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1. Introduction

Let (R, m, k) be an excellent commutative Noetherian local ring of prime characteristic 

p > 0. Tight closure theory, introduced and developed by Hochster and Huneke in 

[11–16], is a subject central to prime characteristic commutative algebra, important to 

* Corresponding author.

E-mail addresses: aberbachi@missouri.edu (I. Aberbach), tp2tt@virginia.edu (T. Polstra).
1 Thomas Polstra had support from the following sources: NSF Fellowship #1703856, NSF Grant DMS 

#2101890, Simons Foundation Grant #814268, MSRI.

https://doi.org/10.1016/j.jalgebra.2022.04.020
0021-8693/© 2022 Elsevier Inc. All rights reserved.



38 I. Aberbach, T. Polstra / Journal of Algebra 605 (2022) 37–57

our understanding of characteristic 0 singularities, and a guiding force in the development 

of mixed characteristic singularities.

Let N ⊆ M be R-modules and let N∗
M denote the tight closure of N inside of M , see 

[12] for a precise definition of tight closure. The ring R is weakly F -regular if N∗
M = N

for all finitely generated modules N ⊆ M and R is strongly F -regular if N∗
M = N for 

all R-modules N ⊆ M . The weak implies strong conjecture asserts that every weakly F -

regular ring is strongly F -regular. The most notable cases that the weak implies strong 

conjecture has been proven for are for standard graded algebras over a field, [26], and 

all rings of Krull dimension at most 3, [36].

Outside of the graded scenario, developments around the weak implies strong conjec-

ture depend upon the behavior of the anticanonical algebra of R. An unpublished result 

of Singh asserts that the weak implies strong conjecture holds for the class of rings whose 

anticanonical algebra is Noetherian,2 see [6, Corollary 5.9]. Williams’ proof of the weak 

implies strong conjecture in dimension 3 implicitly utilizes that the anticanonical algebra 

of a 3-dimensional weakly F -regular ring is Noetherian on the punctured spectrum, an 

assertion that relies on the algebraic-geometric methods of [25] and [31].

Our methods show that every 4-dimensional weakly F -regular ring is strongly F -

regular, provided its anticanonical algebra is Noetherian when localized at a non-maximal 

prime ideal. Therefore a further relationship between tight closure and prime character-

istic birational geometry is desired to progress the weak implies strong conjecture. This 

is indeed the scenario in 4-dimensional rings. Recent developments in the prime char-

acteristic minimal model program, [8], allow us to conclude that all divisorial blowups 

rings, including the anticanonical algebra, are Noetherian away from maximal ideals for 

large classes of 4-dimensional weakly F -regular rings.

Theorem A. Let R be a 4-dimensional finitely generated algebra over a field of prime 

characteristic p > 5 which has infinite transcendence degree over Fp. If R is weakly 

F -regular then R is strongly F -regular.

The weak implies strong conjecture will be understood as a problem of understanding 

when an element of a non-injective direct limit system is mapped to 0 inside the direct 

limit. To this end, we introduce the notion of a local cohomology bound in Section 2. If 

M is an R-module and x = x1, . . . , xℓ a sequence of elements then we may identify the 

local cohomology module Hi
(x)(M) as a direct limit of Koszul cohomologies

Hi
(x)(M) ∼= lim

−−→
t1≤t2

(

Hi(xt1
1 , . . . , xt1

ℓ ; M)
αi

t1,t2−−−−→ Hi(xt2
1 , . . . , xt2

ℓ ; M)

)

.

The ith local cohomology bound of M with respect to the sequence x is bounded by 

an integer k if for every t, if η ∈ Hi(xt
1, . . . , xt

ℓ; M) represents the 0-element of Hi
(x)(M)

2 It is conjectured that any divisorial blowup ring, including the anticanonical algebra, of any strongly 
F -regular ring is Noetherian.
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then αi
t,t+k(η) = 0. Understanding when a module has bounded local cohomology bounds 

with respect to a sequence of elements is an interesting, challenging, and worth-while 

venture.

2. Local cohomology bounds

We do not present the basic theory of local cohomology bounds in full generality. 

We only present specific aspects needed in later sections. The interested reader should 

consult [2] for a thorough introduction to the theory of local cohomology bounds.

2.1. Definition of local cohomology bound

Suppose M is a module over a ring R and y = y2, y3, y4
3 a sequence of elements. Then 

for each integer t ∈ N we let yt = yt
2, yt

3, yt
4 and for each pair of integers t1 ≤ t2 let 

α̃•
M ;y;t1;t2

denote the natural map of Koszul cocomplexes

K•(yt1 ; M)
α̃•

M;y;t1;t2
−−−−−−→ K•(yt2 ; M).

More specifically, α̃•
M ;y;t1;t2

is the following map of Koszul cocomplexes:

K•(yt1 ; M) :

α̃•

M;y;t1;t2

0 M

α̃0
M;y;t1;t2

[

y
t1
4

y
t1
3

y
t1
2

]

M⊕3

α̃1
M;y;t1;t2

[

y
t1
3 −y

t1
4 0

−y
t1
2 0 y

t1
4

0 y
t1
2 −y

t1
3

]

M⊕3

α̃2
M;y;t1;t2

[

y
t1
2

y
t1
3

y
t1
4

]

M

α̃3
M;y;t1;t2

0

K•(yt2 ; M) : 0 M
[

y
t2
4

y
t2
3

y
t2
2

]

M⊕3
[

y
t2
3 −y

t2
4 0

−y
t2
2 0 y

t2
4

0 y
t2
2 −y

t2
3

]

M⊕3
[

y
t1
2

y
t1
3

y
t1
4

]

M 0

(2.1)

Where

• α̃0
M ;y;t1;t2

= idM ;

• α̃1
M ;y;t1;t2

=

[

y
t2−t1
4 0 0

0 y
t2−t1
3 0

0 0 y
t2−t1
2

]

• α̃2
M ;y;t1;t2

=

[

(y3y4)t2−t1 0 0
0 (y2y4)t2−t1 0
0 0 (y2y3)t2−t1

]

• α̃3
M ;y;t1;t2

= ·(y2y3y4)t2−t1

3 We begin the sequence at y2 instead of y1 for ease of referencing this material in Section 3 and Section 4.
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We let αj
M ;y;t1;t2

denote the induced map of Koszul cohomologies

Hj(yt1 ; M)
αj

M;y;t1;t2
−−−−−−→ Hj(yt2 ; M).

