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Abstract

The classical Hodgkin-Huxley (HH) point-neuron model of action potential generation is four-dimensional. It con-
sists of four ordinary differential equations describing the dynamics of the membrane potential and three gating vari-
ables associated to a transient sodium and a delayed-rectifier potassium ionic currents. Conductance-based models
of HH type are higher-dimensional extensions of the classical HH model. They include a number of supplementary
state variables associated with other ionic current types, and are able to describe additional phenomena such as sub-
threshold oscillations, mixed-mode oscillations (subthreshold oscillations interspersed with spikes), clustering and
bursting. In this manuscript we discuss biophysically plausible and phenomenological reduced models that preserve
the biophysical and/or dynamic description of models of HH type and the ability to produce complex phenomena, but
the number of effective dimensions (state variables) is lower. We describe several representative models. We also
describe systematic and heuristic methods of deriving reduced models from models of HH type.
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1 Introduction

Mathematical and computational models of neuronal activity have played a significant role in the development of
the field of neuroscience, particularly due to the complexity of the nervous system and the need to supplement the
available experimental tools to interrogate neurons and neuronal circuits. Mathematical models have been used to
understand the biophysical and dynamic mechanisms underlying neuronal function and the processing of neuronal
information, to make predictions to be tested experimentally, and as constitutive components of hybrid experimen-
tal/computational tools (e.g., [1–3]).

In this paper we focus on dynamic models of single neurons, assumed to be isopotential (point neurons), where
the electric activity of the neurons is described by a relatively small system of ordinary differential equations (ODEs).
We leave out the equally relevant statistical models of neuronal activity [4], the effects of stochastic components (e.g.,
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intrinsic, synaptic and background noise) and the description of the spatial extension of neurons, all of which deserve
separate papers.

We adopt the pragmatic view that models are constructed to understand certain phenomena with a variety of goals,
and in the context of associated theories (see discussion in [5] and references therein). As such, they can capture
the phenomena at various, often qualitatively different and complementary levels of abstraction. Conductance-based
models describe the electric circuit properties of neurons. Simulations of these models produce patterns of activity
that can be fit to experimental results. In contrast, phenomenological models are constructed to reproduce certain
observed patterns with no a priori link to the biophysical properties of neurons.

There is no well-defined notion of model low-dimensionality in the absence of a reference for model dimension-
ality (how many dimensions make a model low-dimensional?). Because models are dependent on the context and
the phenomena that are investigated (experimental, computational or theoretical), we use a flexible notion of dimen-
sionality reference based on the well known (biophysical) conductance-based point-neuron Hodgkin-Huxley (HH)
four-dimensional point neuron model [6, 7] and its extensions to include additional ionic currents with the same
conductance-based formalism, collectively referred to as models of HH type. Models are low-dimensional as com-
pared to the dimensionality of a corresponding (reference) point-neuron model of HH type, provided they can be
considered as “embedded" in or reduced versions of their reference model.

In Section 2 we describe the conductance-based models of HH type and discuss some of their properties that are
relevant for the models discussed in the remainder of the paper. Low-dimensional models of HH type can be either
systematically reduced from the reference models of HH type or constructed ad-hoc by using the same conductance-
based formalism, but leaving out details that are not necessary for the description of the phenomenon to be in-
vestigated. We discuss these two approaches in Sections 3 and 4. In Section 5 we discuss the construction of
phenomenological (caricature) models. These models are not biophysically linked to the higher-dimensional models
of HH type. Instead, phenomenological models are linked to the models of HH type by their phase-space descrip-
tions; the phase-space diagrams of the phenomenological models can be considered as simplified versions of the
phase-space diagrams of models of HH type. In Section 6 we discuss a number of methods to link phenomeno-
logical and biophysical models in order to make the former biophysically interpretable. In Section 7 we discuss the
well known leaky integrate-and-fire model [8–14] and a number of extensions collectively referred to as models of
integrate-and-fire type. In addition to describing the models and how they are constructed, we discuss the different
ways in which they can be made interpretable in terms of the biophysical properties of neurons. We present our final
remarks in Section 8. A table of acronyms is presented at the end of the paper.

2 Conductance-based models of single neurons

2.1 The Hodgkin-Huxley (HH) model

Conductance-based models of single neurons describe the dynamics of the membrane potential (V ) and a num-
ber of additional state variables associated to the participating ionic currents and other biophysical processes.
Conductance-based models are constructed by first building an (equivalent) electric circuit representation (or model)
of the neuronal circuit (e.g., Fig. 1 in [15] and Fig. 1 in [16]) and then writing the differential equations that mathemat-
ically describe the dynamics of these circuits in terms of the biophysical parameters. For point neurons, the models
consist of nonlinear systems of ODEs.

The Hodgkin-Huxley (HH) model [6,7] is the prototypical conductance-based model that describes the generation
of action potentials as the result of the interplay of the neuronal biophysical properties (Fig. 1). The spike generation
mechanisms are explained in more detail in Section 2.4. In its simplest version, the neuron is assumed to be isopo-
tential. The model describes the evolution of V (mV) and three dynamic variables associated to the transient sodium
(INa) and delayed rectifier potassium (IK ) currents. The current-balance equation is given by

C
dV

dt
= −GL (V − EL)−GNam

3h(V − ENa)−GKn
4(V − EK) + Iapp, (1)
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where t is time (ms), C is the specific capacitance (µF/cm2), GZ (Z = L,Na,K) (µF/cm2) are specific maximal
conductances of the leak current IL, INa and IK , respectively, EZ (Z = L,Na,K) (mV) are the corresponding
reversal potentials, and Iapp is the applied (DC) current (µA/cm2).

The gating variables x (= m,h, n) obey differential equations of the form

dx

dt
= φx

x∞(V )− x
τx(V )

(2)

where x∞(V ) are voltage-dependent activation/inactivation curves (Fig. 1-A), τx(V ) are voltage-dependent time
constants (Fig. 1-B) and φx is a temperature coefficient (not present in the original HH model). The gating variables
x decay towards the voltage-dependent functions x∞(V ) with a speed determined by the voltage-dependent time
constants τx(V ). Fig. 1 shows representative examples of the time courses for V (Fig. 1-C) and the gating variables
(Fig. 1-D).

2.2 The HH formalism: Models of HH type

Strictly speaking, the HH model is the model described by Hodgkin and Huxley for the squid giant axon in their original
paper [6]. Over the years, the equations defining the HH model have been used with parameters fit to data other than
the squid axon, giving rise to different models described by the same type of equations. Moreover, the HH model has
been extended by including additional terms describing a number (Nion) of voltage- and concentration-gated ionic
currents (e.g., Na+ INap, T-, L-, N-, P- and R-type Ca2+, M-, A- and inward rectifying K+, hyperpolarization-activated
mixed Na+/K+ or h-, Ca2+-activated K+) to the current-balance equation, and additional equations describing the
dynamics of the corresponding gating and concentration variables. We refer the reader to [17] for a description of
these currents.

The general form of the current-balance equation for models of HH type reads

C
dV

dt
= −IL −

Nion∑
j

Iion,j + Iapp. (3)

The leak current is given by IL = GL(V − EL). The generic ionic currents Iion,j (j = 1, 2, . . . , Nion) can be either
transient IX = GXm

ahb(V − EX), having two gating variables (m,h), or persistent IZ = GZn
c(V − EZ), having a

single gating variable (n).
Spiking (non-reduced) models of HH type have the same or higher dimensions as compared to the classical HH

model (but see Sections 3 and 4) and can produce more complex behaviors, including bursting [18], mixed-mode
oscillations (MMOs, subthreshold oscillations interspersed with spikes) [19] and clustering [20].

