1Stony Brook University and 2Emory University

Abstract

Modern cache hierarchies are tangled webs of complexity.

Multiple tiers of heterogeneous physical and virtual devices, with

many configurable parameters, all contend to optimally serve

swarms of requests between local and remote applications. The

challenge of effectively designing these systems is exacerbated

by continuous advances in hardware, firmware, innovation in

cache eviction algorithms, and evolving workloads and access

patterns. This rapidly expanding configuration space has made

it costly and time-consuming to physically experiment with

numerous cache configurations for even a single stable workload.

Current cache evaluation techniques (e.g., Miss Ratio Curves)

are short-sighted: they analyze only a single tier of cache,

focus primarily on performance, and fail to examine the critical

relationships between metrics like throughput and monetary cost.

Publicly available I/O cache simulators are also lacking: they

can only simulate a fixed or limited number of cache tiers, are

missing key features, or offer limited analyses.

It is our position that best practices in cache analysis should

include the evaluation of multi-tier configurations, coupled with

more comprehensive metrics that reveal critical design trade-offs,

especially monetary costs. We are developing an n-level I/O

cache simulator that is general enough to model any cache

hierarchy, captures many metrics, provides a robust set of anal-

ysis features, and is easily extendable to facilitate experimental

research or production level provisioning. To demonstrate the

value of our proposed metrics and simulator, we extended an

existing cache simulator (PyMimircache). We present several

interesting and counter-intuitive results in this paper.

1 Introduction

The vast configuration space of multi-tier caching enables the

design of very complex systems. Several tiers of cache and

persistent storage can be allocated in numerous arrangements.

Moreover, devices can be partitioned into many differently sized

cache segments for separate applications. All of these devices

can be implemented within, and interact with, any number of

independent, large-scale infrastructures (e.g., cloud services,

virtual machines, big data warehouses, distributed systems).

Furthermore, new storage technologies are constantly emerging

(e.g., NVM, 3D flash), introducing additional complexity, greater

capacities, and different cost/performance profiles. Our ability

to dynamically change hardware in live systems (e.g., adding

or deleting RAM, SSD, NVM) has also been increasing, par-

ticularly in cloud environments and virtual machines [15,16,21],

making it significantly easier to reconfigure a cache hierarchy.

Workloads continue to evolve as well, with complex and diverse

access patterns that affect the frequency of data reuse and the

size of working sets, two of the most influential factors in any

caching system [4,14,46,48,58].

Research in cache algorithms and policies is also trying to keep

up with these changes. Machine learning and similar techniques

that leverage historical data are being incorporated into caching

systems to bolster prefetching [63], dynamically switch between

replacement algorithms [45,46,53], or enhance existing eviction

policies [2]. I/O classification has been used to enforce caching

policies and improve file system performance [39]. Multi-tier

cache eviction algorithms that are aware of some or all layers

in the hierarchy at any given time are being developed [14]. The

challenges of cache resource allocation and provisioning are be-

ing investigated as well [5,31]. Zhang et al. introduced CHOPT,

a choice-aware, optimal, offline algorithm for data placement

in multi-tier systems [65]. Algorithms such as CHOPT are

promising solutions for efficiently finding optimal multi-tier con-

figurations, but their bounding assumptions and inability to model

all parameters limit the configuration space they can explore.

Physically experimenting with various cache configurations is

costly and time-consuming, with so many parameters to consider

(e.g., number of tiers, device types and models, caching policies).

A well-known technique for evaluating cache performance

without running experiments is Miss Ratio Curve (MRC) anal-

ysis [7,25,26,54]. MRCs plot the cumulative miss ratio of all

requests in a given workload for some cache eviction algorithm(s)

as a function of cache size. Cache size usually ranges from

one data block to the size required to store every unique block

accessed in the workload, also known as the working set. This

technique has many uses, such as comparing eviction algorithms’

performance for a given workload or identifying optimal cache

size allocations. However, MRCs evaluate the performance of

only a single cache and are not capable of accurately modeling

the complicated interactions between devices in a multi-tier

cache. Recent studies have shown that traditional MRCs are

even sub-optimal for resource allocation in a single layer, since

they admit data with poor locality into the cache. [20].

It is vital that our methods of evaluating caches mature as

storage technologies and cache hierarchies continuously evolve.

For example, examining performance metrics such as latency

or using an MRC to analyze miss ratio as cache size increases

may be misleading without also considering the monetary cost of

purchasing and using the cache. Cost has a non-linear, positive

correlation with cache size, and is fundamentally the primary

constraint when deciding how much cache to include in a system.

If this were not the case, everyone would cache all data in copious

amounts of the fastest DRAM money can buy and back it up

with a huge battery. Furthermore, improved performance does

not directly translate into cost efficiency, especially in a multi-tier

system where devices’ cost and performance characteristics can

vary wildly. The purchase cost of hardware is a simple example.

Ideally, we should be evaluating more comprehensive metrics

such as the total cost of ownership, which combines other metrics

such as power consumption, the cost of labor to maintain a

system, and the projected lifetime of devices given access patterns.

It is also essential that we can freely evaluate the relationship

between metrics (e.g., throughput/$) so we can make educated

design decisions with full awareness of the inherent trade-offs.

The most complete solution would be an n-level I/O cache

simulator that could quickly and accurately evaluate many config-

urations. While there are some advanced CPU cache simulators

available [18,27,38,43,56], storage cache simulators are scarce

and lacking. State-of-the-art storage cache simulators are mostly

outdated; they either can simulate only a single layer or some

fixed set of layers, have limited analysis features, are not easily

extendable, or are simply not released to the public [1, 23, 59].