In particular,

lim
−−→

t1≤t2

(

Hj(yt1 ; M)
αj

M;y;t1;t2
−−−−−−→ Hj(yt2 ; M)

)

∼= Hj
(y)(M)

by [3, Theorem 3.5.6].

For each 0 ≤ j ≤ 3 let αj
M ;y;t;∞ be the natural map

Hj(yt; M)
αj

M;y;t;∞

−−−−−−→ Hj
(y)(M).

An element η ∈ Hj(yt; M) belongs to Ker(αj
M ;y;t;∞) if and only if there exists some 

k ≥ 0 so that η ∈ Ker(αj
M ;y;t;t+k). If η ∈ Ker(αj

M ;y;t;∞) we let

ǫj
y,t(η) = min{k | η ∈ Ker(αj

M ;y;t;t+k)}.

Definition 2.1. Let R be a ring, y = y2, y3, y4 a sequence of elements in R, and M an R-

module. The jth local cohomology bound of M with respect to the sequence of elements 

y is

lcbj(y; M) = sup{ǫj
y,t(η) | η ∈ Ker(αj

M ;y;t;∞) for some t} ∈ N ∪ {∞}.

Observe that if M is an R-module and y = y2, y3, y4 a sequence of elements, then 

lcbj(y; M) ≤ N < ∞ simply implies that if η ∈ Hj(yt; M) represents the 0-element in 

the direct limit

lim
−−→

t1≤t2

(

Hj(yt1 ; M)
αj

M;y;t1;t2
−−−−−−→ Hj(yt2 ; M)

)

∼= Hj
(y)(M)

then αj
M ;y;t;t+N (η) is the 0-element of the Koszul cohomology group Hj(yt+N ; M). 

Therefore finite local cohomology bounds correspond to a uniform bound of annihilation 

of zero elements in a choice of direct limit system defining a local cohomology module.

2.2. Some basic properties of local cohomology bounds

Lemma 2.2. Let R be a commutative Noetherian ring, M an R-module, and y = y2, y3, y4

a sequence of elements, then lcbj(yt; M) ≤ lcbj(y; M). Furthermore, lcbj(y; M) ≤ tm

for some integers t, m if and only if lcbj(yt; M) ≤ m.
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Proof. One only has to observe that αj
M ;yt;k,k+m = αj

M ;y;tk,tk+tm. �

Proposition 2.3. Let R be a commutative Noetherian ring and M, N modules over R. 

Suppose y = y2, y3, y4 is a sequence of elements so that (y2, y3, y4)M = 0 and (y2, y3)N =

0. Then

(1) αj
M ;y;t,t+k = 0 for all t, k ≥ 1, and 1 ≤ j ≤ 3;

(2) αj
N ;y;t,t+k = 0 for all t, k ≥ 1, and 2 ≤ j ≤ 3.

In particular, lcbj(y; M) ≤ 1 for 1 ≤ j ≤ 3 and lcbj(y; N) ≤ 1 for 2 ≤ j ≤ 3.

Proof. Recall that αj
M ;y;t,t+k is the map of Koszul cohomologies induced from the map 

α̃•
M ;y;t,t+k on Koszul cocomplexes. One can consult the diagram of (2.1) to observe that 

α̃j
M ;y;t,t+k is the 0-map for all t, k ≥ 1, and j ≥ 1. The second assertion follows by an 

identical argument. �

Proposition 2.4. Let (R, m, k) be a local ring and

0 → M1 → M2 → M3 → 0

a short exact sequence of finitely generated R-modules. Let y = y2, y3, y4 a sequence of 

elements of R. If (y2, y3)M3 = 0 then

lcb3(y2, y3, y4; M1) ≤ lcb3(y2, y3, y4; M2) + 1.

Proof. Consider the following commutative diagram, whose middle row is exact:

H3(yt; M1) H3(yt; M2)

H2(yt+k; M3) H3(yt+k; M1) H3(yt+k; M2)

H2(yt+k+1; M3) H3(yt+k+1; M1)

α3
M1;y;t;t+k α3

M2;y;t;t+k

α2
M3;y;t+k;t+k+1 α3

M1;y;t+k;t+k+1

By Proposition 2.3 the map α2
M3;y;t+k;t+k+1 is the 0-map. A straightforward diagram 

chase of the above diagram, which follows an element η ∈ Ker(α3
M1;y;t;∞), shows that η ∈

Ker(α3
M1;y;t;t+k+1) whenever k ≥ lcb3(y; M2). In particular, lcb3(y, M1) ≤ lcb3(y; M2) +

1. �

Proposition 2.5. Let R be a commutative Noetherian ring, 0 → M1 → M2 → M3 → 0 a 

short exact sequence of R-modules, and y = y2, y3, y4 a sequence of elements in R.
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(1) If y is a regular sequence on M2 then lcbj(y; M3) = lcbj+1(y; M1) for all 0 ≤ j ≤ 2.

(2) If y is a regular sequence on M3 then lcbj(y; M1) = lcbj(y; M2) for all 0 ≤ j ≤ 3.

Proof. The proofs of (1) and (2) are similar and for the sake of brevity we only provide 

the proof of (1). The sequence y is a regular sequence on M2 and so Hj(yt; M2) = 0

whenever j ≤ 2. Therefore if 0 ≤ j ≤ 1 there are commutative diagrams

Hj(yt; M3) Hj+1(yt; M1)

Hj(yt+k; M3) Hj+1(yt+k; M1)

∼=

αj+1
M3;y;t;t+k αj

M1;y;t;t+k

∼=

whose horizontal arrows are isomorphisms. It easily follows that lcbj(y; M3) =

lcbj+1(y; M1) whenever 0 ≤ j ≤ 1. To verify that lcb2(y; M3) = lcb3(y; M1) consider the 

following commutative diagrams:

0 H2(yt; M3) H3(yt; M1) H3(yt; M2)

0 H2(yt+k; M3) H3(yt+k; M1) H3(yt+k; M2)

δt

α2
M3;y;t;t+k

it

α3
M1;y;t;t+k α3

M2;y;t;t+k

δt+k it+k

A simple diagram chase and utilizing the injectivity of the maps δt, δt+k, and α3
M2;y;t,t+k

imply that lcb2(y; M3) = lcb3(y; M1). �

3. Annihilation of Ext-modules and bounded local cohomology bounds

We are focused on the weak implies strong conjecture and every local weakly F -regular 

ring is a normal Cohen-Macaulay domain, [12, Theorem 4.9 and Lemma 5.9]. Therefore 

we assume throughout this section, and next, that (R, m, k) is a normal Cohen-Macaulay 

domain. We further assume that R is the homomorphic image of a regular local ring S. 