Models of HH type are extensively described in a number of textbooks [17, 21–30]. We refer the reader there for
additional details.

2.3 Systematic reduction of spatial dimensions: From multicompartmental to point neu-
rons models

The HH model used in [6] to investigate the propagation of action potentials along the squid giant axon is a partial
differential equation (PDE). It extends the HH model to include a term involving the second derivative of V with
respect to a space variable along the main axonal axis, assumed to be cylindrical. The resulting cable equation
models are infinite-dimensional. More realistic models include a larger number of dendrites, dendritic branching
and non-uniform geometric and electric properties along dendrites and across the dendritic tree, thus increasing the
model complexity [21].

Mathematical discretization of PDE neuronal models reduces the dimensionality to a finite number. However, this
number is extremely large given the small size requirement for the mathematical approximation to hold.

The point neuron approximation described above, on the other extreme, assumes isopotentiality and drastically
reduces the number of dimensions of the HH model to four (V , m, h, n). The number of dimensions of point neuron
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models of HH type depends on the number and nature of the participating currents. Point neurons are the minimal
models that preserve the electric properties provided by these currents.

The multi-compartment approach [17, 21] is a compromise solution consisting of dividing the dendritic tree into
a number of isopotential compartments. Multi-compartmental models preserve the spatial geometry of dendrites
and dendritic trees as well as the nonuniformity of ionic currents distribution, while significantly reducing the model
dimensionality by relaxing the requirement of being a mathematical approximation of PDE models. These models
can be used to investigate the differential effects of dendritic vs. somatic inputs, which cannot be done with point
neuron models.

Spatially extended models either PDE-based or multi-compartment models are beyond the scope of this article
and will not be discussed further.
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Figure 1: The Hodgkin-Huxley model (1)-(2). A. Voltage-dependent activation/inactivation curves. B. Voltage-dependent time constants.

C. Representative examples of the time courses for V in the spiking (Iapp = 0) and subthreshold oscillations (Iapp = −4.3) regimes. D.

Representative example of the time courses for m, h and n during one spiking period (in between two action potentials) superimposed to the

time course for V (adapted to fit in the range of the other variables) for Iapp = 0. We used the parameter values adapted [17] from the original

model [6].

2.4 Generation of action potentials by the HH model

For low enough values of Iapp in the HH model, V displays subthreshold oscillations (STOs, Fig. 1-C, light coral). For
higher values of Iapp, there is an abrupt transition to spikes (Fig. 1-C, light blue). The spiking dynamics result from
the combined activity of the participating ionic currents and the associated positive and negative feedback effects
provided by the participating gating variables.

From Fig. 1-A, the gating variables m and n activate by depolarization (activating variables), while the variable
h activates by hyperpolarization (inactivating variable). As V increases, m and n increase and h decreases, but m
evolves faster than h and n (Fig. 1-D), which are comparable. This is because the time constant form is much smaller
than the time constants for h and n (Fig. 1-B), and the membrane time constant τ = C/Gl ∼ 3.33 . As a result, as
V increases, first INa = GNam

3h(V − ENa) causes V to increase further (INa drives V towards the depolarized
value of ENa). This positive feedback effect gives rise to the rapid increase in V characterizing a spike. The negative
feedback effects exerted by the delayed decrease of h and increase of n cause the spike to be terminated and
a subsequent hyperpolarization (IK = GKn

4(V − EK) drives V towards the hyperpolarized values of EK ). As V
decreases, m and n decrease and h increases, allowing V to increase again (repolarize), thus initiating a new spiking
cycle.
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Figure 2: Models of HH type: Representative V time courses and excitability types. A. Hodgkin-Huxley (HH) model (type II). The

parameter values were taken from [17] (Section 1.9). B. Wang-Buzsaki (WB) model (type I). The parameter values were taken from [31],

φ = 0.5. C. Morris-Lecar (ML) model (type II). The parameter values were taken from [17] (Section 3.1, second column in table 3.1). D.

Morris-Lecar (ML) model (type I). The parameter values were taken from [17] (Section 3.1, third column in table 3.1).
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2.5 Dynamical mechanisms of action potential generation: Types I, II and III excitability

This excitability classification refers to the qualitatively different ways in which a neuron’s activity transitions from rest
to spiking as measured by the Iapp vs. spiking frequency (I-F) curves [32, 33]. Type I neurons admit arbitrarily small
frequencies and therefore the I-F curves are continuous (Figs. 2-B and -D), while type II neurons have discontinuous
I-F curves (Figs. 2-A and -C). Type II neurons, but not type I neurons, exhibit STOs when appropriately stimulated.
The HH model [6] is type II (Fig. 2-A). An example of type I models is the Wang-Buzsaki model [31] (Fig. 2-B).
The mechanisms underlying the two types of excitability (Figs. 2-C and -D) have been linked to different bifurcation
scenarios (e.g., saddle-node on an invariant circle for type I and subcritical Hopf for type II) [26, 32]. We refer the
reader to the detailed analysis presented in [26]. Type III neurons produce transient spikes in response to stimulation,
instead of periodic (or repetitive) spiking [33, 34]. In this case, the I-F curve is undefined. We note that models of
HH type having the same ionic currents may have different excitability mechanisms [17] when the currents operate in
different parameter regimes. In other words, the type of ionic currents present in a model, per se, do not define the
excitability mechanism.

The differences in the excitability mechanisms can be thought of as a characterization of the dynamics of single
neurons, but they are also translated to differences in the responses of neurons to synaptic inputs as measured by
the phase-response curves (PRCs) and the synchronization properties of the networks in which they are embedded
[17,35,36].

2.6 Integrators and resonators

This classification refers to the qualitatively different ways in which neurons summate inputs. Integrators do it across
a wide range of frequencies, while resonators respond better to some (preferred) input frequencies and therefore re-
spond more selectively to synchronized inputs (coincidence detectors). One classification is based on the existence
(resonators) or absence (integrators) of intrinsic STO (typically damped) (e.g., [26, 37]). In the presence of oscilla-
tions, two inputs are more efficiently communicated upstream when they are separated by an interval equal to the
oscillation frequency than by other interval sizes. However, systems that do not exhibit STOs (sustained or damped)
may exhibit subthreshold resonance (peak in the impedance amplitude profile in response to oscillatory inputs at a
preferred, resonant, frequency) [38, 39] and may show sustained STOs in response to noise (e.g, [40]). Integrators
and resonators have been associated to type I and II excitability, respectively (e.g., [41] and references therein).

3 Systematic reduction of (state) dimensions of models of HH type

This process consists of reducing the number of state variables in the model without losing its ability to produce the
same behavior to an acceptable level of approximation. The reduction process must preserve the type of excitability
and the summation properties described above. We explain the main ideas for the HH model and briefly discuss
extensions to other models of HH type.

3.1 Steady-state approximation of fast gating variables

When τm is much smaller than τh, τn (Fig. 1-B) and the membrane time constant τ , we can make the steady-state
approximation m = m∞(V ) in eq. (1) thus reducing the HH model dimensionality from four to three.
Remark. The steady-state approximation can be applied to other variables with fast dynamics such as INap activation
[42]. However, a more detailed analysis is required when multiple variables are candidates for the steady-state
approximation and the small time constants are not comparable.