PyMimircache [62] is a popular open-source storage simulator

with several useful features that is actively maintained. However,

even this simulator is inadequate; it also can simulate only a

single layer of cache with no implementation of back-end storage,

has no concept of write policy, and its analysis features are lim-

ited. The main strength of PyMimircache is its ability to perform

MRC analysis on multiple cache replacement algorithms.

It is our position that best practices in cache research need

to be broadened to reflect the growing multi-tier configuration

space. This paper makes the following contributions:

1. We explore current trends in cache analysis and propose

that best practices in cache research including the analysis

of multi-tier configurations and a more comprehensive set

of evaluation metrics (e.g., monetary cost).

2. We describe the critical features an n-level I/O cache

simulator should have and outline the design of a simulator

we began to develop.

3. We extended PyMimircache to function as a multi-tier

cache simulator, experimented with many configurations

on a diverse set of real-world traces, and present initial

results that support our position.

2 Cache Analysis

The fundamental strategy in engineering a cache hierarchy in-

volves placing faster and typically lower-capacity devices in front

of slower devices to improve the overall latency of accessing

frequently reused data. There is a tangible dollar cost per byte

increase when purchasing hardware with better performance

attributes. Therefore, it follows that the cache size and speed are

closely correlated with the purchase cost. Straightforward logic

dictates that performance is constrained by cost, so unless money

is in endless supply, the best practice should be to evaluate these

metrics together. Surprisingly though, cost is often overlooked

during analysis in favor of performance metrics such as raw

throughput, latency, or hit/miss ratio [10,13–15,20,44,57].

The argument can be made that any improvement in cache

performance translates into a reduction in cost when designing

a cache, such that the relationship between cost and performance

does not necessarily need to be considered. This is situationally

true, particularly when evaluating performance in a single-tier

caching system. However, in a more realistic, multi-tier storage

or CPU cache hierarchy, the large configuration space and

complex interactions between tiers produce scenarios where

the relative performance per dollar between two configurations

is vastly different, necessitating a more complex analysis (see

Section 4 for examples).

Performance metrics have long been the standard in cache

analysis. Recently, additional metrics that are more relevant and

informative for specific applications have gained popularity in

storage research. The 95th (P95) or 99th (P99) percentile latency,

often referred to as tail latency, is an important quality of service

(QoS) metric for cloud [49,61] and web [5,17,24,28] services, as

well as at the hardware level [8,19,32,36]. Inter-cache traffic anal-

ysis has been used to design more efficient cache hierarchies in

modern microprocessors [42]. Reducing the energy consumption

of storage systems is beneficial for the environment, lowers opera-

tion costs, and promotes advancements in hardware design [9,34,

47,52]. Even the total cost of ownership (TCO) can be difficult

to calculate when considering all the factors that contribute to

capital and operational expenditures (CapEx and OpEx) [33,35].

It is our position that cache analysis should be conducted

using a diverse set of metrics whenever possible. These metrics

should be evaluated at various level of granularity: at each

individual layer, some subset of layers, or globally. Moreover,

we need to create complex metrics (e.g., throughput/$) that allow

for analysis of their informative relationships and reveals critical

design trade-offs.

3 Multi-tier Cache Simulation

Simulator Design. A general, n-level I/O cache simulator

with a rich set of features is necessary to thoroughly explore the

multi-tier caching configuration space and analyze our proposed

metrics. We are developing such a simulator that includes (but

is not limited to) the following capabilities: (1) Write policy that

determines where data is placed upon write requests. We will

support traditional write policies (e.g., write through, write back,

write around), but also allow user-defined policies. (2) Admission

policy that controls if and how data is promoted and demoted

throughout the hierarchy by request size, address space, or

simply whether layers are inclusive or exclusive of each other.

(3) Eviction policy that decides which data to evict when a cache

is full and new data needs to be brought in. There will be support

ID Device Type Price Capacity Average Latency (Benchmark Source)

D1 G.Skill TridentZ DDR4 3600MHz C17 DRAM $150 16GB 0.0585µs r/w (UserBenchMark)

D2 G.Skill TridentZ DDR4 3000MHz C15 DRAM $97 16GB
0.0642µs r/w (UserBenchMark)

0.01µs r/w (Vendor)

D3 Corsair Vengeance LPX DDR4 2666MHz C16 DRAM $59 16GB 0.0726µs r/w (UserBenchMark)

S2 HP EX920 M.2 NVMe SSD $118 1TB
292µs read, 1,138µs write (AnandTech)

20µs read, 22µs write (Vendor)

H2 WD Black 7200 RPM HDD $60 1TB 2,857µs read, 12,243µs write (AnandTech)

H3 Toshiba MK7559GSXP HDD $65 750GB
17,000µs read, 22,600µs write (Tom’s HW)

17,550µs read, 17,550µs write (Vendor)

Table 1: Device specifications and parameters. Each device is denoted with a letter and number for brevity (1 is high-end, 2 is mid-range, and 3

is low-end). Devices S1, S3, and H1 are skipped for space considerations. Prices were obtained from Amazon in September 2019. Benchmarked

specifications were correlated from device Vendors, AnandTech [3], Tom’s Hardware [50], and UserBenchmark [51].

for single-layer or global policies, as well as the ability to easily

add new policies. (4) Trace sampling techniques (e.g., Miniature

Simulations [55]) that reduce the size of a trace to greatly de-

crease simulation time while maintaining similar cache behavior.

(5) Prefetching to retrieve data before it is requested with tech-

niques like MITHRIL [64] that exploit historical access patterns.

