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1. Introduction

Let (R, m, k) be an excellent commutative Noetherian local ring of prime characteristic
p > 0. Tight closure theory, introduced and developed by Hochster and Huneke in
[11-16], is a subject central to prime characteristic commutative algebra, important to
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our understanding of characteristic 0 singularities, and a guiding force in the development
of mixed characteristic singularities.

Let N C M be R-modules and let N, denote the tight closure of NV inside of M, see
[12] for a precise definition of tight closure. The ring R is weakly F-regular if Nj; = N
for all finitely generated modules N C M and R is strongly F-regular if N3, = N for
all R-modules N C M. The weak implies strong conjecture asserts that every weakly F-
regular ring is strongly F-regular. The most notable cases that the weak implies strong
conjecture has been proven for are for standard graded algebras over a field, [26], and
all rings of Krull dimension at most 3, [36].

Outside of the graded scenario, developments around the weak implies strong conjec-
ture depend upon the behavior of the anticanonical algebra of R. An unpublished result
of Singh asserts that the weak implies strong conjecture holds for the class of rings whose
anticanonical algebra is Noetherian,” see [6, Corollary 5.9]. Williams’ proof of the weak
implies strong conjecture in dimension 3 implicitly utilizes that the anticanonical algebra
of a 3-dimensional weakly F-regular ring is Noetherian on the punctured spectrum, an
assertion that relies on the algebraic-geometric methods of [25] and [31].

Our methods show that every 4-dimensional weakly F-regular ring is strongly F-
regular, provided its anticanonical algebra is Noetherian when localized at a non-maximal
prime ideal. Therefore a further relationship between tight closure and prime character-
istic birational geometry is desired to progress the weak implies strong conjecture. This
is indeed the scenario in 4-dimensional rings. Recent developments in the prime char-
acteristic minimal model program, [8], allow us to conclude that all divisorial blowups
rings, including the anticanonical algebra, are Noetherian away from maximal ideals for
large classes of 4-dimensional weakly F-regular rings.

Theorem A. Let R be a 4-dimensional finitely generated algebra over a field of prime
characteristic p > 5 which has infinite transcendence degree over Fp. If R is weakly
F-regular then R is strongly F-regular.

The weak implies strong conjecture will be understood as a problem of understanding
when an element of a non-injective direct limit system is mapped to 0 inside the direct
limit. To this end, we introduce the notion of a local cohomology bound in Section 2. If
M is an R-module and z = x1,...,x¢ a sequence of elements then we may identify the
local cohomology module H, (’@(M ) as a direct limit of Koszul cohomologies

H{,y (M) = lim (Hi(:ctf, o ayty M) Sty pri(gle .,wZZ;M)) :
t1<t2

The ith local cohomology bound of M with respect to the sequence z is bounded by
an integer k if for every ¢, if n € H'(z%,... a}; M) represents the 0-element of HZI)(M)

2 It is conjectured that any divisorial blowup ring, including the anticanonical algebra, of any strongly
F-regular ring is Noetherian.
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then ai,t X (1) = 0. Understanding when a module has bounded local cohomology bounds
with respect to a sequence of elements is an interesting, challenging, and worth-while
venture.

2. Local cohomology bounds

We do not present the basic theory of local cohomology bounds in full generality.
We only present specific aspects needed in later sections. The interested reader should
consult [2] for a thorough introduction to the theory of local cohomology bounds.

2.1. Definition of local cohomology bound

Suppose M is a module over a ring R and y = y2, y3, y4° a sequence of elements. Then
for each integer t € N we let y* = yb, 9%,y and for each pair of integers ¢; < t let
O3 yitast, denote the natural map of Koszul cocomplexes

~®
Ay

K*(yhy M) —222 Ko (y'2; M).

More specifically, &3;., .4, ¢, is the following map of Koszul cocomplexes:

y“ y:h ,yh 0 yfq
uh —ﬁ;‘ o b yh
? o ot 2
¢ Ys 3 0 Ys Ys 3 Yy
K*(y"; M) : 0— M ——— M® —  — S M~ - M —0

~ ~0 ~1 ~2 ~3
O‘;w;g;tl:tzz AN ystystg XM ystysto XM ;ystysto XM ystysto
K'(th;M): 0O— M —— M® — > M - M —0
= Yt I — 0 yb
sz 0 sz ,ysz y41
(2.1)
Where
~0 3 .
¢ OMiystists — idas;
1 yih 0 0
o = 0 Lt 0
° aM;g;tl;tQ 0 y30 gl
~9 (yaya)> ™" Ot . 0
= 0 27 O
* YMiystasts 0 (vava) (yays)
~3 _ . to—t1
® Qpriytysty (Y2y3Y4)

We begin the sequence at ys instead of y; for ease of referencing this material in Section 3 and Section 4.



40 I. Aberbach, T. Polstra / Journal of Algebra 605 (2022) 37-57

We let a{vj;g;tl;tg denote the induced map of Koszul cohomologies

J
XN yitystg

Hj(gtl;M) Hj(gt"’;M).

In particular,

lim <Hj(y“;M) MH’@Q;MO = H! (M)

(v)
t1<tz -

by [3, Theorem 3.5.6].
For each 0 < j < 3 let a?\/[;g;t;oo be the natural map

i aJM;y;t;w i
H (y's M) —— H{,,(M).