3.2 Unsuccessful elimination of dynamically redundant gating variables

The remaining two variables (h and n) are necessary for the HH model to produce action potentials and are biophys-
ically different, but dynamically redundant in the sense that both provide negative feedback effects; both are resonant
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gating variables (their linearized conductances are positive) [38, 39] since h is depolarization-inactivated and is part
of a depolarizing current and n is depolarization-activated but is part of a hyperpolarizing current. Disrupting either
process by making either h = 1 or eliminating IK from eq. (1) reduces the model dimensionality to two. However,
it causes a transition from (stable) limit cycle to (stable) fixed-point behaviors in the resulting 2D INa + IK and INa

models (Fig. 6-C for h = 1 and Fig. 6-D for GK = 0). Therefore, the reduced equations are not a “good" reduced
model. The same occurs if one uses other constant values of h or n in eq. (1).
Remark. One can find 2D INa and INa + IK models (using n = 0 and h = 1, respectively) exhibiting (stable) limit
cycle behavior that are formally a reduced version of 4D models of HH type, but for parameters different from the
original models used (e.g., [26]). In general these reduced 2D models are not an approximation of the 4D models
they are embedded in.

3.3 Successful resolution of the dynamic redundancy

An alternative, successful approach, pioneered in [43], is based on the observation that h and n evolve in a quasi-
symmetric manner with respect to a horizontal axis (Fig. 6-D) since their time constants are comparable in magnitude.
Therefore, one can approximate one as a linear function of the other, thus reducing the model dimensionality to two
and conserving the spiking limit cycle behavior (Fig. 6-A) with approximate attributes (e.g., spike frequency and
amplitude). The resulting 2D model produces an approximate solution to the original (4D) HH model. The same type
of approximations have been done in other models of HH type [42,44]. More details on the systematic approach and
generalizations are provided in [25,43,45].
Remark. The approach described here can be in principle used for other variables such as INap inactivation and IKs

activation when their time constants are comparable as in the models described in [42].

3.4 Constant approximations of slow variables

This type of approximation can be used for the model’s slowest variable (or variables if the slow time constants are
comparable) provided the dynamics is slow enough as compared to the time scale of the dynamic behavior one
wishes to reproduce (e.g., spiking period). However, eliminating a slow variable can qualitatively change the model’s
behavior, particularly in 3D models exhibiting MMOs and bursting , which are absent in 2D models [42,46].

4 Construction of “reduced", biophysically plausible models of HH type

The models we describe here consist of a combination of ionic currents that do not generally include the spiking
currents INa and IK . They are able to produce primarily activity at the subthreshold level that control the resulting
spiking patterns such as spike-frequency adaptation, and exhibit behaviors such as oscillations and resonance, but
their dimensionality is low as compared to the spiking models of HH type in which they could be embedded (obtained
by adding the spiking currents INa and IK ).

While in the absence of these currents the models do not describe the spiking dynamics, for certain parameter
regimes they describe the onset of spikes [26,46,47], and can be supplemented with a mechanism of spike detection
or spike generation (if the onset of spikes is not described by the model) and reset values for the participating
variables, thus generating “artificially" spiking models of integrate-and-fire (IF) type.

What differentiates the modeling approaches described here and in Section 3 is the perspective. The models
described here are constructed ad-hoc. They are not formally reduced from higher-dimensional spiking models
as we did in Section 3, but they can be embedded in (higher-dimensional) spiking models. The two (“top-down"
and “bottom-up") processes are not always reversible since the elimination of the spiking currents is expected to
qualitatively affect the subthreshold dynamics (e.g., [48], compare with [46]).

In principle, any active current (Iion,j) or combination of currents in eq. (3) produces a model. However, models
are constructed with a purpose. Therefore, here we only describe a number of representative models and general
principles to construct them, which can be applied to specific situations. The simplest possible conductance-based
model is for a passive cell having no active currents
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C
dV

dt
= −GL (V − EL) + Iapp (4)

Next in line of complexity are 1D nonlinear models. By necessity, these models have instantaneously fast ionic
currents added to eq. (4). Their presence generates nonlinearities in the otherwise linear passive cell model giving
rise to phenomena such as bistability, and the associated voltage threshold, in certain parameter regimes [26].

4.1 Resonant and amplifying gating variables

This classification is based on the dynamic properties of the gating variables, as defined by the kinetic equation (2),
and the properties of the ionic currents in which they are embedded (see Section 2.2) [26,38,39].

Resonant gating variables can be either hyperpolarization-activated within an outward current (Fig. 3-B, light coral)
or depolarization-activated within an inward current (Fig. 3-B, light blue). They provide a negative feedback effect
endowing the ability of the models to produce resonance and oscillations. Amplifying gating variables, in contrast, can
be either depolarization-activated within an inward current (Fig. 3-A, blue) or hyperpolarization -activated within an
outward current (Fig. 3-A, red). They provide a positive feedback effect enhancing the voltage responses to external
inputs and creating sustained oscillations. We use the notation IRES and IAMP for persistent ionic currents having
a single resonant or amplifying gating variables, respectively, and IRES/AMP for transient ionic currents having both
a resonant and an amplifying gating variables. We refer to the persistent currents having instantaneously fast gating
variables as instantaneously fast currents.

4.2 IAMP + IRES 2D models

The IAMP + IRES models combine an instantaneously fast current IAMP (e.g., INap, IKir, ICa) and a slower current
IRES (e.g., Ih, IKs or IM ). The current-balance equation is given by

C
dV

dt
= Iapp − IL − IAMP (V )− IRES(V, h) (5)

where IAMP (V ) = GXm
a
∞(V )(V − EX) and IRES(V, n) =.

GZn
c(V − EZ). The gating variable n obeys an equation of the form (2).

Remark 1. Additional possible 2D models include: (i) IRES and IAMP models where the gating variables are not
instantaneously fast, (ii) IAMP + IAMP models with an instantaneously fast and a slower gating variables, and (iii)
IAMP + IRES models with more than one instantaneously fast amplifying gating variable.

Remark 2. The 2D INa + IK reduced version of the HH model discussed in Section 3 (elimination of the dynamics
for h) formally belongs to this category.

4.3 IAMP/RES 2D models

They have a single current IAMP/RES combing an instantaneously fast amplifying gating variable (e.g., ICa activation,
IA activation) and a slower resonant gating variable (e.g., ICa inactivation, IA inactivation). The current-balance
equation is given by

C
dV

dt
= Iapp − IL − IAMP/RES(V, h) (6)

where IAMP/RES(V, h) = GXm
a
∞(V )hb(V − EX). The gating variable h obeys an equation of the form (2). Proto-

typical examples models having a T-type Ca current (ICaT ) and the A-type K current (IA) [49–52].

Remark 1. Additional 2D models include IAMP + IAMP/RES (2D) models with two instantaneously fast amplifying
gating variables.

Remark 2. The 2D INa reduced version of the HH model discussed in Section 3 (elimination of IK ) formally belongs
to this category.
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4.4 The Morris-Lecar (ML) model (ICa+IK)

The Morris-Lecar model belongs to the category described in Section 4.2 (with IAMP = ICa and IRES = IK ), but it
deserves a special mention given its historical importance.

The current balance equation for the 2D version [32] of the Morris-Lecar (ML) model [53] is given by

C
dV

dt
= Iapp − IL − ICa(V )− IK(V,w) (7)

where ICa(V ) = GCam∞(V ) (V −ECa) and IK(V,w) = GK w (V −EK). The gating variable w obeys an equation
of the form (2). Examples of dynamics of the ML model are shown in Figs. 2-C and -D. A more detailed description
of the model as well as parameter regimes where the model exhibits type I and type II excitability and different type
of dynamical systems bifurcations can be found in [17] (see also [54]).

