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Abstract

A graph homomorphism is a map between two graphs that preserves adjacency relations.
We consider the problem of sampling a random graph homomorphism from a graph into
a large network. We propose two complementary MCMC algorithms for sampling random
graph homomorphisms and establish bounds on their mixing times and the concentration
of their time averages. Based on our sampling algorithms, we propose a novel framework
for network data analysis that circumvents some of the drawbacks in methods based on
independent and neighborhood sampling. Various time averages of the MCMC trajectory
give us various computable observables, including well-known ones such as homomorphism
density and average clustering coefficient and their generalizations. Furthermore, we show
that these network observables are stable with respect to a suitably renormalized cut dis-
tance between networks. We provide various examples and simulations demonstrating our
framework through synthetic networks. We also demonstrate the performance of our frame-
work on the tasks of network clustering and subgraph classification on the Facebook100
dataset and on Word Adjacency Networks of a set of classic novels.

Keywords:  Networks, sampling, graph homomorphism, MCMC, graphons, stability
inequalities, hierarchical clustering, subgraph classification

1. Introduction

Over the past several decades, technological advances in data collection and extraction have
fueled an explosion of network data from seemingly all corners of science — from computer
science to the information sciences, from biology and bioinformatics to physics, and from
economics to sociology. These data sets come with a locally defined pairwise relationship,
and the emerging and interdisciplinary field of Network Data Analysis aims at systematic
methods to analyze such network data at a systems level, by combining various techniques
from probability, statistics, graph theory, geometry, and topology.
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Sampling is an indispensable tool in the statistical analysis of large graphs and net-
works. Namely, we select a typical sample of the network and calculate its graph theoretical
properties such as average degree, mean shortest path length, and expansion (see Kolaczyk
and Csardi (2014) for a survey of statistical methods for network data analysis). One of
the most fundamental sampling methods, which is called the independent sampling, is to
choose a fixed number of nodes independently at random according to some distribution
on the nodes. One then studies the properties of the subgraph or subnetwork induced on
the sample. Independent sampling is suitable for dense graphs, and closely connected to
the class of network observables called the homomorphism density, which were the central
thread in the recent development of the theory of dense graph limits and graphons (Lovasz
and Szegedy, 2006; Lovasz, 2012).

An alternative sampling procedure particularly suitable for sparse networks is called the
neighborhood sampling (or snowball sampling). Namely, one may pick a random node and
sample its entire neighborhood up to some fixed radius, so that we are guaranteed to capture
a connected local piece of the sparse network. We then ask what the given network looks
like locally. For instance, the average clustering coefficient, first introduced in Watts and
Strogatz (1998), is a network observable that measures the extent to which a given network
locally resembles complete graphs. Also, neighborhood sampling was used in Benjamini
et al. (2001) to define the sampling distance between networks and to define the limit object
of sequences of bounded degree networks.

Our primary concern in this work, roughly speaking, is to sample connected subgraphs
from a possibly sparse network in a way such that certain minimal structure is always im-
posed. A typical example is to sample k-node subgraphs with uniformly random Hamiltonian
path, see Section 2.2. More generally, for a fixed ‘template graph’ (motif) F' of k nodes, we
would like to sample k nodes from the network G so that the induced subnetwork always
contains a ‘copy’ of F. This is equivalent to conditioning the independent sampling to con-
tain a ‘homomorphic copy’ of F'. This conditioning enforces that we are always sampling
some meaningful portion of the network, where the prescribed motif F' serves as a backbone.
One can then study the properties of subnetworks of G induced on this random copy of F.
Clearly, neither independent sampling nor neighborhood sampling serve this purpose, as
the former returns disconnected subgraphs with high probability (due to the sparsity of the
network) and the latter has no control over the structure of the subgraphs being sampled.
We call this sampling scheme motif sampling (see Figure 5) and it should not be confused
with sampling graphs from a random graph model.
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Figure 1: Independent sampling (left), neighborhood sampling (middle), and motif sampling (right).

Once we have developed sufficient mathematical and computational foundations for the
motif sampling problem, we will use them to devise computationally efficient and stable
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network observables. As the typical size and complexity of network data far exceed the
capabilities of human perception, we need some lens through which we can study and analyze
network data. Namely, given a network G, we want to associate a much simpler object f(G),
which we call a network observable, such that it can be computed in a reasonable amount
of time even when G is large and complex, and yet it retains substantial information about
G. These two desired properties of network observables are stated more precisely below:

(i) (Computability) The observable f(G) is computable in at most polynomial time in the
size of the network G.

(ii) (Stability) For two given networks Gi, Ga, we have

d(f(G1), f(G2)) < d(G1,G2), (1)

where d on each side denotes a suitable distance metric between observables and
between networks, respectively.

An inequality of type (1) is called a ‘stability inequality’ for the observable f(G), which en-
codes the property that a small change in the network yields small change in the observable.

1.1 Owur approach and contribution

We summarize our approach and contributions in the following bullet points.

e We propose a new network sampling framework based on sampling a graph homomor-
phism from a small template network F' into a large target network G.

e We propose two complementary MCMC algorithms for sampling random graph homo-
morphisms and establish bounds on their mixing times and concentration of their time
averages.

e Based on our sampling algorithms, we propose a number of network observables that
are both easy to compute (using our MCMC motif-sampling algorithms) and provably
stable.

e We demonstrate the efficacy of our techniques through various synthetic and real-world
networks. For instance, for subgraph classification problems on Facebook social net-
works, our Matrix of Average Clustering Coefficient (MACC) achieves performance
better than the benchmark methods (see Figure 2 and Section 6).

The key insight in our approach is to sample adjacency-preserving functions from small
graphs to large networks, instead of directly sampling subgraphs. Namely, suppose G =
(V, Eg) is a large and possibly sparse graph and F = ({1,...,k}, Er) is a k-node template
graph. A vertex map x : {1,...,k} — V is said to be a (graph) homomorphism F — G if it
preserves adjacency relations, that is, x(¢) and x(j) are adjacent in G if i and j are adjacent
in F'. Our main goal then becomes the following:

Sample a graph homomorphism x : F' — G uniformly at random. (2)
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We consider the above problem in the general context where G is a network with edge weights
equipped with a probability distribution on the nodes.

To tackle the homomorphism sampling problem (2), we propose two complementary
Markov Chain Monte Carlo algorithms. In other words, the algorithms proceed by sampling
a Markov chain of graph homomorphisms x; : ' — G in a way such that the empirical
distribution of x; converges to the desired target distribution.

Our network observables based on motif sampling will be of the following form:

f(G) :=P(A uniformly random homomorphism x : F — G satisfies a property P).  (3)

For instance, the well-known average clustering coefficient network observable can be realized
in the form above (see Example 3.1), which we generalize to conditional homomorphism
densities (see Section 3.1). By taking the expectation of some function of the random
homomorphism x, we can also define not only real-valued network observables, but also
function- (see Figure 3), matrix- (see Figure 2), and even network-valued observables. These
observables can all be efficiently (and provably) computed by taking suitable time averages
along the MCMC trajectory of the MCMC motif sampling procedure (see Theorems 2.6
and 2.7). Furthermore, we establish that these network observables are stable in the sense
that a small change in the network results in a small change in their values (see Section
4). Our new network observables are not vanishingly small for sparse networks and are
able to capture multi-scale features. Moreover, they can directly be applied to comparing
networks with different sizes without node labels (e.g., comparing two social networks with
anonymous users or brain networks of two species) with low computational cost.
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Figure 2: Matrices of Average Clustering Coefficients of the Facebook network corresponding to four
schools in the Facebookl00 dataset using the chain motif of 21 nodes. The 21 x 21 matrices are
summarizing observables of the corresponding Facebook networks. See Figure 15 for more details.

To demonstrate our new sampling technique and Network Data analysis framework,
we apply our framework for network clustering and classification problems using the Face-
book100 dataset and Word Adjacency Networks of a set of classic novels. Our new matrix-
valued network observable compresses a given network of arbitrary size without node label
into a fixed size matrix, which reveals local clustering structures of the network in any desired
scale (see Figure 2). We use these low-dimensional representations to perform subgraph clas-
sification and hierarchical clustering of the 100 network data. For the former supervised task,
our proposed method shows significantly better performance than the baseline methods. On
the other hand, we analyze the hierarchical structure of weighted networks representing text
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data using our function-valued observable. The obtained observables indicate similar hier-
archical structures among different texts by the same author that are distinctive between
different authors.

William Shakespeare Mark Twain
Julius Cesar Romeo and Juliet Adventures of Tom Sawyer Adventures of Huckleberry Finn
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Figure 3: Heat map of the Word Adjacency Networks of four novels and their CHD profiles corre-
sponding to the pair of motifs (Ho o, Ho,0), Ho,o = ({0},14(0,03). The non-increasing functions in
the second row summarize the observables of the networks shown in the first row. See Section 7.1
for details.

1.2 Background and related work

The motif sampling problem from (2) generalizes the well-known problem of sampling a
proper coloring of a given graph uniformly at random. Recall that a proper g-coloring of a
simple graph G = (V, E) is an assignment of colors x : V' — {1, ..., ¢} such that x(u) # x(v)
whenever nodes v and v are adjacent in GG. This is in fact a graph homomorphism G — K,
where K is the complete graph of ¢ nodes. Indeed, in order to preserve the adjacency, any
two adjacent nodes in G should not be mapped into the same node in K,;. A number of
MCMC algorithms and their mixing times to sample a uniform g¢-coloring of a graph have
been studied in the past few decades (Jerrum, 1995; Salas and Sokal, 1997; Vigoda, 2000;
Dyer et al., 2002; Frieze and Vigoda, 2007). One of our MCMC motif sampling algorithms,
the Glauber chain (see Definition 2.1), is inspired by the standard Glauber dynamics for
sampling proper g-coloring of graphs.

There is an interesting change of perspective between the graph coloring problem and
motif sampling. Namely, in graph coloring G — K, the problem becomes easier for large
g and hence the attention is toward sampling a random g-coloring for small g. On the
other hand, for motif sampling, our goal is to analyze large network G through a random
homomorphism F' — G from a relatively small motif F. It will be conceptually helpful to
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visualize a homomorphism F' — G as a graph-theoretic embedding of a motif F' into the
large network G.

Our work on constructing stable network observables from motif sampling algorithms is
inspired by the graph homomorphism and graph limit theory (see, e.g., Lovisz and Szegedy
(2006); Lovasz (2012)), and by methods from Topological Data Analysis (see, e.g., Carlsson
(2009); Edelsbrunner and Harer (2010)), which considers the hierarchical structure of certain
observables and studies their stability properties.

For an illustrative example, let G = (V, E) be a finite simple graph and let K3 be a
triangle. Choose three nodes x1,xs,z3 independently from V uniformly at random, and
define an observable t(K3,G), which is called the homomorphism density of K3 in G, by

t(K3, G) := P(there is an edge between x; and z; for all 1 <7 < j <3). (4)

In words, this is the probability that three randomly chosen people from a social network
are friends of each other. If we replace the triangle K3 with an arbitrary simple graph F,
a similar observable t(F,G) can be defined. Note that computing such observables can be
done by repeated sampling and averaging. Moreover, a fundamental lemma due to Lovisz
and Szegedy (2006) asserts that the homomorphism densities are stable with respect to the
cut distance between graphs (or graphons, in general):

[6(F, G1) — £(F, Ga)| < |EF|-0(G1, Ga), ()

where G1, Go are simple graphs and Fr is the set of edges in F. Hence by varying F', we
obtain a family of observables that satisfy the computability and stability (note that we can
absorb the constant |Er| into the cut distance 0).

However, there are two notable shortcomings of homomorphism densities as network
observables. First, they provide no useful information for sparse networks, where the average
degree is of order sublinear in the number of nodes (e.g., two-dimensional lattices, trees,
most real-world social networks (Barabasi, 2013; Newman, 2018a)). This is because for
sparse networks the independent sampling outputs a set of non-adjacent nodes with high
probability. In terms of the stability inequality (5), this is reflected in the fact that the
cut distance 05 between two sparse networks becomes asymptotically zero as the sizes of
networks tend to infinity. Second, homomorphism densities do not capture hierarchical
features of weighted networks. Namely, we might be interested in how the density of triangles
formed through edges of weights at least ¢ changes as we increase the parameter t. But the
homomorphism density of triangles aggregates such information into a single numeric value,
which is independent of ¢.

An entirely different approach is taken in the fields of Topological Data Analysis (TDA)
in order to capture multi-scale features of data sets (Carlsson, 2009; Edelsbrunner and
Harer, 2010). The essential workflow in TDA is as follows. First, a data set X consisting
of a finite number of points in Euclidean space R? is given. In order to equip the data set
with a topological structure, one constructs a filtration of simplicial complexes on top of X
by attaching a suitable set of high-dimensional cells according to the filtration parameter
(spatial resolution). Then by computing the homology of the filtration (or the persistent
homology of X'), one can associate X with a topological invariant f(X) called the persistence
diagram (Edelsbrunner et al.,; 2000) (or barcodes (Ghrist, 2008)). The stability of such
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observable is well-known (Cohen-Steiner et al., 2007; Chazal et al., 2009). Namely, it holds
that

dp(f(X), f(Y)) < dgu(X,Y), (6)

where the distance metric on the left and right-hand side denotes the bottleneck distance
between persistence diagrams and the Gromov-Hausdorff distance between data sets X and
Y viewed as finite metric spaces. However, as is well known in the TDA community, comput-
ing persistence diagrams for large data sets is computationally expensive (see FEdelsbrunner
et al. (2000); Zomorodian and Carlsson (2005) for earlier algorithms and Carlsson (2009);
Edelsbrunner and Morozov (2012); Otter et al. (2017); Mémoli and Singhal (2019) for recent
surveys).

Whereas in the present work we concentrate on symmetric networks, where the edge
weight between two nodes x and y does not depend on their ordering, we acknowledge that
in the context of asymmetric networks, several possible observables f and a suitable metric
are studied in (Chowdhury and Mémoli, 2018a, 2017, 2018b; Turner, 2019; Chowdhury and
Mémoli, 2018c¢, 2019).

We also remark that an earlier version of the present work has already found several ap-
plications in the literature of network data analysis. The MCMC motif sampling algorithms
as well as their theoretical guarantees were used as a key component in the recent network
dictionary learning methods of (Lyu et al., 2021, 2020; Peng et al., 2022). Also, a MCMC
k-path sampling algorithm was used to generate sub-texts within knowledge graphs for topic
modeling applications (Alaverdian et al.; 2020). The same algorithm was used to benchmark
stochastic proximal gradient descent algorithms for Markovian data in (Alacaoglu and Lyu,
2022).

1.3 Organization

We formally introduce the motif sampling problem on edge and node weighted networks in
Section 2.1 and discuss a concrete example of such sampling scheme in the form of subgraph
sampling via Hamiltonian paths in Section 2.2. In Section 2.3, we introduce two Markov
chain Monte Carlo (MCMC) algorithms for motif sampling. Their convergence is stated in
Theorems 2.1 and 2.2 and their mixing time bounds are stated in Theorems 2.4 and 2.5.
We also deduce that the expected value of various functions of the random homomorphism
can be efficiently computed by time averages of the MCMC trajectory (see Corollary 3.1).
Moreover, these estimates are guaranteed to be close to the expected value according to the
concentration inequalities that we obtain in Theorems 2.6 and 2.7.

In Section 3.1, we introduce four network observables (Conditional Homomormorphism
Density, Matrix of Average Clustering Coefficients, CHD profile, and motif transform) by
taking the expected value of suitable functions of random homomorphism F' — G. We also
provide some elementary examples. In Section 4, we state stability inequalities (Propositions
4.1, 4.2, and Theorem 4.1) for our network observables using the language of graphons and
the cut distance.

Sections 5 and 7 are devoted to examples and applications of our framework. In Section
5, we provide various examples and simulations demonstrating our results on synthetic
networks. In Section 6, we apply our methods to the Facebook social network for the tasks of
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subgraph classification and hierarchical clustering. In Section 7, we apply our framework to
analyze Word Adjacency Networks of a set consisting of 45 novels and propose an authorship
attribution scheme using motif sampling and conditional homomorphism profiles.

Finally, we provide additional discussions, examples, proofs, and figures in the appen-
dices. In Appendix A, we discuss the relationship between motif transforms and spectral
analysis. In Appendices B and C, we prove convergence, mixing time bounds, and concentra-
tion of the MCMC algorithms as well as the stability inequalities of our network observables.

1.4 Notation

For each integer n > 1, we write [n] = {1,2,---,n}. Given a matrix A : [n]?> — [0,00),
we call the pair G = ([n], A) an edge-weighted graph with node set [n] and edge weight
A. When A is 0-1 valued, we call G a directed graph and we also write G = ([n], E),
where E = {(i,j) € [n]?| A(i,j) = 1} is the set of all directed edges. If A is 0-1 valued,
symmetric, and has all diagonal entries equal to 0, then we call G a simple graph. Given an
edge-weighted graph G = ([n], A), define its mazimum degree by

A(G) = max 1(A(a,b) + A(b,a) > 0). (7)

a€ln] befn)
A sequence (z;)7L, of nodes in G is called a walk of length m if A(z;j,xj41) > 0 for all
0 < j < m. A walk is a path if all nodes in the walk are distinct. We define the diameter of
G, which we denote by diam(G), by

diam(G) = rila[x] min{k > 0|3 a path of length k between a and b}. (8)
a,ben

We let diam(G) = oo if there is no path between some z,y € [n].

For an event B, we let 1p denote the indicator function of B, where 1p(w) =1ifw € B
and 0 otherwise. We also write 1p = 1(B) when convenient. For two real numbers a,b € R,
we write a V b = max(a,b) and a A b = min(a,b).

2. Motif sampling and MCMC sampling algorithms
2.1 Random homomorphism from motifs into networks

To describe motif sampling, we first give precise definitions of networks and motifs. A
network as a mathematical object consists of a triple G = (X, A, ), where X, a finite set,
is the node set of individuals, A4 : X2 — [0,00) is a matrix describing interaction strength
between individuals, and o : X — (0, 1] is a probability measure on X giving the significance
of each individual (cf. Chowdhury and Mémoli (2019)). Any given (n X n) matrix A taking
values from [0, 1] can be regarded as a network ([n], A, ) where a(i) = 1/n is the uniform
distribution on [n].

Fix an integer k > 1 and a matrix Ap : [k]?> — [0,00). Let F = ([k], Ar) denote the
corresponding edge-weighted graph, which we also call a motif. A motif F' = ([k], Ar) is said
to be simple if A is 0-1 valued, has zero diagonal entries (no loops), and Ap(7, j)+Ar(j, i) €
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{0,1} for each 1 < i < j < k (see Figure 4 for an illustration). The fact that simple
motifs have at most one directed edge between any pair of nodes is crucial in the proof of
stability inequalities of the network observables stated in Section 4. A particularly important
motif for application purposes is the k-chain, which is the pair ([k], 1{(1,2),2,3),....(k—1,k))- It
corresponds to the direct path on k nodes, see Figure 4 (c).

Le 1 2 k—1 k .\ /'. ¢ 1/'. :
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(@) Q) © @ (e)

Figure 4: Examples of simple motifs. Motifs may contain no edge (a) or multiple connected compo-
nents (d). The motif in (¢) forms a directed path on k nodes, which we call the ‘k-chain’.

For a given motif F' = ([k], Ar) and a n-node network G = ([n], A, @), we introduce the
following probability distribution mg_,g on the set [n]¥ of all vertex maps x : [k] — [n] by

WF%Q(X):% [T AGx@), x| ax(1)) - alx(k)), 9)

1<i j<k

where the normalizing constant Z is given by

zZ=t(F,G):= ) [T A x| ax(1)--- alx(k).  (10)

x:[k]—=[n] \1<4,i<k

We call a random vertex map x : [k] — [n] distributed as 7p_,g a random homomorphism
from F to G. A vertex map x : [k] — [n] is a (graph) homomorphism F — G if mp_,g(x) > 0.
Hence mp_,g is a probability measure on the set of all homomorphisms F' — G. The above
quantity t(F,G) is known as the homomorphism density of F in G. We now formally
introduce the problem of motif sampling.

Problem 2.1 (Motif sampling from networks) For a given motif F' = ([k], Ap) and
an n-node network G = ([n], A, «), sample a homomorphism x : F' — G according to the
probability distribution Tp_g in (9).