The associated API will fully expose all data structures at

request-level granularity or for any given real timestamp or

virtual ones (where the trace has only ordered records without

their original timing). This will allow users to perform important

analysis such as examining clean and dirty pages at any level,

measure inter-reference recency, calculate stack distance metrics

when relevant, or perform any type of analysis offered by our

simulation framework on a subset of a trace. The simulator will

also be coupled with modern visualization tools that enable users

to efficiently explore the large amount of data it produces.

Multi-tier Cache Reconfiguration. A major motivation for

simulation is seeking optimal cache configurations. However,

efficiently reconfiguring a multi-tier cache hierarchy is another

challenging problem. In this work, we analyze various physical

devices for simplicity, but manually swapping out devices is

often not a feasible solution. More likely, multi-tier caches

may be dynamically reconfigured in cloud, distributed, and

virtual environments, where storage can more easily be allocated

through virtualization abstractions. For example, distributed

memory caching systems (e.g., Memcached) can greatly benefit

from automatically reconfiguring cache nodes in response

to changes in workload; but this process can significantly

degrade performance as nodes are retired and data is migrated.

Hafeez et al. developed ElMem, an elastic Memcached system

that uses a novel cache-merging algorithm to optimize data

migration between nodes during reconfiguration [22]. Moving

between configurations in any caching system has a temporarily

negative impact on performance, until the new caches are fully

warmed [12,66]. Therefore, efficient reconfiguration methods

are essential to fully leverage any techniques that find optimal

configurations (including simulations).

PyMimircache Extension. To demonstrate the utility of our

proposed simulator, we extended PyMimircache [62], a storage

cache simulator with an easily extendable Python front-end and

efficient C back-end. We made several simplifying assumptions

for this extension and experimented with a subset of the possible

features we are proposing. (1) We implemented a traditional

write-through policy and an “optimistic” write-back policy as

global write policies. The write-through policy is consistent and

reliable: a block is written to every cache layer and the back-end

storage whenever there is a write request. Our write-back policy

is optimistic: it only writes to the first layer and assumes this data

will be flushed to persistent storage at some point in time, outside

of the critical path where it does not affect performance (i.e., we

do not account for the write in any other layer). This simplified

version of write-back models the best-case performance scenario,

which we found useful for exploring the potential effects of write

policy. A more realistic write-back would require asynchronous

functionality that is not available in PyMimircache, and is a

limitation of this work. (2) All evicted blocks are discarded rather

than demoted (moved or copied) to some lower layer of cache

or back-end storage. (3) Layers of DRAM are included in our

simulations even though we are using block traces, which capture

requests for data that was not found in DRAM. This is a limita-

tion of the traces we are using; the simulator we implement will

be able to operate on any data item from any trace that includes

some form of address accesses. The simulator will support

traces obtained from networks (e.g., NFS, HTML), distributed

systems (e.g., HPC, Memcached), system calls, block traces, and

potentially more. (4) Throughput is limited by the system where

traces were actually captured since we experiment with block

traces. For demonstration purposes, we ignore this limitation

and assume requests are fed as fast as possible without using the

original request timestamps. This allows us to show how we can

potentially evaluate throughput when using different hardware

configurations. (5) We consider each layer to have a portion of

its capacity partitioned for caching to emulate various cache

sizes at each layer using the specifications of a single device.

A high-level description of how we extended PyMimircache

is as follows: (1) We feed an original block I/O trace to an

instance of PyMimircache, this is the top layer (“L1”) of our

cache hierarchy. (2) This instance generates two output files:

i) A log file “L1-log” containing counters for the following: read

hits, write hits, read misses, write misses, data read, data written.

ii) We specify a new trace file called “L1-trace” which contains

read requests that missed in L1, as well as all write requests. As

per our assumptions, write requests are not included when using

write-back policy and evicted blocks from L1 are never included.

These intermediate trace files are stored in memory using

Python-based virtual files to avoid disk I/O costs. (3) After the

L1 instance of PyMimircache completes, we feed the generated

“L1-trace” from step 2 as input into another, separate instance of

PyMimircache. This emulates our L2 layer. (4) We repeat steps

2–3 for L2, L3, etc. (5) When all layers have been processed, we

aggregate all the log data into a single log file for that experiment.

(6) We have a higher-level script that we pass parameters to

for each layer’s device: purchase cost, capacity, and average

read and write latencies. This script records and calculates the

following metrics for the cache configuration of an experiment:

total purchase cost, partitioned device capacities, miss ratio per

layer, and total read and write latency incurred. It can be [re]run

at any time using previously obtained simulation logs, and is

separate from the actual simulation process.

4 Evaluation

Workloads. In this section, we evaluate simulation results gath-

ered using the Microsoft Research (MSR) traces. These 36 traces,

each about a week long, were collected from 36 different volumes

on 13 production servers at MSR in Cambridge, Massachusetts,

as described in detail by Narayanan et al. [40]. The percentage

of total requests that access unique blocks (i.e., data used for

the first time) in these traces range from 1% to 97%, which is

representative of the frequency of data reuse. The percentage

of total requests that are writes range from nearly 0% to almost

100%, and is ideal for evaluating the effects of write policies.

We are continuing to run additional experiments using 9

traces from the Department of Computer Science at Florida

International University (FIU) [52] and 106 traces from

CloudPhysics [54], but do not present results here due to space

limitations.

Experimental setup. We ran simulations on the MSR traces

using between 1 and 3 layers of cache, in addition to the back-end

storage device. Each simulation consisted of a configuration

of several parameters: cache and back-end sizes, eviction

algorithms, and global write policy. The capacity required to hold

the entire working set of a trace dictated the cache and back-end

storage sizes for every configuration. The back-end size was

always fixed to be the same size as the working set, since the data

initially resides in the back-end. The cache sizes selected for the

first layer of cache are 100 evenly spaced sizes between 1 block

(512 bytes) and the size of the working set for that trace. 100

is the default number of points for plotting MRCs with PyMimir-

cache. The second and third layers of cache are 10 evenly spaced

sizes within the same range. Using 10 cache sizes for these

layers rather than 100 drastically reduced the time required to

complete each experiment while still revealing the entire range

of metrics (albeit with fewer data points within that range).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Total Scaled Purchase Cost ($1000's)

0

50

100

150

200

250

300

Av
g.