An element n € HI(y"; M) belongs to Ker(a?\/[;%t;oo) if and only if there exists some

k > 0 so that n € Ker(a@l;g;t;Hk). Ifne Ker(afw;g;tm) we let

eéyt(n) =min{k |7 € Ker(oﬁw;g;t;urk)}.

Definition 2.1. Let R be a ring, y = y2,¥3, y4 a sequence of elements in R, and M an R-
module. The jth local cohomology bound of M with respect to the sequence of elements

y is
leb;(y; M) = Sup{eit(n) |ne Ker(a{w;g;tm) for some ¢} € N U {co}.

Observe that if M is an R-module and y = y2,¥3,y4 a sequence of elements, then
Icb;(y; M) < N < oo simply implies that if € H7(y*; M) represents the O-element in
the direct limit

J
M yitq5to
— M)

liny <Hj<g“;M> Hj<yf2;M>> >~ 1]
t1<to

then aﬂ[;g;t;HN(n) is the O-element of the Koszul cohomology group H’ (QHN; M).
Therefore finite local cohomology bounds correspond to a uniform bound of annihilation
of zero elements in a choice of direct limit system defining a local cohomology module.

2.2. Some basic properties of local cohomology bounds
Lemma 2.2. Let R be a commutative Noetherian ring, M an R-module, and y = y2, Y3, Y4

a sequence of elements, then lcb;(y'; M) < lcb;(y; M). Furthermore, leb;(y; M) < tm
for some integers t,m if and only if Icb;(y'; M) < m.
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J — A7
Proof. One only has to observe that OMiytikhbm = OMiyith thitm: O

Proposition 2.3. Let R be a commutative Noetherian ring and M, N modules over R.
Suppose y = y2, Y3, ya 5 a sequence of elements so that (y2,ys,ya) M = 0 and (y2,y3)N =
0. Then

(1) O‘g\/f;g;t,t-i-k =0 forallt,k>1,and1<j<3;
(2) O‘g\f;g;t,t-s-k =0forallt,k>1, and 2 < j < 3.

In particular, lcb;(y; M) <1 for 1 < j <3 and lcbj(y; N) <1 for2 <j <3.

Proof. Recall that O‘g\/py-t ¢4 is the map of Koszul cohomologies induced from the map
ANyt 41 00 Koszul cocomplexes. One can consult the diagram of (2.1) to observe that

6‘3\/14;-:& ¢+ is the O-map for all ¢, k¥ > 1, and j > 1. The second assertion follows by an
identical argument. O

Proposition 2.4. Let (R, m, k) be a local ring and
0— M; — My — M3z —0

a short exact sequence of finitely generated R-modules. Let y = ya,y3,ys a sequence of
elements of R. If (y2,y3) M3 = 0 then

lebs (ye, y3, ya; M) < lcbs(ye2, ys, ya; Ma) + 1.

Proof. Consider the following commutative diagram, whose middle row is exact:

H3(y'; My) ———— H?(y'; My)

3 3
J/aMl;g;t;ti»k J/aMQ;E;t;tﬁ»k

HQ(gt+k;M3) [N H?’(ng;Ml) N Hg(gtJrk;Mg)

la?\lg;ﬂ;tﬁ—k;tﬁ—kﬁ—l J/D‘:J;Ml;ﬂ;t+k;t+k+l
H2<gt+k+1;M3) H3(gt+k+1; Ml)
By Proposition 2.3 the map a%&;y;ﬁk;ﬁkﬂ is the 0-map. A straightforward diagram
chase of the above diagram, which follows an element 1) € Ker(a3, .,.;.o. ), shows that 7 €
Ker(a%l;y;t;wkﬂ) whenever k& > lcbs(y; Ma). In particular, lebs(y, M) < lcbs(y; Ma) +
1. o

Proposition 2.5. Let R be a commutative Noetherian ring, 0 — My — My — M3 — 0 a
short exact sequence of R-modules, and y = y2,y3,ys a sequence of elements in R.
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(1) If y is a regular sequence on My then lcb;(y; M3) = lebjy1(y; My) for all 0 < j < 2.

(2) If y is a regular sequence on Ms then lcbj(y; My) = lcb;(y; Ma) for all 0 < j < 3.

Proof. The proofs of (1) and (2) are similar and for the sake of brevity we only provide
the proof of (1). The sequence y is a regular sequence on My and so HI (gt; My) =0
whenever j < 2. Therefore if 0 < j < 1 there are commutative diagrams

o~

HI(yt; M3) ———— HIT(yt My)

J+1 J
laﬂlg,;g;t;ti»k J/al\ll;g;t;t+k

HI (y+k; My) —=— HI+L(y!+%; My)

whose horizontal arrows are isomorphisms. It easily follows that lcb;(y; M3) =
lcbjq1(y; M1) whenever 0 < j < 1. To verify that lche(y; Ms) = lebs(y; M1) consider the
following commutative diagrams:

0 —— H2(y's M) —— H3(y!; My) ——s H3(yt; M)

2 3 3
J/al\l3;£;t:t+k laMl;g;t:t#»k J/QMQ;E:t;t«Fk

0 —— H2(y+; M) 25 HO (s My) 5 HO (g k)

A simple diagram chase and utilizing the injectivity of the maps d¢, 044, and 0‘?\42 it 4k
imply that lcba(y; Ms) = Icbs(y; My). O

3. Annihilation of Ext-modules and bounded local cohomology bounds

We are focused on the weak implies strong conjecture and every local weakly F-regular
ring is a normal Cohen-Macaulay domain, [12, Theorem 4.9 and Lemma 5.9]. Therefore
we assume throughout this section, and next, that (R, m, k) is a normal Cohen-Macaulay
domain. We further assume that R is the homomorphic image of a regular local ring S.
We write R = S/I and h will always denote the height of I, equivalently the codimension
of R. In particular, the dimension of S is h + 4.