An important special case of (2.1) is when G is a simple graph. Let G = ([n], A) be a
simple graph. Then for each vertex map x : [k] — [n], note that

[T Ax@),x(5)*") = 1 (for all (i) with Ap(i,j) =1 and A(x(i),x(j)) =1).
1<4,j<k
] (11)

Whenever the indicator on the right-hand side above equals one, we say x is a homomorphism
F — G. That is, x maps an edge in F' to an edge in G. Note that x need not be injective,
so different edges in F' can be mapped to the same edge in G. This leads us to the problem
of motif sampling from graphs as described below.
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Problem 2.2 (Motif sampling from graphs) For a given motif F = ([k], Ar) and a n-
node simple graph G = ([n], A), sample a homomorphism x : F — G uniformly at random.

The Problem 2.2 is indeed a special case Problem 2.1 by identifying the simple graph
G = ([n], A) with the network G = ([n], A, @), where « is the uniform node weight (i.e.,
a(i) = 1/n for i = 1,...,n). Then due to (11), the probability distribution 7r_¢g in (9)
becomes the uniform distribution on the set of all homomorphisms F' — G.

2.2 Sampling subgraphs with uniform Hamiltonian path

In order to provide some concrete application contexts for the motif sampling problems posed
above, here we consider the problem sampling connected subgraphs from sparse graphs.
Computing a large number of k-node subgraphs from a given network is an essential task
in modern network analysis, such as in computing ‘network motifs’ (Milo et al., 2002) and
‘latent motifs’ (Lyu et al., 2021, 2020; Peng et al., 2022) and in topic modeling on knowledge
graphs (Alaverdian et al., 2020).

We consider the random sampling of k-node subgraphs that we obtain by uniformly
randomly sampling a ‘k-path’ from a network and taking the induced subgraph on the
sampled nodes. This subgraph sampling procedure is summarized below. (See Figure 5 for
an illustration.) Here, a k-path is a subgraph that consists of k distinct nodes, with the ith
node adjacent to the (¢ + 1)th node for all ¢ € {1,...,k —1}. A path P in a graph G is a
Hamiltonian path if P contains all nodes of G.

Sampling subgraphs via uniform Hamiltonian paths.
Given a simple graph G = ([n], A) and an integer 1 < k < diam(G):
(1) Sample a k-path P C G uniformly at random;
(2) Return the k-node induced subgraph H of G on the nodes in P.

Above, sampling a subgraph induced by a k-path serves two purposes: (1) It ensures that
the sampled k-node induced subgraph is connected with the minimum number of imposed
edges; and (2) it induces a natural node ordering of the k-node induced subgraph. When
applied to sparse networks, such k-node subgraphs are not likely to possess many other
Hamiltonian paths, so ordering the nodes using the sampled Hamiltonian path provides a
canonical representation of the subgraphs as their k x k adjacency matrices (e.g., see Figure
5 (¢)). This is an important computational advantage of sampling k-node subgraphs via
Hamiltonian paths over neighborhood sampling. In the latter, there is no canonical choice
of node ordering out of k! ways so there is a large number of equivalent adjacency matrix
representations for the same subgraph.

The k-node subgraph induced on such a uniformly random k-path is guaranteed to be
connected and can exhibit diverse connection patterns (see Figure 6), depending on the
structure of the original network.

The key sampling problem in the above subgraph sampling scheme is to sample a k-path
uniformly at random from a graph G. A naive way to do so is to use rejection sampling
together with independent sampling. That is, one can repeatedly sample a set {z1,..., Ty}
of k distinct nodes in G independently and uniformly at random until there is a path on the

10
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i
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Figure 5: Illustration of motif sampling with chain motif of k¥ = 20 nodes. Two instances of injective
homomorphisms from a path of 20 nodes into the same network are shown in panels (a) and (b),
which are depicted as paths of k nodes with red edges. Panel (¢) shows the k x k adjacency matrix
of the induced subgraph on these k-paths.
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Figure 6: Examples of 20-node subgraphs induced through Hamiltonian paths on three Facebook
social networks (Traud et al., 2012) and on synthetic networks generated according to the following
models: the Erdgs—Rényi (ER) (Erdds and Rényi, 1959), Barabasi—Albert (BA) (Barabasi and Albert,
1999) Watts—Strogatz (WS) (Watts and Strogatz, 1998), and stochastic-block-model (SBM) (Holland
et al., 1983). For each subgraph, its Hamiltonian path (with red edges) is sampled uniformly at
random by using the Glauber chain algorithm (see Def. 2.1).

sequence (x1,...,xg) (i.e., z; and x; are adjacent for i = 1,...,k — 1). However, when G
is sparse (i.e., when the number of edges in G is much less than n?), the probability that a
randomly chosen node set (z1,...,zx) forms a k-path is extremely small, so this procedure
might suffer a large number of rejections until finding a k-path.

We propose to use motif sampling with k-chain motifs to address this problem of sampling
a k-path uniformly at random. Let F' = ([k], 1{(1,2),(2,3),...,(k—1,k)}) denote a k-chain motif.
Consider the problem sampling a homomorphism x : F' — G uniformly at random with
the additional constraint that x be injective, that is, the nodes x(1),...,x(k) are distinct.
When x : F — G is an injective homomorphism, we denote x : F — G. This would give
us a uniformly random k-path on the node set {x(1),...,x(k)}. Letting mp,g denote the
probability distribution on the set of all injective homomorphisms F' — G, we can write

Trog(x) = Crmpog(x) - 1(x(1),...,x(k) are distinct) , (12)

11
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where C' > 0 is a normalization constant. The probability distribution (12) is well-defined
as long as there exists an injective homomorphism x : F' — G. For instance, if F' is a k-chain
motif for £ > 4 and if G is a star graph, then there is no injective homomorphism x : F' — G
and the probability distribution (12) is not well-defined.

The identity (12) suggests that, if we can sample a homomorphism x : F' — G uniformly
at random efficiently, then we can sample a sequence of homomorphisms x1,...,X,, : F' —
G uniformly at random until the first time m such that x,, is injective. Note that the
probability of uniformly random homomorphism x : F' — G being injective is not vanishingly
small even if G is sparse. In Section 2.3, we provide two MCMC sampling algorithms for
sampling a homomorphism F' — G uniformly at random. We remark that this sampling
scheme is a crucial component in the recent development of network dictionary learning
methods (Lyu et al., 2021, 2020; Peng et al., 2022).

2.3 MCMC algorithms for motif sampling

Note that computing the measure mr_,g according to its definition is computationally expen-
sive, especially when the network G is large. In this subsection, we give efficient randomized
algorithms to sample a random homomorphism F' — G from the measure 7r_,g by a Markov
chain Monte Carlo method. Namely, we seek for a Markov chain (x¢):>0 evolving in the space
[n)(¥ of vertex maps [k] — [n] such that each x; is a homomorphism F — G and the chain
(x¢)t>0 has a unique stationary distribution given by (9). We call such a Markov chain
a dynamic embedding of F' into G. We propose two complementary dynamic embedding
schemes.

Observe that equation (9) suggests considering a spin model on F' where each site i € [k]
takes a discrete spin x(i) € [n] and the probability of such discrete spin configuration
x : [k] — [n] is given by (9). This spin model interpretation naturally leads us to the
following dynamic embedding in terms of the Glauber chain. See Figure 7 for an illustration.

Definition 2.1 (Glauber chain) Let F' = ([k]|, Ar) be a simple motif and G = ([n], A, @)
be a network. Suppose t(F,G) > 0 and fix a homomorphism xo : F — G. Define a Markov
chain x¢ of homomorphisms F — G as below.

(i) Choose a node i € [k] of F' uniformly at random.

(i) Set x¢+1(j) = x¢(j) for j # i. Update x:(i) = a to x¢41(i) = b according to the
transition kernel

(I AGee (), D) GO A(B,x0(3)) 17 D) A, by (Dar(t)
> 1<c<n (H#i A(x(5), c)ArUD A(e, Xt(j))AF(i’j)) A(e, c)Ariia(c)

where the product is overall 1 < j < k such that j # 1.

G(a,b) = , (13)

Note that in the case of the Glauber chain, since all nodes in the motif try to move in
all possible directions within the network, one can expect that it might take a long time to
converge to its stationary distribution, 7p_,g. To break the symmetry, we can designate a
special node in the motif F' as the ‘pivot’, and let it ‘carry’ the rest of the homomorphism

12
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6
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Figure 7: Glauber chain of homomorphisms x; : F — G, where G is the (9x9) grid with uniform node
weights and F' = ([6], 1{(1,2),(2,3),--,(5,6)}) is a 6-chain. The orientations of the edges (1,2),...,(5,6)
are suppressed in the figure. During the first transition, node 5 is chosen with probability 1/6 and
x¢(5) is moved to the top left common neighbor of x;(4) and x;(6) with probability 1/2. During the
second transition, node 1 is chosen with probability 1/6 and x;41(1) is moved to the right neighbor
of x;41(2) with probability 1/4.

as it performs a simple random walk on G. A canonical random walk kernel on G can be
modified by the Metropolis-Hastings algorithm (see, e.g., (Levin and Peres, 2017, Sec. 3.2))
so that its unique stationary distribution agrees with the correct marginal distribution from
the joint distribution 7r_,g. We can then successively sample the rest of the embedded nodes
(see Figure 8) after each move of the pivot. We call this alternative dynamic embedding the
pivot chain.

To make a precise definition of the pivot chain, we restrict the motif F' = ([k], Ar) to
be an edge-weighted directed tree rooted at node 1 without loops. More precisely, suppose
Ap =0if k = 1 and for k > 2, we assume that for each 2 < i < k, Ap(j,4) > 0 for some
unique 1 < j < k, j # i. In this case, we denote j = i~ and call it the parent of i. We
may also assume that the other nodes in {2,--- , k} are in a depth-first order, so that i~ < i
for all 2 <14 < k. We can always assume such ordering is given by suitably permuting the
vertices, if necessary. In this case, we call F' a rooted tree motif.

Now we introduce the pivot chain. See Figure 8 for an illustration.

Definition 2.2 (Pivot chain) Let F' = ([k], Ar) be a rooted tree motif and let G = ([n], A, «)
be a network such that for each i € [n], A(i,j) > 0 for some j € [n]. Let xq : [k] — [n] be an
arbitrary homomorphism. Define a Markov chain x; of homomorphisms F' — G as follows.

(i) Given x¢(1) = a, sample a node b € [n| according to the distribution V(a,- ), where the
kernel U : [n]? — [0,1] is defined by

a(a) max(A(a,b), A(b,a))a(b)

D Sy a(@) max(Ala, o), Ale,a)) ()

a,b € [n]. (14)

(ii) Let 7V denote the projection of the probability distribution wp_.g (defined at (9)) onto
the location of node 1. Then accept the update a — b and set x¢11(1) = b or reject
the update and set x;+1(1) = a independently with probability \ or 1 — X, respectively,
where

A= [”(1)(1’) viba) 1] . (15)



Lyu AND MEMOLI AND SIVAKOFF

(#i) Having sampled x4+1(1), -+ ,x¢41(2 — 1) € [n], inductively, sample x441(i) € [n] ac-
cording to the following conditional probability distribution

P(xt41(i) = @i [ xe41(1) = 21, -+, x40 (0 = 1) = 1) (16)
(Masyei Alws-s2)a() ) Al z:)alw:)

= . a7
S ce) (Tagja Al @)ali)) Al c)ae)

w,
S

o0 —> ° —> ‘s ‘e o
ARG

Figure 8: Pivot chain of homomorphisms x; : F' — G, where G is the (9 x 9) grid with uniform node
weight and F' = ([6], 1{(1,2),(2,3),--,(5.6)}) 15 @ 6-chain. The orientations of the edges (1,2),...,(5,6)
are suppressed in the figure. During the first transition, the pivot x;(1) moves to its right neighbor
with probability 1/4, and x;41(¢) is sampled uniformly among the four neighbors of x;11(i — 1) for
i = 2 to 6. Note that x;11(4) = x¢+1(6) in the middle figure. In the second transition, the pivot
moves down with probability 1/4, and again x;1(7) is sampled uniformly among the four neighbors
of x441(i — 1) for ¢ = 2 to 6.

The tree structure of the motif F' is crucially used both in steps (ii) and (iii) of the pivot
chain. Namely, computing the acceptance probability A in step (ii) involves computing the
marginal distribution 7)) on the location of the pivot from the joint distribution TFG.
This can be done recursively due to the tree structure of F', admitting a particularly simple
formula when F'is a star or a path, see Examples 2.1 and 2.2.

In order to explain the construction of the pivot chain, we first note that the simple
random walk on G with kernel ¥ defined at (14) has the following canonical stationary
distribution

- (a) L Zce[n] \I/(CL,C)
g o Zb,ce[n] \I](bv C)

When this random walk is irreducible, 7g is its unique stationary distribution. If we draw
a random homomorphism x : F' — G from a rooted tree motif F' = ([k], Ar) into a network
G = ([n], A, @) according to the distribution mp_,¢, then for each z; € [n],

a € [n]. (18)

7D (@1) == Ppog(x(1) = 1) (19)

1

= “(F.0) Z A(xg-,x2) - - Alxp—, z)a(xr)ax2) - - - ). (20)

1<z2,,zp<n

Hence, we may use Metropolis-Hastings algorithm (Liu, 2008; Levin and Peres, 2017) to
modify the random walk kernel ¥ to P so that its stationary distribution becomes 71,

14



SAMPLING RANDOM GRAPH HOMOMORPHISMS

where

() a .

U(a,b) [%/\1 if b+#a
a

b
(
(1 (c) W .
1_20:075(1\:[/( 70) [%Al] if b= a.

This new kernel P can be executed by steps (i)-(ii) in the definition of the pivot chain.
In the following examples, we consider particular instances of the pivot chain for embed-
ding paths and stars and compute the corresponding acceptance probabilities.

P(a,b) = (21)

Example 2.1 (Pivot chain for embedding stars) Consider the following ‘star’ motif
F = ([k], 1{(1,2),1,3),-,(1,k)}) centered at node 1 (e.g., (a)-(c) in Figure 4). Embedding a
star into a network gives important network observables such as the transitivity ratio and
average clustering coefficient (see Example 3.1). In this case, the marginal distribution )
of the pivot in (19) simplifies into

k—1
e

(1)
t(F,lg) Z A(z1,c)a(c) . (22)

c€n]

7T(1) (xl) =

Accordingly, the acceptance probability A in (15) becomes
k—1
a(b) (Zce[n] A, c)a(c)) ¥(b,a)
k=1 ¥ (a,b
o(@) (Tep Ala,Ja(e)) "V (*Y)

For a further simplicity, suppose that the network G = ([n], A, «) is such that A is symmetric
and a = 1/n. In this case, the random walk kernel ¥ and the acceptance probability A for
the pivot chain simplify as

A= Al . (23)

(e Albe)
(Soep Ala.0))

In particular, if F' = ([2],1{(,1)}), then A = 1 and the pivot x;(1) performs the simple
random walk on G given by the kernel ¥(a,b) < A(a,b) without rejection. A

A(a,b)
Zce[n] A(a’7 C)

U(a,b) = a,b € [n], A= Al . (24)

Example 2.2 (Pivot chain for embedding paths) Suppose for simplicity that the node
weight a on the network G = ([n], 4, ) is uniform and let F' = ([k], 1{(1,2),(2,3), ,(k=1,k)})
be a k-chain motif. Draw a random homomorphism x : ' — G from the distribution 7p_,g.
Then the marginal distribution 7(1) of the pivot in (19) simplifies into

n—k:
@) = 177G g{;ﬂ A (@), (25)

Hence the acceptance probability in step (ii) of the pivot chain becomes

Zce[n] AR (b) C) \I/(b, a)
Zce[n] Ak_l(a7 C) \Il(a7 b)

which involves computing powers of the matrix A up to the length of the path F. A

A= A, (26)

15
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Remark 2.1 (Comparison between the Glauber and the pivot chains) Here we com-
pare various aspects of the Glauber and the pivot chains.

(Per-iteration complexity) The Glauber chain is much cheaper than the pivot chain per
iteration for bounded degree networks. Note that in each step of the Glauber chain,
the transition kernel in (13) can be computed in at most O(A(G)k?) steps in general,
where A(G) denotes the ‘maximum degree’ of G, which we understand as the maximum
degree of the edge-weighted graph ([n], A) as defined at (7).

For the pivot chain, from the computations in Examples 2.1 and 2.2, one can easily
generalize the formula for the acceptance probability A recursively when F' is a general
directed tree motif. This will involve computing powers of A up to the depth of
the tree. More precisely, the computational cost of each step of the pivot chain is
of order A(G)*2F) | where A(G) and A(F) denote the maximum degree of G and F
(defined at (7)) and ¢ denotes the depth of F'. Unlike the Glauber chain, this could
be exponentially large in the depth of F' even when G and F' have bounded maximum
degrees.

(Iteration complexity (or mizing time)) The pivot chain requires much less iterations to
mix to the stationary distribution than the Glauber chain for sparse networks. In
Theorem 2.5, we show that the mixing time of the pivot chain is about the same as
the standard random walk on networks. In Theorem 2.4, we show that the Glauber
chain mixes fast for dense networks. However, if G is sparse, we do not have a good
mixing bound and we expect the chain may mix slowly.

(Sampling k-chain motifs from sparse networks) For the problem of sampling k-chain motifs
from sparse networks, we recommend using the pivot chain but with an approximate
computation of the acceptance probability. For instance, taking only a bounded num-
ber of powers of the weight matrix A in (26) seems to work well in practice.

(Sampling motifs from dense networks) For sampling general motifs (not necessarily trees)
from dense networks, we recommend to use the Glauber chain.

2.4 Convergence and mixing of Glauber/pivot chains

In this subsection, we state convergence results for the Glauber and pivot chains.

We say a network G = ([n], A, @) is irreducible if the random walk on G with kernel ¥
defined at (14) visits all nodes in G with positive probability. Note that since ¥(a,b) > 0
if and only if U(b,a) > 0, each proposed move a — b is never rejected with probability 1.
Hence G is irreducible if and only if the random walk on G with the modified kernel P is
irreducible. Moreover, we say G is bidirectional if A(i,7) > 0 if and only if A(j,i) > 0 for
all 7,7 € [n]. Lastly, we associate a simple graph G = ([n], Ag) with the network G, where
Ag is its adjacency matrix given by Ag(4,7) = 1(min(A(4,5), A(j,i)) > 0). We call G the
skeleton of G.

Theorem 2.1 (Convergence of Glauber chain) Let F' = ([k], Ar) be a motif and G =
([n], A, ) be an irreducible network. Suppose t(F,G) > 0 and let (x¢)i>0 be the Glauber
chain FF — G.

16
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(i) mr_g is a stationary distribution for the Glauber chain.

(ii) Suppose F is a rooted tree motif, G is bidirectional. Then the Glauber chain is irreducible
if and only if G is not bipartite. If G is not bipartite, then wr_,g s the unique stationary
distribution for the Glauber chain.

The proof of Theorem 2.1 (i) uses a straightforward computation. For (ii), since F' is a
rooted tree, one can argue that for the irreducibility of the Glauber chain for homomorphisms
F — @G, it suffices to check irreducibility of the Glauber chain x; : K9 — G, where K5 is the
2-chain motif, which has at most two communicating classes depending on the ‘orientation’
of x;. Recall that G is not bipartite if and only if its skeleton G contains an odd cycle.
An odd cycle in G can be used to construct a path between arbitrary two homomorphisms
Ky — G. See Appendix B for more details.

We also have the corresponding convergence results for the pivot chain in Theorem 2.2
below.

Theorem 2.2 (Convergence of pivot chain) Let G = ([n], A, «) be an irreducible net-
work with A(i, j) > 0 for some j € [n] for each i € [n]. F = ([k], Ar) be a rooted tree motif.
Then pivot chain F' — G is irreducible with unique stationary distribution Tp_g.

Since both the Glauber and pivot chains evolve in the finite state space [n] k] when given
the irreducibility condition, both chains converge to their unique stationary distribution
mr—g. Then the Markov chain ergodic theorem implies the following corollary.

Theorem 2.3 (Computing stationary mean by ergodic mean) Let F' = ([k], Ar) be

a rooted tree motif and G = ([n], A, @) be an irreducible network. Let g : [n]lF — R be any
function for d > 1. Let x : [k] — [n] denote a random homomorphism F — G drawn from
WFA)g.

(i) If (x¢)t>0 denotes the pivot chain F' — G, then

N
Elg(x)] = lim %Z (27)

N—>oo

(ii) If G is bidirectional and its skeleton is not bipartite, then (27) also holds for the Glauber
chain (x¢)>0: F — G.