4.5 IAMP + IRES and IAMP/RES 3D models

These models include the models described above where the two gating variables are non-instantaneous. They also
include models having one instantaneously fast amplifying gating variable and two slower resonant gating variables
such as a two-component h-current or a combination of h- and M-currents [38, 46, 55, 56]. This type of models can
produce phenomena such subthreshold resonance and antiresonance [38, 56] (a peak followed by a trough in the
impedance amplitude profile) and MMOs when they are embedded in higher-dimensional models of HH type having
INa and IK or models of integrate-and-fire type (described below). MMOs are inherently 3D (or higher-dimensional)
phenomena. 2D IAMP + IRES and IAMP/RES models can produce either STOs or the onset of spikes, but not
both. The coexistence of STOs and the onset of spikes requires 3D or higher-dimensional models. Action potential
clustering [20], a type of irregular MMO pattern (e.g., Fig. 8 in [20]) can occur in the presence of additional currents
or noise.

A B

Figure 3: Resonant and amplifying gating variables: representative examples. A. Amplifying gating variables: (i) depolarization-activated

for a depolarizing (inward) current (blue) or (ii) hyperpolarization-activated for a hyperpolarizing (outward) current (red). Examples are (i) persis-

tent Na INap and (ii) inward-rectifying potassium IKir. B. Resonant gating variables: (i) depolarization-activated for a hyperpolarizing (outward)

current (light blue) or (ii) hyperpolarization-activated for a depolarizing (inward) current (light coral). Examples are (i) slow K current IKs and

(ii) hyperpolarization-activated mixed Na/K Ih. Currents having a single gating variable inherit the resonance/amplifying classification from their

gating variables (e.g., INap/ IKir are amplifying and Ih / IKs are resonant). Current having two gating variables (e.g., transient Na, T-type Ca)

cannot be classified as resonant/amplifying. However, they have been classified as both in some cases [57].
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4.6 Bursting models (3D and 4D)

Bursting patterns, consist of barrages of spikes separated by quiescent intervals of time, which are longer than the
interspike interval (ISI) [58–60]. Bursting patterns are also inherently 3D (or higher-dimensional) phenomena since,
roughly speaking, they consist of two intertwined processes (fast oscillations and burst envelope dynamics, alternating
between an active and quiescent phases), each of which requires at least 2D dynamics. To some extent the minimal
models of bursting belong to the category discussed in this section. However the number of types of bursting patterns
and models that can generate them are very large. We refer the reader to [26,59] for detailed discussions on models
of bursting.

5 Phenomenological (caricature) models: geometric/phase-plane simplifi-
cation of models of HH type

Phenomenological models of neuronal dynamics capture patterns of activity and dynamic phenomena observed in
neuronal and excitable systems (e.g., the existence of a resting potential and a voltage threshold for spike oscillations,
neuronal relaxation oscillations, spiking activity, bursting activity, clustering, MMOs, and depolarization block), but their
constitutive equations are not constructed from biophysical laws or processes (e.g., current-balance by Ohm’s law,
kinetics of opening and closing of ion channels). Instead, the phenomenological equations are simpler and motivated
by the phenomena that emerge from these processes.

The type of phenomenological models we discuss here are linked to the models of HH type by the geometric
structure of the phase-plane diagrams. Specifically, the zero-level sets in the phase-plane diagrams (e.g., nullclines
in 2D models and nullsurfaces in 3D models) are simplified versions of their counterparts in the models of HH type
(e.g., cubic-like and sigmoid nullclines become cubics and lines; compare Figs. 6-A2 and -B2). For a discussion on
the emergence of cubic nonlinearities in neuronal models as the result of the presence of regenerative (amplifying)
currents we refer the reader to [26,61]. In this sense, they are phase-plane simplifications of models of HH type.

5.1 Models of FitzHugh-Nagumo (FHN) type

The general form of the models of FitzHugh-Nagumo (FHN) type is given by

dV

dt
= −hV 3 + a V 2 − w, (8)

dw

dt
= ε [αV − λ− w ], (9)

where h, a, ε, α and λ are constants, assumed to be positive with the exception of λ that can assume any real
value. The (activator) variable V represents the membrane potential and the (inhibitor) variable w represents the
recovery variable (n in the HH model). The parameter λ is interpreted as Iapp in models of HH type; by a linear
transformation (w → w + λ) λ can be moved to the first equation. The parameters a and h control the shape of
the V -nullcline (w = −hV 3 + a V 2). The local minimum of the V -nullcline occurs at (0, 0). The maximum of the
V -nullcline occurs at (2/3 a h−1, 4/27 a3h−2), which is equal to (1, 1) for the canonical parameter values h = 2 and
a = 3. The parameters α and λ control the slope of the w-nullcline (w = αV − λ) and its displacement with respect
to the V -nullcline, respectively. The parameter ε represents the time-scale separation between the variables V and
w.

The FHN model is a phase-plane simplification of 2D models of HH-type where the cubic-like V - and sigmoid-like
w-nullclines in the reduced (2D) HH model (Fig. 6-A2) become a purely cubic and linear, respectively (Fig. 6-B2).

In addition to the neuronal phenomena mentioned above (except for bursting, clustering and mixed-mode oscil-
lations that required at least 3D models), models of FHN type exhibit the two types of Hopf bifurcations (sub- and
super-critical) underlying neuronal excitability. The form of the model equations is different (e.g., h = −1/3 and
a = 1), but the geometry of the phase-plane diagram is the same.
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The original FHN model or Bonhoeffer van der Pol (BVP) model [62–65] was developed as an extension of the
van der Pol (VDP) model for relaxation oscillations in electrical circuits [66].

5.2 Extended and modified models of FHN type

5.2.1 Sigmoid recovery variable and voltage-dependent time scale separation

Additional flexibility can be obtained in shaping the oscillatory patterns in models of FHN type by substituting the
linear w-nullcline by a sigmoid function and making the parameter ε dependent on V .

dV

dt
= −hV 3 + a V 2 − w, (10)

dw

dt
= ε(V ) [G(αV − λ)− w ], (11)

where G(V ) = Gamp[1 + exp(−V )]−1 −Gm, and Gamp and Gm are non-negative constants.

5.2.2 Piecewise-linear cubic-like and sigmoid-like nullclines (nullsurfaces)

In order to make models of FHN type more amenable to mathematical analysis beyond the qualitative analysis using
the phase-plane diagram, one can simplify them by substituting the cubic function −hV 3 + aV 2 in eq. (8) by a
cubic-like piecewise-linear (PWL) function [67] (and references therein). The model can be further modified to have
a sigmoid-like PWL w-nullcline.

5.2.3 3D model of FHN type

The 2D models of FHN type can exhibit fixed-points, subthreshold (small amplitude) oscillations, large amplitude
oscillations (e.g., spikes) and (“static") transitions between sub- and supra-threshold phenomena as a parameter
(e.g., λ) changes and the system undergoes a Hopf bifurcation. For small enough values of ε (time scale separation),
these transitions are abrupt; The system exhibits the canard phenomenon [68]. The addition of a third equation (state
dimension) endows the models with the ability to produce MMOs [19,69,70] by dynamic transitions between sub- and
supra-threshold behavior via a slow-passage through a Hopf bifurcation [71] and the 3D canard phenomenon [72,73].
The 3D models of FHN type read

dV

dt
= −hV 3 + a V 2 − w, (12)

dw

dt
= ε [αV − z − w ], (13)

dz

dt
= ε η [β V − σ − z ], (14)

where σ is a parameter (similarly to λ in the 2D models of FHN type, σ captures the effect of constant inputs to the
equation for V ) and the parameter η represents the time scale separation between the variables w and z.