We write R ∼= S/I and h will always denote the height of I, equivalently the codimension 

of R. In particular, the dimension of S is h + 4.

3.1. Annihilation of Ext-modules

Our first proposition, Proposition 3.1, is fundamental toward providing linearly 

bounded local cohomology bounds needed to prove Theorem A.

Proposition 3.1. Let (R, m, k) be an excellent local normal Cohen-Macaulay domain of 

Krull dimension 4. Let K ⊆ R be an ideal of pure height 1 of R so that

(1) The inclusion of ideals Ki ⊆ K(i) is an equality on the punctured spectrum of R;
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(2) The analytic spread of KRP is no more than ht(P ) − 1 for all non-maximal prime 

ideals P of height at least 2;

(3) For each non-maximal prime ideal P of Spec(R) the ideal KRP has reduction number 

1 with respect to any reduction.

Then there exists an m-primary ideal a so that

a
i Exth+3

S (R/K(i), S) = 0

for all i ∈ N.

Proof. Consider the short exact sequences

0 →
K(i)

Ki
→

R

Ki
→

R

K(i)
→ 0.

The inclusion of ideals Ki ⊆ K(i) are an equality on the punctured spectrum of R and 

hence

Exth+3
S (R/K(i), S) ∼= Exth+3

S (R/Ki, S).

Choose an element x1 ∈ K. The principal locus of K is an open subset of Spec(R) and 

K localizes to a principal ideal at all height 2 primes of R by assumption. Indeed, an 

ideal of a normal domain has analytic spread 1 if and only if the ideal is principal. In 

particular, we can choose a parameter sequence x2, x3 of R/x1R so that KRx2
and KRx3

are principal ideals in their respective localizations. Even further, we replace x2 and x3

by xt
2 and xt

3 respectively and may assume that x2K ⊆ r2R and x3K ⊆ r3R for some 

elements r2, r3 ∈ K. Consider the short exact sequences

0 →
Ki

(ri
2)

→
R

(ri
2)

→
R

Ki
→ 0

and

0 →
Ki

(ri
3)

→
R

(ri
3)

→
R

Ki
→ 0.

Observe that xi
2 annihilates Ki/(ri

2) and xi
3 annihilates Ki/(ri

3). Therefore

Exth+3
S (R/Ki, S) ∼= Exth+2

S (Ki/(ri
2), S) ∼= Exth+2

S (Ki/(ri
3), S)

and we find that the ideal (xi
1, xi

2, xi
3) annihilates Exth+3

S (R/Ki, S). To complete the 

proof of the theorem we aim to find a parameter element x4 of R/(x1, x2, x3) so that xi
4

annihilates Exth+3
S (R/Ki, S) for all i.
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Let Λ = {P1, . . . , Pm} be the prime components of the height 3 parameter ideal 

(x1, x2, x3). If necessary, enlarge Λ so that every component of K is contained in some 

prime ideal of Λ and let W = R \
⋃

P ∈Λ P .

Claim 3.2. There exist elements a, b ∈ K such that

(1) (a, b)RW forms a reduction of KRW ;

(2) the element a generates K at its components;

(3) if K ′ is the unique ideal of pure height 1 whose components are disjoint from K and 

is such that (a) = K ∩ K ′ then b avoids all components of K ′.

Proof of Claim 3.2. We are assuming the ideal K has analytic spread at most 2 at each of 

the localizations RP as P varies among the prime ideals in Λ. So for each 1 ≤ i ≤ m there 

exists ai, bi ∈ K such that (ai, bi)RPi
forms a reduction of KRPi

. For each 1 ≤ i ≤ m

choose ri ∈
⋂

P ∈Λ−{Pi} P − Pi and set a′ =
∑

riai and b′ =
∑

ribi. We claim (a′, b′)RWℓ

is a reduction of KRℓ. By [18, Proposition 8.1.1] it is enough to check (a′, b′) forms a 

reduction of K at each of the localizations RPi
for 1 ≤ i ≤ m. By [18, Proposition 8.2.4]

it is enough to check that the fiber cone RP /PRP ⊗ R[Kt] ∼=
⊕

KnRPi
/PiK

nRPi
is 

finite over the subalgebra spanned by ((a′, b′)RPi
, PiK)/PiK. But a′ ≡ riai mod PiK, 

b′ ≡ ribi mod PiK, ri is a unit of RPi
, and therefore (a′, b′)RWℓ

does indeed form a 

reduction of KRWℓ
by a second application of [18, Proposition 8.2.4].

Now consider the set of primes Γ = {Q1, . . . , Qn} which are the minimal components of 

K. The purpose of enlarging the set of height ℓ primes in the statement of the claim was to 

insure that each Qj ∈ Γ is a prime ideal of the localization RWℓ
. In particular, (a′, b′)RQi

forms a reduction of KRQi
for each 1 ≤ i ≤ n. But RQi

is a discrete valuation ring and 

therefore for each 1 ≤ i ≤ ℓ either KRQi
= (a′)RQi

or KRQi
= (b′)RQi

. Without loss 

of generality we assume that KRQi
= (a′)RQi

for at least one value of i and relabel 

the primes in Γ so that KRQi
= (a′)RQi

for each 1 ≤ i ≤ j and KRQi

= (a′)RQi

for 

each j + 1 ≤ i ≤ n. Choose r ∈ Q1 ∩ · · · ∩ Qj −
⋃n

i=j+1 Qi and consider the element 

a′ + rb′. We claim that a′ + rb′ generates KRQi
for each 1 ≤ i ≤ n. First consider a 

localization at a prime Qi ∈ Γ with 1 ≤ i ≤ j. Then (a′, b′)RQi
= (a′)RQi

by assumption 

and so (b′)RQi
⊆ (a′)RQi

. Because r ∈ Qi there is a strict containment of principal 

ideal (rb′)RQi
� (a′)RQi

and it follows that (a′)RQi
= (a′ + rb′)RQi

. Now consider a 

localization RQi
with j + 1 ≤ i ≤ n. We are assuming that a′ does not generate KRQi

and therefore (a′)RQi
� (b′)RQi

= KRQi
. Moreover, r is a unit of RQi

and therefore 

(b′)RQi
= (a′ + rb′)RQi

.