Next, we address the question of how long we should run the Markov chain Monte Carlo
in order to get a precise convergence to the target measure mp_,g. Recall that the total
deviation distance between two probability distributions p, v on a finite set € is defined by

= vy = 5 3 ) — vl (25)

z€Q

If (X¢)e>0 is any Markov chain on finite state space € with transition kernel P and unique
starionay distribution 7, then its mizing time t,,;; is defined to be the function

tmiz(€) = inf {t >0 : mag);HPt(x, ) =mllrv < 5} . (29)
€

17
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In Theorems 2.4 and 2.5 below, we give bounds on the mixing times of the Glauber and
pivot chains when the underlying motif F' is a tree. For the Glauber chain, let x : FF — G
be a homomorphism and fix a node j € [k]. Define a probability distribution px j on [n] by

(IT)2s Ae(), B0 A(b x(j)) A7) ) A(b,5) A (D a(h)

pix,i(b) = - — —,  (30)
2 1<e<n <Hj7£i A(x(j), C)AF(]’l)A(QX(j))AF(l’])> A(e, c)Ar i a(c)
This is the conditional distribution that the Glauber chain uses to update x(j).
For each integer d > 1 and network G = ([n], A, ), define the following quantity
c(d,g) = max (1 — 2d||px,1 — #x’,lHTV) , (31)

x,x":S3—G
x ~x' and x(1) = x'(1)

where Sy = ([d 4 1], E) is the star with d leaves where node 1 is at the center, and x ~ x’
means that they differ by at most one coordinate. For a motif F' = ([k], Ar), we also recall
its mazimum degree A(F) defined in (7).

Theorem 2.4 (Mixing time of Glauber chain) Suppose F' = ([k], Ar) is a rooted tree
motif and G is an irreducible and bidirectional network. Further, assume that the skeleton G
of G contains an odd cycle. If ¢(A(F),G) > 0, then the mizing time tnz(€) of the Glauber
chain (x¢)t>0 of homomorphisms F' — G satisfies

tmin() < [2¢(A(F), G)k log(2k /<) (diam(G) + 1)]. (32)

On the other hand, we show that the pivot chain mixes at the same time that the
single-site random walk on network G does. An important implication of this fact is that
the mixing time of the pivot chain does not depend on the size of the motif. However, the
computational cost of performing each step of the pivot chain does increase in the size of
the motif (see Remark 2.1).

It is well-known that the mixing time of a random walk on G can be bounded by the
absolute spectral gap of the transition kernel in (21) (see (Levin and Peres, 2017, Thm. 12.3,
12.4)). Moreover, a standard coupling argument shows that the mixing time is bounded
above by the meeting time of two independent copies of the random walk. Using a well-
known cubic bound on the meeting times due to Coppersmith et al. (1993), we obtain the
following result.

Theorem 2.5 (Mixing time of pivot chain) Let F' = ([k], Er) be a directed rooted tree
and G = ([n], A, @) be an irreducible network. Further assume that for each i € [n], A(i,j) >
0 for some j € [n]. Let P denote the transition kernel of the random walk on G defined at
(21). Then the mizing time tmiz(g) of the pivot chain (x¢)i>0 of homomorphisms F — G
satisfies the following.

(i) Let tfilc(e) be the mizing time of the pivot with kernel P. Then
1
tmia(£) = torly (). (33)
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(i) Let A\« be the eigenvalue of P with largest modulus that is less than 1. Then

log(1/a(z)e)
z€[n| 1— A '

A log(1/2¢) <

1— )\* ~ tmm(E) ~ (34)

(iii) Suppose n > 13, A is the adjacency matriz of some simple graph, and (i) o deg()
for each i € [n]. Then

4 4 2 296
tmiz(€) < logy(e™1) ( nd+-n4 n— ) . (35)

27 3 9 27

2.5 Concentration and statistical inference

Suppose (x¢)¢>0 is the pivot chain of homomorphisms F' — G, and let g : [k] ] — R? be a
function for some d > 1. In the previous subsection, we observed that various observables
on the network G can be realized as the expected value E[g(x)] under the stationary distri-
bution 7p_,g, so according to Corollary 3.1, we can approximate them by time averages of
increments g(x;) for a suitable choice of g. A natural question to follow is that if we take the
time average for the first NV steps, is it possible to infer the stationary expectation E[g(x)]?

The above question can be addressed by applying McDiarmid’s inequality for Markov
chains (see, e.g., (Paulin et al.; 2015, Cor. 2.11)) together with the upper bound on the
mixing time of pivot chain provided in Theorems 2.5.

Theorem 2.6 (Concentration bound for real-valued observables) Let F = ([k], Er),
G = ([n], A, ), (x¢)t>0, and £ (¢) be as in Theorem 2.5. Let g : [k]™ — R be any func-

tional. Then for any d > 0,
_ 952
>0 ] <2exp (1)2& . (36)

]ID (
e

A similar result for the Glauber chain (with ¢, ; (1/4) at (36) replaced by tpz(1/4)) can
be derived from the mixing bounds provided in Theorem 2.4.

1 N
Erpolo(x)] = 1 D 90x)

t=1

Remark 2.2 One can reduce the requirement for running time N in Theorem 2.6 by a
constant factor in two different ways. First, if the random walk of pivot on G exhibits a
cutoff, then the factor of 9 in (36) can be replaced by 4 (see (Paulin et al., 2015, Rmk.
2.12)). Second, if we take the partial sum of g(x¢) after a ‘burn-in period’ a multiple of
mixing time of the pivot chain, then thereafter we only need to run the chain for a multiple
of the relaxzation time 1/(1 — A\y) of the random walk of pivot (see (Levin and Peres, 2017,
Thm. 12.19)).

Next, we give a concentration inequality for the vector-valued partial sums process. This
will allow us to construct confidence intervals for CHD profiles and motif transforms. The
key ingredients are the use of burn-in period as in (Levin and Peres; 2017, Thm. 12.19) and
a concentration inequality for vector-valued martingales (Hayes, 2005).
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Theorem 2.7 (Concentration bound for vector-valued observables) Suppose F =
([k], Ar), G = ([n], 4, @), (X¢)t>0, and tq(}lzx(s) be as in Theorem 2.5. Let H be any Hilbert

space and let g : [n)* — H be any function such that ||g||c < 1. Then for any ,5 > 0,

|

provided r > tgizm(a)

1 N
ET"F—»Q [g(x)] - N Z Q(Xr-i-t)
t=1

52
26) < 2exp <2— 62N> +e, (37)

3. Network observables based on motif sampling

In Section 2, we introduced the motif sampling problem and proposed MCMC algorithms
for the efficient computational solution of this problem. In that section we also established
various theoretical guarantees. Specifically, we have shown that the stationary expectation
of an arbitrary vector-valued function of a random homomorphism can be computed through
an ergodic average along MCMC trajectories (see Theorems 2.6 and 2.7). In this section,
we introduce specific network observables that can be efficiently computed in this way and
also establish their stability properties.

3.1 Definitions and computation

In this section, we introduce four network observables based on the random embedding
of motif F' into a network G. The first one is a conditional version of the well-known
homomorphism density Lovasz (2012).

Definition 3.1 (Conditional homomorphism density) Let G = ([n], A, ) be a net-

work and fiz two motifs H = ([k], Ag) and F = ([k], Ap). Let H + F denote the motif

([k], A + Ar). We define the conditional homomorphism density (CHD) of H in G given

F by

t(H + F,G)
t(F,G)

which is set to zero when the denominator is zero.

t(H,G|F) = (38)

When G is a simple graph with uniform node weight, the above quantity equals the
probability that all edges in H are preserved by a uniform random homomorphism x : F' —
G. As a notable special case, we describe a quantity closely related to the the average
clustering coefficient as a conditional homomorphism density.

Example 3.1 (Average clustering coefficient) A notable special case is when F' is the
wedge motif W3 = ([3], 1(1,2),1,3)}) (see Figure 4 (e)) and H = ([3],14(23)}) and G is a
simple graph. Then t(H,G|Ws3) is the conditional probability that a random sample of
three nodes x1, 2,23 in G induces a copy of the triangle motif K3, given that there are
edges from x1 to each of x9 and x3 in G. If all three nodes are required to be distinct, such
a conditional probability is known as the transitivity ratio (Luce and Perry, 1949).

A similar quantity with different averaging leads to the average clustering coefficient,
which was introduced to measure how a given network locally resembles a complete graph
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and used to define small-world networks by Watts and Strogatz (1998). Namely, we may
write

WH.G W) = 3 D vswsein] Al@1, w2) A2, 23) A(21, m3)o(@2)a(3) ()

el (s Aler, z2)a(n)” Corela) @@1)°
(39)

If G is a simple graph with uniform node weight o« = 1/n, then we can rewrite the above
equation as

t(H,G|W3)= >

z1€[n]

#(edges between neighbors of z1 in G) degg(x1) — 1
degg(z1)(degg(z1) — 1)/2 ndegg(z1)

(40)

If the second ratio in the above summation is replaced by 1/n, then it becomes the average
clustering coefficient of G (Watts and Strogatz, 1998). Hence the conditional homomorphism
density t(H,G|W3) can be regarded as a a variant of the generalized average clustering
coefficient, which lower bounds the average clustering coefficient of G when it is a simple
graph. We also remark that a direct generalization of the average clustering coefficient in
terms of higher-order cliques was introduced recently by Yin et al. (2018). See also Cozzo
et al. (2015) for a related discussion for multiplex networks. A

Motivated by the connection between the conditional homomorphism density and the
average clustering coefficient discussed above, we introduce the following generalization of
the average clustering coefficient. (See Figures 2 and 15 for examples.)

Definition 3.2 (Matrix of Average Clustering Coefficients) Let G = ([n], 4,«a) be a
network and fix a motif F = ([k], Ar). For each 1 < i < j < k, let H;j = ([k],Ar +
10 1(Ar(i,j) = 0)) be the motif obtained by ‘adding’ the edge (i, j) to F. We define the
Matriz of Average Clustering Coefficient (MACC) of G given F' by the k X k matriz whose
(i,4) coordinate is given by

t(H;j,0)

MACC(91F)(1:7) = S gy

(41)

which is set to zero when the denominator is zero.

Next, instead of looking at the conditional homomorphism density of H in G given F' at
a single scale, we could look at how the conditional density varies at different scales as we
threshold G according to a parameter ¢ > 0. Namely, we draw a random homomorphism
x : ' — G, and ask if all the edges in H have weights > ¢ in G. This naturally leads to the
following function-valued observable.

Definition 3.3 (CHD profile) Let G = ([n], A, a) be a network and fix two motifs H =
([k], Ar) and F = ([k], Ar). We define the CHD (Conditional Homomorphism Density)
profile of a network G for H given F by the function £(H,G|F) : [0,1] — [0,1],

£(,6] F)(0) = Brog (| min, A x() M0 > 1), (42

where x : F'— G is a random embedding drawn from the distribution mp_,g defined at (9).
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We give examples of CHD profiles involving two-armed paths, singleton, and self-loop
motifs.

Example 3.2 (CHD profiles involving two-armed paths) For integers ki, ko > 0, we
define a two-armed path motif Fy, p, = ({0,1,--- ,k1+kz},1(E)) where its set E of directed
edges are given by

o (0,1),(1,2), -, (k1 — 1, k1), "
(O,k1+1),(k1+1,k1+2),"',(k1+]€2—1,k1+k2) '

This is also the rooted tree consisting of two directed paths of lengths k1 and ko from the
root 0. Also, we denote Hy, k, = ({0,1,--- , k1 + K2}, L(k ky+ko)})- This is the motif on the
same node set as Fj, , with a single directed edge between the ends of the two arms. (See
Figure 9.)

1 2 ky 1 2 Ky
Ve ° ° o\ e e e
0e
° ® [ \._>. —_—s e
ki+1 ki +2 ky+ky ky+1 ky+2 ky + ky
Hy k, Fy ke,

Figure 9: Plots of the motif Hy, ,, which contains a single directed edge from kq to k1 + ko (left),
and the two-armed path motif F}, 5, on the right.

When k; = k2 = 0, then Fyo and Hp become the ‘singleton motif’ ([0],0) and the
‘self-loop motif’ ([0], 1¢p0)), respectively. In this case the corresponding homomorphism and
conditional homomorphism densities have simple expressions involving only the diagonal
entries of the edge weight matrix of the network. Namely, for a given network G = ([n], A, «),
we have

n n
t(Ho0,G) = Y _ Alk, t(Fo0,9) = > _a(k)=1. (44)
k=1

k=1

The former is also the weighted average of the diagonal entries of A with respect to the node
weight «. For the conditional homomorphism densities, observe that

> i1 Ak, k)*a(k)
Zk:l ( ’ ) (k)

The latter is also the ratio between the first two moments of the diagonal entries of A. The
corresponding CHD profile is given by

t(Hoo,G | Foo) = > Ak, k)a(k),  t(Hoo, G| Hoo) = (45)

£(Ho,G | Foo)(t) = Z 1(A(k, k) > t)a(k), (46)
k=1
Sy LAk F) > DAk, F)a(k)

(HOOag‘HOO)( ) Zk—l ( )Oé(k‘)

(47)
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The above two quantities can be interpreted as the probability that the self-loop inten-
sity A(k,k) is at least ¢, when k € [n] is chosen with probability proportional to (k) or
A(k, k)a(k), respectively. A

Lastly, we define network-valued observables from motif sampling. Recall that motif
sampling gives the k-dimensional probability measure mp_,g on the set [n] (5] Projecting this
measure onto the first and last coordinates gives a probability measure on [n]{Lk}. This can
be regarded as the weight matrix A% : [n]?2 — [0, 1] of another network G := ([n], AT, a).
The precise definition is given below.

Definition 3.4 (Motif transform) Let F = ([k], Ar) be a motif for some k > 2 and G =
([n], A, @) be a network. The motif transform of G by F is the network GF := ([n], AT, a),
where

AF<I7y) =Prog (X(l) =&, X(k> - y)? (48)

where x : F'— G is a random embedding drawn from the distribution mp_,g defined at (9).

Motif transforms can be used to modify a given network so that certain structural defects
are remedied without perturbing the original network aggressively. For instance, suppose
G consists two large cliques C7 and Cy connected by a thin path P. When we perform the
single-linkage clustering on G, it will perceive C; U P U (5 as a single cluster, even though
the linkage P is not significant. To overcome such an issue, we could instead perform single-
linkage clustering on the motif transform G where F is a triangle. Then the thin linkage P
is suppressed by the transform, and the two cliques C7 and Cs will be detected as separate
clusters. See Example 5.4 for more details.

Remark 3.1 Transformations of networks analogous to motif transforms have been studied
in the context of clustering of metric spaces and networks by Carlsson and Mémoli (2013);
Carlsson et al. (2017, 2016) and Mémoli and Pinto (2020).

Next, we discuss how to compute the network observables we introduced in this sec-
tion. Given a motif F' and network G, the CHD, CHD profile, and motif transform are all
defined by the expectation of a suitable function of a random homomorphism x : F — G.
While computing this expectation directly is computationally challenging, we can efficiently
compute them by taking time averages along MCMC trajectory x; : F© — G of a dynamic
embedding (see Theorems 2.6, 2.7, and 2.6). This is more precisely stated in the following
corollary.

Corollary 3.1 Let F = ([k], Ar) be a rooted tree motif, H = ([k], Ax) another motif, and
G = ([n], A, ) an irreducible network. Let (x¢)i>0 be the pivot chain F — G. Then the
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followings hold:

N
1 .
t(H,G|F) = lim NZ T Ak, xi(5)) 09, (49)
T T 1< <k
N
£(H,G|F)(H) = lm > ] 1(A6@),xG)@0) =) tef01],  (50)
t=1 1<4,j<k
1 X -
t(va laF)AH = ]\;gnooﬁz H A(Xt(i)vxt(j))AH(ZJ) EXt(l),Xt(k‘)? (51>

t=1 \1<i,j<k

where E; ; denotes the (n x n) matriz with zero entries except 1 at (i,j) entry. Furthermore,
G s bidirectional and its skeleton contains an odd cycle, then the above equations also hold
for the Glauber chain (x¢)t>0: F' — G.

Remark 3.2 When we compute A using (51), we do not need to approximate the con-
ditional homomorphism density t(H,G,|F) separately. Instead, we compute the limiting
matrix on the right-hand side of (51) and normalize by its 1-norm so that ||A7|; = 1.

Remark 3.3 We emphasize that all the network observables that we introduced in this
section can be expressed as the expected value of some function of a random homomorphism
F — G, and that any network observable defined in this manner can be computed efficiently
by taking suitable time averages along MCMC trajectory of homomorphisms x; : F¥ — G as
in Corollary 3.1. It would be interesting to investigate other network observables that can
be expressed as the expectation of some function of a random homomorphism F — G.

4. Stability inequalities

In this section, we establish stability properties of the network observables we introduced in
Section 3.1. Roughly speaking, our aim is to show that these observable change little when
we change the underlying network little. In order to do so, we need to introduce a notion of
distance between networks.

We introduce two commonly used notions of distance between networks as viewed as
‘eraphons’. A kernel is a measurable integrable function W : [0,1]?> — [0,00). We say a
kernel W is a graphon if it takes values from [0, 1]. Note that we do not require the kernels
and graphons to be symmetric, in contrast to the convention use in Lovasz (2012). For a
given network G = ([n], A, @), we define a ‘block kernel’ Ug : [0,1]? — [0, 1] by

Ug(z,y) = Y A(i,j)L(z € L,y € Ij), (52)

1<i,j<n

where [0,1] = I Uy U--- U I, is a partition such that each I; is an interval with Lebesgue
measure i(1;) = a(i). (For more discussion on kernels and graphons, see (Lovasz, 2012).)
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For any integrable function W : [0,1]?> — R, we define its p-norm by

wap::<élﬁfnvwadex@01m, (53)

for any real p € (0,00), and its cut norm by
/ / W(z,y) dx dy
AJB

where the supremum is taken over Borel-measurable subsets of A, B C [0, 1]. Now for any
two networks G; and Gs, we define their p-distance by

[Wlo= sup
A,BC[0,1]

, (54)

(61, G2) = inf [Ug, — Uyl (55)

where the infimum is taken over all bijections ¢ : [n] — [n] and ¢(G2) is the network
([n], AY, aop), A?(z,y) = A(p(z), ¢(y)). Taking infimum over ¢ ensures that the similarity
between two networks does not depend on relabeling of nodes. We define cut distance
between G; and G similarly and denote it by d5(G1,G2). We emphasize that the cut norm
and cut distance are well-defined for possibly asymmetric kernels.

The cut distance is more conservative than the 1-norm in the sense that

(W, Wa) < 61 (Wh, Wa) (56)
for any two kernels W7 and Wy. This follows from the fact that
Wla < [[Wla = Wl (57)

for any kernel W.

Now we state stability inequalities for the network observables we introduced in Section
3.1 in terms of kernels and graphons. The homomorphism density of a motif F' = ([k], Ar)
in a kernel U is defined by (see, e.g., Lovisz and Szegedy (2006, Subsection 7.2))

t(F,U) = / I Ui,z da, - da. (58)
[0

A 1< i<k

For any other motif H = ([k], Ay), we define the conditional homomorphism density of H
in U given F by t(H,U | F) =t(H + F,U)/t(F,U), where F'+ E = ([k], Ag + Ar) and we
set t(H,U|F)=0if t(F,U) = 0. It is easy to check that the two definitions of conditional
homomorphism density for networks and graphons agree, namely t(H,G | F') = t(H,Ug | F).
Also, CHD for kernels is defined analogously to (42). That is, we define the CHD profile of
a kernel U : [0,1]2 — [0, 1] for H given F by the function £(H,U | F) : [0,1] — [0, 1],

£(H,U | F)(1) :/

1< min U (x(i),x(j))4# ) 21&) dxy, ..., dxy,. (59)
[0,1]%

1<i,j<k
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Finally, we define the motif transform U* : [0,1]> — [0,00) of a kernel U by a motif
F = ([k], Ap) for k > 2 by
1 .
U (21, 21) = / Ui, ;)00 day - - - dag_y. (60)
t(F, U) [0,1)+—2 lgggk (R

The well-known stability inequality for homomorphism densities is due to Lovasz and
Szegedy (2006), which reads
for any two graphons U, W : [0,1]*> — [0, 1] and a motif F = ([k], Er). A simple application

of this inequality shows that conditional homomorphism densities are also stable with respect
to the cut distance up to normalization.