 T
hr

ou
gh

pu
t (

KB
/s

)

D1-H3 (wt)
D2-H3 (wt)
D3-H3 (wt)
D2-S2-H3 (wt)

Figure 1: Effects of an intermediate SSD tier (Workload MSR hm-1)

In this work, we only present results for configurations

using a Least Recently Used (LRU) eviction policy at every

layer, although we are varying these policies in our ongoing

simulations. We simulated each of the MSR traces using our

extension of PyMimircache (see Section 3) and then calculated

cost and performance metrics using the device specifications

described in Table 1.

While these comprehensive traces represent a wide variety of

workloads, they have only a relatively small working-set size that

can easily fit in a modern server’s RAM. Therefore, to simulate

larger workloads (e.g., bigdata, HPC), we treat the original MSR

traces as if they were scaled-down spatial samples of larger

traces. We call this technique reverse-mini-sim: the reverse of

the miniature simulations technique for down-scaling traces

introduced by Waldspurger et al. [55]. Miniature simulations

was shown to be fairly accurate at a sampling rate of 0.001 on

the MSR traces, so we multiply the purchase cost (X axis) by a

factor of 1,000 times: this simulates a workload whose working

set size is 1,000× larger.

Each data point in our figures represents a configuration with

some set of cache sizes. We assume that each layer consists of

an independent device with a portion of its capacity partitioned

for caching and the remaining capacity as unused. For example,

a cyan triangle in Figure 1 at Total Scaled Purchase Cost of

around $235 represents the average throughput of all requests

in a single simulation of the hm-1 trace with an L1 LRU cache

of 61,865 blocks partitioned in device D2, an L2 LRU cache

of 199,344 blocks partitioned in device S2, and back-end storage

of device H3 partitioned to fit the working set of 687,396 blocks.

Cache hierarchy depth. Figure 1 shows (D1-H3, red) that

too little RAM hurts performance but too much wastes money.

Adding a bit of SSD cache (D2-S2-H3, cyan) between DRAM

and HDD (D2-H3, green) can help, but not always (some cyan

dots are below the green line). Consider the knee of D1-H3

(around X=$500): there are D2-S2-H3 configurations that

provide higher throughput for the same cost, same throughput

for less cost, and even both higher throughput and less cost.

Surprisingly, we also see that purchasing more of a cheaper

DRAM (D3-H3, blue) for the same cost of a more expensive

DRAM (D1-H3) yields overall better performance. Therefore,

0 25 50 75 100 125 150 175 200
Total Scaled Purchase Cost ($1000's)

0

50

100

150

200

250

300

Av
g.

 T
hr

ou
gh

pu
t (

KB
/s

) D1-H2 (wt)
D1-S2-H2 (wb)

D1-S2-H2 (wb,2x)
D1-S2-H2 (wb,3x)

Figure 2: SSD Aging Effects (Workload MSR src2-1). 2× and 3×

indicate configurations where S2 has 2–3× increased latency due to

the potential effects of SSD aging

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Total Scaled Purchase Cost ($1000's)

0

10

20

30

40

50

Av
g.

 T
hr

ou
gh

pu
t (

KB
/s

)

D2-H3 (wt,bench)
D2-H3 (wt,vendor)
D2-S2-H3 (wt,bench)
D2-S2-H3 (wt,vendor)

Figure 3: Variation between vendor-reported specs and independently

operated benchmarks (Workload MSR web-3)

we can sacrifice DRAM performance for a larger amount of

DRAM to get better results.

Solid-state drive (SSD) degradation. Storage devices have

an expected lifetime which is typically defined by some amount

of I/O. For example, it is well-known that the memory cells

within SSDs can only be written to a finite number of times

before they are no longer usable [29,37,41]. While the lifespan of

devices is a parameter that should be considered when estimating

the total cost of ownership of a storage system over some period

of time, it is also important to evaluate the performance impact

this aging process can have. Studies have shown that SSD aging

can increase average latency by around 2–3× [30]. To simulate

this effect, we multiplied the latency specifications of device S2

and analyzed the results alongside simulations using its original

specifications. Figure 2 shows that while a new SSD (D1-S2-H2,

green triangles) improves performance when inserted into a D1-

H2 tier (red), when the SSD is aged (blue and cyan), performance

is actually worse than not having the SSD at all. For users with

write-heavy workloads or infrastructures where these devices are

expected to receive a lot of I/O traffic over a short period of time,

choosing to exclude SSDs completely may not only save money,

but also yield a similar or better average throughput over time.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Total Scaled Purchase Cost ($1000's)

0

200

400

600

800

1000

1200

Av
g.