Let a = a′ + rb′. Then (a, b′)RWℓ
= (a′, b′)RWℓ

forms a reduction of KRWℓ
and the 

element a generates K at each of its minimal components as desired. Suppose as an ideal 

of R the principal ideal (a) has decomposition (a) = K ∩ K ′ ∩ K ′′ so that

(1) K, K ′, K ′′ are pure height 1 ideals whose components are disjoint from one another;

(2) the components of K ′ are height 1 prime ideals which do not contain b;
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(3) the components of K ′′ are height 1 prime ideals which do contain b.

We take K ′ or K ′′ to be R if no such components of (a) exist. If K ′′ = R then we let 

b = b′ and the elements a, b satisfy the conclusions of the claim. If K ′′ 
= R then first 

observe that, because (a, b′)RWℓ
forms a reduction of KRWℓ

and a, b′ ∈ K ′′, we must 

have that (a)RWℓ
= (K ∩ K ′)RWℓ

. Choose an element r ∈ K ∩ K ′ which avoids all 

components in K ′′ and consider the element b = b′ + r. Then (a, b)RWℓ
= (a, b′)RWℓ

forms a reduction of KRWℓ
. Moreover, the element b avoids all minimal components of 

K ′ and K ′′ by construction. �

We are assuming that KRW has reduction number 1 with respect to the reduction 

(a, b)RW provided above, i.e. (a, b)KRW = K2RW . The following R-modules localize to 

0 over RW :

(1) K2/(a, b)K;

(2) Exth+3
S (R/(a, b)K, S);

(3) Exth+3
S (R/K, S).

Therefore there exists a parameter element x4 of R/(x1, x2, x3) so that

(1) x4K2 ⊆ (a, b)K;

(2) x4 Exth+3
S (R/(a, b)K, S) = 0;

(3) x4 Exth+3
S (R/K, S) = 0.

Even further, as x4K2 ⊆ (a, b)K, observe that xi−1
4 Ki ⊆ (a, b)i−1K for all i ∈ N. 

Consider the following short exact sequence:

0 →
Ki

(a, b)i−1K
→

R

(a, b)i−1K
→

R

Ki
→ 0.

The left most term is annihilated by xi−1
4 . Thus, in order to show xi

4 annihilates 

Exth+3
S (R/Ki, S) it suffices to show that x4 ∈

⋂

i∈N
AnnR(Exth+3

S (R/(a, b)i−1K, S)). 

To this end we present a claim:

Claim 3.3. For every integer i there is a short exact sequence

0 →
R

abiR
→

R

a(a, b)i−1K
⊕

R

biK
→

R

(a, b)iK
→ 0.

Proof of Claim 3.3. For any ideals I, J there is a short exact sequence

0 →
R

I ∩ J
→

R

I
⊕

R

J
→

R

I + J
→ 0.
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Thus to prove the claim we need only to observe a(a, b)i−1K ∩ biK = abiR. Clearly 

abi ∈ a(a, b)i−1K ∩ biKR. On the other hand, an element of a(a, b)i−1K ∩ biK is of the 

form bir where r ∈ K and bir ∈ a(a, b)i−1K. To show that bir ∈ abiR we must show that 

r ∈ aR = K∩K ′. The element r ∈ K by assumption. Localizing at a component P of K ′, 

a component which does not contain b by design, we find that rbi ∈ a(a, b)i−1RP = aRP

and thus r ∈ aR as desired. �

Claim 3.3 provides to us isomorphisms

Exth+3
S (R/(a, b)iK, S) ∼= Exth+3

S (R/a(a, b)i−1K, S) ⊕ Exth+3
S (R/biK, S). (3.1)

There are short exact sequences

0 →
R

(a, b)i−1K

·a
−→

R

a(a, b)i−1K
→

R

aR
→ 0

and

0 →
R

K

·bi

−→
R

biK
→

R

biR
→ 0.

Therefore the isomorphisms of (3.1) can be further rewritten as

Exth+3
S (R/(a, b)iK, S) ∼= Exth+3

S (R/(a, b)i−1K, S) ⊕ Exth+3
S (R/K, S).

Inductively, we find that

Exth+3
S (R/(a, b)iK, S) ∼=

i
⊕

Exth+3
S (R/K, S)

and we conclude that x4 annihilates Exth+3
S (R/(a, b)iK, S) as desired. �

Suppose that I ⊆ R is an unmixed ideal. The Rees algebra of I is the standard graded 

R-algebra R[It] =
⊕

N≥0 IN , the associated graded ring of I is GrI(R) = R[It] ⊗R R/I, 

and the symbolic Rees algebra of I is RI =
⊕

N≥0 I(N). The inclusion of N-graded 

R-algebras R[It] ⊆ RI is an equality if and only if 
⋃

N∈N
Ass(R/IN ) agrees with the set 

of minimal prime ideals of I. The R-algebra RI is Noetherian if and only if there exists 

an m so that RI(m) is standard graded, i.e. I(m)N = I(mN) for all N .

Suppose that RI is Noetherian and m is chosen so that RI(m) is standard graded. Let 

ℓ(I(m)) = dim RI(m) ⊗R R/m, the analytic spread of I(m). If m′ is another integer so that 

RI(m′) is standard graded then I(m)m′

= I(m′)m = I(mm′) and so ℓ(I(m)) = ℓ(I(mm′)) =

ℓ(I(m)). We say that the associated graded rings of RI have negative a-invariants if 

the graded local cohomology modules Hℓ
R+

I

(GrI(m)(R)) are supported only in negative 

degrees where ℓ = ℓ(I(m)) is the analytic spread of a choice of symbolic power of I for 

which R[I(m)t] = RI(m) .
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Suppose that R is a normal domain, J1 ⊂ R is a choice of canonical ideal, and x1 ∈ J1

is a choice of generic generator. Then we can write (x1) = J1 ∩ K1 where K1 is an ideal 

of pure height 1 whose components are disjoint from J1. Then K1 is an anticanonical 

ideal of R and we refer to the symbolic Rees algebra RK1
as the anticanonical algebra 

of R.

Theorem 3.4. Let (R, m, k) be an excellent local normal Cohen-Macaulay domain of Krull 

dimension 4. Suppose that the anticanonical algebra of R is Noetherian on the punctured 

spectrum of R so that its associated graded rings have negative a-invariant. Let J1 ⊆ R

be a choice of canonical ideal of R. Then there exists an integer m ∈ N and m-primary 

ideal a ⊆ R so that J
(m)
1 is principal in codimension 2 and

a
i Exth+2

S (Exth+1
S (R/Jmi+1

1 , S), S) = 0

for every integer i ∈ N.