Several authors have used a simpler 3D model of FHN type where the right-hand side of eq. (14) is substituted
by εη (erasing the square brackets). These models can display canard-based MMOs (Fig. 4) and the classical
slow-passage through a Hopf bifurcation [71] in addition to regular oscillations and other types of patterns.
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Figure 4: Mixed-mode oscillations (MMOs) in the 3D model of FitzHugh-Nagumo (FHN) type: representative example. A. V -time

course. The small amplitude (subthreshold) oscillations are interspersed with large amplitude oscillations (spikes). B. Limit cycle trajectory in

the (3D) phase-space. C.. Projection of the limit cycle trajectory on the V -Z plane. We used eqs. (12)-(14) with the following parameter values:

h = 2, a = 3, ε = 0.1, α = 2, η = 0.045, β = −1 and σ = −0.085.

5.3 Hindmarsh-Rose (HR) model

The HR model is a 3D phenomenological (caricature) model designed to investigate the bursting behavior in neuronal
models (Fig. 5). Two variables (V and y, or w) are responsible for the generation of spikes, while the third variable (z,
or u) captures the effect of an adaptation current, which is responsible for creating and controlling the interspike-burst
intervals.

The general form of the HR model [74] is

dV

dt
= −hV 3 + aV 2 + y − z + Iapp, (15)

dy

dt
= c− γV 2 − y, (16)

dz

dt
= r [α(V − Vr)− z ], (17)

where h, a, Iapp, c, γ, r, α and Vr are parameters.
A change of variables w = −y + z − Iapp, u = z(r − 1) + c+ I + rαVr brings the system (15)-(17) to

dV

dt
= −hV 3 + aV 2 − w, (18)

dw

dt
= γV 2 + ηV − w − u, (19)

du

dt
=
η

α
[ (η − α)V + λ− u ] (20)

where λ = c+ Iapp + sVr and η = r s, and reduces the number of parameters. This modified HR models has a form
reminiscent to the FHN model described above. Note that as for the FHN model, the effect of the applied current Iapp
is included in the parameter λ. If η = 0, then u = λ−αV and dw/dt = γV 2 +αV − λ−w. If, in addition, γ = 0, the
HR model reduces to the FHN model with ε = 1.
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Figure 5: Bursting in the Hindmarsh-Rose (HF) model: representative example. A. V -time course. B. Limit cycle trajectory in the (3D)

phase-space. C.. Projection of the limit cycle trajectory on the V -Z space. We used eqs. (15)-(17) with the following parameter values: h = 1,

a = 3, c = 1, γ = 5, r = 0.001, α = 4, Vr = −1.6, Iapp = 2

5.4 Linear models

Linear models have been used to investigate the subthreshold dynamic properties of neurons and as the subthreshold
component (substrate) of artificially spiking models of integrate-and-fire type (described later in the paper) [75, 76].
The general form of the 2D linear models is

dV

dt
= aV − bw, (21)

dw

dt
= cV − dw. (22)

The parameter values are assumed to be either dimensionless or dimensional, but not linked to the biophysical
properties of the neuron. This model can be further reduced to a model with two dimensionless parameters. When
b = c = d = 0, eq. (21) is a rescaled version of the passive membrane equation. When d = a and b = c, eqs.
(21)-(22) are the subthreshold component of the so-called resonate-and-fire model [75].

5.5 Models of quadratic type

These models and variations have been developed to investigate the subthreshold nonlinear dynamic properties of
neurons and as the subthreshold component of the quadratic integrate-and-fire model (1D subthreshold dynamics)
[35] (see also [77–79]) and its extension (2D subthreshold dynamics), the so-called Izhikevich model [26,80,81]

dV

dt
= V 2 − w + I, (23)

dw

dt
= a(bV − w). (24)

The right-hand sides of the equation for V in [81] reads 0.04V 2 + 5V −w+ I. The right-hand sides of the eqs. for V
and w in [80] read k(V − Vrest)(V − Vthreshold)− w + I (divided by C) and a[b(V − Vrest)− w], respectively.

The model parameters are phenomenologically linked to the neuronal properties, but they are not interpretable in
terms of the biophysical properties of neurons.
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6 Linking phenomenological and biophysical models: Linearization and
quadratization of models of HH type

The linearization [38, 39] and quadratization [82, 83] processes described below provide ways to link linear and
quadratic models, respectively, to the more realistic models of HH type and thus provide a biophysical interpreta-
tion to the model parameters and the results using these reduced models. The linearization process capitalizes on
Taylor expansions around the fixed-point (up to the first order). The quadratization process consists of systematically
fitting a quadratic function to the V -nullcline of a model of HH type. It also involves Taylor expansions (up to the
second order), but instead of calculating this Taylor expansion around the fixed point, they are calculated around the
local minimum/maximum of the V nullcline. In both cases, the process can be extended to arbitrary orders of the
Taylor expansion. We describe in detail both processes for 2D models. It can be generalized to include additional
gating variables [38,56,83].

6.1 Linear models and linearization of models of HH type

Linearization consists on expanding the right-side of the model differential equations into Taylor series around the
relevant fixed-point and neglecting all the terms with power bigger than one.

We described the process for a 2D model of HH type (3) with two ionic currents (Nion = 2) where

Iion,j = Gjxj(V − Ej), (25)

the dynamics of x1 are governed by eq. (2) and x2 = x2,∞(V ). The extension to higher-dimensional models with
additional ionic currents is straightforward [38,39,56,84].

The linearized 2D model around the fixed-point (V̄ , x̄1) is given by

C
dv

dt
= −gLv − g1w1, (26)

τ1
dw1

dt
= v − w1, (27)

where

v = V − V̄ w1 =
x1 − x̄1
x′1,∞(V̄ )

, (28)

with gj = Gj x
′
j,∞(V̄ ) (V̄ − Ej) (j = 1, 2) and gL = GL + g2 +G1 x1,∞(V̄ ) +G2 x2,∞(V̄ ).

Fig. 7-A2 illustrates this for a Ih+INap model (see Fig. 7-A1). Fig. 7-B illustrates that the phase-plane structure in
Fig. 7-A1 is representative of a larger class of models. Geometrically, the linearization process consists of substituting
the nullclines by lines intersecting at the fixe-point and tangent to the corresponding nullclines. Note that the sign of
the denominator in the second equation (28) is positive (negative) provided x1 is activating (inactivating), and therefore
the corresponding phase-plane diagrams are mirror images of each other. In other words, the linearization process
inverts the phase-plane diagram of models with inactivating gating variables with respect to the V axis.

Linearized models can be supplemented with a threshold for spike generation (Vthr) and reset values for the
participating variables leading to models of integrate-and-fire (IF) type. The leaky integrate-and-fire (LIF) [8] and
resonate-and-fire [75] models are particular cases of this formulation.

As an approximation to models of HH type, the validity of linearized models is limited. However, linear models
models can be used as neuronal models in their own right by implicitly assuming the underlying dynamics are quasi-
linear or to test theoretical ideas.
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6.1.1 Linearized 3D models

The linearization process described above can be naturally extended to higher dimensions (see [38, 56] for details)
with two gating variables x1 and x2 with non-instantaneous dynamics and a third variable x3 = x3,∞(V ). The
linearized 3D equations consist of eq. (26) with an additional term −g2w2, eq. (27) for the variable w1, and an
additional equation for variable w2 similar to eq. (27).