 T
hr

ou
gh

pu
t (

KB
/s

)

D1-H3 (wt)
D1-S2-H3 (wt)
D1-S2-H3 (wb)

Figure 4: Write-through vs. Write-back policy effects (Workload MSR

hm-1)

Device specification variance. Storage vendors want to con-

vince consumers that their latest device is competitive. They do

so by publishing many device specifications: storage capacity,

physical dimensions, hardware interface, durability, energy con-

sumption, and performance metrics. While most specifications

are fairly standard, a wide variation of performance metrics can be

found, even amongst the same type of device and vendor. Some

commonly found metrics are the minimum, average, median, or

maximum values for latency, bandwidth, or throughput. These

metrics may also be further refined as random or sequential work-

loads, or separated by reads and writes. These measurements are

obtained via benchmarks using some specific workload(s), soft-

ware environment, and hardware configuration, which are some-

times disclosed at varying levels of detail. This poses a significant

problem for consumers, who often are unable to reproduce ven-

dors’ performance results. Given such a vast configuration space

of variables that can affect performance and the understandable

motivation for vendors to publish optimistic results, how can stor-

age devices be reliably compared for their own usage? A handful

of independent, reputable websites have emerged by fixing these

variables and benchmarking devices from different vendors, and

producing realistic, trustworthy specifications: AnandTech [3],

Tom’s Hardware [50] and UserBenchmark [51].

In this experiment we show the difference between numbers

reported by vendors and others. Figure 3 shows that inserting

an SSD tier between DRAM and HDD provides equal or better

performance when using vendor reported specifications (green

and cyan). However, specifications obtained from Anandtech [3]

(red and blue) show that the majority of the configurations yield

worse average throughput.

Write Policy. The write policy of a cache hierarchy determines

how and where data is written whenever there is a write request.

Write-through policy ensures data consistency by writing data to

every cache and storage device in the hierarchy. However, this in-

curs the write latency of every device and negatively impacts over-

all performance. The write-back policy improves performance

over write-through by only writing to the cache and then flushing

data to back-end storage at a more favorable time. The downside

of write-back is that data is at risk of being lost in the event that

a cache device fails or whole system loses power. If reliability is

more important, a write-through policy is the obvious choice, but

how much impact will this have on performance? Figure 4 com-

pares write-through and write-back policies (policy implementa-

tions described in Section 3). Using an optimistic write-back (wb)

policy we achieve up to 6× better throughput for the same cost

as write-through (wt) with the same devices. Note that a more

accurate write-back policy will account for the delayed writes,

which will tie up the storage devices even during idle times.

5 Related Work

Modern processors are designed with multiple cores, each con-

taining multiple tiers of cache, as well as a shared cache. Several

architecture simulators have been developed and are widely used

by industry and academia to facilitate engineering, research, and

education [18, 27, 38, 43, 56]. One example of this is gem5, a

popular architecture simulator that has been actively developed

for nearly two decades [6]. It supports multiple ISAs and can

accurately model complex multi-level non-uniform cache hier-

archies with heterogeneous memories. Architecture simulators

such as gem5 have great value, but are fundamentally different

than storage simulators. Complex cache replacement algorithms

that are designed specifically for storage devices (e.g., SAC [11]

and GCaR [60]) could not be reasonably implemented in an ar-

chitecture simulator. Architecture simulators are typically driven

by binaries or instruction-level traces, and could not operate on

traces captured at the block, network, or system call layers.

Conversely, storage cache simulators are scarce and lacking in

features. Accusim was developed to evaluate the performance im-

pact of kernel prefetching [1]. It was designed specifically for file

system caching and can not to model n tiers. SimIdeal is a multi-

tier simulator that implements several cache replacement and

write policies [23]. It hard-codes the number of tiers to four and

forces evictions to the immediate lower layer, and thus cannot sup-

port inclusive caching. There are also a handful of outdated simu-

lators such as Pantheon [59]. Unfortunately, there are few storage

cache simulators available, and caching research is commonly

done using proprietary simulators that are not available publicly.

6 Conclusion

Designing and evaluating cache hierarchies has become

incredibly complex due to the expanding multi-tier configuration

space. In this work, we analyzed the deficiencies of single-tier

cache analysis and common cache evaluation metrics. We

propose that best practices in cache research should include

the analysis of multi-tier systems, as well as the evaluation of

a more comprehensive set of metrics (particularly monetary

cost) and their relationships. We are developing an n-level I/O

cache simulator with a rich set of features and analysis tools

that is capable of modeling any cache hierarchy. We extended

PyMimircache to function as a multi-tier cache simulator and

experimented with a wide variety of workload. We presented

interesting and counter-intuitive results that demonstrate the need

for our proposed simulator and multi-tier analysis.

7 Acknowledgements

We thank the anonymous HotStorage reviewers, our shepherd

Michael Mesnier, and Carl Waldspurger for their valuable feed-

back. This work was made possible in part thanks to Dell-EMC,

NetApp, and IBM support; and NSF awards CCF-1918225, CNS-

1900706, CNS-1729939, CNS-1755958, and CNS-1730726.

8 Discussion Topics

Our proposal includes redefining best practices in cache research

and the development of a sophisticated simulator with many

features. We find the following discussion topics to be of interest

and valuable to this line of work:

1. What features should be included in a multi-tier cache

simulator? We give a high-level view of the features we

believe to be necessary in Section 3, but are we missing

anything important?

2. How a feature is implemented determines how useful

it is for the research community. For example, eviction

policies can include a single layer, global awareness, or

machine-learning algorithms; it can also have support for

users to easily define their own. What is important within

each feature we implement?

3. We consider monetary cost to be the primary metric when

designing any caching system. How important is monetary

cost? Are there more important metrics to consider?

4. The ability to reconfigure a cache hierarchy in real-time is

considerably valuable, especially in multi-tenant scenarios

where resizing involves repartitioning across tenants. What

is a good time-frame for a simulator to produce valuable

results that are not already stale? What policy parameters

could be changed dynamically?

5. We propose best practices in cache research that should

include the evaluation of multi-tier hierarchies, analyzed

using a diverse set of metrics. What else should be a part

of best practice?

6. Under what circumstances would evaluating caching

(system performance, design, algorithms, etc.) not benefit

from a multi-tier analysis?