Proof. Choose a generic generator x1 ∈ J1 and write (x1) = J1 ∩ K1 where K1 is an 

anticanonical ideal of R whose components are disjoint from the components of J1. A 

theorem of Brodmann, [4], asserts that Γ :=
⋃∞

Ass(R/Kn
1 ) is a finite set, cf. [19]. Let 

P1, . . . , Pt ∈ Γ be the finitely many non-maximal primes of Γ which are not of height 1. If 

P is a non-maximal ideal of R not belonging to {P1, . . . , Pt} then Ki
1RP = K

(i)
1 RP for all 

i. If Pj ∈ {P1, . . . , Pt} then our assumption that the anticanonical algebra is Noetherian 

on the punctured spectrum implies that there exists an integer mj so that K
(mj)i
1 RP =

K
(mji)
1 RP and that the analytic spread of K

(mji)
1 RP does not exceed ht(P ) − 1, see [24]

and [7, Theorem 1.5].

Let m be a common multiple of m1, . . . , mt. Then the inclusion of ideals K
(m)i
1 ⊆

K
(mi)
1 becomes an equality when localized at any non-maximal prime ideal of R. The 

ideal K
(m)
1 is principal in codimension 2 since its analytic spread in codimension 2 is 

1. As J
(m)
1 is the inverse element of K

(m)
1 when viewed as elements of the divisor class 

group of R, J
(m)
1 is principal in codimension 2 as well. Even further, because we are 

assuming the a-invariant of the associated graded ring of the anticanonical algebra of 

RP is negative for each non-maximal prime ideal R, we can replace m by a multiple of 

itself and assume that the ideal K
(m)
1 RPj

has reduction number 1 with respect to any 

reduction, see [17, Theorem 2.1]. Let K = K
(m)
1 and x = xm

1 .

Claim 3.5. For each integer i

Exth+2
S (Exth+1

S (R/Jmi+1
1 , S), S) ∼= Exth+3

S (R/K(i), S).

Proof of Claim 3.5. For each integer i there is short exact sequence

0 →
Jmi+1

1

xmi+1
1 J1

→
R

xmi+1
1 J1

→
R

Jmi+1
1

→ 0.
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The ideal xmi+1
1 J1 is a canonical ideal of R. Therefore

Exth+1
S (R/xmi+1

1 , S) ∼= R/xmi+1
1 J1

and there are left exact sequences

0 → Exth+1
S (R/Jmi+1

1 , S) →
R

xmi+1
1 J1

→ Exth+1
S (Jmi+1

1 /xmi+1
1 J1, S).

Therefore Exth+1
S (R/Jmi+1

1 , S) ∼= Li/xmi+1
1 J1 for some ideal Li ⊆ R. Moreover, R/Li ⊆

Exth+1
S (Jmi+1

1 /xmi+1
1 J1, S). Because Exth+1

S (Jmi+1
1 /xmi+1

1 J1, S) is an (S2)-module over 

its support it follows that R/Li is an (S1)-module over its support. Hence Li, as an 

ideal of R, is unmixed of height 1. Moreover, every component of Li is a component of 

x1R. Localizing at a component of J1 we see that Li agrees with x1R and localizing 

at a component of K1 we see that Li agrees with xmi+1
1 . Therefore Li agrees with the 

unmixed ideal x1K
(mi)
1 and so

Exth+1
S (R/Jmi+1

1 , S) ∼= x1K
(mi)
1 /xmi+1

1 J1.

If we divide by x1 we find that

x1K
(mi)
1 /xmi+1

1 J1
∼= K

(mi)
1 /xmi

1 J1 = K(i)/xiJ1.

Now we consider the short exact sequences

0 → K(i)/xiJ1 → R/xiJ1 → R/K(i) → 0.

The cyclic R-module R/xiJ1 is Cohen-Macaulay of dimension 3 and therefore

Exth+2
S (K(i)/xiJ1, S) ∼= Exth+3

S (R/K(i), S). �

To prove the theorem we aim to find an m-primary ideal a so that

a
i Exth+3

S (R/K(i), S) = 0

for all i. Such an annihilation property is the content of Proposition 3.1. �

3.2. Existence of bounded local cohomology bounds

Let I ⊆ R be an ideal of pure height 1 and (F•, ∂•) be an S-free resolution of R/I

and G• an S-free resolution of ωR/I
∼= Exth+1

S (R/I, S). Let (−)∗ = HomS(−, S). Then 

Hi(F ∗
• ) = Exti

S(R/I, S) = 0 for all i ≤ h and if we let F̃ ∗
• be the truncation of F ∗

• at 

the h +1st spot then F̃ ∗
• resolves Coker(∂∗

h+1). There is a natural inclusion of S-modules 
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Exth+1
S (R/I, S) ⊆ Coker(∂∗

h+1). This inclusion produces a map of complex to cocomplex 

G• → F̃ ∗
• and thus a natural map R/I → Exth+1

S (Exth+1
S (R/I, S), S) obtained from 

applying HomS(−, S) to G• → F̃ ∗
• . The map R/I → Exth+1

S (Exth+1
S (R/I, S), S) is 

injective and is an isomorphism in the Cohen-Macaulay locus of R/I.

Theorem 3.6. Let (R, m, k) be an excellent local normal Cohen-Macaulay domain of Krull 

dimension 4. Suppose that the anticanonical algebra of R is Noetherian on the punctured 

spectrum of R so that its associated graded rings have negative a-invariant. Let J1 ⊆ R

be a choice of canonical ideal of R and a as in Theorem 3.4. There exists an integer m

and x1 ∈ J1, such that if x2, x3, x4 ∈ a are parameters on R/x1R chosen so that

(1) x2J1 ⊆ a2R for some a2 ∈ J1;

(2) x3J
(m)
1 ⊆ a3R for some a3 ∈ J

(m)
1 .

Then for each natural number i there exists an integer ℓ such that

lcb3(xℓ,
2 xℓ

3, x4; R/J
(mi+1)
1 ) ≤ i + 1.

Proof. Let m and a be as in Theorem 3.4. Because J1 is principal in codimension 1 and 

J
(m)
1 is principal in codimension 2 we can choose a parameter sequence x2, x3, x4 ∈ a on 

R/x1R so that

(1) x2J1 ⊆ a2R for some a2 ∈ J1;

(2) x3J
(m)
1 ⊆ a3R for some a3 ∈ J

(m)
1 .

For each integer i there is a short exact sequence of the form

0 → R/J
(mi+1)
1 → Exth+1

S (Exth+1
S (R/J

(mi+1)
1 , S), S) → Ci → 0.