Proposition 4.1 Let H = ([k],Ag) and F = ([k], Ap) be motifs such that H + F =
([k], Ay + AF) is simple. Let U,V :[0,1]2 — [0,1] be graphons. Then

2’EH‘ ' (5EI(U7 W)
[e(H, UIF) = t(HWIF)| < om0, s (W)

As a corollary, this also yields a similar stability inequality for the MACC (see Definition
3.2). A similar argument shows that motif transforms are also stable with respect to cut
distance.

Proposition 4.2 Let F = ([k], Ar) be a simple motif and let U,W : [0,1]% — [0,1] be
graphons. Then

(62)

1

max(t(F,U),t(F,W))

Lastly, we state a stability inequality for the CHD profiles in Theorem 4.1. While the
proof of Propositions 4.1 and 4.2 is relatively straightforward using the stability inequality
for the homomorphism density (61), the proof of Theorem 4.1 is more involved and requires
new analytical tools. The main idea is to define a notion of cut distance between ‘filtrations
of graphons’ and to show that this new distance interpolates between the cut distance and
the 1-norm-distance (see Proposition C.1). See Appendix C for more details.

Theorem 4.1 Let H = ([k], Ag) and F = ([k], Ar) be simple motifs such that H + F =

([k], Ay + Ar) is simple. Then for any graphons U, W : [0,1]? — [0,1],

2| Arll - 60U, W) + [[Axll - 6.(U, W)
max(6(F,0),5(E, W)

SUF W) < (1 ; ) E(F)| - 6o(U, ) (63)

[£(H,U[F) = £(H,W [ F)|1 <

(64)

5. Examples

In this section, we provide various computational examples to demonstrate our techniques
and results. Throughout this section we use the motifs Hy, r, and F}, 1, introduced in Ex-
ample 3.2. In Subsection 5.1, we compute explicitly and numerically various homomorphism
densities for the network given by a torus graph plus some random edges. In Subsection
5.2, we compute various CHD profiles for stochastic block networks. Lastly, in Subsection
5.3, we discuss motif transforms in the context of hierarchical clustering of networks and
illustrate this using a barbell network.
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5.1 Conditional homomorphism densities

Example 5.1 (Torus) Let G, = ([n] x [n], A, @) be the (n x n) torus Z,, x Z, with nearest
neighbor edges and uniform node weight o = 1/n%. Consider the conditional homomorphism
density t(Hp,0,Gn | Fk0). Since A binary and symmetric, note that Pg, g, is the uniform
probability distribution on the sample paths of simple symmetric random walk on G, for
the first k steps. Hence if we denote this random walk by (X¢):>0, then

t(Hp,0,Gn | Fro) = P(|| Xk — (0,0)[|oc = 1| Xo = (0,0)) (65)
= 4P(X41 = (0,0)[ Xo = (0,0)) (66)
1 (k+1)!
G g;o alalblb!” (67)
2(a+b)=k+1

For instance, we have t(H3 o, Gy | F3,0) = 9/16 = 0.5625 and

210! 1 1 1 3969
t(Ho,0,Gn | Fo0) = ( )

CRRL _ ~ 0.2422. 68
9\ a4l T 33001 ) T 16384 (68)

See Figure 25 for a simulation of Glauber and Pivot chains Fjg — G,. As asserted in
Corollary 3.1, time averages of these dynamic embeddings converge to the correct values of
the conditional homomorphism density t(Hyo,Gn | F0). The simulation indicates that for
sparse networks like the torus, the Glauber chain takes longer to converge than Pivot chain
does. A

Example 5.2 (Torus with long-range edges) Fix parameters p € [0, 1] and « € [0, 00).
Let G, = G be the n x n torus Z,, x Z, with additional edges added randomly to each non-
adjacent pair (a,b) and (c,d), independently with probability p(la — ¢| + |b — d|)™*. When
a = 0, this reduces to the standard Watts-Strogatz model Watts and Strogatz (1998).

See Figure 25 for some simulation of Glauber and Pivot chains Fj, g — G5 for p = 0.1 and
a = 0. Time averages of these dynamic embeddings converge to the correct values of the
conditional homomorphism density t(Hk. 0, Gp | Fi0), which is approximately the ambient
edge density 0.1. This is because if we sample a copy of F}, g, it is likely to use some ambient
‘shortcut’ edges so that the two ends of F}, o are far apart in the usual shortest path metric
on the torus. Hence the chance that these two endpoints are adjacent in the network gho
is roughly p.

In the next example, we use the tree motif F' on six nodes and H is obtained from F
by adding two extra edges, as described in Figure 29. A similar reasoning to the one used
above tells us that the probability that a random copy of F' from G20 has edges (2,5) and
(3,6) should be about p?. Indeed, both the Glauber and Pivot chains in Figure 29 converge
to 0.01. A

5.2 CHD profiles of stochastic block networks

Let G = ([n], A, @) be a network. For each integer » > 1 and a real number ¢ > 0, we
will define a ‘stochastic block network’ X = ([nr], B") (A, 0?), 8) by replacing each node of
G by a community with r nodes. The node weight § : [nr] — [0, 1] of the block network
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is inherited from « by the relation S(z) = a(|z/r| + 1). For the edge weight, we define
B (A,0%) = T (A4,0?)/ max(I'") (A, 0?)), where I'")(A,02) is the (nr x nr) random
matrix obtained from A by replacing each of its positive entries a;; > 0 by an (r x r) matrix
of i.i.d. entries following a Gamma distribution with mean a;; and variance o2, Recall that
the Gamma distribution with parameters o and 5 has the following probability distribution
function
fap(x) = ﬁxaﬂe*ﬁxl(m >0). (69)
’ I'(a) -
Since the mean and variance of the above distribution are given by «/8 and a/3?%, re-
spectively, we may set o = afj Jo? and B = a;;/0? for the (r x r) block corresponding to
Qjj-
For instance, consider two networks G; = ([6], A1, a), G2 = ([6], A2, ) where o = 1/6
and

5 1 1 1 1 1 111 5 51
151111 111 1 15
115111 511 5 15
A1_111511’A2_511112 (70)
111151 151 1 11
11111 5 11 5 10 1 1]

Let By = BU9(A;,1), By = B19(A5,1.5), and By = B19(A4,,0.5). Consider the stochas-
tic block networks X1 = ([60], B1, 5), X2 = ([60], B2, 5), and X3 = ([60], B3, 8). The plots of
matrices By and Bs are given in Figure 27.

In Figure 10 below, we plot the CHD profiles f := £(Hy, gy, X | Fi, 1,) for X = X1, X2,
and X3. The first row in Figure 10 shows the CHD profiles for k1 = k3 = 0. At each filtration
level t € [0, 1], the value £(¢) of the profile, in this case, means the proportion of diagonal
entries in B; at least ¢ (see Example 3.2). The CHD profiles for X5 and X3 drop quickly
to zero by level ¢t = 0.3, as opposed to the profile for X1, which stays close to height 1 and
starts dropping around level ¢ = 0.4. This is because, as can be seen in Figure 27, entries in
the diagonal blocks of the matrix By are large compared to that in the off-diagonal blocks,
whereas for the other two matrices B; and Bs, diagonal entries are essentially in the order
of the Gamma noise with standard deviation o.

For max(k1, k2) > 1, note that the value of the profile £(t) at level ¢ equals the probability
that the extra edge in Hy, j, has weight > ¢ in X, when we sample a random copy of Fy, x,
from X. For instance, if (k1,k2) = (0,1), this quantity is almost the density of edges in X
whose weights are at least ¢. But since the measure of random homomorphism x : F1 g — X
is proportional to the edge weight B;(x(0),x(1)), we are in favor of sampling copies of Fj
with large edge weight.

In the second row of Figure 10, the profile for X3 differs drastically from the other two,
which gradually decays to zero. The small variance in the Gamma noise for sampling Bs
makes the two values of 5 and 10 in Ay more pronounced with respect to the ‘ground level’
1. Hence we see two plateaus in its profile. As noted in the previous paragraph, the height
of the first plateau (about 0.7), is much larger than the actual density (about 0.25) of the
edges sample from blocks of value 5. A similar tendency could be seen in the third row of
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Figure 10: Plots of CHD profiles £(Hg, k,, X | Fiy .k,) for X = X1 (first row), X3 (second row), and
X3 (third row). To compute each profile, both the Glauber (red) and pivot (blue) chains are run up
to 10° iterations.

Figure 10, which shows the CHD profiles for (k1, k2) = (4,5). Note that the first plateau in
the profile for X now appears at a lower height (about 0.4). This indicates that sampling a
copy of Fy5 is less affected by the edge weights than sampling a copy of Fj ;.

5.3 Hierarchical clustering for networks and motif transform

In this section, we discuss the application of the motif transform to the setting of hierarchical
clustering of networks.

Hierarchical clustering and dendrogram. Suppose we are given a finite set X and
fixed ‘levels’ 0 = to < t1 < -+ <t for some integer m > 0. Let H = (Ft)icqs,....t,} D€
a sequence of collection of subsets of X, that is, F;, C 2% with 2% denoting the power set
of X. We call H a hierarchical clustering of X if (1) Fop = X and F;,, = {X} and (2) for
each 0 < a < b < m and for each A € F;,, there exists a unique B € F;, with A C B. For
each t € {to,...,tam}, we call each A € F; a cluster of X at level t. One can associate a
tree T = (V, E) to H by setting V = | [, , F, and letting the edge set E consist of all pairs
(A, B) such that A € F,, B € F, ., and A C B for some k = 0,1,...,m — 1. The graph
T = (V, E) defined in this way is indeed a tree with root {X} at level ¢, and a set of leaves
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X at level 0. We call T' a dendrogram of H. See (Jardine and Sibson, 1971; Carlsson et al.,
2010) for more details on hierarchical clustering and dendrograms.

Single-linkage hierarchical clustering for finite metric spaces. Single-linkage hier-
archical clustering is a standard mechanism to obtaining a hierarchical clustering of a finite
matrix space. Suppose (X, d) is a finite metric space. Let 0 = tg < t; < --- < t,, be
the result of ordering all distinct values of the pairwise distances d(x,y) for z,y € X. For
each t > 0, define the equivalence relation ~; on X as the transitive closure of the relation
d(z,y) < t, that is,

exists an integer m > 1 and zg, ..., 2y, € X s.t.

=Y d(zi,2i41) <tfori=0,...,m—1and 20 =z, 2p = y.

(71)
Then H := (Uy, Jo<k<m is a hierarchical clustering of X. The associated dendrogram 7' of
H is called the single-linkage (hierarchical clustering) dendrogram of (X, d).

Single-linkage hierarchical clustering for networks. We introduce a method for com-
puting the hierarchical clustering of networks based on a metric on the node set. Let
G = ([n], A, a) be a network. We view the weight A(z,y) between distinct nodes as repre-
senting the magnitude of the relationship between them, so the larger A(z,y) is, the stronger
the nodes z, y are associated. Hence it would be natural to interpret the off-diagonal entries
of A as a measure of similarity between the nodes, as opposed to a metric d on a finite
metric space, which represents ‘dissimilarity’ between points.

In order to define a metric d4 on the node set [n], first transform the pairwise similarity
matrix A into a pairwise dissimilarity matrix A’ as

0 ife=y
Allz,y) =< o0 if A(x,y)=0and x #y (72)
max(A) — A(x,y) otherwise.
We then define a metric d4 on the node set [n] by letting d4(x,y) be the smallest sum of

all A’-edge weights of any sequence of nodes starting from x and ending at y:

m

da(z,y) = inf {Z Az, miv1)

i=1

1 =2, Tm+1 =Y, xl?"'vxm-i-le[n]}- (73>

This defines a metric space ([n],d4) associated with the network G = ([n], A, ). We let
H = H(G) to denote the hierarchical clustering of ([n],d4). We call the dendrogram 7' =
(V,E) of H(G) the single-linkage heirarchical clustering dendrogram of the network G, or
simply the dendrogram of G. Computing the metric d4 in (73) can be easily accomplished
in O(n3) time by using the Floyd-Warshall algorithm (Floyd, 1962; Warshall, 1962). See
Figures 13, 14, and 33 for network dendrograms computed in this way.

The hierarchical clustering H of G defined above is closely related to the following no-
tion of network capacity function. Given a network G = ([n], A, ), consider the ‘capacity
function’ Tg : [n]? — [0, 00) defined by

Tg(x,y) = sup {t >0
t>0

Jxg, 21, ,Tm € [n] s.t. (2o, ) = (z,y) or (y,z) (74)
and ming<j<m, Az, xip1) > t. '
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That is, Tg(z,y) is the minimum edge weight of all possible walks from z to y in G, where
a walk in G is a sequence of nodes xy, . .., zy, such that A(z;,x;41) >0fori=1,...,m—1.
Let ~; denote the equivalence relation induced by d4 as in (71). Then one can see that

ryy <= Tg(z,y) > max(A) —t or xz=y. (75)

Thus, = and y merge into the same cluster in H at level max(A) — Tg(z,y). Furthermore,
it is easy to see that Ty satisfies the following ‘dual’ to ultrametric condition (see Carlsson
and Mémoli (2010) for how the ultrametric condition relates to dendrograms) for distinct
nodes:

Tg(x,y) > min(Tg(z, 2),Tg(z,y)) Vx,y,z € [n] st. x #v. (76)

Note that Tg(z,z) = A(z,x) for all € [n]. Hence (76) may not hold if z = y, as
Tg(z,y) = A(z,x) could be less than the minimum of Tg(z, 2) and Tg(z, z)) (e.g., G a simple
graph). If we modify the capacity function on the diagonal by setting Tg(z, ) = max(A)
for all z, then (76) is satisfied for all choices z,y, z € [z]. This modification corresponds to
setting A’(x,x) =0 in (72).

The above construction of the hierarchical clustering H of G = ([n], A, @) does not use
diagonal entries of A. One can slightly modify the definition of hierarchical clustering of G
in a way that it also uses the diagonal entries of A by allowing each node x to ‘appear’ in
the dendrogram at different times depending on its ‘self-similarity’ A(x,z). More precisely,
define a relation ~} on the node set [n] by x ~} y if and only if Tg(z,y) > max(A) —t for all
x,y € [n] (not necessarily for distinct -, y). Then x ~} z if and only if ¢ > max(A) — A(z, ).
Hence in order for the relation ~} to be an equivalence relation, we need to restrict its domain
to {z € [n]| max(A) — A(z,x) < t} at each filtration level . The resulting dendrogram is
called a treegram, since its leaves may appear at different heights (Smith et al.; 2016).

Note that the capacity function in (74) can be defined for graphons U instead of networks.
Hence by using (75), we can also define hierarchical clustering dendrogram for graphons in
a similar manner. The following example illustrates single-linkage hierarchical clustering of
the three-block graphons from Example A.4.

Example 5.3 Recall the graphons U, U°2, and U - U°? discussed in Example A.4. Note
that U is the graphon Ug associated to the network G = ([3], A, &) in Example A.1. Single-
linkage hierarchical clustering dendrograms of the three networks corresponding to the three
graphons are shown in Figure 11 (in solid + dotted blue lines), which are solely determined
by the off-diagonal entries. Truncating each vertical line below the corresponding diagonal
entry (dotted blue lines), one obtains the treegrams for the three networks (solid blue lines).

Furthermore, one can also think of hierarchical clustering of the graphons by viewing
them as networks with continuum node set [0,1]. The resulting dendrogram is shown in
Figure 11 (solid blue lines + shaded rectangles) A

In the following example, we illustrate how motif transforms can be used to suppress weak
connections between two communities in order to improve the recovery of the hierarchical
clustering structure of a given network.
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Figure 11: Dendrograms and treegrams of the networks associated to the graphons U = Ug (left),
U°? (middle), and U - U°? (right) in Example A.4. The vertical axis show the values of the capacity
function from (74). a1 = s?(1+¢€)/2, az = s(1+¢€)/2, a3 = s*(1—¢/4)+€, and ay = (1/2)+(s>—1/2)e.
See the text in Example 5.3 for more details.

Example 5.4 (Barbell networks) In this example, we consider ‘barbell networks’, which
are obtained by connecting two networks by a single edge of weight 1. When the two networks
are H1 and Ho, we denote the resulting barbell network by Hi @& Ho, and we say H; and
Ho are the two components of Hi @ Ho.

H, 7,

Figure 12: Depiction of a barbell network.

Recall the network Gh'® defined in Example 5.2, which is the (n x n) torus with long-
range edges added according to the parameters p and a. Also let X = ([nr], B.(A, 0?),8)
denote the stochastic block network constructed from a given network G = ([n], 4, a) (see

Subsection 5.2). Denote the stochastic block network corresponding to Gi;* with parameters
r and o by Gh*(r, o).

distance

Figure 13: Single-linkage dendrogram for the barbell network G,.

Now define barbell networks G; := 9?60@9962’0 and Go = 92’0(5, 0.6)@g50‘2’0(5, 0.2). Also,
let G3 := QQC 3 be the network obtained from Gs by the motif transform using the triangle
motif C3 := ([3], 1{(1,2),(2,3),3,1)}) (here the orientation of the edges of Cj is irrelevant since
the networks are symmetric). In each barbell network, the two components are connected
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by the edge between node 80 and node 53 in the two components. For each i € {1,2,3},
let A; denote the edge weight matrix corresponding to G;. The plots for A;’s are given in
Figure 28.

We are going to consider the single-linkage dendrograms of each barbell network for their
hierarchical clustering analysis. We omit the dendrogram of the simple graph G;. For Go,
the Gamma noise prevents all nodes from merging at the same level. Instead, we expect to
have multiple clusters forming at different levels and they all merge into one cluster at some
positive level ¢ > 0. Indeed, in the single-linkage dendrogram for Go shown in Figure 13, we
do observe such hierarchical clustering structure of Gs.

distance

Figure 14: Single-linkage dendrogram for barbell network Gs, which is obtained by motif-
transforming Go using a triangle Cs.

However, the ‘single linkage’ between the two main components of Gy is very marginal
compared to the substantial interconnection within the components. We may use motif
transforms prior to single-linkage clustering in order to better separate the two main com-
ponents. The construction of Gg = QQC 3 using triangle motif transform and its dendrogram
in Figure 14 demonstrate this point.

In the dendrogram of G3 shown in Figure 14, we see that the two main clusters still
maintain internal hierarchical structure, but they are separated at all levels ¢ > 0. A similar
motif transform may be used to suppress weak connections in the more general situation
in order to emphasize the clustering structure within networks, but without perturbing the
given network too much. A

6. Application I: Subgraph classification and Network clustering with
Facebook networks

In this section, we apply our methods to a problem consisting of clustering given a data
set of networks. In our experiment, we use the Facebook100 dataset, which consists of the
snapshots of the Facebook network of 100 schools in the US in Sep. of 2005. Since it was
first published and analyzed by Traud, Mucha, and Porter in Traud et al. (2012), it has been
regarded as a standard data set in the field of social network analysis. In the dataset, each
school’s social network is encoded as a simple graph of anonymous nodes corresponding to the
users, and nodes ¢ and j are adjacent if and only if the corresponding users have a friendship
relationship on the Facebook network. The networks have varying sizes: Caltech36 is the
smallest with 769 nodes and 16,656 edges, whereas Texas84 is the largest with 36,371 nodes
and 1,590,655 edges. The lack of shared node labels and varying network sizes make it
difficult to directly compare the networks and perform clustering tasks. For instance, for
directly computing a distance between two networks of different sizes without a shared node
labels, one needs to find optimal correspondence between the node sets (as in (55)), which
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is computationally very expensive. We overcome this difficulty by using our motif sampling
for computing the Matrix of Average Clustering Coefficients (MACC) (see Definition 3.2)
for each network. This the compressed representation of social networks will then be used
for performing hierarchical clustering on the whole collection of 100 networks.
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Figure 15: Matrices of Average Clustering Coefficients (MACC) for the 100 Facebook network data
set using the chain motif ' = ([21], 1{(1,2),(2,3),---,(20,21)})- Values of the entries are shown in greyscale
with black = 1 and white = 0. The two main diagonals correspond to the edges in the motif Fy 29
and always have a value of 1. Each entry (7, j) for |i — j| > 1 equals to the probability of seeing the
corresponding ‘long-range’ edge along a uniformly sampled copy of the chain motif.
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6.1 MACCSs for the Facebook100 dataset

The full MACCs of size 21 for the 100 facebook networks are shown in Figure 15. We used
the chain motif F' = ([21], 1{(1,9),(2,3),-,(20,21)}) of 20 edges, which we sampled from each
network by Glauber chain (see Definition 2.1) for 2nlogn iterations, where n denotes the
number of nodes in the given network, which we denote by G. Each entry (i, j) of the MACC
is computed by taking the time average in (49) with motifs F' and H = H;; := ([21], 14 j)})-
This time average along the Glauber chain F' — G converges to a 21 x 21 matrix as shown in
Figure 15. Note that the two main diagonals on |i — j| = 1 are always 1 as they correspond
to the edges of the chain motif F' embedded in the network. For |i — j| > 1, the (4,7)
entry equals the conditional homomorphism density t(H;;, G | F'), which is the probability
of seeing the corresponding ‘long-range’ edge (7, j) along a uniformly sampled copy of the
chain motif F' from G. We note that in Figure 15, in order to emphasize the off-diagonal
entries, MACCs are plotted after the square-root transform.