3.1. Annihilation of Ext-modules

Our first proposition, Proposition 3.1, is fundamental toward providing linearly
bounded local cohomology bounds needed to prove Theorem A.

Proposition 3.1. Let (R,m, k) be an excellent local normal Cohen-Macaulay domain of
Krull dimension 4. Let K C R be an ideal of pure height 1 of R so that

(1) The inclusion of ideals K* C KW s an equality on the punctured spectrum of R;
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(2) The analytic spread of KRp is no more than ht(P) — 1 for all non-mazimal prime
ideals P of height at least 2;

(8) For each non-mazimal prime ideal P of Spec(R) the ideal K Rp has reduction number
1 with respect to any reduction.

Then there exists an m-primary ideal a so that
o' Extt™(R/K®W S) =0
for all i € N.

Proof. Consider the short exact sequences

K® R R
— — =

S I OB

0—

The inclusion of ideals K* C K are an equality on the punctured spectrum of R and
hence

Ext?T3(R/KW, S) = Ext" T3 (R/K", S).

Choose an element x; € K. The principal locus of K is an open subset of Spec(R) and
K localizes to a principal ideal at all height 2 primes of R by assumption. Indeed, an
ideal of a normal domain has analytic spread 1 if and only if the ideal is principal. In
particular, we can choose a parameter sequence s, x3 of R/x1 R so that K R,, and K R,
are principal ideals in their respective localizations. Even further, we replace x2 and x3
by z% and z% respectively and may assume that zo K C 7R and 23K C r3R for some
elements 19,73 € K. Consider the short exact sequences
K R R

— 5 —— = — =0
(5) " Gh) K

and

Observe that z¥ annihilates K*/(r}) and x% annihilates K¢/(r%). Therefore
Extg™(R/K', S) 2 Extg™(K'/(r}), S) 2 Extg™(K'/(r5), S)
and we find that the ideal (z},%,2%) annihilates Ext:™(R/K* S). To complete the

proof of the theorem we aim to find a parameter element x4 of R/(z1,z2,73) so that x}
annihilates Ext%™(R/K?, S) for all i.
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Let A = {Py,..., Py} be the prime components of the height 3 parameter ideal
(z1, 22, 23). If necessary, enlarge A so that every component of K is contained in some
prime ideal of A and let W = R\ Jpcp P.

Claim 3.2. There exist elements a,b € K such that

(1) (a,b)Rw forms a reduction of KRy ;

(2) the element a generates K at its components;

(3) if K' is the unique ideal of pure height 1 whose components are disjoint from K and
is such that (a) = K N K’ then b avoids all components of K'.

Proof of Claim 3.2. We are assuming the ideal K has analytic spread at most 2 at each of
the localizations Rp as P varies among the prime ideals in A. So for each 1 < i < m there
exists a;,b; € K such that (a;,b;)Rp, forms a reduction of KRp,. For each 1 <i <m
choose r; € nPeA—{Pi} P—P;and set ' = > r;a; and ¥/ = > r;b;. We claim (o, b') Ry,
is a reduction of K Ry. By [18, Proposition 8.1.1] it is enough to check (a’,b") forms a
reduction of K at each of the localizations Rp, for 1 < i < m. By [18, Proposition 8.2.4]
it is enough to check that the fiber cone Rp/PRp ® R|Kt]| = @ K"Rp,/P,K"Rp, is
finite over the subalgebra spanned by ((a/,b')Rp,, P,K)/P,K. But o/ = r;a; mod PK,
b = r;b; mod P,K, r; is a unit of Rp,, and therefore (a’,b' )Ry, does indeed form a
reduction of K Ry, by a second application of [18, Proposition 8.2.4].

Now consider the set of primes ' = {Q1, . . ., @, } which are the minimal components of
K. The purpose of enlarging the set of height ¢ primes in the statement of the claim was to
insure that each @; € I' is a prime ideal of the localization Ryy,. In particular, (a’,b)Rq,
forms a reduction of K Rg, for each 1 <+4¢ < n. But Ry, is a discrete valuation ring and
therefore for each 1 < i < ¢ either KRq, = (a’)Rq, or KRg, = (')Rg,. Without loss
of generality we assume that K Rg, = (a’)Rg, for at least one value of ¢ and relabel
the primes in I" so that KRg, = (a')Rq, for each 1 < i < j and KR, # (a')Rg, for
each j+1 < i <n.Chooser € Q1 N---NQ; — U;L:jﬂ Q; and consider the element
a’ + rb’. We claim that o' + rb’ generates KRy, for each 1 < i < n. First consider a
localization at a prime @; € I' with 1 < ¢ < j. Then (a’,0')Rg, = (a’)Rg, by assumption
and so (0')Rg, C (a')Rq,. Because r € Q; there is a strict containment of principal
ideal (rb')Rg, < (a')Rq, and it follows that (a’)Rg, = (a’ + rb')Rg,. Now consider a
localization Rq, with j + 1 < ¢ < n. We are assuming that ¢’ does not generate KRy,
and therefore (a')Rg, € (V')Rg, = KRg,. Moreover, r is a unit of Rg, and therefore
(0)Rg, = (a' + 1V )Rg,.