6.2 Models of quadratic type and quadratization of models of HH type

Quadratization extends the notion of linearization with some subtle modifications that improve the approximations
(compare Figs. 7-A2 and -A3) and, most importantly, capture more realistic aspects of the dynamics of models of HH
type. We describe the process for the 2D model used to describe the linearized models. An extension to 3D models
of HH type is briefly discussed at the end of this section. A further extension including time-dependent current and
synaptic inputs is presented in [83].

One important assumption is that the V -nullcline is parabolic-like in the subthreshold regime (Fig. 7-A1 and -B).
This is a rather general property of neuronal models of HH type having regenerative (amplifying) ionic currents (e.g.,
Fig. 6-A2) (see also [26,47,61]).

The quadratization process [82, 83] consists on expanding the right-side of the model differential equations into
Taylor series around the minimum/maximum (Ve,x1,e) of the parabolic-like V -nullcline in the subthreshold regime,
neglecting all the terms with power bigger than two in the equation for V and bigger than one in the equation for x1,
and translating the minimum/maximum of the V -nullcline to the origin.

The quadratized 2D model around (Ve,x1,e) is given by

dv

dt
= σav2 − w, (29)

dw

dt
= ε [α v − λ− w ], (30)

where

v = V − Ve −
gL

2σ gc
, (31)

w =
g1
C

x1 − x1,e
x′1,∞(Ve)

− Fe

C
+

g2L
4σ gc C

, (32)

gL = GL +G1 x1,e +G2 x2,∞(Ve) + g2, (33)

gj = Gj (Ve − Ej)x
′
j,∞(Ve), j = 1, 2 (34)

σ gc = −
G2 x

′′
2,∞(Ve) (Ve − E2) + 2G2 x

′
2,∞(Ve)

2
, (35)

ε =
1

τ1(Ve)
, a =

gc
C
, α =

g1 (1− ξ)
C

, (36)

λ =
Fe

C
− g2L

4σ gc C
− g1 β

C
− g1 (1− ξ)

2σ gc C
gL, (37)

β =
x1,∞(Ve)− x1,e

x′1,∞(Ve)
, ξ = β

τ ′1(Ve)

τ1(Ve)
, (38)

and
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Fe = F (Ve, x1,e) = Iapp −GL (Ve − EL)−

−G1 x1,e (Ve − E1)−G2 x2,∞(Ve) (Ve − E2). (39)

The parameter a is assumed to be positive. The product σ a controls the curvature of the parabolic V -nullcline.
The concavity sign is captured by σ = ±1. By an appropriate change of variables when σ = −1 (concave down
parabolic v-nullcline) the model can be transformed into one having a concave up parabolic v-nullcline. The parameter
ε represents the time scale separation between the participating variables.

Quadratized models can be supplemented with a threshold for spike generation and reset values for the partici-
pating variables leading to models of integrate-and-fire (IF) type with parabolic V -nullclines. The quadratic integrate-
and-fire (QIF) model and the phenomenological model proposed in [80, 81] are particular cases of this formulation.
Importantly, in contrast to the linear models of IF type where Vthr is the mechanisms for spike generation (hard Vthr),
for quadratic models, the mechanism for spike generation is embedded in the model and the role of Vthr is simply to
indicate the occurrence of a spike (soft Vthr).

With certain limitations (inherent to any approximation, see assumptions), quadratized models provide a rather
good approximation to models of HH type in the subthreshold regime. In addition, models of quadratic type can be
used as neuronal models on their own right by implicitly making the above assumptions or to test theoretical ideas.

Possible extensions include considering parabolic nonlinearities for the dynamics of the gating variables.

6.2.1 Quadratized 3D models

The quadratization process described above can be naturally extended to higher dimensions (see [83] for details) for
models with two gating variables x1 and x2 with non-instantaneous dynamics and a third variable x3 = x3,∞(V ).

The quadratized 3D model around (Ve,x1,e) is given by

dv

dt
= σav2 − w, (40)

dw

dt
= ε [α v − z − w ], (41)

dz

dt
= ε η [−γ v − z + λ ]. (42)

The description of the process as well as the definition of the additional model parameters in terms of the biophys-
ical parameters of the models of HH type are presented in [83].

7 Models of integrate-and-fire (IF) type

7.1 The leaky integrate-and-fire (LIF) model

The LIF model [8–14] is an abstraction of a neuronal circuit consisting of the passive membrane equation (4), repre-
senting an RC electric circuit, supplemented with a V threshold for spike generation (Vthr) and a V reset value after
a spike has occurred (Vrst). The spike times (defined as the times at which V reaches Vthr) can be recorded and
spikes may be visualized with a vertical line at the spiking times (Fig. 8-A1). LIF models exhibit type I excitability (the
frequency vs. applied current curve admits infinitely small frequencies as the applied current increases.).

The LIF model predates the HH model, but it can be thought of as a simplification of the HH model where the
spiking currents (INa and IK ) are eliminated, their effects at the subthreshold level are partially absorbed by IL (by
the process of linearization described in Section 6.1) and the spiking dynamics are substituted by the parameters
Vthr and Vrst. LIF models may include additional parameters representing an explicit refractory period (Trefr) and a
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Figure 6: Reduced and caricature models of neuronal activity. A. Reduced (2D) HH model. The variable m in (1) was substituted by

m∞(V ) and the variable h = 1 − αn with α = 1.18. The model captures the dynamics of the original HH model. B. Phenomenological

(caricature) model of FHN type. We used the following parameter values: h = 2, a = 3, α = 2, ε = 0.1 and λ = 0.2. C. INa+IK reduced (2D)

HH model. The variable m in (1) was substituted by m∞(V ) and the dynamics for h was eliminated from (1) (the variable h was substituted by

h = 1). The trajectory starting at V = EL approaches a high voltage equilibrium. The model does not capture the dynamics of the original HH

model. The cubic-like V -nullcline is present, but above the region of validity of n. The limit cycle ceases to be present as the result of the attempt

to reduce the dimensionality of the model (making h = 1). D. INa reduced (2D) HH model. The variable m in (1) was substituted by m∞(V ) and

the variable n was eliminated from (1) (GK = 0). The trajectory starting at V = EL approaches a high voltage equilibrium. The model does not

capture the dynamics of the original HH model. The V -nullcline is no longer cubic-like. The limit cycle ceases to be present as the result of the

attempt to reduce the dimensionality of the model (making GK = 0). For the reduced HH models, we used the parameter values adapted [17]

from the original model [6].
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Figure 7: Linearization and quadratization for models of HH type in the subthreshold voltage regime. A. Ih + INap model. B. IKs

+ INap model. The models are described by equations (2)-(3). For the both models, the persistent Na current is described by I2 = INap =

Gp p∞(V )(V −ENa). For the Ih + INap model, the h-current (hyperpolarization-activated mixed Na/K) is described by I1 = Ih = Ghr(V −Eh)

and for the IKs + INap model, the Ks-current (M-current) is described by I1 = IKs = Gqq(V − EK). We used the same parameter values as

in [83]. The phase-plane diagrams present the relevant nullclines. The trajectories are omitted for clarity. Aa Ih + INap model with a parabolic-like

nonlinearity. A2 Linearized Ih + INap model (see Section 6.1). The original (inverted) V and r-nullclines (solid) are presented for reference. The

linearized V - and r-nullclines (dashed) are the v- and w1-nullclines for the linearized system. A3 Quadratized Ih + INap model (see Section

6.2). The original (inverted) V and r-nullclines (solid) are presented for reference. The quadratized V - and linearized r-nullclines (dashed) are

the v- and w1-nullclines for the quadratized system. B. Ih + IKs model with a parabolic-like nonlinearity.

spike duration (Tdur, necessary for the development of some intrinsic and synaptic currents). Additional modifications
of the LIF model (e.g., varying thresholds) and their functionality are discussed in [85,86].