MACC gives a natural and graphical generalization of the network clustering coefficient
(see Example 3.1). For instance, consider the MACCs of CALTECH, HARVERFORD, REED,
SimMMoNs, and SWARTHMORE in Figure 15. These are relatively small private or liberal arts
schools, so one might expect to see stronger clustering among a randomly sampled chain
of 21 users in their Facebook network. In fact, their MACCs show large values (dark) off
of the two main diagonals, indicating that it is likely to see long-range connections along
a randomly sampled chain F' of 21 friends. On the other hand, the MACCs of INDIANA,
RuTGERs, and UCLA show relatively small (light) values away from the two main diagonals,
indicating that it is not very likely to see long-range friendships among a chain of 21 friends
in their Facebook network. Indeed, they are large public schools so it is reasonable to see
less clustered friendships in their social network.

6.2 Subgraph classification

In this section, we consider the subgraph classification problem in order to compare the
performance of MACCs to that of classical network summary statistics such as edge density,
diameter, and average clustering coefficient.

The problem setting is as follows. Suppose we have two networks G; and Go, not necessar-
ily of the same size. From each network G;, we sample 100 connected subgraphs of 30 nodes
by running a simple symmetric random walk on G; until it visits 30 distinct nodes and then
taking the induced subgraph on the sampled nodes. Subgraphs sampled from network G; get
label ¢ (see Figure 16 for examples of subgraphs subject to classification). Out of the total of
200 labeled subgraphs, we use 100 (50 from each network) to train several logistic regression
classifiers corresponding to the input features consisting of various network summary statis-
tics of the subgraphs — edge density, minimum degree, maximum degree, (shortest-path)
diameter, degree assortativity coefficient (Newman, 2002), number of cliques, and average
clustering coefficient — as well as MACCs at four scales k € {5,10,15,20}. Each trained
logistic classifier is used to classify the remaining 100 labeled subgraphs (50 from each net-
work). The performance is measured by using the area-under-curve (AUC) metric for the
receiver-operating characteristic (ROC) curves.

We compare the performance of a total of 11 logistic classifiers trained on the various
summary statistics of subgraphs described above using the seven Facebook social networks
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CALTECH, SIMMONS, REED, NYU, VIRGINIA, UCLA, and WiscoNsIN. There are total 21 pairs of
distinct networks (Gi,Ga) we consider for the subgraph classification task. For each pair
of distinct networks, we repeated the same experiment ten times and reported the average
AUC scores together with their standard deviations.
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Figure 16: Examples of 30-node connected subgraphs from two Facebook social networks Wisconsin
and UCLA Each subgraph is sampled by running a simple symmetric random walk on the network
until visiting 30 distinct nodes and then taking the induced subgraph on the sampled nodes.

As we can see from the results reported in Table 17, classification using MACCs achieves
the best performance in all 21 cases This indicates that MACCs are network summary
statistics that are more effective in capturing structural information shared among subgraphs
from the same network than the benchmark network statistics. Furthermore, observe that
the classification performance using MACCs is mostly improved by increasing the scale
parameter k. This show that MACCs do capture not only local scale information (recall
that the average clustering coefficient is closely related to MACC with k = 2, see Example
3.1), but also the mesoscale (intermediate between local and global scales) structure of
networks (Milo et al., 2002; Alon, 2007; Schwarze and Porter, 2020).

6.3 Clustering the Facebook networks via MACCs

For a more quantitative comparison of the MACCs in Figure 15, we show a multi-dimensional
scaling of the MACCs together with cluster labels obtained by the k-means algorithm with
k = 5 in Figure 18 Each school’s Facebook network is represented by its 21 x 21 MACC,
and mutual distance between two networks are measured by the Frobenius distance between
their MACCs. Note that, as we can see from the corresponding MACCs, the five schools
in the top left cluster in Figure 18 are private schools with a high probability of long-range
connections, whereas all schools including UCLA, RUTGERS, and INDIANA in the bottom right
cluster in Figure 18 have relatively sparse long-range edges. For a baseline comparison,
we show the result of the k-means clustering of the same dataset only using the number
of nodes and average degree for each network in Figure 19. The two clustering results
have some similarities but also some interesting differences: The cluster that contains small
private schools CALTECH and REED; The location of UCLA and USFCA with respect to other
clusters. This shows qualitatively different clustering results can be obtained by using the
local clustering structure of the networks encoded in their MACCs instead of the macroscopic
information counting nodes and edges.
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Networks dedeg dmin dm @ diameter asi)eftZZiit)} # cliques clui‘:fin g A/Zl:C5C A]fif(f AZx;I]CjC Al/:igoc
ensity egree egree coef coeff (k=5) (k=10) (k=15) (k=20)
Caltech36-Simmons81 0914 0.618 0.774 0.863 0.638 0.738 0.762 0.932 0947 0.966 0.969
Caltech36-Reed98 0.889 0.623 0.833 0.848 0.670 0.786 0.809 0902 0916 0913 0.924
Caltech36-NYU9 0.902 0.666 0.795 0.831 0.408 0.699 0.775 0923 0959 0950 0.944
Caltech36-Virginia63 0.822 0.55 0.704 0.822 0.724 0.715 0.813 0.900 0.924 0.928 0.948
Caltech36-UCLA26 0.873 0.594 0.783 0.848 0.631 0.724 0.770 0.888 0943 0.946 0.958
Caltech36-Wisconsin87 0.749 0.713 0.687 0.784 0.527 0.663 0.697 0.794 0.873 0.896 0.921
Simmons81-Reed98 0.840 0.573 0.769 0.796 0.725 0.689 0.761 0.897 0967 0977 0.976
Simmons81-NYU9 0.922 0.596 0.841 0.884 0.693 0.770 0.833 0934 0954 0965 0.952
Simmons81-Virginia63 0.802 0.448 0.691 0.766 0.664 0.603 0.731 0.802 0812 0.838 0.826
Simmons81-UCLA26 0.856 0.566 0.755 0.812 0.669 0.753 0.821 0910 0919 0938 0.935
Simmons81-Wisconsin87 0.877 0.645 0.819 0.896 0.651 0.745 0.754 0.934 0959 0.960 0.960
Reed98-NYU9 0.822 0.607 0.672 0.787 0.562 0.712 0.724 0.896 0.934 0940 0.926
Reed98-Virginia63 0.836 0.621 0.737 0.794 0.510 0.782 0.701 0.897 0934 0934 0.941
Reed98-UCLA26 0.822 0.628 0.697 0.770 0.521 0.786 0.747 0.891 0958 0978 0.974
Reed98-Wisconsin87 0.884 0.684 0.770 0.836 0.620 0.776 0.807 0.886 0955 0.956 0.946
NYU9-Virginia63 0.858 0.568 0.817 0.79 0.655 0.807 0.797 0.868 0.897 0915 0.880
NYU9-UCLA26 0.877 0.579 0.801 0.833 0.645 0.780 0.776 0942 0954 0964 0.963
NYU9-Wisconsin87 0.889 0.641 0.793 0.855 0.673 0.744 0.780 0.932 0954 0957 0.960
Virginia63-UCLA26 0914 0.604 0.839 0.822 0.640 0.782 0.801 0.927 0947 0952 0.946
Virginia63-Wisconsin87 0.839 0.574 0.783 0.850 0.637 0.684 0.730 0.888 0904 0.891 0.919
UCLA26-Wisconsin87 0.820 0.588 0.766 0.810 0.653 0.699 0.724 0.866 0.920 0913 0912

Table 17: Performance benchmark on subgraph classification tasks. From the two Facebook social
networks mentioned in in each row, 100 subgraphs of 30 nodes are sampled. Different logistic
regression classifiers are then trained using eleven different statistics of the sampled subgraphs on
a 50% training set. The classification performance on the other 50% test set is reported as the
area-under-curve (AUC) for the receiver-operating characteristic (ROC) curves. The table shows
the mean AUC over ten independent trials. The best performance in each case is marked in bold.
The standard deviations are reported in Table 31 in the appendix.

We also show a single-linkage hierarchical clustering dendrogram of the MACCs in Figure
21, where two schools whose MACCs are Frobenius distance d away from each other merge
into the same cluster at height d. Similarly, as we have seen in Figure 18, the rightmost
cluster consisting of the private schools S1MMONS, HAVERFORD, CALTECH, and REED is separated
by any other schools by distance as least 4; In the middle, we also observe the cluster of public
schools including MARYLAND, RUTGERS, and UConN. Lastly, we also provide a dendrogram using
the baseline network metric using the normalized number of nodes and average degrees as
used in Figure 19.

Lastly, we also remark that an entirely different approach for network data clustering
as well as an application to the Facebookl00 dataset is presented in Onnela et al. (2012).
There, a given network’s community structure is encoded as a profile of a 3-dimensional
‘mesoscopic response function’ (MRF), which is computed by the multiresolution Potts
model for community detection with varying scaling parameters. MRFs encode the global
community structure of a network, whereas MACCs capture local community structure at
a chosen scale.

6.4 Computational complexity and remarks

We can estimate the the complexity of the MACC-based method as follows: each step of
the Glauber chain update x — x’ has the complexity of order O(kA(F)A(x)), where k
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Figure 18: Multi-dimensional scaling plot of the MACCs of the Facebook100 dataset in Figure 15.
We measured distance between two MACCs using the matrix Frobenius norm.

denotes the number of nodes in the motif F, and A(-) denotes the maximum degree of
a simple graph, and A(-) denotes the maximum degree of the nodes in the image of the
homomorphism x in G. Note the trivial bound A(x) < A(G). By adding up these terms for
a given number of iterations, the average time complexity of a single Glauber chain update
is approximately O(KA(F) - avgdeg(G)), where avgdeg(G) denotes the average degree of
G. For dense networks, avgdeg(G) maybe large but the mixing time of the Glauber chain is
small (see Theorem 2.4); for sparse networks, the Glauber chain takes longer to converge but
avgdeg(G) is small. In our experiments, we used 2nlogn steps of the Glauber chain for each
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Figure 19: A two-dimensional scatter plot of the Facebook100 dataset using the average degree and
the natural logarithm of the number of nodes.

network G with n nodes resulting in the total computational cost of O(nlogn - avgdeg(G)).
One could use fewer iterations to quickly get a crude estimate.

We used a modest computational resource for our experiments: A quad-core 10th Gen.
Intel Core i5-1035G7 Processor and 8 GB LPDDR4x RAM with Windows 10 operating
system. The actual times for computing the MACCs shown in Figure 15 are shown in Ta-
ble 30. The computation can easily be parallelized even for computing MACC for a single
network. Indeed, since the MACC of a given network is computed by a Monte Carlo inte-
gration, one can use multiple Glauber chains on different cores and average the individual
results to reduce the computation time by a large factor. All scripts for replicating the ex-
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Figure 20: Single-linkage hierarchical clustering dendrogram of the Facebook100 dataset using the
21 x 21 matrices of average clustering coefficients (MACC) shown in Figure 15. Two schools with
similar MACCs merge early in the dendrogram. Clusters emerging before level 1 are shown in
non-blue colors.
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Figure 21: Single-linkage hierarchical clustering dendrogram of the Facebook100 dataset using the
normalized Lo-distance using the number of nodes and average degree used in Figure 19. Clusters
emerging before level 0.25 are shown in non-blue colors.

periments can be obtained from our GitHub repository https://github.com/HanbaekLyu/
motif_sampling.

We close this section by pointing out some of the key advantages of our method for the
network clustering problem. Our method can efficiently handle networks of different sizes
without node labels. Indeed, note that the MACC of a given network is invariant under node
relabeling, and regardless of the size of the network, we obtain a low-dimensional represen-
tation in the form of a MACC of fixed size, which can be tuned as a user-defined parameter
(by making different choices of the underlying motif F). Also, as we have discussed in the
previous paragraph, MACCs are interpretable in terms of the average clustering structure
of the network so we can interpret the result of a clustering algorithm based on MACCs.

7. Application II: Textual analysis and Word Adjacency Networks

Function word adjacency networks (WANs) are weighted networks introduced by Segarra,
Eisen, and Ribeiro in the context of authorship attribution (Segarra et al., 2015). Function
words are words that are used for the grammatical purpose and do not carry lexical meaning
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on their own, such as the, and, and a (see Segarra et al. (2015) for the full list of 211 function
words). After fixing a list of n function words, for a given article A, we construct a (n x n)
frequency matriz M (A) whose (7,7) entry m;; is the number of times that the ith function
word is followed by the jth function word within a forward window of D = 10 consecutive
words (see Segarra et al. (2015) for details). For a given article A, we associate a network
G(A) = ([n], A, ), where @ = 1/n is the uniform node weight on the function words and
A is a suitable matrix obtained from normalizing the frequency matrix M(A). In Segarra
et al. (2015), the authors used row-wise normalization to turn the frequency matrix into a
Markov transition kernel and then used Kullback—Leibler (KL) divergence to compare them
for a classification task. Use the same normalization for the same purpose (see Table 23). In
all other simulations, we use the global normalization A = M (A)/ max(M(A)) as it leads
to more visually distinctive CHD profiles among different authors (see, e.g., Figure 35).

The particular data set we will analyze in this section consists of the following 45 novels
of the nine authors listed below:

1. Jacob Abbott: Caleb in the Country, Charles I, Cleopatra, Cyrus the Great, and Darius
the Great

2. Thomas Bailey Aldrich: Marjorie Daw, The Cruise of the Dolphin, The Little Violinist,
Mademoiselle Olympe Zabriski, and A Midnight Fantasy

3. Jane Austen: Northanger Abbey, Emma, Mansfield Park, Pride and Prejudice, and
Sense and Sensibility

4. Grant Allen: The British Barbarians, Biographies of Working Men, Anglo-Saxon
Britain, Charles Darwin, and An African Millionaire

5. Charles Dickens: A Christmas Carol, David Copperfield, Bleak House, Oliver Twist,
and Holiday Romance

6. Christopher Marlowe: Edward the Second, The Tragical History of Doctor Faustus, The
Jew of Malta, Massacre at Paris, and Hero and Leander and Other Poems

7. Herman Melville: Israel Potter, The Confidence-Man, Moby Dick; or The Whale, Omoo:
Adventures in the South Seas, and Typee

8. William Shakespeare: Hamlet, Henry VIII, Julius Cesar, King Lear, and Romeo and
Juliet

9. Mark Twain: Adventures of Huckleberry Finn, A Horse’s Tale, The Innocents Abroad,
The Adventures of Tom Sawyer, and A Tramp Abroad

The frequency matrices corresponding to the above novels are recorded using a list of
n = 211 function words (see supplementary material of Segarra et al. (2015)). These matrices
are sparse and spiky, meaning that most entries are zero and that there are a few entries
that are very large compared to the others. For their visual representation, in the first row
in Figure 3, we plot the heat map of some of the frequency matrices after a double ‘log
transform’ A — log(A + 1) and then normalization B — B/ max(B).
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Next, we find that the corresponding WANs contain one large connected component
and a number of isolated nodes. This can be seen effectively by performing single-linkage
hierarchical clustering on these networks. In Figure 33 we plot the resulting single-linkage
dendrograms for two novels: "Jane Austen - Pride and Prejudice" and "William Shakespeare
- Hamlet". In both novels, the weight between the function words "of" and "the" is the
maximum and they merge at level 1 (last two words in Figure 33 top and the fourth and
fifth to last in Figure 33 bottom). On the other hand, function words such as "yet" and
"whomever" are isolated in both networks (first two words in Figure 33 top and bottom).

7.1 CHD profiles of the novel data set

We compute various CHD profiles of the WANs corresponding to our novel data set. We
consider the following three pairs of motifs: (see Example 3.2)

(Hop, Hopo) :  Hoo = ({0}, 110,0)}) (77)
(Fo1, Fo1):  Foi=({0,1},110,1)3) (78)
(Hi1, Fip) s Hin=({0,1,2},1112)),  Fii=({0,1,2},110,1),02)})- (79)

The CHD profiles of WANSs corresponding to the 45 novels are given in Figures 35, 37, and
39.

Figure 35 as well as the second row of Figure 3 below show the CHD profiles £(Ho 0, G | Ho,0)
for the pair of ‘self-loop’ motifs. At each filtration level ¢ € [0, 1], the value £(¢) of the profile,
in this case, means roughly the density of self-loops in the network G4 whose edge weight
exceed t. In terms of the function words, the larger value of £(¢) indicates that more func-
tion words are likely to be repeated in a given D = 10 chunk of words. All of the five CHD
profiles for Jane Austen drop to zero quickly and vanishes after ¢ = 0.4. This means that in
her five novels, function words are not likely to be repeated frequently in a short distance.
This is in a contrast to the corresponding five CHD profiles for Mark Twain. The rightmost
long horizontal bars around height 0.4 indicate that, among the function words that are
repeated within a 10-ward window at least once, at least 40% of them are repeated almost
with the maximum frequency. In this regard, from the full CHD profiles given in Figure
35, the nine authors seem to divide into two groups. Namely, Jane Austen, Christopher
Marlowe, and William Shakespeare have their (0,0) CHD profiles vanishing quickly (less
frequent repetition of function words), and the other five with persisting (0,0) CHD profiles
(more frequent repetition of function words).

Figure 37 shows the CHD profiles £(Fy1,G | Fo,1). The value £(t) of the CHD profile
in this case can be viewed as the tail probability of a randomly chosen edge weight in the
network, where the probability of each edge (i, j) is proportional to the weight A(é, 7). The
CHD profiles for Mark Twain seem to persist longer than that of Jane Austen as in the
self-loop case, the difference is rather subtle in this case.

Lastly, Figure 39 shows the CHD profiles £(H; 1,G | F1,1). The value £(¢) of the CHD
profile in this case can be regarded as a version of the average clustering coefficient for the
corresponding WAN (see Example 3.1). Namely, the value £(¢) of the profile at level ¢ is
the conditional probability that two random nodes with a common neighbor are connected
by an edge with intensity > ¢. In terms of function words, this is the probability that if
we randomly choose three function words x,y, and z such that x and y are likely to appear
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shortly after z, then y also appear shortly after « with more than a proportion t of all times.
The corresponding profiles suggest that for Jane Austen, two function words with commonly
associated function words are likely to have a very weak association. On the contrary, for
Mark Twain, function words tend to be more strongly clustered. From Figure 39, one can
see that the (1,1) CHD profile of Shakespeare exhibits fast decay in a manner similar to
Jane Austen’s CHD profiles. While the five CHD profiles of most authors are similar, Grant
Allan and Christopher Marlowe show somewhat more significant differences in their CHD
profiles among different novels.

7.2 Authorship attribution by CHD profiles

In this subsection, we analyze the CHD profiles of the dataset of novels more quantitatively
by computing the pairwise L'-distances between the CHD profiles. Also, we discuss an
application in authorship attribution.

In order to generate the distance matrices, we partition the 45 novels into ‘validation
set” and ‘reference set’ of sizes 9 and 36, respectively, by randomly selecting a novel for each
author. Note that there are a total 57 such partitions. For each article ¢ in the validation
set, and for each of the three pairs of motifs, we compute the L'-distance between the
corresponding CHD profile of the article ¢ and the mean CHD profile of each of the nine
authors, where the mean profile for each author is computed by averaging the four profiles in
the reference set. This will give us a 9 x 9 matrix of L'-distances between the CHD profiles
of the nine authors. We repeat this process for 10 iterations to obtain a 9 x 9 x 10* array.
The average of all 10* distance matrices for each of the three pairs of motifs are shown in
Figure 32.

CHD profile (0,0)

CHD profile (0,1) CHD profile (1,1)

twain_4 twain_4 twain_4
twain_1 twain_3 2—,7 twain_1 :_
twain_5 twain_1 twain_5
twain_3 twain_5 twain_3
twain_2 twain_2 twain_2

shakespeare_5
shakespeare_4
shakespeare_3
shakespeare_2

shakespeare_1

n

shakespeare_1
shakespeare_5
shakespeare_3
shakespeare_4

shakespeare_2

-

shakespeare_1
shakespeare_4
shakespeare_3
shakespeare_2

shakespeare_5

—

0.0 0.2 0.4
distance

0.000 0.0'25 0.0'50 0,0'75 O.IVOO
distance

0.000 0.025 0.050 0.075 0.100
distance

Figure 22: Single-linkage dendrogram of the L!-distance matrices between the CHD profiles of the
10 novels of Shakespeare and Twain for the pair of motifs (Hoo, Foo) (left), (Hoi, Fo1) (middle), and
(H11, F11) (right). Most texts of the same author fall into the same cluster.