7. Are there any issues we are not taking into consideration

(e.g., missing features, future technologies, algorithmic

solutions)?

8. We are currently developing a general, n-level I/O cache sim-

ulator by building on top of PyMimircache. Is there a better

simulator to use as a foundation, and if so, why is it better?

References

[1] Accusim: Accurate simulation of cache replacement

algorithms, March 2020. https://engineering.purdue.edu/

∼ychu/accusim/ .

[2] Waleed Ali, Sarina Sulaiman, and Norbahiah Ahmad.

Performance improvement of least-recently-used policy

in web proxy cache replacement using supervised machine

learning. In SOCO, 2014.

[3] Anandtech: Hardware news and tech reviews since 1997.

www.anandtech.com.

[4] Dulcardo Arteaga, Jorge Cabrera-Gámez, Jing Xu,

Swaminathan Sundararaman, and Ming Zhao. Cloudcache:

On-demand flash cache management for cloud computing.

In FAST, 2016.

[5] Daniel S. Berger, Benjamin Berg, Timothy Zhu, Siddhartha

Sen, and Mor Harchol-Balter. Robinhood: Tail latency

aware caching - dynamic reallocation from cache-rich to

cache-poor. In OSDI, 2018.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black,

Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel

Hestness, Derek R. Hower, Tushar Krishna, Somayeh

Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib,

Nilay Vaish, Mark D. Hill, and David A. Wood. The

gem5 simulator. SIGARCH Computer Architecture News,

39(2):1—7, August 2011.

[7] Daniel Byrne, Nilufer Onder, and Zhenlin Wang. mpart:

Miss-ratio curve guided partitioning in key-value stores.

In ISMM, 2018.

[8] Kevin K. Chang, Abhijith Kashyap, Hasan Hassan,

Saugata Ghose, Kevin Hsieh, Donghyuk Lee, Tianshi Li,

Gennady Pekhimenko, Samira Khan, and Onur Mutlu.

Understanding latency variation in modern DRAM chips:

Experimental characterization, analysis, and optimization.

In Proceedings of the 2016 ACM SIGMETRICS Inter-

national Conference on Measurement and Modeling of

Computer Science, SIGMETRICS’16, pages 323–336,

New York, NY, USA, 2016. ACM.

[9] X. Chen, N. Khoshavi, J. Zhou, D. Huang, R. F. DeMara,

J. Wang, W. Wen, and Y. Chen. Aos: Adaptive overwrite

scheme for energy-efficient mlc stt-ram cache. In 2016

53nd ACM/EDAC/IEEE Design Automation Conference

(DAC), pages 1–6, June 2016.

[10] Xian Chen, Wenzhi Chen, Zhongyong Lu, Peng Long,

Shuiqiao Yang, and Zonghiu Wang. A duplication-aware

SSD-based cache architecture for primary storage in

virtualization environment. IEEE Systems Journal,

11(4):2578–2589, December 2017.

[11] Zhiguang Chen, Nong Xiao, and Fang Liu. Sac: Rethinking

the cache replacement policy for ssd-based storage systems.

In Proceedings of the 5th Annual International Systems

and Storage Conference, SYSTOR ’12, New York, NY,

USA, 2012. Association for Computing Machinery.

[12] Yue Cheng, Aayush Gupta, Anna Povzner, and Ali R. Butt.

High performance in-memory caching through flexible

fine-grained services. In Proceedings of the 4th Annual

Symposium on Cloud Computing, SOCC ’13, New York,

NY, USA, 2013. Association for Computing Machinery.

[13] Yuxia Cheng, Wenzhi Chen, Zonghui Wang, Xinjie Yu, and

Yang Xiang. AMC: an adaptive multi-level cache algorithm

in hybrid storage systems. Concurrency and Computation:

Practice and Experience, 27(16):4230–4246, 2015.

[14] Yuxia Cheng, Yang Xiang, Wenzhi Chen, Houcine Hassan,

and Abdulhameed Alelaiwi. Efficient cache resource aggre-

gation using adaptive multi-level exclusive caching policies.

Future Generation Computer Systems, 86:964 – 974, 2018.

[15] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and

Sachin Katti. Dynacache: Dynamic cloud caching. In 7th

USENIX Workshop on Hot Topics in Cloud Computing

(HotCloud 15), Santa Clara, CA, July 2015. USENIX

Association.

[16] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and

Sachin Katti. Cliffhanger: Scaling performance cliffs in

web memory caches. In 13th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 16),

pages 379–392, Santa Clara, CA, March 2016. USENIX

Association.

[17] Jeffrey Dean and Luiz André Barroso. The tail at scale.

Communications of the ACM, 56(2):74–80, February 2013.

[18] Dinero iv trace-driven uniprocessor cache simulator.

http://pages.cs.wisc.edu/∼markhill/DineroIV/ .

[19] Nosayba El-Sayed, Ioan A. Stefanovici, George

Amvrosiadis, Andy A. Hwang, and Bianca Schroeder.

Temperature management in data centers: Why some

(might) like it hot. In Proceedings of the 12th ACM

SIGMETRICS/PERFORMANCE Joint International

Conference on Measurement and Modeling of Computer

Systems, SIGMETRICS’12, pages 163–174, New York,

NY, USA, 2012. ACM.

[20] Jianyu Fu, Dulcardo Arteaga, and Ming Zhao. Locality-

driven mrc construction and cache allocation. In

Proceedings of the 27th International Symposium on High-

Performance Parallel and Distributed Computing, HPDC

’18, pages 19–20, New York, NY, USA, 2018. ACM.