While the subthreshold dynamics are 1D, the LIF model is effectively higher-dimensional, but simpler than the
models of HH type.

7.2 Construction of models of IF type

The LIF models (and modified/rescaled versions) have been extensively used [85] due to their relative simplicity and
have led the way to a series of models designed to overcome their flaws [12,26]. Common to all these, more complex
models is an explicit description of the subthreshold dynamics in terms of differential equations (phenomenological
models of models of HH type) and “artificial" spikes characterized by Vtrh, Vrst, Trefr, Tdur and reset values for
the additional subthreshold variables when necessary. These parameters need to be estimated from the observed
patterns. In some models (e.g., LIF, see also [47, 75]), Vthr determines the mechanism of spike generation (hard
threshold). In others, the subthreshold dynamics describe the onset of spikes (V diverges to infinity in finite time,
interpreted as the variables “escaping" the subthreshold regime and activating the spiking currents) and Vthr only
indicates that a spike has occurred (soft threshold). In all these models, the spikes are all-or-non phenomena and
their size is the same for all of them. We collectively refer to these models as models of IF type and add the
dimensionality of the constituent (subthreshold) models of HH type (e.g., the LIF models are “1D linear models of IF
type"). However, as noted above, the effective model dimensionality is higher. Other authors have referred to these
models as generalized IF models [38,88].

The models of IF type primarily solve two problems. First, their complexity is reduced as compared to the models of
HH type that would be used to model the same phenomena or investigate the same theoretical problem. Second, the
computational complexity is reduced since the elimination of the fast spiking dynamics (fastest time scales) eliminates
the stiffness of system of differential equations.

In principle, one can construct models of IF type from models of HH type by leaving all the currents intact at the
subthreshold voltage level and substituting the spiking dynamics by artificial spikes as described above. While in
some cases, the spiking currents may be eliminated without major consequences for the dynamics [46], in others the
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Figure 8: Models of integrate-and-fire (IF) type: V -time course response to three consecutive square pulses with increasing ampli-

tudes. A1. Leaky IF (LIF) model. We used the following parameter values: gL = 0.1, EL = 0, Vth = 5 and Vr = −2. A2. 3D linear model of

IF type. The model includes two recovery variables (w1 and w2) interpreted as providing negative and positive feedback effects. The model is

a 3D extension of eqs. (26)-(27) (see [38, 56]). We used the following parameter values: gL = 0.1, EL = 0, g1 = 0.1, g2 = −0.05, τ1 = 50,

τ2 = 10, Vth = 5, Vrst = −2. B1. Exponential IF (EIF) model. The model is described by eqs. (48). We used the following parameter values:

gL = 0.1, Vth = 5, Vrst = −2 and ∆T = 2. B2. Adaptive EIF model. We used the same parameters as in panel B1 and τ = 50 and a = 0.1

for the adaptive variable w. C. Integrate-and-fire-or-burst (IFB) model. We used the following parameter values (see [87]): C = 2, gL = 0.035,

EL = −65, ECa = 120, Vth = −35, Vrst = −50, Vh = −60, gT = 0.07, τ+h = 100, τ−h = 20. In A1, A2, B1 and B2 we used of Iapp,1 = 0.35,

Iapp,2 = 0.525 and Iapp,3 = 0.7 and the duration of step input was ∆ = 100. In C we used Iapp,1 = 0.0875, Iapp,2 = 0.175, Iapp,3 = 0.35 and

∆ = 200.
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elimination of the spiking currents at the subthreshold level may lead to qualitative dynamic changes [48]. One may
then reduce the dimensionality of the models by using “top-down" approach described in Section 3. The resulting
models may still be too complex for analysis.

The classical, “bottom-up" approach produces models of IF type with simpler low-dimensional subthreshold dy-
namics. Starting from the LIF model, the complexity and dimensionality of the model of IF type can be increased by
adding nonlinearities to the current-balance equations and adding dynamic variables (e.g., recovery) to the system.
The nonlinearities are typically idealized (e.g., parabolic, quartic, exponential), capturing the type of nonlinearities
present in the V -nullclines (or nullsurfaces) in the phase-space diagrams (e.g., Figs. 6 and 7) for the more realistic
models of HH type.

2D models of IF type are commonly referred to as “adaptive" for historical reasons. However, they capture neuronal
phenomena that go well beyond adaptation.

7.2.1 Interpretability in terms of the biophysical properties of neurons

In order to make the results interpretable in terms of the biophysical properties of neurons, the parameter of the
models of IF type can be linked to the neuronal biophysical parameters by following the quadratization procedure
described in Sections 6.2. This process can be naturally extended to include higher dimensions and higher-order
nonlinearities (e.g., cubization, quartization) by keeping more terms in the Taylor expansion of the V -nullcline and
making the appropriate algebraic manipulations to simplify the resulting expressions.

7.2.2 Interpretability in terms of the observed neuronal patterns

The approach introduced in [89] consists of a general formulation for the current-balance equation in the subthreshold
regime

C
dV

dt
= −gL(V − EL) + Ψ(V ;VT ,∆T ) + Iapp (43)

where the parameters VT and ∆T of the nonlinear function Ψ are determined from the observed data (or modeling
results using models of HH type) of the I-V curve.

The parameter VT is defined as the value at which the slope of the I-V curve vanishes

Ψ′(VT ;VT ,∆T ) = gL.

As such, it is the largest stationary value of V at which the neuron can be maintained by a constant current IT =
gL(VT − EL)−Ψ(VT ), above which the neuron exhibits tonic firing. The parameter ∆T (mV) is defined as

∆T =
gL

Φ′′(VT )
.

It is called the spike slope factor and measures the sharpness of the spike initiation for reasons that will become clear
later (see [90,91] for a discussion on the topic in biophysical models).

In order to make the models interpretable, the parameters VT and ∆T need to be estimated from the observed
patterns one wants to model in advance of building the model since they are not linked to the constituent biophysical
properties of neurons.

Similar to the models discussed in Section 6.2, this model can be augmented to include an adaptive process

C
dV

dt
= −gL(V − EL) + Ψ(V ;VT ,∆T )− w + Iapp (44)

τw
dw

dt
= a(V − EL)− w (45)

The resulting 2D models were original built to capture the phenomenon of spike-frequency adaptation (e.g., by IM ).
But the variable w can be interpreted to be any resonant gating variables (Ih, Ca inactivation).
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An alternative approach has been developed in [30, 88, 92] based on Volterra expansions in the context of spike
response models (SRMs).

7.3 2D (and 3D) linear models of IF type

These models extend the LIF model to include a recovery variable [93] interpreted as providing a negative feedback
effect (e.g., Ih, IKs, ICa inactivation). However, in principle there is no reason why the recovery variable could not
provide a positive feedback effect.