For instance, consider the middle plot in Figure 32. The plot suggests that Jane
Austen and William Shakespeare have small L'-distance with respect to their CHD pro-
files £(Fo,1,G | Fo,1). From the full list of CHD profiles given in Figure 37, we can see ‘why’
this is so: while their CHD profiles drop to zero quickly around filtration level 0.5, all the
other authors have more persisting CHD profiles.
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Next, note that if we restrict the three distance matrices to the last two authors (Twain
and Shakespeare), then the resulting 2 x 2 matrices have small diagonal entries indicating
that the two authors are well-separated by the three profiles. Indeed, in Figure 22, we
plot the single-linkage hierarchical clustering dendrogram for the L!-distances across the 10
novels by the two authors. In the first dendrogram in Figure 22, we see the five novels from
each author form perfect clusters according to the (0,0)-CDH profile. For the other two
dendrograms, we observe near-perfect clustering using (0,1)- and (1,1)-CHD profiles.

Lastly, in Table 23, we apply our method as a means of authorship attribution and com-
pare its correct classification rate with other baseline methods. We choose five novels for each
author as described at the beginning of this section. In this experiment, for each article A,
we normalize its frequency matrix M (A) row-wise to make it a Markov transition kernel and
then calculate pairwise distances between them by three methods — L'-the distance between
(0,0)-CHD profiles, the KL-divergence, and the Frobenius distance. This normalization is
used in the original article (Segarra et al., 2015), and we find that this generally leads to a
higher classification rate than the global normalization M(A) — M (A)/ max(M(A)). For
the classification test, we first choose k € {1,2, 3,4} known texts and one text with unknown
authorship from each author. For each unknown text X, we compute its distance from the
5k texts of known authorship and attribute X to the author of known texts of the minimum
distance. The classification rates after repeating this experiment 1000 times are reported in
Table 23.

CHD profile (0,0) KL-divergence Frobenius

# known texts 1 2 3 4 1 2 3 4 1 2 3 4

Abbott | 0.87 | 0.92 | 0.95 | 1.00 0.61 | 0.81 | 0.79 | 0.81 0.72 | 0.76 | 0.76 | 0.85

Austen | 1.00 | 1.00 | 1.00 | 1.00 1.00 | 1.00 | 1.00 | 1.00 0.75 | 0.80 | 0.81 | 0.86

Marlowe | 0.52 | 0.74 | 0.74 | 0.72 054 | 0.61 | 0.66 | 0.71 0.24 | 0.26 | 033 | 0.36

Shakespeare | 0.35 | 0.46 | 0.61 | 0.68 092 | 0.95 | 0.97 | 1.00 0.47 | 0.66 | 0.85 | 1.00

Twain | 0.53 | 0.67 | 0.76 | 0.80 0.61 | 0.78 | 0.79 | 0.81 033 | 036 | 032 | 0.33
Average | 0.65 | 0.76 | 0.81 | 0.84 0.73 | 0.83 | 0.84 | 0.87 0.50 | 0.57 | 0.61 | 0.68

Table 23: Success rate of authorship attribution by using CHD profiles, the KL divergence, and the
Frobenius metric for various numbers of known texts per author.

The table above summarizes classification rates among the five authors - Abbott, Austen,
Marlowe, Shakespeare, and Twain. For four known texts per author, the CHD profile gives
84% success rate, which outperforms the Frobenius distance (68%) and shows similar per-
formance as the KL divergence (87%). It is also interesting to note that different metric
shows complementary classification performance for some authors. For instance, for four
known tests, Abbott is perfectly classified by the CHD profile, whereas KL-divergence has
only %81 success rate; on the other hand, Shakespeare is perfectly classified by the KIL-
divergence but only with %68 accuracies with the CHD profile. We also report the average
classification rates for all nine authors: CHD profile (0,0) — 53%, KL-divergence — 77%, and
Frobenius — 41%. The (0, 0)-profile loses the classification score mainly for Aldrich (author
index 1), Dickens (author index 5), and Melville (author index 7). Indeed, in Figure 32
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left, we see the diagonal entries of these authors are not the smallest in the corresponding
rows. A WAN is already a compressed mathematical summary of text data, so running an
additional MCMC motif sampling algorithm and further compressing it to a profile may
lose information that could simply directly be processed. We emphasize that, as we have
seen in Section 6 as well as in Subsection 7.1, our method is more suitable for extracting
interpretable and low-dimensional information from large networks.
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Appendix A. Motif transforms and spectral decomposition

In this section, we compute the motif transform by paths using a certain spectral decompo-
sition and consider motif transforms in terms of graphons. We denote the path and cycle

motifs by P, = ([k], 1{(1,2),2.3), ,(k=1,6)}) and Cr = ([K], 1{(1,2), (k=1,k),(k,1)})> TeSDeCtively.
A.1 Motif transform by paths

For any function f : [n] — [0, 1], denote by diag(f) the (n x n) diagonal matrix whose (i,1)
entry is f(7). For a given network G = ([n], A, ), observe that

k—1
(P, G)a(x) PAR (a, ap)a(a) T2 = Y T Vel Az zer)Valwe)

x2, w1 €[n] £=1

(80)
= | (diag(v/a) Adiag(va) | . (81)

If we denote B = diag(y/a) A diag(y/a), this yields
t(Py, G) AT = diag(v/a) B* ' diag(v/a). (82)

Since B is a real symmetric matrix, its eigenvectors form an orthonormal basis of R™.
Namely, let A\ > Ay > -+ > A, be the eigenvalues of B and let v; be the corresponding
eigenvector of A\;. Then v; and v; are orthogonal if 7 # j. Furthermore, we may normalize
the eigenvectors so that if we let V' be the (n x n) matrix whose ith column is v;, then
VTV = I,, the (n x n) identity matrix. The spectral decomposition for B gives B =
V diag(A1, -+, A\n) VT, Hence

t(Py, G) A = diag(va)V diag Ay, -+, M) VT diag(va), (83)

or equivalently,

t(Pk,gAszy Zx\k 1\/a i)vg(i \/a Jve(j (84)

where v/(i) denotes the ith coordinate of the eigenvector vy. Summing the above equation

over all i, j gives
n

(P, G) =D A (Vo ), (85)

(=1

where (-,-) denotes the inner product between two vectors in R"™. Combining the last two

equations yields
PR > IRV AU NG TIE) )
zzzl Ay (\/57?@2
Now suppose G is irreducible. Then by Perron-Frobenius theorem for nonnegative ir-
rducible matrices, A; is the eigenvalue of B with maximum modulus whose associated
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eigenspace is simple, and the components of the corresponding normalized eigenvector vy
are all positive. This yields (y/a,v1) > 0, and consequently

_ 1 T
A= lim AT = ——__dj I :
A A Va, vl>2dlag(\/a)vlvl diag(v/a) (87)

If G is not irreducible, then the top eigenspace may not be simple and \; =--- = A\, > A\pqq
for some 1 < r < n. By decomposing A into irreducible blocks and applying the previous
observation, we have (y/a,v;) > 0 for each 1 <i <7 and

_ 1
A= lim A" = ————diag( viv] | diag( 88
k—o0 > e (Va,v1)? B(va (Z ) 8(va). (83)

We denote G = ([n], 4, @) and call this network as the transitive closure of G.

It is well-known that the Perron vector of an irreducible matrix A, which is the normalized
eigenvector corresponding to the Perron-Frobenius eigenvalue A\; of A, varies continuously
under small perturbation of A, as long as resulting matrix is still irreducible Kato (2013).
It follows that the transitive closure G of an irreducible network G is stable under small
perturbation. However, it is easy to see that this is not the case for reducible networks (see
Example A.5).

Below we give an example of motif transform by paths and transitive closure of a three-
node network.

Example A.1 (Transitive closure of a three-node network) Consider a network G =
([3], A, @), where a = ((1 — €)/2,¢,(1 —€)/2) and

1 s 0
A=1|s 1 s (89)
0 s 1
Then G is irreducible if and only if s > 0. Suppose s > 0. Also, note that
(1—¢)/2 s/ (1—¢€)e/2 0
diag(v/a) Adiag(va) = [s4/(1 — €)e/2 € sv/(1—e€)e/2] . (90)
0 sv/ (1 —€)e/2 (1—¢)/2

The eigenvalues of this matrix are

N = 1 ; €
A = % ((e +1) — /(Be — 1)2 — 165%(1 — e))
Ay = % ((e +1)+ /(Be — 1)2 — 165%(1 — e))
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and the corresponding eigenvectors are
Vg = (_1) O) ]-)T (91)
T
o — (1 3¢ — 1 — /(3¢ — 1)2 + 1652¢(1 — ¢) . (92)
- , 254/2€(1 — €) ’
T
L Be—1+ vV (Be — 1)2 4+ 1652¢(1 — ) .
vy = |1, )
" 254/2¢(1 —¢)

The Perron-Frobenius eigenvector of the matrix in (90) is v;. Then using (87), we can
compute

(93)

1/4 0 1/4 -5 5 —s
A=10 0 0 |+e|ls 0 s|+0(H). (94)
1/4 0 1/4 -5 5 —s

Hence in the limit as € \ 0, the transitive closure of G consists of two clusters with uniform
communication strength of 1/4. However, if we change the order of limits, that is, if we first
let € N\, 0 and then k — o0, then the two clusters do not communicate in the limit. Namely,
one can compute

1/2 0 0 —(k—1)s*—-2s s ks*
APv=10 0 0] +e S 0 5 + O(€?), (95)
0 0 1/2 ks? s —(k—1)s*>—2s

which is valid for all £ > 2. Hence for any fixed k > 1, the motif transform of G by P gives
two non-communicating clusters as € N\, 0. A

A.2 Motif transform of graphons

Recall the n-block graphon Ug : [0,1]2 — [0, 1] associated with network G = ([n], 4, @),
which is introduced in (52). For each graphon U and a simple motif F' = ([k],1(E)) with
k > 2, define a graphon U by
1
F _ . o
U (z1,21) = S0 /[0,1]k2(.]‘;£EU(%$])d$2 drp_1. (96)
Z?]

It is easy to verify that the graphon corresponding to the motif transforms G agrees with
(Ug)¥. Below we give some examples.

Example A.2 (path) Let Py be the path motif on node set [k]. Let U : [0,1]? — [0, 1] be
a graphon. Then

t(Pk,U)UP’“(xl,xk):/[ Ul ) Ul ) dey - des. O
0,1]k—

We denote the graphon on the right-hand side as U°*~1) | which is called the (k—1)st power
of U. A
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Example A.3 (cycle) Let C be a cycle motif on node set [k]. Let U : [0,1]*> — [0,1] be
a graphon. Then

t(C, U U (21, 1) :U(:cl,:vk)/[ " 2U(CC]_,‘TQ)"‘U(iUk_l,ﬂjk)de"’dﬂ?k_l (98)
0,1]%—
= U(xl,a:k)UO(kfl)(:cl,xk). (99)

A
Below, we give an explicit example of motif transforms applied to graphons.

Example A.4 Let G = ([3], A, @) be the network in Example A.1. Let Ug be the corre-
sponding graphon. Namely, let [0,1] = I; U I U I3 be a partition where I1 = [0, (1 —¢)/2),
I, =[1-¢)/2,(1+¢)/2), and I3 = [(1 4+ €)/2,1]. Then Ug is the 3-block graphon taking
value A(i,7) on rectangle I; x I; for 1 < ¢,j < 3. Denoting U = Ug, the three graphons U,
U°2 and U - U°? are shown in Figure 24.

sP(1—€/4) +e€

I I 15
. /\ —
~ o
1 a 2 1 %
L 1 S 0 S+ (s? = 1/2)e 4 s 702 -1/2)e | 0

o~ o~
~ ~
‘ ) o,

L, S 1 S s/2+se/2 s/2+se/2 s2/2 + s%e/2 s2/2 + s%e/2
‘ ™~ Q
Py o

I 0 S 1 s%e T %4—(52 - 1/2)¢ 0 b %+(52 —1/2)¢
‘ N N
v NU)

U Ue? U- U2

Figure 24: Graphons U = Ug (left), U°? (middle), and U - U°? (right). These are three-block
graphons with the same block structure I; x I; for 1 < 4,5 < 3 whose values on each block are
depicted in the figure.

According to the previous examples, we have

U02 U- Uo2
Ub — Ués = — = 100
t(P3,U)’ t(C3,U)’ (100)

where t(P3,U) = |[U°2||; and t(Ps3,U) = ||[U-U®2||;. See Figure 11 for hierarchical clustering

dendrograms of these graphons. A

A.3 Spectral decomposition and motif transform by paths

In this subsection, we assume all kernels and graphons are symmetric.
A graphon W : [0,1]> — [0,1] induces a compact Hilbert-Schmidt operator Ty on
£2[0, 1] where

1
Ty (f)() = /0 W 9)  (y) dy. (101)
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Tw has a discrete spectrum, i.e., its spectrum is a countable multiset Spec(W) = {1, Aa, -+ - },
where each eigenvalue has finite multiplicity and |A,| — 0 as n — oco. Since W is assumed
to be symmetric, all A\;s are real so we may arrange them so that \; > Ao > ---. Via a
spectral decomposition, we may write

W(z,y) =Y Aifi(@) f(v), (102)
j=1

where fol fi(x)fj(xz)dx = 1(i = j), that is, f; is an eigenfunction associated to \; and they
form an orthonormal basis for £2[0, 1].

Let Py be the path on the node set [k]. Let U be a graphon with eigenvalues A\; > Ay >
--+. Orthogonality of the eigenfunctions easily yields

AEF() T
UPk(ZL‘,y): Zi ]f]( )f](y) - (103)
> A (J fi(@1) dar)
Further, suppose the top eigenvalue of U has multiplicity » > 1. Then
_ Tt () fe
r.9) = Jim UP(,y) = 0=t S0 (104
— 00

Sy ([ fi@) da)®

Note that (103) and (104) are the graphon analogues of formulas (84) and (88).
The network and graphon versions of these formulas are compatible through the following
simple observation.

Proposition A.1 Let G = ([n], A, ) be a network such that A is symmetric, and let U = Ug
be the corresponding graphon (see (52)). Let A € R and v = (vy,--- ,v,)T € R™ be a pair of
an eigenvalue and its associate eigenvector of the matriz B = diag(\/a) A diag(y/a). Then
the following function f, :[0,1] - R

1(z € L) (105)

n
U
fol@) =) ———=
o V)
is an eigenfunction of the integral operator Ty associated to the eigenvalue \. Conversely,

every eigenfunction of Ty is given this way.

Proof First observe that any eigenfunction f of Ty must be constant over each interval I;.
Hence we may write f =) a;1(I;) for some a; € R. Then for each z € [0, 1],

1
Ty(f)(x) = /0 Ule,y)f () dy (106)
1
= /0 ZA(i,j)l(:reIi)l(yGIj) ar 1(y € Iy) dy (107)
1,7,k

= Y 1z el ZA(i,j) a(j) aj. (108)

i
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Hence f is an eigenfunction of Ty with eigenvalue A if and only if

n
> A j)a(jla; = Aa; V1<i<n, (109)
j=1
which is equivalent to saying that u := (a1, --,a,)? is an eigenvector of the matrix
Adiag(a) with eigenvalue A. Further note that A diag(a)u = Au is equivalent to
B diag(v/a)u = Adiag(yv/a)u. (110)
Writing v; := aj/a(i), then shows the assertion. [ |

Remark A.1 (Ruiz et al,, 2021, Lem. 2) states a similar observation for associating eigen-
value/eigenvector pairs of a network with that of the associated graphon. While our state-
ment holds for general probability distribution a on the node set [n], in the reference, the
uniform probability distribution o = 1/n is assumed. In this special case, (109) reduces to

A
Au = U (111)

as stated in (Ruiz et al., 2021, Lem. 2).

When a graphon U is not irreducible, its top eigenspace is not simple and its dimension
can change under an arbitrarily small perturbation. Hence formula (104) suggests that the
operation of transitive closure U — U is not stable under any norm. The following example
illustrates this.

Example A.5 (Instability of transitive closure) Let f; = 1([0, 1]) and choose a func-
tion fo : [0,1] — {—1,1} so that fol fa(x)dx = 0. Then ||f2]]2 =1 and (f1, fo) = 0. Now fix
€ > 0, and define two graphons U and U, through their spectral decompositions

U=f®fi+foxfs and U= fi@ fi+(1—¢€)fa® fo, (112)

where (f; @ f;)(z,y) = fi(z)fj(y). Then by (104), we get U = U and U, = f; ® f1. This
yields
e(U—-U)=cfa®@ fo=U—U.. (113)

A

Appendix B. Proof of convergence and mixing time bounds of the
Glauber and pivot chains

In this section, we establish convergence and mixing properties of the Glauber and pivot
chains of homomorphisms F' — G by proving Theorems 2.1, 2.4, 2.2, 2.5, and Corollary 3.1.
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B.1 Convergence and mixing of the pivot chain

Let (x¢)¢>0 be a pivot chain of homomorphisms F' — G. We first show that the pivot chain
converges to the desired distribution 7p_,g over [n]!*!, defined in (9). Recall the a is the
unique stationary distribution of the simple random walk on G with the modified kernel
(21). In this subsection, we write a rooted tree motif F' = ([k], Ar) as ([k], Er), where
Ep ={(i,5) € [k]*| Ap(i,j) = 1}.

Proof of Theorem 2.2 . Since the network G is irreducible and finite, the random walk
(x¢(1))¢>0 of pivot on G with kernel P defined at (21) is also irreducible. It follows that
the pivot chain is irreducible with a unique stationary distribution, say, . We show m
is in fact the desired measure mp_,g. First, recall that x;(1) is a simple random walk on
the network G modified by the Metropolis-Hastings algorithm so that it has the following
marginal distribution as its unique stationary distribution: (see, e.g., (Levin and Peres, 2017,
Sec. 3.2))

Zx27... k€N H(i,j)eEF Az, xj)a(fvl)a(QQ) )
t(F,G)

(1) = (114)

Second, we decompose x; into return times of the pivot x¢(1) to a fixed node x; € [n] in G.
Namely, let 7(¢) be the ¢th return time of x4(1) to 1. Then by independence of sampling

x; over {2,--- , k} for each t, the strong law of large numbers yields
| M
Jim D 1%y (2) = w2, - X (k) = ) (115)
(=1

[ijren, Alwi zj)a(rs) - - - olz)

— . 116
oo oo sy A 2;)aa) - alan) (116)

Now, for each fixed homomorphism x : ' — G, i — x;, we use the Markov chain ergodic
theorem and previous estimates to write

(x) = ]&gnoo% 1(x; = x) (117)
7N _ N _
— lim %:t:() 1(Xt - X) Zt:O I(Xt(l) - l’l) (118)
N=oo 3 il 1(xe(1) = 1) N
_ H{i,j}EEF Alai, l’j)a(l’g) - o) () (1’1) (119>
2192,.-- zR<n H{i,j}eEp A, xj)o(w2) - - - alg)
[iiner, Al@i,zj)a(zr)a(zs) - - - alzy)
— ~{}eEr tJ(F 5 = Trg(X). (120)
This shows the assertion. [ |

Next, we bound the mixing time of the pivot chain. Our argument is based on the
well-known bounds on the mixing time and meeting time of random walks on graphs.
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Proof of Theorem 2.5. Fix a rooted tree motif F = ([k], Er) and a network G =
([n], A, ). Let P denote the transition kernel of the random walk of pivot on G given at
(21). Note that (ii) follows immediately from the equality in (i) and known bounds on
mixing times of random walks (see, e.g., (Levin and Peres, 2017, Thm 12.3 and 12.4)).
Now we show (i). The entire pivot chain and the random walk of the pivot have the
same mixing time after each move of the pivot, since the pivot converges to the correct
marginal distribution 7() induced from the joint distribution Tr_g, and we always sample
the non-pivot nodes from the correct distribution conditioned on the location of the pivot.
To make this idea more precise, let y : [k] — [n] be an arbitrary homomorphism F — G
and let (x¢)¢>0 denote the pivot chain F' — G with xo = y. Write 7 = mp_,g and 7 for the
distribution of x;. Let 7(*) denote the unique stationary distribution of the pivot (x;(1))s>o.
Let x : F' — G be a homomorphism and write x(1) = 1. Then for any ¢ > 0, note that

- Az, xj) ) af2) - - afx
P(x; = x | x,(1) = 21) = <H(“)€EF ( )) (r2): o) (121)

szw- JTEEn] (H(z‘,j)eEF A(l"z’, %)) 04(1‘2) e oz(:rk)
=Pr(xt = x| x¢(1) = 21). (122)

Hence we have
[me(x) = m(x)| = [P(xe(1) = @1) = 7D (@1)] - Pl = x| x4(1) = @1). (123)
Thus summing the above equation over all homomorphisms x : ' — G, we get

1

I = 7llrv = 5 Y Im(x) - w(x)] (124)
x:[k]—[n]
= Y B = ) 7 Oan)] (125)
z1€[n]
=[P (y(1),-) = 7D (1) ey (126)

This shows (i).