Let a = @’ + rb'. Then (a,b)Rw, = (a/,b’)Rw, forms a reduction of K Ry, and the
element a generates K at each of its minimal components as desired. Suppose as an ideal
of R the principal ideal (a) has decomposition (a) = K N K’ N K" so that

(1) K,K’, K" are pure height 1 ideals whose components are disjoint from one another;
(2) the components of K’ are height 1 prime ideals which do not contain b;
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(3) the components of K" are height 1 prime ideals which do contain b.

We take K’ or K” to be R if no such components of (a) exist. If K” = R then we let
b = b and the elements a,b satisfy the conclusions of the claim. If K" # R then first
observe that, because (a,b’)Rw, forms a reduction of KRy, and a,b’ € K", we must
have that (a)Rw, = (K N K')Ry,. Choose an element r € K N K’ which avoids all
components in K” and consider the element b = b’ 4+ r. Then (a,b)Rw, = (a,b’)Rw,
forms a reduction of K Ryy,. Moreover, the element b avoids all minimal components of
K’ and K" by construction. 0O

We are assuming that K Ry has reduction number 1 with respect to the reduction
(a,b) Ry provided above, i.e. (a,b)K Ry = K?Ry . The following R-modules localize to
0 over Ryy:

(1) K?/(a,b)K;
(2) Extg+3(R/(a7b)K, S);
(3) Exti™(R/K, S).

Therefore there exists a parameter element x4 of R/(x1,x2,x3) so that

(1) 24K? C (a,b)K;
(2) 24 ExtT3(R/(a,b)K, S) = 0;
(3) 24 Exti™3(R/K,S) = 0.

Even further, as 24K? C (a,b)K, observe that zi 'K* C (a,b)’ 'K for all i € N.
Consider the following short exact sequence:

K’ . R . R
(a,b) 'K (a,b)"'K K¢

0— — 0.

The left most term is annihilated by xffl. Thus, in order to show z annihilates
Ext:t3(R/K?,S) it suffices to show that x4 € Nien Anng(Ext23(R/(a,b)" 1K, S)).
To this end we present a claim:

Claim 3.3. For every integer i there is a short exact sequence

0— 1 — al D a — _R_ —0
ab’R " a(a,b) 'K 7 0K = (a,b)'K '

Proof of Claim 3.3. For any ideals I, J there is a short exact sequence

0—>i—>5@5—>i—>0
Ing "1 7J I+J '
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Thus to prove the claim we need only to observe a(a,b)’ 'K Nb'K = ab'R. Clearly
ab® € a(a,b)’ "' K Nb*K R. On the other hand, an element of a(a,b)’"*K N V'K is of the
form b'r where r € K and b'r € a(a,b)’ 1 K. To show that bir € ab’R we must show that
r € aR = KNK'. The element r € K by assumption. Localizing at a component P of K’,
a component which does not contain b by design, we find that 70’ € a(a,b)" "' Rp = aRp
and thus r € aR as desired. O

Claim 3.3 provides to us isomorphisms
Extt™(R/(a,b)'K, S) = Ext™(R/a(a,b)' 'K, S) @ ExtiT3(R/VK, S).  (3.1)

There are short exact sequences

0— i = u ENELIN 0
(a,b)—1K a(a,b) 1K  aR

and

v R R

O—>§—> — —0
K VK bR '
)

Therefore the isomorphisms of (3.1) can be further rewritten as

EXt}H_B(R/(a,b)iK, S) Exth+3(R/(a b)z 1K S) @Exth+3(R/K, S)

Inductively, we find that

Ext%"3(R/(a,b)'K, S) @Exth+3 R/K,S)
and we conclude that x, annihilates Ext*3(R/(a,b)'K, S) as desired. O

Suppose that I C R is an unmixed ideal. The Rees algebra of I is the standard graded
R-algebra R[It] = @y~ IV, the associated graded ring of I is Gry(R) = R[It]®g R/I,
and the symbolic Rees_algebra of I'is R = @n-o I™) | The inclusion of N-graded
R-algebras R[It] C Ry is an equality if and only if U_NeN Ass(R/IN) agrees with the set
of minimal prime ideals of I. The R-algebra R is Noetherian if and only if there exists
an m so that R, is standard graded, i.e. TN — 7(mN) for a]l N.

Suppose that R is Noetherian and m is chosen so that R ;) is standard graded. Let
(1)) = dim R j(my @ g R/m, the analytic spread of (™). If m/ is another integer so that
R ;my is standard graded then [(mym’ — pmym — p(mm’) and so ¢(10™)) = ¢(1(mm)) =
E(I(m)) We say that the associated gmded rings of R have megative a-invariants if
the graded local cohomology modules H (Gr 1m) (R)) are supported only in negative

degrees where ¢ =/ ( )) is the analytlc spread of a choice of symbolic power of I for
which R[I"™t] = Ryom).
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Suppose that R is a normal domain, J; C R is a choice of canonical ideal, and 1 € J;
is a choice of generic generator. Then we can write (z1) = J; N K7 where K is an ideal
of pure height 1 whose components are disjoint from J;. Then K; is an anticanonical

ideal of R and we refer to the symbolic Rees algebra Ry, as the anticanonical algebra
of R.

Theorem 3.4. Let (R, m, k) be an excellent local normal Cohen-Macaulay domain of Krull
dimension 4. Suppose that the anticanonical algebra of R is Noetherian on the punctured
spectrum of R so that its associated graded rings have negative a-invariant. Let J; C R
be a choice of canonical ideal of R. Then there exists an integer m € N and m-primary
tdeal a C R so that Jl(m) is principal in codimension 2 and

o' Exti? (Extt™ (R/J™ L S),8) =0
for every integer i € N.

