


up a significant problem: the inherent discrepancies between

the system models and the real world will accumulate errors

throughout the entire execution of the planned actions. Thus,

even if a planner has successfully generated a plan, the

real execution will likely deviate the manipulation from the

desired path and cause task failures. In other cases, if the

initial perception of the system’s state is not reliable [8], or

if the system’s state has been changed during execution due

to human interruptions or environment changes, most open-

loop approaches will merely continue executing without the

capability to actively correct the errors.

In this work, inspired by dynamic window-based ap-

proaches for robot navigation in partially observable envi-

ronments [9], we propose a kinodynamic planning frame-

work for rearrangement-based manipulation with dynamic

planning horizons. In brief, our approach is able to:

1) monitor the planning progress and dynamically deter-

mine the planning horizons, and direct the planning

into more task-relevant subspaces to significantly im-

prove the planning efficiency;

2) react to physical and perception uncertainties online,

and work with imperfect system models, e.g., in-

accurate object geometries, to progressively generate

and execute rearrangement actions while correcting

observed errors;

3) address various rearrangement problems, with and

without explicitly defined goal configurations, to allow

the robot to flexibly interact with all objects to facilitate

the manipulation of the target objects.

II. RELATED WORK

Motion Planning: In physical interaction-based motion

planning problems where the robot-object-environment con-

figurations are constantly changed, kinodynamic planning

has been investigated to jointly model the robot configu-

ration, the robot control, and the system transitions [10].

Among other approaches, sampling-based kinodynamic plan-

ning algorithms have been widely employed due to its great

efficiency and generalizability. As compared with kinody-

namic problems in collision-free environments [11], however,

kinodynamic manipulation planning is much more complex

due to the challenges of the dramatically increased problem

dimensionality, highly nonlinear physics, and uncertainties

in perception. Rearrangement-based manipulation is in par-

ticular a difficult set of problems for kinodynamic planning.

In addition to the aforementioned challenges, as rearrange-

ment is often about the relative reconfiguration between

objects, it is infeasible for a planner to always explicitly

define goal configurations. In this work, inspired by the

work of robot navigation planning in partially observable

or dynamically changing spaces [9], [12], we introduce

progress control into kinodynamic manipulation planning.

By dynamically adapting the planning horizon, our method

is able to progressively plan the manipulation motions with

significantly improved efficiency, and can handle problems

without explicitly-defined goal configurations.

Planning-based Rearrangement: Kinodynamic RRT-based

planning algorithms have shown promising potentials in

rearrangement tasks. Using a problem-specific contact model

under quasi-static assumptions, [13] analytically plans a

diverse set of pushing motions but prohibits object-object

interactions. Based on an efficient physics simulator, multi-

object interactions are enabled, and dynamic motions of

objects, e.g., rolling, can be incorporated [14]. Additionally

by modeling the uncertainties in physics [15], or optimizing

a continuous motion trajectory online [16], grasping in clut-

tered environments has been achieved by locally rearranging

the occluding objects. Further, rearrangement tasks with

relative goals, e.g., sorting, have been addressed by learning-

based Monte Carlo Tree Search [17], and iterative local

search to concurrently manipulate a large amount of objects

[18]. However, the existing approaches either are not able

to address the physical uncertainties during execution, or

require very complex modeling of physics and sophisticated

problem-specific heuristics, making them difficult to be eas-

ily generalized to various rearrangement-based manipulation

problems. In contrast, based on any physical simulators, even

without precise physical models, our proposed framework is

able to react to physical uncertainties online, and generalize

to complex tasks based on simple heuristics.

Learning-based Rearrangement: Recently, data-driven re-

arrangement planning has been extensively studied to tackle

various tasks. In end-to-end settings, pushing-based reloca-

tion [19], multi-object rearrangement and singulation [20],

[21], rearrangement-based grasping [22], etc., have been

formulated as policy-learning problems to reactively generate

robot actions online. Although such approaches have greatly

simplified the system pipeline and allow for direct action

generation purely based on the input images, as a common

challenge, they in general require a large amount of training

data for specific tasks, while the learned models are difficult

to be transferred to achieve different tasks [23].

III. PROBLEM STATEMENT

We formulate rearrangement-based manipulation planning

as a kinodynamic motion planning problem. Given a bounded

workspace W ⊂ SE(2), containing a robot manipulator,

N movable objects to manipulate, and a set O of static

obstacles, we aim to find a sequence of robot motions, called

a motion plan, such that the environment will be rearranged

to reach a state satisfying the goal criterion.