Inverting the element x2 or x3 has the effect of making the ideal J1 principal. Therefore 

the first map in the above short exact sequence is an isomorphism whenever x2 or x3

is inverted and so there exists an integer ℓ so that xℓ
2, xℓ

3 annihilates Ci. By (3) of 

Proposition 2.4 we have that

lcb3(xℓ
2, xℓ

3, x4; R/J
(mi+1)
1 ) ≤ lcb3(xℓ

2, xℓ
3, x4; Exth+1

S (Exth+1
S (R/J

(mi+1)
1 , S), S)) + 1.

Our aim is to show lcb3(xℓ
2, xℓ

3, x4; Exth+1
S (Exth+1

S (R/J
(mi+1)
1 , S), S)) ≤ i. By Lemma 2.2

it suffices to prove lcb3(xℓi
2 , xℓi

3 , xi
4; Exth+1

S (Exth+1
S (R/J

(mi+1)
1 , S), S)) ≤ 1.

Let (F•, ∂•) be the minimal free S-resolution of Exth+1
S (R/J (mi+1), S) and let (−)∗ =

HomR(−, S). The module Exth+1
S (R/J (mi+1), S) has depth at least 2 and so Fh+3 =

Fh+4 = 0. It follows that there are short exact sequences

0 → Im(∂∗
h+2) → F ∗

h+2 → Exth+2
S (Exth+1

S (R/Jmi+1, S), S) → 0
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and

0 → Exth+1
S (Exth+1

S (R/Jmi+1, S), S) → Coker(∂∗
h+1) → Im(∂∗

h+2) → 0.

The S-module Coker(∂∗
h+1) has projective dimension h + 1 and is annihilated by the 

height h + 1 ideal Jmi+1. By a simple prime avoidance argument we may lift x2, x3, x4

to elements of S so that x2, x3, x4 forms a regular sequence on Coker(∂∗
h+1) and the free 

S-module F ∗
h+2. By two applications of (1) of Proposition 2.5 applied to the two above 

short exact sequences

lcb3(xℓi
2 , xℓi

3 , xi
4; Exth+1

S (Exth+1
S (R/Jmi+1

1 , S), S))

= lcb2(xℓi
2 , xℓi

3 , xi
4; Im(∂∗

h+2))

= lcb1(xℓi
2 , xℓi

3 , xi
4; Exth+2

S (Exth+1
S (R/Jmi+1

1 , S), S)).

By Theorem 3.4 we have that

(xℓi
2 , xℓi

3 , xi
4) Exth+2

S (Exth+1
S (R/Jmi+1

1 , S), S) = 0.

Therefore

lcb1(xℓi
2 , xℓi

3 , xi
4; Exth+2

S (Exth+1
S (R/Jmi+1

1 , S), S)) = 1

by (1) of Proposition 2.3. �

4. Equality of test ideals

If N ⊆ M are R-modules then the finitistic tight closure of N inside M is the union 

of (N ∩ M ′)∗
M ′ where M ′ ⊆ M runs through all finitely generated submodules of M . Let 

ER(k) be the injective hull of the residue field of (R, m, k). Then R is strongly F -regular 

if and only if 0 = 0∗
ER(k), [12, Proposition 8.23] and R is weakly F -regular if and only if 

0∗,fg
ER(k) = 0, [30, Proposition 7.1.2].

With the exception of Lemma 4.3 and Corollary 4.5, we continue to assume that 

(R, m, k) is an excellent normal Cohen-Macaulay domain of Krull dimension 4 and is 

the homomorphic image of a regular local ring S so that the results of Section 3 are 

applicable. We fix the characteristic of R to be of prime characteristic p > 0.

The following lemma is inspired by the methodology of Williams and MacCrimmon, 

[36,27]. The lemma is well-known by experts, can be pieced together by work of the first 

author in [1], and we refer the reader to [29, Lemma 6.7] for a more general statement.

Lemma 4.1. Suppose that (R, m, k) is a local normal Cohen-Macaulay domain of prime 

characteristic p > 0, of Krull dimension 4, and J ⊆ R an ideal of pure height 1. Let 

y1 ∈ J and y2, y3, y4 parameters on R/y1R and fix e ∈ N.
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(1) If y2J ⊆ aR for some a ∈ J , then for any integers N2, N3, N4 with N2 ≥ 2, we have 

that

((J (pe), yN2pe

2 , yN3pe

3 , yN4pe

4 ) : y
(N2−1)pe

2 )

= ((J [pe], yN2pe

2 , yN3pe

3 , yN4pe

4 ) : y
(N2−1)pe

2 )

= ((J [pe], y2pe

2 , yN3pe

3 , yN4pe

d ) : ype

2 ).

(2) Suppose y3J (m) ⊆ bR for some b ∈ J (m), then for any non-negative integers 

N2, N3, N4 with N3 ≥ 2, we have that

((J (pe), yN2pe

2 , yN3pe

3 , yN4pe

4 ) : y
(N3−1)pe

3 )

⊆ ((J (pe), yN2pe

2 , y2pe

3 , yNdpe

4 ) : ym
1 ype

3 ).

Theorem 4.2. Let (R, m, k) be an excellent local normal Cohen-Macaulay domain of prime 

characteristic p > 0 and of Krull dimension 4. Suppose that the anticanonical algebra of 

R is Noetherian on the punctured spectrum of R so that its associated graded rings have 

negative a-invariant. Then

0∗,fg
ER(k) = 0∗

ER(k).

In particular, if R is weakly F -regular then R is strongly F -regular.

Proof. Let J1 ⊂ R be a canonical ideal of R and let x1, x2, x3, x4 and m be as in the 

statement of Theorem 3.6. Identify the injective hull ER(k) as

ER(k) = lim
−−→

(

R

(xt−1
1 J1, xt

2, xt
3, xt

4)

·x1x2x3x4−−−−−−→
R

(xt
1J1, xt+1

2 , xt+1
3 , xt+1

4 )

)

.

Suppose that η = [r + (xt−1
1 J1, xt

2, xt
3, xt

4)] ∈ 0∗
ER(k). Equivalently, if c ∈ R is a test 

element then for all e ∈ N there exists an integer s so that

crpe

(x1x2x3x4)spe

∈ (xt+s−1
1 J1, xt+s

2 , xt+s
3 , xt+s

4 )[pe].