Proof. Choose a generic generator 1 € J; and write (z1) = J; N K; where K is an
anticanonical ideal of R whose components are disjoint from the components of J;. A
theorem of Brodmann, [4], asserts that " := |J™ Ass(R/K7) is a finite set, cf. [19]. Let
Py, ..., P, €T be the finitely many non-maximal primes of I which are not of height 1. If
P is a non-maximal ideal of R not belonging to { Py, ..., P;} then KiRP = K:Ei)Rp for all
i. If P; € {Py,..., P} then our assumption that the anticanonical algebra is Noetherian
on the punctured spectrum implies that there exists an integer m; so that K fm" )iRp =
K :Emji)Rp and that the analytic spread of K fmj ) Rp does not exceed ht(P) — 1, see [24]
and [7, Theorem 1.5].

Let m be a common multiple of my,...,m;. Then the inclusion of ideals K:Em)i -
K :Emi) becomes an equality when localized at any non-maximal prime ideal of R. The
ideal K im) is principal in codimension 2 since its analytic spread in codimension 2 is
1. As Jl(m) is the inverse element of K 1(m) when viewed as elements of the divisor class
group of R, Jl(m) is principal in codimension 2 as well. Even further, because we are
assuming the a-invariant of the associated graded ring of the anticanonical algebra of
Rp is negative for each non-maximal prime ideal R, we can replace m by a multiple of
itself and assume that the ideal K 1(m)Rpj has reduction number 1 with respect to any

reduction, see [17, Theorem 2.1]. Let K = Kl(m) and x = ="
Claim 3.5. For each integer i

Extt ™2 (ExtiT™ (R/ ML S), 8) = Extt™(R/K®, S).
Proof of Claim 3.5. For each integer ¢ there is short exact sequence

J{ni+1 R R

0— g — : — .
x;m-i—l Jl xTz+1 Jl Jlmz-i-l

— 0.
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The ideal z7"*1J; is a canonical ideal of R. Therefore
Extg™ (R/a1, S) = R/a gy
and there are left exact sequences

R

0= Ext&™ (BRI, S) = ——
Xy Jl

— Bxt(gmitl pmitl ).

Therefore Ext}SLH(R/Jf”H, S) = Li/x’f”lJl for some ideal L; C R. Moreover, R/L; C
Extt™ (J7tt /o L S). Because Ext/i ™ (1 /24 1 S) is an (Sy)-module over
its support it follows that R/L; is an (S;)-module over its support. Hence L;, as an
ideal of R, is unmixed of height 1. Moreover, every component of L; is a component of
x1R. Localizing at a component of J; we see that L; agrees with 1R and localizing
at a component of K; we see that L; agrees with x{”“‘l. Therefore L; agrees with the

)

unmixed ideal z; K fmz and so
Ext! R/ I 8) 2y K™ faiitl gy
If we divide by x; we find that
lefmi)/mTiHJl = Kfmi)/ximt]l =KW /z' .
Now we consider the short exact sequences
0— KD/2'J, - R/2z'J, — R/K® — 0.
The cyclic R-module R/x%J; is Cohen-Macaulay of dimension 3 and therefore
Ext’P2(K® /2, 8) = Extt 3 (R/K®S). O
To prove the theorem we aim to find an m-primary ideal a so that
o Ext3(R/KW 8) =0
for all ¢. Such an annihilation property is the content of Proposition 3.1. O

3.2. Ezistence of bounded local cohomology bounds

Let I C R be an ideal of pure height 1 and (F,,ds) be an S-free resolution of R/I
and G, an S-free resolution of wg/; = Extst!'(R/I,S). Let (—)* = Homg(—, S). Then
HY(F}) = Ext(R/I,8) = 0 for all i < h and if we let F be the truncation of F at
the h+ 1st spot then F} resolves Coker(dy, ;). There is a natural inclusion of S-modules
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Extg"’l(R/ I,5) C Coker(0j_ ). This inclusion produces a map of complex to cocomplex
Ge — F¥ and thus a natural map R/I — Exti™ (Extt™(R/I,S),S) obtained from
applying Homg(—, S) to Go — F}. The map R/I — Extt™(Extt™(R/I,S),S) is
injective and is an isomorphism in the Cohen-Macaulay locus of R/I.

Theorem 3.6. Let (R, m, k) be an excellent local normal Cohen-Macaulay domain of Krull
dimension 4. Suppose that the anticanonical algebra of R is Noetherian on the punctured
spectrum of R so that its associated graded rings have megative a-invariant. Let J; C R
be a choice of canonical ideal of R and a as in Theorem 3.4. There exists an integer m
and x1 € Jy, such that if x2,x5,24 € a are parameters on R/x1R chosen so that

(1) x2J1 C asR for some as € Jy;
(2) x3J1(m) C azR for some a3 € Jl(m).

Then for each natural number i there exists an integer £ such that
lehs (25 25, 24 R/meiﬂ)) <i+ 1.

Proof. Let m and a be as in Theorem 3.4. Because J; is principal in codimension 1 and

1 is principal in codimension 2 we can choose a parameter sequence s, 3,4 € @ OL
R/xz1 R so that

(1) x2J; C asR for some ay € Jy;
(2) ngl(m) C a3R for some a3 € Jl(m).