A. Terminology

1) State Space: Formally, we denote the robot state as

qR ∈ QR ⊂ R
r, where QR is the robot configuration space

and r ∈ R is the robot’s degree of freedom. Let the state

of a movable object be qi ∈ Qi ⊂ W , where Qi ⊂ SE(2),
and i ∈ {1, ..., N}. The state space of the planning problem

is then defined by the Cartesian product Q = QR × Q1 ×
... × QN , and a system state q ∈ Q is denoted by a tuple

q = (qR, q1, ..., qN ). A state q is valid only when the robot

does not collide with itself or any static obstacle in O, and

all the movable objects are inside the workspace W . All the





can be defined with simple cost-decreasing functions, non-

optimal heuristics can also successfully drive the search to

find solutions, although without optimality guarantees. As

will be described in Sec. V and shown with experiments,

our planning framework can easily integrate such functions

to achieve various tasks.

While we grow the search tree similarly to kdRRT al-

gorithms, h(·) can be used to inform us about the planning

progress. Given a search tree T rooted at the start state, every

node added in the tree represents a state qt, with its inward

edge representing a control ut that transitioned the state to qt.
During the tree expansion, we monitor the progress and will

execute the current best control segment once good enough

progress, determined by a threshold p ∈ R, can be made by

a leaf node.

Algorithm 1 The dhRRT algorithm

Input: Start state qt0 , goal region QG(·), heuristic h(·), progress
threshold p, tree limit Dmax

Output: Control sequence τ
1: T ← {nodes = {(qt0 , 0)}, edges = ∅}
2: τ ← {}, q∗ ← Null
3: while TIME.AVAILABLE() do
4: T ← EXPANDTREE(T ) ▷ Alg. 2
5: τ ← EVALUATEPROGRESS(T, h, p,Dmax) ▷ Alg. 3
6: if τ ̸= {} then
7: q∗ ← EXECUTECONTROLS(τ) ▷ Observe Real State
8: if q∗ ∈ QG then ▷ Task Complete
9: return

10: end if
11: T ← {nodes = {(q∗, 0)}, edges = ∅}
12: τ ← {},
13: q∗ ← Null
14: continue
15: end if
16: end while

As such, our planning is controlled by a horizon that dy-

namically changes in terms of the current state and motions.

After each execution, our system observes the current state,

which is likely to be different from the plan, and then repeats

this procedure with different dynamically determined hori-

zons, until the goal is reached. Note that, sometimes the robot

can freely move around for a while without touching any

object, hence making no positive progress. This is especially

likely when the robot needs to relocate itself before making

any rearrangement. To allow such motions without enforcing

the robot to manipulate at every step, as well as facilitating

random trap-escaping actions, the planning horizon is further

limited by a threshold, Dmax, of the maximum tree depth. If

not enough progress can be made when Dmax is reached, our

algorithm will execute the best solution so far. The algorithm

is summarized in Alg. 1.

As illustrated in Fig. 2, rather than planning and executing

the entire control sequence, our approach progressively tran-

sitions the system state towards the goal region with control

segments, while observing the state in the real world after

every EXECUTECONTROLS(·), making it possible to close

the manipulation loop to deal with errors along the path. In

practice, the dynamic horizon threshold p can be determined

in terms of the expected magnitude of physical uncertainties,

as well as the granularity of the physics models. By setting p
to a smaller value, the system will be more reactive, however,

less efficient in finding solutions. Meanwhile, the tree depth

limit Dmax can be set to smaller values to avoid getting

trapped in local optimum via more random local motions,

while a larger Dmax can allow more aggressive dynamic

horizon control.

Algorithm 2 ExpandTree(·)

Input: Current motion tree T
Output: Expanded tree T

1: qrand ← SAMPLESTATE()
2: qnear ← FINDNEAREST(T, qrand)
3: for i = 1, ...,M do
4: vi ← SAMPLECONTROL() ▷ In se(2)
5: qi ← Γ(qnear, vi) ▷ State Transition
6: end for
7: (qnew, v

∗)← argmin(qi,vi)
DISTANCE(qi, qrand)

8: u∗ ← JOCOBIANPROJECTION(v∗) ▷ Sec. IV-B
9: if u∗ ̸= Null then

10: T.ADDNODE(qnew) ▷ Expansion
11: T.ADDEDGE((qnear, qnew), u

∗)
12: end if
13: return T

Algorithm 3 EvaluateProgress(·)