The subthreshold dynamics are described by a 2D linear system of the form (26)-(27) or, alternatively, (21)-(22).
The mechanism of spike generation is determined by Vthr. The model parameters can be linked to biophysical
parameters by the process of linearization of models of HH type described in Section 6.1. The models can produce
spike-frequency adaptation [94] (accommodation [13]), subthreshold oscillations [26, 75], subthreshold resonance
and phasonance [38,39,95], post-inhibitory rebound, type II excitability, and are the substrate of complex phenomena
such as hyperexcitability in recurrently connected networks [76]. We note that under certain conditions, the 2D models
of IF type have been referred to as resonate-and-fire models [26,75]

3D (and higher-dimensional) linear models of IF type (e.g., Fig. 8-A2) can be obtained by generalizing the ideas
discussed above and follow the linearization process (e.g., see [38,56]). These models show additional phenomena
such as antiresonance and antiphasonance [38,56]

7.4 Quadratic IF model (QIF, 1D quadratic model of IF type)

The subthreshold dynamics for the (canonical) quadratic integrate-and-fire model [77] is described by

dV

dt
= −V 2 + Iapp. (46)

The idealized parabolic nonlinearity is assumed to be an approximation to the parabolic-like nonlinearities present in
neuronal models in vicinities of the resting potential, which develop due to the presence of regenerating (amplifying)
currents such as INa. In fact, eq. (46) is the topological form of a saddle-node bifurcation for 1D systems [26, 96]
(see also [79] for a derivation and description of the related theta model). These geometric arguments can be made
mathematically more precise and the results can be made interpretable by adapting the quadratization procedure
described in Section 6.2.

For Iapp < 0, eq. (46) has two equilibria (Vrest, stable, and VT , unstable), while for Iapp > 0, there are no
equilibria. Therefore, the QIF model describes the onset of spikes and Vthr only indicates the occurrence of a spike.

In terms of the formulation presented in Section 7.2, the QIF model reads [89]

C
dV

dt
= −gL(V − EL) +

gL
2∆T

(V − VT )2 − IT . (47)

However, note that the quadratization process from models of HH type will produce an additional linear term not
included in eq. (47).

7.5 Exponential IF model (EIF, 1D exponential model of IF type)

The EIF model (Fig. 8-B1) uses a sharper nonlinearity in the current-balance equation than the QIF model [89]

dV

dt
= −gL(V − EL) + gL ∆T e

V −VT
∆T + Iapp (48)

The EIF model has been shown to improve the accuracy of both the neuronal subthreshold and firing dynamics as
compared to the model of HH type that would describe the same phenomenon.
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7.6 Adaptive QIF models (2D quadratic model of IF type) and extensions (3D and higher,
higher-order nonlinearities)

These model consists of adding a term−w to eq. (46) and a differential equation of the form (44) to the model [26,80].
Ψ(V ;Vt,∆T ) = gL(V − VT )2/(2∆T ) in eqs. (44)-(45), which is the second term in the right-hand side in eq. (47),
(ii) eqs. (23)-(24) in Section 5.5, and (iii) eqs. (29)-(30) in Section 6.2. In all cases, Vthr is soft. These models exhibit
a number of spiking and bursting patterns and subthreshold phenomena observed in realistic neurons. Vrst plays an
important role in controlling the occurrence and properties of the bursting patterns [75].

2D models of IF type can be extended to higher dimensions either by deriving them from models of HH type,
leading to eqs. (40)-(42) [83], or, simply, by “manually" adding another term (e.g., −z) to eq. (46) and a differential
equation to describe the dynamics of z. 2D models can also be extended to include higher-order nonlinearities,
again, either by deriving them from HH models of HH type (including additional terms in the Taylor expansion of the
current-balance equation) or, simply, by including them “manually" (e.g.,4D [97]). Higher order nonlinearities increase
the sharpness of the V -nullcline (or nullsurface) and therefore control the properties of the subthreshold dynamics
and the onset of spikes.

The 2D model of IF type used in [46, 47] where the subthreshold dynamics are described by a (biophysically
plausible) reduced model of HH type having two active ionic currents (INap and Ih) is a generalization of the adaptive
QIF model where the V -nullcline is parabolic-like. However, a second model having exactly the same ionic currents,
but in different parameter regimes, shows cubic-like nullclines (in the subthreshold regime). These are not the result
of an extension of the quadratization process (cubization) described above, but inherent to the model. A similar
scenario occurs for 2D models of IF type having an IM instead of Ih.

7.7 Adaptive EIF models (AdEx, 2D exponential model of IF type) and extensions

These models could be included as extensions of the quadratic 2D models of IF type discussed above, but they
deserve a special mention given its historic importance.

Adaptive EIF models (Fig. 8-B2) are obtained by adding a term −w to eq. (48) and a differential equation of
the form (44) to the model [37], thus increasing the dimensionality to 2D. An additional formulation consists of using
Ψ(V ;Vt,∆T ) = gL ∆T exp((V − VT )/∆T ) in eqs. (44)-(45), which is the second term in the right-hand side in eq.
(48).

The two extensions used in [98] consist of using explicit description of IM and IAHP instead of the term −w in the
current-balance equation. In the second case, a differential equation describing the dynamics of Ca concentration
instead of a voltage-dependent gating variable was included in the model.

7.8 Integrate-and-fire-or-burst (IFB) model

This model was introduced in [87] to investigate the mechanisms of post-inhibitory rebound bursting in thalamic relay
cells and the transition from spike- to burst-mode in these cells (Fig. 8-C). The subthreshold dynamics are described
by

C
dV

dt
= −gL(V − EL)− gTm∞(V )h(V − ECa) + Iapp, (49)

dh

dt
=

1− h
τ+h

H(Vh − V )− h

τ−h
H(V − Vh).

The second term in the right-hand side in eq. (49) is an idealization of ICaT with m∞(V ) = H(V − Vh) where
H(·) is the Heaviside function. The second equation describes the dynamics of an hyperpolarization-activated gating
variable with τ+h � τ−h and EL < Vh < Vthr.
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8 Final Remarks

Models of single neurons, and neuronal models in general, can be constructed in a variety of ways and at different
levels of abstraction depending on the problem they are designed to solve. Single neuron low-dimensional models
range from biophysically plausible (conductance-based) to phenomenological (caricature) descriptions, and can be
systematically derived from higher dimensional models of HH type (using a variety of tools and approaches) or
constructed ad hoc. In the former case, the link between the reduced models and the more realistic ones provides
the reduced models and the results obtained by using them with a biophysical interpretation.

Models of single neurons are typically embedded in larger networks. In order to preserve the interpretability of
neuronal network models, the network building blocks, particularly the single neuron model components and synaptic
connectivity, must be compatible, or rules must be provided to create compatibility among the building blocks. This is
particularly crucial when one uses reduced descriptions of single neurons (or other processes). In these cases, the
systematic reductions should include the synaptic connectivity as opposed to synaptically connect reduced models.

Ultimately, neuronal models must be fit to experimental results. A number of parameter estimation tools are avail-
able to achieve this [99–118]. In using parameter estimation tools [116–118] one must take into account issues such
as the variability of neuronal systems [119, 120], degeneracy [121–123] and unidentifiability [124] (see references
therein).
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Acronyms

FHN FitzHugh-Nagumo (model)
HH Hodgkin-Huxley (model)
HR Hindmarsh-Rose (model)
ISI Interspike interval
IF Integrate-and-fire
LIF Leaking integrate-and-fire (model)
ODE Ordinary differential equation
PDE Partial differential equation
STOs Subthreshold oscillations
MMOs Mixed-mode oscillations
1D, 2D, . . . ND One-, two-, . . ., N-dimensional
IL Leak current
INa Transient Na (spiking) current
IK Delayed rectifier K (spiking) current
INap Persistent Na current
IKs Slow K current
IM M-type K current
Ih hyperpolarization-activated mixed Na/K

current
ICa (persistent) Ca current
ICaT T-type Ca current
ICaL L-type Ca current
IAHP After-hyperpolarization current

Ca-dependent K current
IAMP Persistent amplifying current
IRES Persistent resonant current
IAMP/RES Transient amplifying/resonant current
IX model Model of HH type having one (X) current

with two gating variables in addition to IL
IX + IZ model Model of HH type having two (X and

Z) currents with a single gating variable
each in addition to IL
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