For each integer i there is a short exact sequence of the form
0 — R/JIHY s ExtiH (Bxt (R/JIMHY | 9), ) = C; — 0.

Inverting the element x5 or x3 has the effect of making the ideal J; principal. Therefore
the first map in the above short exact sequence is an isomorphism whenever x5 or xs
is inverted and so there exists an integer ¢ so that z%,z% annihilates C;. By (3) of
Proposition 2.4 we have that

Ichs (25, 25, 24 R/J(WH)) < lebg (@b, x5, 24; Extg“'l(ExthH(R/Jl(miH), S),S)) + 1.

Our aim is to show lcbs (x5, x3, Z4; ExthH(ExthH(R/J(miH) S),8)) <i. By Lemma 2.2
it suffices to prove lcbs (x4, x4 ,x4,ExthH(ExthH(R/J(mlH) S),S)) < 1.

Let (F,,d,) be the minimal free S-resolution of Ext%™ (R/J(™+1) §) and let (—)* =
Homp(—,S). The module Ext®™ (R/J(™+1) §) has depth at least 2 and so Fj,y3 =
Fpq = 0. It follows that there are short exact sequences

0 — Im(0}40) — Fiyo — ExtET?(Extit (R/J™T,S),8) — 0
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and
0 — ExtiT (Extt™ (R/J™*1,S),S) — Coker(d),) — Im(d}.5) — 0.

The S-module Coker(9;, ;) has projective dimension h + 1 and is annihilated by the
height A + 1 ideal J™*1. By a simple prime avoidance argument we may lift x5, x5, 14
to elements of S so that xa, 23,74 forms a regular sequence on Coker(9j;, ;) and the free
S-module Fy ,. By two applications of (1) of Proposition 2.5 applied to the two above
short exact sequences

lebs (24, 2§, s Extg ™ (Exte™ (R/ TV, S), 9))
1Cb2 (xgl7 xgia IEL; Im(ait+2))

leby (2, 2§, o) Extt ™ (Exti T (R/ ML S), S)).

By Theorem 3.4 we have that
(xgi, J:f;f, ZCZ;) Ext}SLH(EX’GZH(R/J{mH, S),S) =0.
Therefore
lcby (25, x5, % Eth+2<Eth+1(R/szi+1, S),8) =1
by (1) of Proposition 2.3. O
4. Equality of test ideals

If N C M are R-modules then the finitistic tight closure of N inside M is the union
of (NNM')%4, where M' C M runs through all finitely generated submodules of M. Let
Eg(k) be the injective hull of the residue field of (R, m, k). Then R is strongly F-regular
if and only if 0 = O*ER(k), [12, Proposition 8.23] and R is weakly F-regular if and only if
OE}J;“(],C) =0, [30, Proposition 7.1.2].

With the exception of Lemma 4.3 and Corollary 4.5, we continue to assume that
(R,m, k) is an excellent normal Cohen-Macaulay domain of Krull dimension 4 and is
the homomorphic image of a regular local ring S so that the results of Section 3 are
applicable. We fix the characteristic of R to be of prime characteristic p > 0.

The following lemma is inspired by the methodology of Williams and MacCrimmon,
[36,27]. The lemma is well-known by experts, can be pieced together by work of the first
author in [1], and we refer the reader to [29, Lemma 6.7] for a more general statement.

Lemma 4.1. Suppose that (R, m, k) is a local normal Cohen-Macaulay domain of prime
characteristic p > 0, of Krull dimension 4, and J C R an ideal of pure height 1. Let
y1 € J and yo,ys, ya parameters on R/y1 R and fix e € N.
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(1) If yoJ C aR for some a € J, then for any integers No, N3, Ny with Ny > 2, we have
that
) Nop® _ Nsp® . Nap® Ny—1)p®
(T, 53" g o) 07
] Nap® . Nsp® . Nap® Na—1)p®
:((J[p]’y22p7y33p,y44p):y£ : )P)

e 26 N e N e e
((J[p ],y2p » Y3 b ayd4p )yg )

(2) Suppose y3J™ C bR for some b € J™), then for any non-negative integers
Ny, N3, Ny with N3 > 2, we have that

e Nop® Nap® Nypn® Na—1)p¢
(T, 53" g ") D7)

e Nop® 29 N p¢ e
g ((J(P )7y2 *P ay3p 7y4 r ) : yinyg )

Theorem 4.2. Let (R, m, k) be an excellent local normal Cohen-Macaulay domain of prime
characteristic p > 0 and of Krull dimension 4. Suppose that the anticanonical algebra of
R is Noetherian on the punctured spectrum of R so that its associated graded rings have
negative a-invariant. Then

*,f _ *
0% (k) = OBn(h)-

In particular, if R is weakly F-reqular then R is strongly F-regular.