Input: Current motion tree T , heuristic h(·), progress threshold p,
tree limit Dmax

Output: Control sequence τ
1: qnew ← T.GETLATESTNODE()
2: τ ← {}
3: if qnew ∈ QG then ▷ Goal Reached
4: τ ← EXTRACTCONTROLS(T, qnew)
5: else if h(T.GETROOT())− h(qnew) > p then ▷ Horizon
6: τ ← EXTRACTCONTROLS(T, qnew)
7: else if T.GETDEPTH() = Dmax then ▷ Depth Limit
8: q′ ← argminq∈T.GETLEAVES()h(q)
9: τ ← EXTRACTCONTROLS(T, q′)

10: end if
11: return τ

B. Jacobian-based Motion Projection

Since we sample robot controls in the end-effector’s

velocity space in se(2) to ensure the generated motions are

constrained to the workspace, we need to project the controls

to the robot’s control space U to enable real robot executions.

As indicated by the function JACOBIANPROJECTION(·) in

Alg. 2, for every new state qnew to be added in the tree, we

check whether the associated control v∗ can be projected to

a valid u∗ to transition the state from qnear to qnew.

Note that, as Jacobian matrix can constantly change

while a control is being applied over a duration [0, D], the

Jacobian-based projection needs to be conducted continu-

ously throughout the transition from qnear to qnew, and

a constant robot end-effector control v∗ can be generally

projected to a smooth trajectory in U . In practice, we address

this by sufficiently discretizing the control duration with a



small interval ∆t, and then calculate the control u∗
i for each

intermediate state qi.
Given a state qi, its Jacobian matrix Ji = JACOBIAN(qRi )

is calculated based on the current robot configuration qRi ∈
QR. The control u∗

i is then obtained by ui = J†
i · v

∗. While

we iterative over qi, we can determine that a control u∗
i is

invalid if: 1) the resulted robot configuration is invalid; or 2)

the manipulability of the robot configuration, calculated by
√

det JiJT
i [27], is smaller than a threshold, indicating that

the robot is going to hit its singularity. If every intermediate

projection is valid, JACOBIANPROJECTION(·) will return

by composing a control trajectory u∗ based on all the

intermediate u∗
i , and will otherwise return Null.

V. EXAMPLE APPLICATIONS

To evaluate our framework, we task the robot with 3
different rearrangement-based manipulation tasks in clutter,

as exemplified in Fig. 1.
1) Grasping: For grasping a target object in clutter, the

robot needs to rearrange the surrounding objects so that the

gripper can reach a stable pre-grasp pose. The major chal-

lenge of this task is that, while the surrounding objects are

being rearranged, the target object is simultaneously moved

by object-object interactions. The task goal is achieved when

the center of the target object (xo, yo) is inside the area

between the two fingers, denoted as GR, and the orientation

of the gripper is roughly aligned with a feasible grasping

angle. Formally, the goal criterion is:

(xo, yo) ∈ GR ∧min
α∈A

|θR − α| ≤ ϵα (1)

where θR is the orientation of the gripper, A is the set of

feasible grasping angles, and ϵα > 0 is a threshold in radians

for which we set to be 0.2 in all experiments.

The heuristic function used by our dhRRT planner for

grasping encourages the gripper to approach the target object.

Let us denote the state of the gripper as (xR, yR, θR) ∈
SE(2), we define the grasping heuristic function hg to take

the following simple form:

hg(q) =wd ·
√

(xR − xo)2 + (yR − yo)2

+wα · |θR − atan(yo − yR, xo − xR)|
(2)

where wd, wα are weighting factors and set to be wd = 0.7,

wα = 0.3 in all experiments.
2) Relocating: The relocating task for the robot is to push

the target object to a circular goal region G centered at

(xG , yG) with a radius of 0.1m. The goal criterion is:

(xo, yo) ∈ G (3)

This is a difficult task since the target object is not neces-

sarily reachable by the gripper, and its motion is indirectly

determined by all other objects. The heuristic function used

by our dhRRT planner is simply defined by the summation

of the distance between the target object and the gripper, and

the distance between the target object and the goal region:

hr(q) =
√

(xo − xR)2 + (yo − yR)2

+
√

(xo − xG)2 + (yo − yG)2
(4)

3) Sorting: The sorting task is to rearrange all the mov-

able objects to separate them into different classes, which are

represented by different colors in our experiments. We denote

by L the number of object classes, and by CHi(q) ⊆ R
2,

i ∈ {1, ..., L}, the convex hull containing all the objects of

the i-th class in state q ∈ Qvalid, then the goal criterion

of sorting is satisfied if all classes have at least a distance

ϵd > 0 from each other. Formally, ∀i, j ∈ {1, . . . , L}:

min
i ̸=j

DISTANCE(CHi(q),CHj(q)) > ϵd (5)

Our dhRRT planner uses a heuristic function similar to

the reward signals in our previous work in [17] for sorting.