To show (iii), let (X¢)¢>0 and (Y;)¢>0 be two independent random walks on G with kernel
P, where at each time ¢ we choose one of them independently with equal probability to move.
Let tps be the first time that these two chains meet, and let 7); be their worst-case expected
meeting time, that is,

TV = Inax E[tM ‘ X() = x(),i/o = yo]. (127)

x0,Y0€[n]

Then by a standard coupling argument and Markov’s inequality, we have

|P!(@,) = allrv < P(X: # Yi) = Pltar > t) < 2. (128)

By imposing the last expression to be bounded by 1/4, this yields ¢,,i,(1/4) < 4715;. Hence
we get

tmiz(€) < 41arlogy(e7h). (129)
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Now under the hypothesis in (iii), there is a universal cubic upper bound on the meeting
time 737 due to Coppersmith, Tetali, and Winkler (Coppersmith et al., 1993, Thm. 3). This
shows (iii). [ |

Lastly in this subsection, we prove Corollary 3.1 for the pivot chain. The assertion for
the Glauber chain follows similarly from Theorem 2.1, which will be proved in Subsection
B.3.

Proof of Corollary 3.1. Let F' = ([k], Er) be a directed tree motif and G = ([n], A, @)
be an irreducible network. Let (x¢):>0 be a pivot chain of homomorphisms F' — G and let
T 1= mp_g be its unique stationary distribution. To show (50), note that

. 1 . . i
Jim ST T 1AGa@). ()0 = 1) (130)
t=1 1<i j<k
—Er | [ MAGa(), %) ) > 1) (131)
1<34,j<k
o . . A\VA (’L,])
— Prog ( min ACx(i) x() zt>, (132

where the first equality is due to Theorem 2.3. In order to show (49), note that

N
1 A
Jm > T A xi() (133)
t=11<i,5<k
=E. | [ Ax@),x())*#¢7) (134)
1<4,5<k

= 2 | I A=) t(F.9)

x:[k]—=[n] \1<i,5<k

(135)
_ H A(X(i)’X(j))AH(i,j)-l-AF(i,j) &(X(l)) o CE(X(/{)) (136)
. - t(F,G)
x:[k]—=[n] \1<4,5<k

_W(H,9)

- T FG —t(F+ H,G|F). (137)

For the last equation (51), we fix 1,z € [n]. By definition, we have
A (21, 21) = By [1(x(1) = 21, x(k) = 73)] - (138)
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By similar computation as above, we can write

lim %Z T AGxe(i), xe ()0 | 1(xe(1) = @1, x4(E) = ) (139)

=Ex || T AGu().x()™ @) | 1(x(1) =20, x(k) =) | (140)
1<i,j<k
=t(F+ H,G|F)Er,_; [1(x(1) = 21, x(k) = x3)] . (141)
Hence the assertion follows from (138). [ ]

B.2 Concentration of the pivot chain and rate of convergence

Proof of Theorem 2.6. This is a direct consequence of McDirmid’s inequality for Markov
chains (Paulin et al., 2015, Cor. 2.11) and the first equality in Theorem 2.5 (i). [ |

Next, we prove Theorem 2.7. An essential step is given by the following lemma, which
is due to Hayes (2005) and Kallenberg and Sztencel (1991). Let H be Hilbert space, and let
(Xt)e>0 be a sequence of H-valued random ‘vectors’. We say it is a very-weak martingale if
Xo =0 and

E[Xy| X=X,  Vt>0. (142)

Lemma B.1 (Thm. 1.8 in (Hayes, 2005)) Let (X¢)i>0 be a very-weak martingale tak-
ing values in a Hilbert space H and || Xiy1 — X¢|| <1 for allt > 0. Then for any a > 0 and
t>0,

2

P(||X:]| > a) < 2¢%exp (‘22) . (143)

Proof The original statement (Hayes, 2005, Thm. 1.8) is asserted for a Euclidean space
E in place of the Hilbert space H. The key argument is given by a discrete-time version
of a Theorem of Kallenberg and Sztencel (1991, Thm. 3.1), which is proved by Hayes in
(Hayves, 2005, Prop. 1.5) for Euclidean space. The gist of the argument is that given a very-
weak martingale (X);>0 in a Euclidean space with norm ||-||, we can construct a very-weak
martingale (Y;);>0 in R? in such a way that

Xells X ealls X1 = Xell) = (1¥ell, 1Yerall2, [Vern = Yell2)- (144)

By examining the proof of Hayes (2005, Prop. 1.5), one finds that the existence of such a
2-dimensional ‘local martingale’ is guaranteed by an inner product structure and complete-
ness with respect to the induced norm of the underlying space. Hence the same conclusion
holds for Hilbert spaces. |
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Proof of Theorem 2.7. We use a similar coupling idea that is used in the proof of Levin
and Peres (2017, Thm. 12.19). Recall that t,,;, = tgizx by Theorem 2.5 (i). Fix an integer
r > t%m(e) = tmiz(€). Let Q = [n]* and fix a homomorphism z : F — G for the initial
state of the pivot chain (x;)¢>o. Let 7 denote the law of x; and let 7 := wp_g. Let u, be
the optimal coupling between ¢ and m, so that

> (x,y) = llm — 7llzv. (145)
XAy

We define a pair (y¢,z;) of pivot chains such that 1) The law of (yo,z0) is p, and 2)
individually (y:)¢>0 and (z:):>0 are pivot chains F' — G, and 3) once these two chains meet,
they evolve in unison. Note that (y:):>0 has the same law as (X,4+¢)r>0. Also note that by
the choice of r and u,,

P(yo # 2zo) = |7t — 7|7y < e. (146)

Now let ‘H be a Hilbert space and let g :  — H be any function. By subtracting
E(g(x)) from g, we may assume E;(g(x)) = 0. Then by conditioning on whether yo = zg
or not, we have

N N
P ( Zg(xr+t) > N5> =P ( ZQ(Yt) > N5> (147)
t=1 t=1
N
<P ( > g(z)| > N5) + P(yo # 2o0)- (148)
=1

The last term is at most € by (146), and we can apply Lemma B.1 for the first term. This
gives the assertion. |

B.3 Convergence and mixing of the Glauber chain

In this subsection, we consider convergence and mixing of the Glauber chain (x;);>¢ of
homomorphisms F' — G. We first investigate under what conditions the Glauber chain is
irreducible.

For two homomorphisms x,x’ : F' — G, denote x ~ x’ if they differ by at most one
coordinate. Define a graph S(F,G) = (V, ) where V is the set of all graph homomorphisms
F — G and {x,x'} € £ if and only if x ~ x’. We say x' is reachable from x in r steps if
there exists a walk between x’ and x of length r in S(F, G). Lastly, denote the shortest path
distance on S(F,G) by drg. Then dpg(x,x’) = r if x" is reachable from x in r steps and r
is as small as possible. It is not hard to see that the Glauber chain (x¢);>0 is irreducible if
and only if S(F,G) is connected. In the following proposition, we show that this is the case
when F' is a tree motif and G contains an odd cycle.

Proposition B.1 Suppose F' = ([k], Ar) is a tree motif and G = ([n], A, «) is irreducible
and bidirectional network. Further, assume that the skeleton of G contains an odd cycle.
Then S(F,G) is connected and

diam(S(F,G)) < 2kdiam(G) + 4(k — 1). (149)
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Proof We may assume t(F,G) > 0 since otherwise S(F, G) is empty and hence is connected.
If £ =1, then each Glauber update is to sample the location of 1 uniformly at random from
[n], so the assertion holds. We may assume k > 2.

We first give a sketch of the proof of connectedness of S(F,G). Since G is bidirectional,
we can fold the embedding x : F' — G until we obtain a copy of K (complete graph with
two nodes) that is still a valid embedding F' — G. One can also ‘contract’ the embedding
x’ in a similar way. By using irreducibility, then one can walk these copies of K5 in G until
they completely overlap. Each of these moves occurs with positive probability since G is
bidirectional, and the issue of parity in matching the two copies of K5 can be handled by
‘going around’ the odd cycle in G.

Below we give a more careful argument for the above sketch. Fix two homomorphisms
x,x : F'— G. It suffices to show that x’ is reachable from x in 2kdiam(G) 4+ 4(k — 1) steps.
Choose a any two nodes ¢, ¢’ € [k] such that £ is a leaf in F' (i.e., Ap(¢,i) = 0 for all i € [k])
and they have a common neighbor in F (i.e., Ap(i,£) > 0 and Ap(i,¢') + Ap(¢',i) > 0 for
some i € [k]). Consider the vertex map x(") : [k] — [n] defined by x(V)(5) = x(j) fori # j and
x(M(0) = xMW (). Since G is bidirectional, we see that £ is a homomorphism F — G. Also
note that x ~ x(* and x(!) uses at most k — 1 distinct values in [n]. By repeating a similar
operation, we can construct a sequence of homomorphisms x(1), x® ... x(=2) = y(1) guch
that y uses only two distinct values in [n].

Next, let G denote the skeleton of G, which is connected since G is irreducible and
bidirectional. Suppose there exists a walk W = (ai,aq2, - ,a2,) in G for some integer
m > 0 such that y(1) = a1 and X'(1) = agm—1. We claim that this implies x’ is reachable
from y(») in k(m + 1) + k — 2 steps.

To see this, recall that the walk W is chosen in the skeleton G so that at least one of
A(ag,a3) and A(as,ag)) is positive. Hence with positive probability, we can move all nodes
in y(U[F] at location a; in G to location a3, and the resulting vertex map y : [k] — {az, a3}
is still a homomorphism F' — G. By a similar argument, we can construct a homomorphism
y®) 1 F — G such that y®) (1) = a3 and y® maps all nodes of F onto {as,as}. Also note
that y3) is reachable from y(!) in k steps. Hence we can ‘slide over’ y(!) onto the nodes
{as,as} in k steps. Repeating this argument, this shows that there is a homomorphism
y™ . F — G such that y(™ maps [k] onto {agm_1,a2m} and it is reachable from y() in
km steps.

To finish the proof, we first choose a walk Wy = (a1, a2, -+ ,a2,—1) in the skeleton G
such that a; = y(V(1) and ag,,_1 = /(1) for some integer m > 1. We can always choose
such a walk using the odd cycle in G, say C, and the connectivity of G: first walk from
yM (1) to the odd cycle C, traverse it in one of the two ways, and then walk to x’(1). More-
over, it is easy to see that this gives 2m —2 < 4diam(G). Lastly, since x’ is a homomorphism
F — G with x/(1) = ag;,—1 and since k > 2, there must exist some node ag,, € [m] such that
A(agm—1,a2m) > 0. Since G is bidirectional, we also have A(agy,, azm—1) > 0, so az,—1 and
asm, are adjacent in the skeleton G. Hence we can let W be the walk (a1, az, - , a2m—1, a2m)-
Then y’ is reachable from x in k — 2 steps by construction, and x’ is reachable from y(1) in
E(m+1)+k—2 < 2k(diam(G) 4+ 1) + k — 2 steps by the claim. Hence x’ is reachable from
x in 2kdiam(G) + 4(k — 1) steps, as desired. [ ]
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When F' is not necessarily a tree, a straightforward generalization of the argument in
the Proof of B.1 shows the following.

Proposition B.2 Let F' be any simple motif and G be an irreducible and bidirectional net-
work. Suppose there exists an integer v > 1 with following three conditions:

(i) For eachx € G(F,G), there existsy € G(F,G) such that y is reachable from x in k steps
and the skeleton of y[F)| is isomorphic to K,.

(ii) dg(u,v) < r implies {u,v} € Eg.
(iii) G contains K,41 as a subgraph.
Then S(F,G) is connected and
diam(S(F,G)) < 2k - diam(G) + 2(k — r). (150)

Proof Omitted. u

Next, we prove Theorem 2.1.
Proof of Theorem 2.1.

Proposition B.1 and an elementary Markov chain theory implies that the Glauber chain
is irreducible under the assumption of (ii) and has a unique stationary distribution. Hence
it remains to show (i), that 7 := Pp_,g is a stationary distribution of the Glauber chain.
To this end, write F' = ([k], Ar) and let P be the transition kernel of the Glauber chain.
It suffices to check the detailed balance equation is satisfied by 7. Namely, let x,y be any
homomorphisms F' — G such that they agree at all nodes of F' but for some ¢ € [k]. We will
show that

T(x)P(x,y) = n(y)P(y,%). (151)

Decompose F' into two motifs F; = ([k], A¢) and Fj = ([k], A7), where Ay(i,j) =
Ap(i,j)1(u € {i,j}) and A7) = Ap(i,))L(u ¢ {i,j}). Note that Ap = Aq + AF

Then we can write

m(x)P(x —L_l x(), x(j)) 209 a(x(2
0P = gy || T A< T{{} (x()) (152
)

[T, el AGe(7), x(0) A(x(5). y ()1 AGOLA(x(5), x(0) Al (€), x())} 424
1ceen (TTje AGK), JAGD A x(1) A ) Ale, ) 44(E0a(c)
(153)
(154)

X

x A(x(0),x(0) O Ay (0), y () D a(x(0))aly (0)).

From this and the fact that x and y agree on all nodes j # ¢ in [k], we see that the value
of m(x)P(x,y) is left unchanged if we exchange the roles of x and y. This shows (151), as
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desired. m

To prove Theorem 2.4, we first recall a canonical construction of coupling (X, Y') between
two distributions p and v on a finite set Q such that u(x) A v(xz) > 0 for some z € Q. Let
P =2 recoi(r) Av(xz) € (0,1). Flip a coin with the probability of heads equal to p. If it
lands heads, draw Z from the distribution p~™' A v and let X =Y = Z. Otherwise, draw
independently X and Y from the distributions (1 —p)~!(u —v)1(g > v) and (1 —p)~1(v —
w)1(v > p), respectively. It is easy to verify that X and Y have distributions p and v,
respectively, and that X =Y if and only if the coin lands heads. This coupling is called the
optimal coupling between p and v, since

P(X £Y) =1-p=|lu—vlv. (155)
The following lemma is a crucial ingredient for the proof of Theorem 2.4.

Lemma B.2 Fiz a network G = ([n], A, o) and a simple motif F' = ([k], Ar). Let (x¢)t>0
and (X})i>0 be the Glauber chains of homomorphisms F — G such that X¢ is reachable from
x4. Then there exists a coupling between the two chains such that

c(A,G)t
k

where A = A(F') denotes the mazimum degree of F defined at (7).

Eldpg(xi. %)) < exp (— ) drg(x0,%)). (156)

Proof Denote p(t) = dpg(x¢,x;) for all £ > 0. Let P denote the transition kernel of the
Glauber chain. We first claim that if x; ~ x3, then there exists a coupling between x;4;
and x;_ ; such that

Elp(t +1) (1) = 1) = 1 - 429, (157

Suppose x; and x, differ at a single coordinate, say u € [k]. Denote Np(u) = {i €
(k]| Ap(i,u) + Ap(u,i) > 0}. To couple x; and xj,, first sample v € [k] uniformly at
random. Let p = px, and p' = piyr . Note that p = p' if v ¢ Np(u). If v € Np(u), then
since b := x¢(v) = x}(v) and x¢, X} are homomorphisms F — G, we have pu(b) A p/(b) > 0.
Hence the optimal coupling (X,Y") between p and i are well-defined. We then let x;41(v) =
X and x;_,(v) =Y.

Note that if v ¢ Np(u) U {u}, then X =Y with probability 1 and p(t+1) = 1. If v = u,
then also X =Y with probability 1 and p(t + 1) = 0. Otherwise, v € Np(u) and noting
that (155), either X = Y with probability 1 — ||u — /||y and p(t +1) = 0, or X # Y
with probability ||u — p/[|Ty. In the last case, we have p(t + 1) = 2 or 3 depending on the
structure of G. Combining these observations, we have

Elp(t +1) = 1|p(t) = 1] (158)
<2P(p(t+1) €{2,3}[p(t) =1) = P(p(t +1) =0 p(t) = 1) (159)
<=k (1= 2A[p = 1) - (160)

Further, since p and p’ are determined locally, the expression in the bracket is at most
¢(A,G). This shows the claim.
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To finish the proof, first note that since x¢ and x|, belongs to the same component
of 8(F,G), so do x; and x| for all ¢ > 0. We may choose a sequence x; = xgo),xgl),
) i+l for all 0 <7 < m.

. Then triangle inequality and the

= x} of homomorphisms xgi) : F' — G such that xgi) ~ xg
Use the similar coupling between each pair xil) and XEZH)
claim yields

(p
9 Xt

p(t)

Bl -+ 1)) < 3 Bidu e x5 < (45 ) ot (161)
=0

where we denoted by xgl the homomorphism obtained after a one-step update of the

(4)

Glauber chain from x; . Iterating this observation shows the assertion. u

Remark B.1 In the second paragraph in the proof of Lemma B.2, we always have p(t+1) €
{0,1,2} if A(z,y) > 0 for all x # y € [n]|. In this case, Lemma B.2 holds with c¢(A,G)
replaced by ¢ (A, G), which is defined similarly as in (31) without the factor of 2. A

Now Theorem 2.4 follows immediately.
Proof of Theorem 2.4. Let (x¢):>0 and (x})i>0 be Glauber chains of homomorphisms
F — G. Let P be the transition kernel of the Glauber chain. By Proposition B.1, xq is
reachable from x{, and drg(xo,x()) < 2k(diam(G) + 1). Using the coupling between x; and
x; as in Lemma B.2 and Markov’s inequality give

A G)t
P(x; # x3) = P(dpg(x¢,x;) > 1) < E(dpg(xe, %)) < 2kexp (—C(];g)> (diam(G) + 1).
(162)
Minimizing the left hand side overall coupling between P'(xq, ) and P!(xg, ) gives
A G)t
| Pt (x0, ) — P'(xp,)||rv < 2kexp (_c(kg)> (diam(G) + 1). (163)
Then the assertion follows. |

Remark B.2 Suppose that G is the complete graph K, with g nodes and uniform distribution
on its nodes. Then a homomorphism F' — K, is a g-coloring of F' and it is well-known that
the Glauber chain of q-colorings of F' mixes rapidly with mixing time

toia(®) < [ (L2 ) wiogte/m]. (164)

provided q > 2A (e.g., (Levin and Peres, 2017, Thm. 14.8)). This can be obtained as a
special case of Lemma B.2. Indeed, note that S(F, K,) is connected and has a diameter at
most k. Hence according to Lemma B.2 and Remark B.1, it is enough to show that

qg—2A
qg—A7

(ALK, > (165)
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where the quantity on the left-hand side is defined in Remark B.1. To see this, note that
when G is a simple graph with uniform distribution on its nodes,

_ [supp(px) N supp(pix )|
| supp(pix,v)| V [supp(pixs )]

1= |lpx,0 — px ol v = Z fx,0(2) A pser 0(2) (166)

z€[n]

When we take G = K, it is not hard to see that the last expression in (166) is at most
1—1/(q — A). Hence we have (165), as desired. A

Appendix C. Proof of Stability inequalities

In this section, we provide proofs of the stability inequalities stated in Subsection 77, namely,
Propositions 4.1, 4.2, and 4.1.