Proof. Let J; C R be a canonical ideal of R and let z1,z2, 23,24 and m be as in the
statement of Theorem 3.6. Identify the injective hull Er(k) as

Bl =t ).
=\ ) (et 2 o)

t—1 t ot
xy Ji,my, xh, 1y , T3

Suppose that n = [r 4 (71 Jp, 2b, 2%, 24)] € 0%, (k). Equivalently, if ¢ € R is a test
element then for all e € N there exists an integer s so that

t+s—1 t+s . t+s t+s\[p°
1 Ji,xg % xyt ay )[”].

er? (zwoxsry)®? € (z
The element z; is regular on R/(z2,x3,x4) and therefore
er?” (x2x3x4)5pe € (x’i_lJl,x§+s,x§+s,xfl+s)[pe] = (J, x§+s,x§+s,xf1+s)[pe},
where J = 2t~ 1J;. Multiplying by (zoz324)P (5~ (+5)) we find that

Crot t t\(s—1)p° ts _ts _ts\[p®
er? (.T21'3.T4)( » € (']7 Ty, T3,y )[p ]

Let y2,ys3,ys denote the parameter sequence x4, x4, % so that
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P (yayzya) OV € (1,8, y5, vi) P

Observe that p® > m([%] — 1) + 1 and hence JPI € J®) C j0m+D) where we set
i = |2 ] — 1. Therefore

P (yayays) STVPT @ (JOmiHD) gspm g mpt sy, (4.1)

Let ¢ be the integer depending on ¢ described in Theorem 3.6. Theorem 3.6 and
Lemma 2.2 tell us that for each integer ¢ that there exists an integer ¢ so that

lebs (yh, y5, ya; R/ JI™Y) <4 1.
Because J = 271} we have that for each integer i there is a short exact sequence

R .Igtfl)(m,i#»l) R R

- — — . — 0.
J1(m1+1) J(mi+1) xgt—l)(mz-‘rl)R

0—

The sequence y,y5,y4 is a regular sequence on R/:Egt_l)(mHl)R. By (2) of Proposi-
tion 2.5 we have that

lebs (5, y5, yas R/J™ V) = leby (5, 45, yas B/ ) ik 10 (4.2)
We multiply the containment (4.1) by (y2y3)¢~1*P" and notice that

er? (yaysya) C VP (yays) VP = erP” (yoys) VP (yhybys) 5P

(4.3)
mi lsp®  fsp®  sp°©
G(J( +1)’y2p 7y3p 7y4p )

Consider the element

e

e p— e é e Z e
¢ =l (yaus) P + (e w0 )]
of the top Koszul cohomology group
e (=3 [ e e mZ
H(y" s o yh s R/JHD),

Using the notation of Section 2, the containment of (4.3) is equivalent to the assertion
that

_ 3, lsp®  Lsp® ‘. (mi+1)
O‘R/J(mi-%—l):y%,yém ipe;spe (C) =0eH (yZSp 7y25p ’yip ’R/Jl )

By (4.2) we have that

lebs (ys, ys, yas R/ JMH) <i41<p® —141=p°
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and therefore

_ 3, 02p°  02p°  2p°, (mi+1)
aR/J(nl'i+1);y§,y§,y4;pe;Qpe (C) =0eH (yQ g P v 7y4p 1R/J1 )'

Equivalently, the element

e —1)p° e e (20—1) (26—1)p° i o 20p° | 2p°
er (o) O (abun)”" = clryn) g™V U € (0D g3 g5 ).
Recall that i = L%J —1 and so mL%J > m(il—e—l) = p®—m. Hence mi+1 > p°—(2m—1)
and so

e (20—1)p° (2¢—1)p° €_ — 20p®  240p°®  2p°
c(rys)? yg )p y:()) )P c (J(p (2m 1))’y2 P 2 D ’y4p ).

Pick a nonzero element z € J2m=1) Then

e (20—1)p® (20—1)p¢ e 20p°€ 20p°© 2p°€
ze(rya)P YT IP PIPT e (0) g 2eT 20 2ty

We want to utilize Lemma 4.1 to simplify the above containment. Recall that J =

2TV e = ab, ys = @b, x9J) € agR for some ap € Jp, and 333J1(m) C a3R for some

as € J1(m)~ Then yoJ C 2 'aoR, ! tay € J, y3J™ C :cht*l)magR, and x&til)mag €

J(™) Moreover, 3, = xt € J and yo,y3, y4 is a parameter sequence on R/y; R. Therefore
we can apply (2) of Lemma 4.1 and conclude that

e (20—1)p° ¢y 20p°  2p°  2p°
yitze(rysy) ys™ T € (T, 5L ).
By (1) of Lemma 4.1 we are then able to assert that

e e 2 e 2 e 2 e
Y ze(ryaysya)’ € (JPL g3y yit).

The element y{"zc does not depend on e. Therefore

Ty2ysya € (J, Y3, Y3, y3)"

and hence, as an element of Er(k), n = [ry2ysys + (J, 43,93, y3)] belongs to Ogi‘gk). O

To utilize Theorem 4.2 and prove Theorem A we must observe that the a-invariant of
the associated graded rings of the anticanonical algebra is negative whenever the ambient
ring is strongly F-regular and the anticanonical algebra is Noetherian.

Lemma 4.3. Let (R, m, k) be an excellent strongly F-regular ring of prime characteristic
p > 0 and Krull dimension d > 2. Suppose that I C R is an ideal of pure height 1 such
that IN = IN) for all N. Then the associated graded ring of I has negative a-invariant.
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Proof. If ¢(I) = 1 then I is principal and H}%[HH(Gr[(R)) = 0. So we may assume that
2 < ((I) < d. We first observe that a;(R[It]) < 0 for all 2 < i < d. Because IV = (V)
for all N we have that S := R[It] is a strongly F-regular graded R-algebra by [6,
Lemma 3.1], see also [35, Theorem 0.1] and [28, Main Theorem]|. The cohomology groups
Hg+(5’) are only supported in finitely many positive degrees. Indeed, let X = Proj(S)
so that Hfg+ (S) & H7Y(X,0x) for all i > 2, see [22, Theorem 12.41], and therefore
[Hfg+ (9)]n = HHX,0x(N)) =0 for all N > 0 by Serre vanishing, [9, Theorem 5.2].
It follows that there exists a homogeneous positive degree element ¢ € S such that
c[Hf.;+ (S)]>0 = 0. Because S is strongly F-regular the S-linear maps S E—% FeS are
pure for all e > 0. Therefore the eth Frobenius action on Hy, () followed by multiplying

by ¢, which is the map realized by tensoring the pure map S F—ec> F¢S with Hfg+ (S), are
injective. But the eth Frobenius action of H§+ (S) maps elements of degree n to elements
of degree np®. Furthermore, ¢ was chosen to annihilate elements of non-negative degree
and therefore Hfg+ (S) can only be supported in negative degree.