Intuitively, a state where the objects are placed closer to each

other for the same class and further apart for different classes

will receive a lower cost value.

VI. EXPERIMENTS

With the three tasks defined in Sec. V, we evaluate the

proposed framework from three aspects relevant to real-world

challenges. First, by increasing the size of the object clutter

(number of objects), we test and report the success rate and

planning efficiency of the planner. Second, we evaluate the

robustness against inaccurate models with quantified model

granularities. Finally, we challenge the planner by introduc-

ing nondeterministic physics to evaluate its reactivity. Our

experiments were conducted both with a real Franka Emika

Panda robot and in the MuJoCo simulator [28]. All objects

were tracked via AprilTags [29].

In addition, we implemented two baseline algorithms to

compare with the proposed dhRRT approach. First, we im-

plemented a kdRRT algorithm modified from [13], and for a

fair comparison, we replaced the physics model with the Mu-

JoCo simulator, and we do not limit the number of concurrent

contacts. Second, we enable kdRRT with replanning, termed

as r-kdRRT, by observing the end states after every execution,

and will trigger replanning if the goal is not reached. In

all experiments, the controls were sampled in the robot

gripper’s velocity space. The linear velocity was bounded

by [−0.2, 0.2]m/s in simulation, but by [−0.1, 0.1]m/s in

the real world for better safety. The angular velocity was all

bounded by [−1, 1]rad/s. The control duration was fixed to

0.2 seconds (grasping, relocation) and 0.4 seconds (sorting).

In addition, all reported planning times were calculated from

the successful runs only, and all the time budgets were set

for planning only, excluding the execution time.

A. Efficiency and Robustness

For this part of our evaluation, we conducted only real-

world experiments as the planning efficiency will be similar

to simulation-based experiments, but the system’s robustness

can be more realistically challenged in the real world.

Example executions for the 3 tasks are shown in Fig. 3.

For the grasping and relocating tasks, we used N = 10 and

N = 20 objects, with one of them being the target object

in each task. The sorting task used 6 objects and 2 classes:

3 blue objects and 3 red objects. For all experiments with

our algorithm and the baseline algorithms, the time budget







The results are reported in Fig. 10. In this experiment, a

shorter interval for applying random perturbations simulates

a higher level of nondeterministic physics. Being consistent

with other experiments, dhRRT outperformed both baseline

planners in efficiency and robustness, which again shows that

the proposed dhRRT planner can focus the planning proce-

dure to more task-relevant subspaces, and facilitates a close-

loop manipulation solution against physical uncertainties in

executing motions plans.

VII. CONCLUSION

We presented a kinodynamic manipulation planning

framework for rearrangement-based manipulation problems.

Based on efficient sampling-based planning, we proposed

to monitor and dynamically adapt the kinodynamic plan-

ning horizons, and progressively transition the system states

towards the goal region by interleaving planning and ex-

ecution, which greatly enhanced the system’s robustness.

Using simple heuristics, we showed that our approach is not

only able to focus the planning on task-relevant subspaces

to significantly improve the planning efficiency, but also

enables implicit definitions of manipulation goals, in contrast

to many traditional goals defined by explicit configurations.

With extensive experiments both in the real world and

in simulation, we demonstrated the proposed approach with

3 challenging rearrangement-based manipulation tasks, and

compared its performance against 2 baseline algorithms.

In terms of efficiency and robustness, we showed that our

approach is significantly faster and is able to complete tasks

under perception uncertainties, local modeling errors, and

nondeterministic physics in the real world.

In future work, we plan to incorporate motions that

alternate the end-effector’s poses across subsequent action

segments, enabling the robot to quickly switch between

different problem subspaces without being constrained to

move continuously in SE(2), so as to improve the efficiency

of rearrangement actions. In addition, we plan to study the

adaptation of the planning horizon in terms of other task-

relevant factors, e.g., the number and distribution of concur-

rent contacts, in order to more tightly close the manipulation

loop. Besides, we will also investigate the optimization of the

local trajectories to reduce the execution time.
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