The element x1 is regular on R/(x2, x3, x4) and therefore

crpe

(x2x3x4)spe

∈ (xt−1
1 J1, xt+s

2 , xt+s
3 , xt+s

4 )[pe] = (J, xt+s
2 , xt+s

3 , xt+s
4 )[pe],

where J = xt−1
1 J1. Multiplying by (x2x3x4)pe(ts−(t+s)) we find that

crpe

(xt
2xt

3xt
4)(s−1)pe

∈ (J, xts
2 , xts

3 , xts
4 )[pe].

Let y2, y3, y4 denote the parameter sequence xt
2, xt

3, xt
4 so that
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crpe

(y2y3y4)(s−1)pe

∈ (J, ys
2, ys

3, ys
4)[pe].

Observe that pe ≥ m(⌊ pe

m ⌋ − 1) + 1 and hence J [pe] ⊆ J (pe) ⊆ J (mi+1) where we set 

i = ⌊ pe

m ⌋ − 1. Therefore

crpe

(y2y3y4)(s−1)pe

∈ (J (mi+1), yspe

2 , yspe

3 , yspe

4 ). (4.1)

Let ℓ be the integer depending on i described in Theorem 3.6. Theorem 3.6 and 

Lemma 2.2 tell us that for each integer i that there exists an integer ℓ so that

lcb3(yℓ
2, yℓ

3, y4; R/J
(mi+1)
1 ) ≤ i + 1.

Because J = xt−1
1 J1 we have that for each integer i there is a short exact sequence

0 →
R

J
(mi+1)
1

·x
(t−1)(mi+1)
1−−−−−−−−→

R

J (mi+1)
→

R

x
(t−1)(mi+1)
1 R

→ 0.

The sequence yℓ
2, yℓ

3, y4 is a regular sequence on R/x
(t−1)(mi+1)
1 R. By (2) of Proposi-

tion 2.5 we have that

lcb3(yℓ
2, yℓ

3, y4; R/J
(mi+1)
1 ) = lcb3(yℓ

2, yℓ
3, y4; R/xt−1

1 J
(mi+1)
1 ) ≤ i + 1. (4.2)

We multiply the containment (4.1) by (y2y3)(ℓ−1)spe

and notice that

crpe

(y2y3y4)(s−1)pe

(y2y3)(ℓ−1)spe

= crpe

(y2y3)(ℓ−1)pe

(yℓ
2yℓ

3y4)(s−1)pe

∈ (J (mi+1), yℓspe

2 , yℓspe

3 , yspe

4 ).
(4.3)

Consider the element

ζ = [crpe

(y2y3)(ℓ−1)pe

+ (yℓpe

2 , yℓpe

3 , ype

4 )]

of the top Koszul cohomology group

H3(yℓpe

2 , yℓpe

3 , ype

4 ; R/J (mi+1)).

Using the notation of Section 2, the containment of (4.3) is equivalent to the assertion 

that

α
R/J(mi+1);yℓ

2,yℓ
3,y4 ;pe;spe

(ζ) = 0 ∈ H3(yℓspe

2 , yℓspe

2 , yspe

4 ; R/J
(mi+1)
1 ).

By (4.2) we have that

lcb3(yℓ
2, yℓ

3, y4; R/J (mi+1)) ≤ i + 1 ≤ pe − 1 + 1 = pe
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and therefore

α
R/J(mi+1);yℓ

2,yℓ
3,y4 ;pe;2pe

(ζ) = 0 ∈ H3(yℓ2pe

2 , yℓ2pe

2 , y2pe

4 ; R/J
(mi+1)
1 ).

Equivalently, the element

crpe

(y2y3)(ℓ−1)pe

(yℓ
2yℓ

3y4)pe

= c(ry4)pe

y
(2ℓ−1)
2 y

(2ℓ−1)pe

3 ∈ (J (mi+1), y2ℓpe

2 , y2ℓpe

3 , y2pe

4 ).

Recall that i = ⌊ pe

m ⌋ −1 and so m⌊ pe

m ⌋ ≥ m(pe

m −1) = pe−m. Hence mi +1 ≥ pe−(2m −1)

and so

c(ry4)pe

y
(2ℓ−1)pe

2 y
(2ℓ−1)pe

3 ∈ (J (pe−(2m−1)), y2ℓpe

2 , y2ℓpe

3 , y2pe

4 ).

Pick a nonzero element z ∈ J (2m−1). Then

zc(ry4)pe

y
(2ℓ−1)pe

2 y
(2ℓ−1)pe

3 ∈ (J (pe), y2ℓpe

2 , y2ℓpe

3 , y2pe

4 ).

We want to utilize Lemma 4.1 to simplify the above containment. Recall that J =

xt−1
1 J1, y2 = xt

2, y3 = xt
3, x2J1 ⊆ a2R for some a2 ∈ J1, and x3J

(m)
1 ⊆ a3R for some 

a3 ∈ J
(m)
1 . Then y2J ⊆ xt−1

1 a2R, xt−1
1 a2 ∈ J , y3J (m) ⊆ x

(t−1)m
1 a3R, and x

(t−1)m
1 a3 ∈

J (m). Moreover, y1 = xt
1 ∈ J and y2, y3, y4 is a parameter sequence on R/y1R. Therefore 

we can apply (2) of Lemma 4.1 and conclude that

ym
1 zc(ry3y4)pe

y
(2ℓ−1)pe

2 ∈ (J (pe), y2ℓpe

2 , y2pe

3 , y2pe

4 ).

By (1) of Lemma 4.1 we are then able to assert that

ym
1 zc(ry2y3y4)pe

∈ (J [pe], y2pe

2 , y2pe

3 , y2pe

4 ).

The element ym
1 zc does not depend on e. Therefore

ry2y3y4 ∈ (J, y2
2 , y2

3 , y2
4)∗

and hence, as an element of ER(k), η = [ry2y3y4 + (J, y2
2 , y2

3 , y2
4)] belongs to 0∗,fg

ER(k). �

To utilize Theorem 4.2 and prove Theorem A we must observe that the a-invariant of 

the associated graded rings of the anticanonical algebra is negative whenever the ambient 

ring is strongly F -regular and the anticanonical algebra is Noetherian.