[21] U. U. Hafeez, M. Wajahat, and A. Gandhi. ElMem:

Towards an Elastic Memcached System. In Proceedings

of the 38th IEEE International Conference on Distributed

Computing Systems, pages 278–289, Vienna, Austria, 2018.

[22] U. U. Hafeez, M. Wajahat, and A. Gandhi. Elmem:

Towards an elastic memcached system. In 2018 IEEE

38th International Conference on Distributed Computing

Systems (ICDCS), pages 278–289, 2018.

[23] Alireza Haghdoost. Sim-ideal, Dec 2013.

https://github.com/arh/sim-ideal/tree/master.

[24] Md E. Haque, Yong hun Eom, Yuxiong He, Sameh Elnikety,

Ricardo Bianchini, and Kathryn S. McKinley. Few-to-

many: Incremental parallelism for reducing tail latency

in interactive services. In Proceedings of the Twentieth

International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS’15,

pages 161–175, New York, NY, USA, 2015. ACM.

[25] Lulu He, Zhibin Yu, and Hai Jin. Fractalmrc: Online

cache miss rate curve prediction on commodity systems.

2012 IEEE 26th International Parallel and Distributed

Processing Symposium, pages 1341–1351, 2012.

[26] Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo,

Zhenlin Wang, Chen Ding, and Chencheng Ye. Fast

miss ratio curve modeling for storage cache. TOS,

14:12:1–12:34, 2018.

[27] Dr. Shaily Jain and Nitin Nitin. Memory map: A

multiprocessor cache simulator. Journal of Electrical and

Computer Engineering, 2012, 09 2012.

[28] Myeongjae Jeon, Saehoon Kim, Seung-won Hwang,

Yuxiong He, Sameh Elnikety, Alan L. Cox, and Scott

Rixner. Predictive parallelization: Taming tail latencies

in web search. In Proceedings of the 37th International

ACM SIGIR Conference on Research & Development in

Information Retrieval, SIGIR’14, pages 253–262, New

York, NY, USA, 2014. ACM.

[29] N. Jeremic, G. M’́uhl, A. Busse, and J. Richling. The pit-

falls of deploying solid-state drive RAIDs. In Proceedings

of the 4th Annual International Conference on Systems and

Storage, SYSTOR ’11. ACM, 2011.

[30] M. Jung and M. Kandemir. Revisiting widely held SSD

expectations and rethinking system-level implications.

In Proceedings of the ACM SIGMETRICS/International

Conference on Measurement and Modeling of Computer

Systems, SIGMETRICS ’13, pages 203–216, New York,

NY, USA, 2013. ACM.

[31] Ricardo Koller, Akshat Verma, and Raju Rangaswami.

Generalized erss tree model: Revisiting working sets.

Performance Evaluation, 67:1139–1154, 2010.

[32] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and

Steven D. Gribble. Tales of the tail: Hardware, OS, and

application-level sources of tail latency. In Proceedings

of the ACM Symposium on Cloud Computing, SoCC’14,

pages 9:1–9:14, New York, NY, USA, 2014. ACM.

[33] Z. Li, M. Chen, A. Mukker, and E. Zadok. On the

trade-offs among performance, energy, and endurance in

a versatile hybrid drive. ACM Transactions on Storage

(TOS), 11(3), July 2015.

[34] Z. Li, M. Chen, and E. Zadok. Greendm: A versatile

hybrid drive for energy and performance. Technical report,

Stony Brook University, 2013. Paper under review.

[35] Z. Li, A. Mukker, and E. Zadok. On the importance of

evaluating storage systems’ $costs. In Proceedings of the

6th USENIX Conference on Hot Topics in Storage and File

Systems, HotStorage’14, 2014.

[36] Chieh-Jan Mike Liang, Jie Liu, Liqian Luo, Andreas Terzis,

and Feng Zhao. RACNet: A high-fidelity data center

sensing network. In Proceedings of the 7th ACM Confer-

ence on Embedded Networked Sensor Systems, SenSys’09,

pages 15–28, New York, NY, USA, 2009. ACM.

[37] Y. Lu, J. Shu, and W. Zheng. Extending the lifetime of flash-

based storage through reducing write amplification from file

systems. In In Proceedings of the 11th USENIX Symposium

on File and Storage Technologies (FAST ’13), 2013.

[38] Rano Mal and Yul Chu. A flexible multi-core functional

cache simulator (fm-sim). In Proceedings of the Summer

Simulation Multi-Conference, SummerSim ’17, San

Diego, CA, USA, 2017. Society for Computer Simulation

International.

[39] Michael Mesnier, Feng Chen, Tian Luo, and Jason B.

Akers. Differentiated storage services. In Proceedings of

the Twenty-Third ACM Symposium on Operating Systems

Principles, SOSP ’11, pages 57–70, New York, NY, USA,

2011. ACM.

[40] D. Narayanan, A. Donnelly, and A. Rowstron. Write

off-loading: Practical power management for enterprise

storage. In Proceedings of the 6th USENIX Conference

on File and Storage Technologies (FAST 2008), 2008.

[41] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash

Sharma, Laura Caulfield, Anand Sivasubramaniam, Ben

Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid.

SSD failures in datacenters: What? when? and why?

In Proceedings of the Ninth ACM Israeli Experimental

Systems Conference (SYSTOR ’16), pages 7:1–7:11, Haifa,

Israel, May 2016. ACM.

[42] A. V. Nori, J. Gaur, S. Rai, S. Subramoney, and H. Wang.

Criticality aware tiered cache hierarchy: A fundamental

relook at multi-level cache hierarchies. In 2018 ACM/IEEE

45th Annual International Symposium on Computer

Architecture (ISCA), pages 96–109, June 2018.