Proof of Proposition 4.1. First, write

HO)t(F,W) —+(F,U)| +t(FU)t(H,U) —t(H,W)|
t(F,U)t(F,W)

[(H,U|F) - o(H,W | F)| < &
(167)

Since F' is a subgraph of H, we have t(H,U) < t(F,U) and |Fy| < |Fy|. Hence the
assertion follows by (5). [ ]

In order to prove Proposition 4.2, note that the norm of a kernel W : [0,1]2 — [0, 00)
can also defined by the formula

1 1
/O /0 Wz, 9) f(2)g(y) d dy (168)

W= sup
0<f,9<1

where f, g :[0,1] — [0, 1] are measurable functions.
Proof of Proposition 4.2. Let F' = ([k], Ar) be a simple motif and U, W denote graphons.
Write U = t(F,U)UY and W = t(F, W)W, We first claim that

1T =Wla < 1Apl: - U = Wi, (169)

from which the assertion follows easily. Indeed,

1 _ -
107 =W o = cEmem It WU — (B W)W

1
S Y (E U)W

(C(EW) T = Wlo+ [t(FU) = ¢(FEW)] - [[W]lo)

and we have ||W|o/t(F,U) = |[W¥||o = ||[W¥||1 = 1. Then the assertion follows from (62)
and a similar inequality after changing the role of U and W.
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To show the claim, let f,g : [0,1] — [0,1] be two measurable functions. It suffices to
show that

1 1
/0 /0 F(@1)g(@n) (O (1, 20) — Wy, 2n) drrday

< [lArll - IU = Wio. (170)

Indeed, the double integral on the left-hand side can be written as

/ fang@a) | T] UGw)? @) = T Wz @) day---dw,. (171)
[0,1]™

1<i,j<k 1<i,j<k

We say a pair (i,7) € [k]? a ‘directed edge’ of F if Ap(i,j) = 1. Order all directed edges
of Fas E = {ey,e3, -+ ,en}, and denote e, = (i, j,). Since F is a simple motif, there is
at most one directed edge between each pair of nodes. Hence we can write the term in the
parenthesis as the following telescoping sum

m

Y Uler) - Uler—1)(Uler) = W(en))W(ersa) - Wiem)

r=1
= Z a(zir)ﬁ(wjr)(U(zir7 w]r) - W(Zir7 wjr))7
r=1

where «a(z;,) is the product of all U(eg)’s and W (eg)’s such that e uses the node i, and
B(wj,) is defined similarly. Now for each 1 < r < 'm, we have

/[0 : f(@1)g(zn)a(zi,) B(w;, ) (U(zi,, wj,) — W(zi,, w;,)) dry - - doyp | < ||U = W(o. (172)
The claim then follows. [ |

Lastly, we prove Theorem 4.1. It will be convenient to introduce the following notion of
distance between filtrations of kernels.

dm(U, W) :/OOOHI(UZt)—l(WZt)IIDdt (173)

For its ‘unlabeled’ version, we define

ouw(U.W) = inf du(U. W?) (174)

where the infimum ranges over all measure-preserving maps ¢ : [0,1] — [0, 1].

An interesting observation is that this new notion of distance between kernels interpolates
the distances induced by the cut norm and the 1-norm. For a given graphon U : [0,1]* —
[0,1] and ¢ > 0, we denote by Us; the 0-1 graphon defined by

Usi(@,y) = L(U(z,y) 2 1). (175)
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Proposition C.1 For any two graphons U, W : [0,1]2> — [0, 1], we have

on(U,W) < om(U,W) < 6(UW). (176)
Proof It suffices to show the following ‘labeled’ version of the assertion:
do(U,W) < da(U, W) < di(U,W). (177)
To show the first inequality, note that for any fixed (z,y) € [0, 1]?,
1
/ 1U(z,y) 2 t) —1(W(z,y) > t)dt = W(z,y) — U(z,y). (178)
0
Hence the first inequality follows easily from the definition and Fubini’s theorem:
v-Wie = s [ [ U)W dedy (179)
SxTClo,1]2 |J/S JT
1
= sup // / 11U >t)—1(W >1t) dtdxdy‘ (180)
sxrclo? /s Jr Jo
1
= sup / // LU >t)—1(W >t) dxdydt‘ (181)
SxTC[0,1]2

< / sup // (U>t)—1( W>t)da:dy‘d (182)
0 SxTC[0,1]2

For the second inequality, by a standard approximation argument, it is enough to show
the assertion for the special case when both U and W are simple functions. Hence we may
assume that there exists a partition [0,1]2 = Ry U- - -U R, into measurable subsets such that
both kernels are constant on each R;. Define kernels U O ..., U" by

Ul (z,y) = U(z,y)1{(2,y) € R1U---UR;} + W(z,y)1{(z,y) € Rj;1U---UR,}.

In words, U7 uses values from U on the first j R;’s, but agrees with W on the rest. Denote
by u; and w; the values of U and W on the R;, respectively. Observe that

1 ift e [uj Awj,u; Vw;] and (x,y) € R;

|{U (z,y) >t} — LU (z,y) > t}| = {0 otherwise

This yields that, for any p € [0, c0)
UL, = UL M lo = p(Ry)1{t € [uj Awj,uy v ]}

Now triangle inequality for the cut norm gives

1
[ st = Wit < Zm—w )
0
- //Z\Uj(%y)—U”(w,y)\dxdy

_ //rvxy W (z,y)| dz dy

= U =Wl
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This shows the assertion. [ |

We need one more preparation to prove Theorem 4.1. Let F = ([k],Ap) and H =
([k], Apr) be motifs and U : [0,1]? — [0, 1] be a graphon. For each ¢ > 0, denote

t(H,Us¢; F) :/ H (U (i, ) AH (@) > t) H U( x,,x] @) day - - - day.
0.1]% 1 <5 i<k 1<i,j<k
(183)

Then it is easy to see that

t1(H,U|F)(t) =

H ;). 184
t(F,U)t( 7U2t7 ) ( 8 )
Proposition C.2 Let H = ([k], Ag) and F = ([k], Ar) be simple motifs such that H+ F =
([k], A + Ap) is simple. Fix graphons U,W :[0,1]*> — [0,1]. Then

[€(H, Usis F) = t(H, W F)| < [ Aplls - 60(0, W) + | Agl - 00(Use, War). (185)

Proof Denote Ep = {(i,j) € [k]*|Ar(i,j) > 0} and By = {(i,7) € [k]*| Au(i,j) >
0}. Then by the hypothesis, Fr and Epy are disjoint and F := Er U Ep = {(i,j) €
(k2| Ap(i, ) + A (i, j) > 0}. Write E = {e1, €2, ,em}, where m = |E].

Fix a vertex map [k] — [0, 1], i — z;. For each 1 < ¢ < m, define a; and by by

_ Uley) ife; € Ep b, — W (ep) ifeg € Ep (186)
1(U(eg >t)) ifeg € By, 1(Wi(e, >t)) ifey € Eg.
Then we have
I W@,z =0 [ U,z =]]a: (187)
(i,5)EEH (4,5)EER (=1
I W@,z =0 [ Wsz)=]]b (188)
(4,5)EEH\EF (4,5)EEF =1

Also, we can write the difference between the integrands as the following telescoping sum

H H :Z ccagbppr b —ar - ag_1bg---by) (189)
=1 =1 =1
= colag—by), (190)

T
)

where each ¢y is a suitable product of a;’s and b;’s. Note that since U and W are graphons,
each ¢; € [0,1]. Moreover, say the mth summand corresponds to an edge (i,5) € Ery. By
the assumption on simple motifs, none of a, and b, depend on both coordinates x; and x;
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except a; and by. Hence ¢y can be written as the product fy(z;)ge(z;) of two functions.
Furthermore,

U(.TZ',CC]') —W(.’Ei,ﬂfj) if (’L,j) € Er
ag—by = U (191)
1(U(zj,zj) > t) —1(W(xs,25) > t) if (4,7) € Eq.
Hence if (i,j) € Ep, we get
‘/ ce(ap — bg) day - - - dxy, (192)
[0,1]*

= / fo(xi)ge(x)U(xs, x5) — Wz, z5) deidz; H dzy (193)
[0,1]7=2 \ J[0,1]2 (#i,j
< U= Wi, (194)

Similarly, for (i,7) € Fy, we have

<NU = Waillo. (195)

/ ce(ag — by) dxy - - - dxy,
[0,1]%

Therefore the assertion follows from a triangle inequality and optimizing the bound over all
measure-preserving maps, as well as noting that |Er| = |Ar|1 and |Ex| = ||Am||1- [ |

Now we prove Theorem 4.1.
Proof of Theorem 4.1. Let F = ([k], Ar) and H = ([k], Ag) be simple motifs such that
H + F := ([k], Ar + Ap) is simple. First, use a triangle inequality to write

[£(H,U|F)(t) — £(H,W | F)(1)] (196)

< HEU)C(H, Wiz F) = t(H, Uizt ; F)| + t(H, Uy F)[E(F,U) - t(F, W)
- t(F,U)e(F, W)

(197)

Note that t(F + H,U) < t(F,U) and for each t € [0,1] we have t(H,Us;; F') € [0,1] by
definition. Hence by using Proposition C.2, we get

[£(H,U|F)(t) - £(H, W[ F)(t)] (198)
A : A : A .
< IArl - 00U W) + [|Aulh 00U, War) | [IAF]L - 00U, W) (199)
t(F, W) t(Fv U)

Integrating this inequality over ¢ € [0, 1] and using Proposition C.1 then give
[£(H, U | F)(t) — £(H, W [ F)(®)]h (200)

1 1 |En \ Er|-61(U,W)
< |Ep|-oa(U,W . 201
020 (787777 577 H(EW) 200

We can obtain a similar inequality after we change the roles of U and W. Then the assertion
follows optimizing between the two upper bounds. |
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Appendix D. Network data sets

In Sections 2.2 and 6, we examined the following real-world and synthetic networks:

1.

CALTECH: This connected network, which is part of the FACEBOOK100 data set Traud
et al. (2012) (and which was studied previously as part of the FACEBOOK5 data set ?),
has 762 nodes and 16,651 edges. The nodes represent users in the Facebook network of
Caltech on one day in fall 2005, and the edges encode Facebook ‘friendships’ between
these accounts.

. S1mmons: This connected network, which is part of the FACEBOOK100 data set Traud

et al. (2012) (and which was studied previously as part of the FACEBOOK5 data set ?),
has 1,518 nodes and 65,976 edges. The nodes represent users in the Facebook network
of Simmons on one day in fall 2005, and the edges encode Facebook ‘friendships’
between these accounts.

. REED: This connected network, which is part of the FACEBOOK100 data set Traud

et al. (2012) (and which was studied previously as part of the FACEBOOK5 data set ?),
has 962 nodes and 37,624 edges. The nodes represent users in the Facebook network
of Reed on one day in fall 2005, and the edges encode Facebook ‘friendships’ between
these accounts.

. NYU: This connected network, which is part of the FACEBOOK100 data set Traud et al.

(2012) (and which was studied previously as part of the FACEBOOK5 data set ?7), has
21,679 nodes and 1,431,430 edges. The nodes represent users in the Facebook network
of NYU on one day in fall 2005, and the edges encode Facebook ‘friendships’ between
these accounts.

. Virgin1iAa: This connected network, which is part of the FACEBOOK100 data set Traud

et al. (2012), has 21,325 nodes and 1,396,356 edges. The nodes represent user accounts
in the Facebook network of Virginia on one day in fall 2005, and the edges encode
Facebook ‘friendships’ between these accounts.

. UCLA: This connected network, which is part of the FACEBOOK100 data set Traud et al.

(2012), has 20,453 nodes and 747,604 edges. The nodes represent user accounts in the
Facebook network of UCLA on one day in fall 2005, and the edges encode Facebook
‘friendships’ between these accounts.

WisconsIin: This connected network, which is part of the FACEBOOK100 data set Traud
et al. (2012), has 23,842 nodes and 835,952 edges. The nodes represent user accounts
in the Facebook network of Wisconsin on one day in fall 2005, and the edges encode
Facebook ‘friendships’ between these accounts.

ER: An Erdds—Rényi (ER) network FErdds and Reényi (1959); Newman (2018b), which
we denote by ER(n,p), is a random-graph model. The parameter n is the number
of nodes and the parameter p is the independent, homogeneous probability that each

pair of distinct nodes has an edge between them. The network ER is an individual
graph that we draw from ER(5000, 0.01).
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9. WS: A Watts—Strogatz (WS) network, which we denote by WS(n, k,p), is a random-
graph model to study the small-world phenomenon Watts and Strogatz (1998); New-
man (2018b). In the version of WS networks that we use, we start with an n-node
ring network in which each node is adjacent to its k nearest neighbors. With indepen-
dent probability p, we then remove and rewire each edge so that it connects a pair of
distinct nodes that we choose uniformly at random. The network WS is an individual
graph that we draw from WS(5000, 50, 0.10).

10. BA: A Barabasi-Albert (BA) network, which we denote by BA(n,ng), is a random-
graph model with a linear preferential-attachment mechanism Barabasi and Albert
(1999); Newman (2018b). In the version of BA networks that we use, we start with
ng isolated nodes and we introduce new nodes with ng new edges each that attach
preferentially (with a probability that is proportional to node degree) to existing nodes
until we obtain a network with n nodes. The network BA is an individual graph that

we draw from BA(5000, 50).

11. SBM: We use stochastic-block-model (SBM) networks in which each block is an ER
network Holland et al. (1983). Fix disjoint finite sets C7 U --- U C, and a ko x ko
matrix B whose entries are real numbers between 0 and 1. An SBM network, which
we denote by SBM(C1, ..., Ck,, B), has the node set V = C1U---UC},. For each node
pair (z,y), there is an edge between x and y with independent probabilities Blig, jo],
with indices i, jo € {1,...,ko} such that x € Cj, and y € Cj,. If kg =1 and B has a
constant p in all entries, this SBM specializes to the Erdés—Rényi (ER) random-graph
model ER(n,p) with n = |Ci|. The networks SBM is an individual graphs that we
draw from SBM(C1, ..., Cy,, B) with |C1| = |Cs| = |C3| = 1,000, where B is the 3 x 3
matrix whose diagonal entries are 0.5 and whose off-diagonal entries are 0.001. It has
3,000 nodes and 752,450 edges.

Appendix E. Additional figures and tables
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Figure 25: Computing t(Hy 0, Gn | Fk,0) by time averages of Glauber (red) and Pivot (blue) chains
Fi.0 — Gso for k =0 (left), k = 3 (middle), and k = 9 (right).
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Figure 26: Computing t(Hy 0, Gn | Fr,0) by time averages of Glauber (red) and Pivot (blue) chains
Fro — Got? for k =2 (left), k = 3 (middle), and (right) k = 9 (right).
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Figure 27: Plots of random block matrices By (left), By (middle), and Bs (right). Colors from dark
blue to yellow denote values of entries from 0 to 1, as shown in the color bar on the right.

8

g

Figure 28: Plot of log transforms of the edge weight matrices A; (left), Ay (middle), and Az = AS*
(right). Corresponding color bars are shown to the right of each plot.
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Figure 29: Computing t(H,G, | F) via time averages of Glauber/Pivot chains F' — gg(‘)l’o. The
underlying rooted tree motif F' = ([6], 1{(1,2),(1,3),(1,4),(4,5),(4,6)}) i depicted on the left, and H =
([6], Arr) is obtained from F' by adding directed edges (red) (2,5) and (3, 6).

(HD.U'HU,O) (Fo,l-Fo,l) (H1,1’F1,1)

0 N U s WNKH O

012345678 01234567 8

Figure 32: Heat maps of the average L'-distance matrices between the reference (rows) and valida-
tion (columns) CHD profiles of the nine authors for the pair of motifs (Hoo, Foo) (left), (Ho1, Fo1)
(mlddle), and (H117F11) (I‘lght)
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School Computation time (sec) Number of nodes Average degree
Caltech36 10.32 769 43.32
Reed98 12.78 962 39.11
Simmons81 24.2 1518 43.46
Amherst41 42.96 2235 81.39
Middlebury45 66.72 3075 81.05
Wesleyan43 82.38 3593 76.84
Bucknell39 85.76 3826 83.04
Santa74 87.3 3578 84.82
Rice31 99.9 4087 90.45
Rochester38 122.72 4563 70.74
Princeton12 212.88 6596 88.94
American75 213.68 6386 68.17
ucCe4 225.82 6833 45.47
Yale4 372.48 8578 94.53
Cal65 570 11247 62.48
GWU54 684.86 12193 77.02
Baylorg3 774.84 12803 106.2
Harvardi 809.16 15126 109.03
UCsD34 916.24 14948 59.3
UVAl6e 1105.14 17196 91.8
BU10 1168.94 19700 64.72
OklahomaS7 1186.76 17425 102.44
Auburn71 1426 18448 105.59
UCLA26 1586.6 20467 73.06
NYUS 1810.44 21679 66.03
UGAS0 2088.54 24389 96.28
Wisconsin87 2364.3 23842 70.12
FSUS3 2723.78 27737 74.62
Texas84 5419.02 36371 87.47
Penn94 6759.94 41554 65.56

Table 30: Computation times for computing MACCs of the Facebook100 dataset shown in Figure
15 and number of nodes and the average degree of the corresponding networks. Results are shown
for 30 networks randomly chosen amongst those in the Facebook100 dataset.
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SAMPLING RANDOM GRAPH HOMOMORPHISMS

. degree Avg
Networks (std of AUC) dZZfW d:ngTee d;r;);e diameter assortan.‘vity # cliques clusteri(tg AZ;A:C;)C 1(\1;[11?(; %ﬁ?; %ﬁggj
coef coeff

Caltech36-Simmons81 0.037 0.029 0.022 0.043 0.068 0.040 0.044 0.040 0.027 0.026  0.020
Caltech36-Reed98 0.035 0.054 0.04 0.055 0.033 0.027 0.042 0.038  0.023 0.021 0.025
Caltech36-NYU9 0.034 0.046 0.035 0.036 0.067 0.039 0.034 0.023  0.021 0.025 0.017
Caltech36-Virginia63 0.035 0.041 0.044 0.033 0.112 0.032 0.059 0.031 0.017 0.021 0.019
Caltech36-UCLA26 0.033 0.032 0.042 0.022 0.031 0.046 0.049 0.021 0.017 0.016 0.022
Caltech36-Wisconsin87 0.039 0.069 0.032 0.045 0.088 0.031 0.027 0.037 0.026 0.024 0.020
Simmons81-Reed98 0.035 0.042 0.049 0.031 0.045 0.029 0.027 0.022  0.022 0.023 0.019
Simmons81-NYU9 0.056 0.067 0.058 0.048 0.052 0.068 0.049 0.036  0.02 0.023 0.017
Simmons81-Virginia63 0.037 0.094 0.052 0.039 0.045 0.060 0.053 0.037 0.043 0.035 0.036
Simmons81-UCLA26 0.036 0.057 0.042 0.042 0.057 0.040 0.042 0.021 0.021 0.020 0.018
Simmons81-Wisconsin87 0.022 0.040 0.029 0.030 0.064 0.043 0.031 0.032  0.020 0.020 0.018
Reed98-NYU9 0.027 0.104 0.051 0.031 0.093 0.018 0.030 0.028 0.029 0.031 0.027
Reed98-Virginia63 0.037 0.042 0.043 0.034 0.064 0.043 0.047 0.028 0.023 0.022 0.020
Reed98-UCLA26 0.063 0.042 0.070 0.032 0.068 0.055 0.042 0.029 0.020 0.030 0.025
Reed98-Wisconsin87 0.042 0.041 0.062 0.031 0.065 0.055 0.046 0.025 0.013 0.012 0.013
NYU9-Virginia63 0.053 0.029 0.071 0.056 0.089 0.075 0.053 0.053 0.035 0.031 0.038
NYU9-UCLA26 0.019 0.060 0.026 0.037 0.106 0.024 0.040 0.034 0.029 0.020 0.026
NYU9-Wisconsing7 0.023 0.047 0.024 0.027 0.036 0.037 0.032 0.031 0.031 0.030 0.026
Virginia63-UCLA26 0.035 0.019 0.040 0.030 0.046 0.028 0.046 0.029 0.019 0.020 0.022
Virginia63-Wisconsin87 0.026 0.032 0.041 0.036 0.046 0.035 0.025 0.027 0.026 0.033 0.024
UCLA26-Wisconsing7 0.044 0.041 0.035 0.027 0.112 0.037 0.047 0.031  0.020  0.026  0.026

Table 31: The standard deviations of AUC scores over ten independent trials of the subgraph
classification tasks. See Table 17 for more details.
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Figure 34: Single-linkage dendrogram of WANs corresponding to "Jane Austen

- Pride and Prejudice" (a) and "Shakespeare - Hamlet" (b).
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Hy,
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5000 iterations.
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Hll

([1,2,3],14(1,2),1,3)})- Glauber chain (red)

([152?3]a1{2,3}) and Fi;
and Pivot chain (blue) for 5000 iterations.
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