Lemma 4.3. Let (R, m, k) be an excellent strongly F -regular ring of prime characteristic 

p > 0 and Krull dimension d ≥ 2. Suppose that I ⊆ R is an ideal of pure height 1 such 

that IN = I(N) for all N . Then the associated graded ring of I has negative a-invariant.
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Proof. If ℓ(I) = 1 then I is principal and H1
R[It]+(GrI(R)) = 0. So we may assume that 

2 ≤ ℓ(I) ≤ d. We first observe that ai(R[It]) < 0 for all 2 ≤ i ≤ d. Because IN = I(N)

for all N we have that S := R[It] is a strongly F -regular graded R-algebra by [6, 

Lemma 3.1], see also [35, Theorem 0.1] and [28, Main Theorem]. The cohomology groups 

Hi
S+

(S) are only supported in finitely many positive degrees. Indeed, let X = Proj(S)

so that Hi
S+

(S) ∼= Hi−1(X, OX) for all i ≥ 2, see [22, Theorem 12.41], and therefore 

[Hi
S+

(S)]N = Hi−1(X, OX(N)) = 0 for all N ≫ 0 by Serre vanishing, [9, Theorem 5.2]. 

It follows that there exists a homogeneous positive degree element c ∈ S such that 

c[Hi
S+

(S)]≥0 = 0. Because S is strongly F -regular the S-linear maps S
·F e

∗
c

−−−→ F e
∗ S are 

pure for all e ≫ 0. Therefore the eth Frobenius action on Hi
S+

(S) followed by multiplying 

by c, which is the map realized by tensoring the pure map S
·F e

∗
c

−−−→ F e
∗ S with Hi

S+
(S), are 

injective. But the eth Frobenius action of Hi
S+

(S) maps elements of degree n to elements 

of degree npe. Furthermore, c was chosen to annihilate elements of non-negative degree 

and therefore Hi
S+

(S) can only be supported in negative degree.

The ring S = R[It] is Cohen-Macaulay and therefore ad(grI(R)) < 0 by [17, 

Theorem 3.1]. By [33, Theorem 3.1 (ii)] we have that ai(grI(R)) = ai(S) whenever 

ai(grI(R)) ≥ ai+1(grI(R)). An easy descending induction argument now tells us that 

ai(grI(R)) < 0 for all 2 ≤ i ≤ d and this completes the proof of the theorem. �

Corollary 4.4. Let R be an excellent 4-dimensional weakly F -regular ring of prime charac-

teristic p > 0. If the anticanonical algebra of R is Noetherian on the punctured spectrum 

of R then R is strongly F -regular.

Proof. It is well known that the properties of being weakly F -regular and strongly F -

regular can be checked at localizations at the maximal ideals of R, see [12, Corollary 4.15]. 

Thus we may assume R = (R, m, k) is local. The properties of weakly F -regular and 

strongly F -regular for a local ring can be checked after completion. In which case, the 

property of being weakly F -regular is equivalent to 0∗,fg
ER(k) being 0 and the property of 

being strongly F -regular is equivalent is 0∗
ER(k) being 0.

Using gamma constructions with respect to a choice of coefficient field, we may assume 

R is F -finite, see [15, Section 6 and Theorem 7.24] and [10, Corollary 3.31]. Every com-

plete local weakly F -regular ring is a normal Cohen-Macaulay domain by [12, Lemma 5.9 

and Theorem 4.9]. Every weakly F -regular ring is a splinter, [16, Corollary 5.23]. The 

property of being a splinter localizes. Therefore R is strongly F -regular on the punctured 

spectrum of R by [5, Corollary 5.9]. Lemma 4.3 tells us the anticanonical algebra of R is 

such that its associated graded ring has negative a-invariant on the punctured spectrum 

of R and therefore R is strongly F -regular by Theorem 4.2. �

Corollary 4.5. Let R be a 4-dimensional normal Cohen-Macaulay domain of prime char-

acteristic p. Suppose that either
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(1) R is finitely generated over a field of prime characteristic p > 5 with infinite tran-

scendence degree over Fp and is weakly F -regular;

(2) R is essentially of finite type over a field of prime characteristic p > 5 and is F -

regular.

Then R is strongly F -regular.

Proof. Every weakly F -regular ring that is finitely generated over a field of infinite 

transcendence degree over Fp is F -regular by [15, Theorem 8.1]. Thus it suffices to prove 

statement (2) only.

As in the proof of Corollary 4.4, we may assume R = (R, m, k) is local and we can 

use gamma constructions to reduce to the scenario that R is F -finite. The ring R is 

strongly F -regular at non-maximal points by [36, Main Result]. By [32, Corollary 6.9], 

if P is a nonmaximal prime ideal of R then there exists an effective boundary divisor 

∆ such that (Spec(RP ), ∆) is globally F -regular (or just F -regular since Spec(RP ) is 

affine) and therefore has KLT singularities by [21, Theorem 3.3]. By [8, Corollary 1.12]

the anticanonical algebra of RP is Noetherian and therefore R is strongly F -regular by 

Corollary 4.4. �

5. Remarks on annihilating Ext-modules, the weak implies strong conjecture, and the 

(LC)-conjecture

Let (R, m, k) be an excellent local normal Cohen-Macaulay domain of Krull dimension 

4 and of prime characteristic p > 0. Let (S, n, k) be a regular local ring of dimension 

h +4 mapping onto R. Fundamental to the results of this article is Proposition 3.1 which 

shows that for an ideal K ⊆ R of pure height 1, satisfying certain technical conditions, 

there exists an m-primary ideal a so that

a
i Exth+3

S (R/K(i), S) = 0.

By Matlis duality,

Ann(Exth+3
S (R/K(i), S)) = Ann(H1

m
(R/K(i))).

Suppose that a ∈ K generates K at its components and write

aR = K ∩ L

for some ideal L of pure height 1 whose components are disjoint from K. By prime 

avoidance, we can choose an element b ∈ L that generically generates L but avoids all 

components of K. Then for every integer i there is a short exact sequence

0 →
R

K(i)

·bi

−→
R

aiR
→

R

(ai, bi)
→ 0.
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Therefore

H0
m

(R/(ai, bi)) ∼= H1
m

(R/K(i))

for every integer i. In particular, if K satisfies the technical conditions of Proposition 3.1, 

then there exists an m-primary ideal a so that

a
pe

H0
m

(R/(a, b)[pe]) = 0

for every integer e. Such an annihilation property is the expectation of the Local Coho-

mology conjecture.

Conjecture 5.1 ((LC)-conjecture). Let (R, m, k) be a Noetherian local ring of prime char-

acteristic p > 0 and I ⊆ R an ideal. There exists an m-primary ideal a so that for every 

integer e

a
pe

H0
m

(R/I [pe]) = 0.

If the (LC)-conjecture is true whenever R is weakly F -regular and I ⊆ R is an ideal of 

height dim(R) − 1, then it would follow that the property of weak F -regularity localizes, 

cf. [12, Page 43], [20], [34, Conjecture 1], and [23, Conjecture 1].
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