[43] Massachusetts Institute of Technology. Dynamorio:

Dynamic instrumentation tool platform, February 2009.

http://www.dynamorio.org/ .

[44] Sundaresan Rajasekaran, Shaohua Duan, Wei Zhang,

and Timothy Wood. Multi-cache: Dynamic, efficient

partitioning for multi-tier caches in consolidated VM

environments. In 2016 IEEE International Conference on

Cloud Engineering (IC2E), pages 182–191, April 2016.

[45] R. Salkhordeh, S. Ebrahimi, and H. Asadi. Reca: An effi-

cient reconfigurable cache architecture for storage systems

with online workload characterization. IEEE Transactions

on Parallel and Distributed Systems, 29(7):1605–1620,

July 2018.

[46] Ricardo Santana, Steven Lyons, Ricardo Koller, Raju

Rangaswami, and Jason Liu. To arc or not to arc. In

HotStorage, 2015.

[47] Priya Sehgal, Vasily Tarasov, and Erez Zadok. Evaluating

performance and energy in file system server workloads.

In Proceedings of the USENIX Conference on File and

Storage Technologies (FAST), pages 253–266, San Jose,

CA, February 2010. USENIX Association.

[48] Carl Staelin and Hector Garcia-molina. Clustering active

disk data to improve disk performance. Technical Report

CS-TR-298-9, Princeton University, NJ, USA, 1990.

[49] Lalith Suresh, Marco Canini, Stefan Schmid, and Anja

Feldmann. C3: Cutting tail latency in cloud data stores

via adaptive replica selection. In Proceedings of the 12th

USENIX Conference on Networked Systems Design and

Implementation, NSDI’15, pages 513–527, Berkeley, CA,

USA, 2015. USENIX Association.

[50] Tom’s hardware: For the hardcore pc enthusiast.

www.tomshardware.com.

[51] Userbenchmark. www.userbenchmark.com.

[52] A. Verma, R. Koller, L. Useche, and R. Rangaswami.

SRCMap: Energy proportional storage using dynamic con-

solidation. In Proceedings of the 8th USENIX Conference

on File and Storage Technologies, FAST’10, 2010.

[53] Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Martinez,

Steven Lyons, Jason Liu, Raju Rangaswami, Ming Zhao,

and Giri Narasimhan. Driving cache replacement with

ml-based lecar. In HotStorage, 2018.

[54] Carl A. Waldspurger, Nohhyun Park, Alex Garthwaite, and

Irfan Ahmad. Efficient mrc construction with shards. In

FAST, 2015.

[55] Carl A. Waldspurger, Trausti Saemundson, Irfan Ahmad,

and Nohhyun Park. Cache modeling and optimization

using miniature simulations. In Proceedings of the

2017 USENIX Conference on Usenix Annual Technical

Conference, USENIX ATC ’17, pages 487–498, Berkeley,

CA, USA, 2017. USENIX Association.

[56] Han Wan, Xiaopeng Gao, Xiang Long, and Zhiqiang

Wang. Gcsim: A gpu-based trace-driven simulator for

multi-level cache. In Yong Dou, Ralf Gruber, and Josef M.

Joller, editors, Advanced Parallel Processing Technologies,

pages 177–190, Berlin, Heidelberg, 2009. Springer Berlin

Heidelberg.

[57] Jiangtao Wang, Zhiliang Guo, and Xiaofeng Meng. An

efficient design and implementation of multi-level cache

for database systems. In DASFAA, 2015.

[58] A. Wildani, E. L. Miller, and L. Ward. Efficiently identi-

fying working sets in block I/O streams. In Proceedings

of the 4th Annual International Conference on Systems and

Storage, SYSTOR ’11, pages 5:1–5:12. ACM, 2011.

[59] John Wilkes. The pantheon storage-system simulator. 1996.

[60] Suzhen Wu, Yanping Lin, Bo Mao, and Hong Jiang.

Gcar: Garbage collection aware cache management with

improved performance for flash-based ssds. In Proceedings

of the 2016 International Conference on Supercomputing,

ICS ’16, New York, NY, USA, 2016. Association for

Computing Machinery.

[61] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael

Bailey. Bobtail: Avoiding long tails in the cloud. In

Proceedings of the 10th USENIX Conference on Networked

Systems Design and Implementation, NSDI’13, pages

329–342, Berkeley, CA, USA, 2013. USENIX Association.

[62] Juncheng Yang. PyMimircache. https://github.com/1a1a11a/

PyMimircache. Retrieved April 17, 2019.

[63] Juncheng Yang, Reza Karimi, Trausti Sæmundsson, Avani

Wildani, and Ymir Vigfusson. MITHRIL: mining sporadic

associations for cache prefetching. CoRR, abs/1705.07400,

2017.

[64] Juncheng Yang, Reza Karimi, Trausti Sæmundsson, Avani

Wildani, and Ymir Vigfusson. Mithril: Mining sporadic

associations for cache prefetching. In Proceedings of the

2017 Symposium on Cloud Computing, SoCC ’17, pages

66–79, New York, NY, USA, 2017. ACM.

[65] Lei Zhang, Reza Karimi, Irfan Ahmad, and Ymir Vig-

fusson. Optimal data placement for heterogeneous cache,

memory, and storage systems. In Proceedings of the ACM

SIGMETRICS/International Conference on Measurement

and Modeling of Computer Systems, SIGMETRICS ’20,

2020. To appear.

[66] Timothy Zhu, Anshul Gandhi, Mor Harchol-Balter, and

Michael A. Kozuch. Saving cash by using less cache. In

Proceedings of the 4th USENIX Conference on Hot Topics

in Cloud Computing, HotCloud’12, page 3, USA, 2012.

USENIX Association.