The ring S = R[It] is Cohen-Macaulay and therefore aq4(gr;(R)) < 0 by [17,
Theorem 3.1]. By [33, Theorem 3.1 (ii)] we have that a;(gr;(R)) = a;(S) whenever
a;(gr;(R)) > a;+1(gr;(R)). An easy descending induction argument now tells us that
a;(gry(R)) < 0 for all 2 < i < d and this completes the proof of the theorem. 0O

Corollary 4.4. Let R be an excellent 4-dimensional weakly F'-reqular ring of prime charac-
teristic p > 0. If the anticanonical algebra of R is Noetherian on the punctured spectrum
of R then R is strongly F-regular.

Proof. It is well known that the properties of being weakly F-regular and strongly F-
regular can be checked at localizations at the maximal ideals of R, see [12, Corollary 4.15].
Thus we may assume R = (R,m,k) is local. The properties of weakly F-regular and
strongly F-regular for a local ring can be checked after completion. In which case, the
property of being weakly F-regular is equivalent to OE}’; "(Jk) being 0 and the property of
being strongly F-regular is equivalent is OER( k) being 0.

Using gamma constructions with respect to a choice of coefficient field, we may assume
R is F-finite, see [15, Section 6 and Theorem 7.24] and [10, Corollary 3.31]. Every com-
plete local weakly F-regular ring is a normal Cohen-Macaulay domain by [12, Lemma 5.9
and Theorem 4.9]. Every weakly F-regular ring is a splinter, [16, Corollary 5.23]. The
property of being a splinter localizes. Therefore R is strongly F-regular on the punctured
spectrum of R by [5, Corollary 5.9]. Lemma 4.3 tells us the anticanonical algebra of R is
such that its associated graded ring has negative a-invariant on the punctured spectrum
of R and therefore R is strongly F-regular by Theorem 4.2. O

Corollary 4.5. Let R be a 4-dimensional normal Cohen-Macaulay domain of prime char-
acteristic p. Suppose that either
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(1) R is finitely generated over a field of prime characteristic p > 5 with infinite tran-
scendence degree over I, and is weakly F-regular;

(2) R is essentially of finite type over a field of prime characteristic p > 5 and is F-
regular.

Then R is strongly F-regular.

Proof. Every weakly F-regular ring that is finitely generated over a field of infinite
transcendence degree over I, is F-regular by [15, Theorem 8.1]. Thus it suffices to prove
statement (2) only.

As in the proof of Corollary 4.4, we may assume R = (R, m, k) is local and we can
use gamma constructions to reduce to the scenario that R is F-finite. The ring R is
strongly F-regular at non-maximal points by [36, Main Result]. By [32, Corollary 6.9],
if P is a nonmaximal prime ideal of R then there exists an effective boundary divisor
A such that (Spec(Rp),A) is globally F-regular (or just F-regular since Spec(Rp) is
affine) and therefore has KLT singularities by [21, Theorem 3.3]. By [8, Corollary 1.12]
the anticanonical algebra of Rp is Noetherian and therefore R is strongly F-regular by
Corollary 4.4. O

5. Remarks on annihilating Ext-modules, the weak implies strong conjecture, and the
(LC)-conjecture

Let (R, m, k) be an excellent local normal Cohen-Macaulay domain of Krull dimension
4 and of prime characteristic p > 0. Let (S,n, k) be a regular local ring of dimension
h+4 mapping onto R. Fundamental to the results of this article is Proposition 3.1 which
shows that for an ideal K C R of pure height 1, satisfying certain technical conditions,
there exists an m-primary ideal a so that

o' Extt™(R/KW, S) = 0.
By Matlis duality,
Ann(Extt™(R/K® . 8)) = Ann(HL (R/K™)).
Suppose that a € K generates K at its components and write
aR=KnNL

for some ideal L of pure height 1 whose components are disjoint from K. By prime
avoidance, we can choose an element b € L that generically generates L but avoids all
components of K. Then for every integer ¢ there is a short exact sequence

R 4 R R

0> — — ——
aZ

70 i — (@) — 0.
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Therefore
HY(R/(a',b")) = Hy (R/KD)

for every integer i. In particular, if K satisfies the technical conditions of Proposition 3.1,
then there exists an m-primary ideal a so that

o’ HO (R/(a,b)PT)y =0

for every integer e. Such an annihilation property is the expectation of the Local Coho-
mology conjecture.

Conjecture 5.1 ((LC)-conjecture). Let (R, m, k) be a Noetherian local ring of prime char-
acteristic p > 0 and I C R an ideal. There exists an m-primary ideal a so that for every
integer e

o HO (R/TPTy = 0.

If the (LC)-conjecture is true whenever R is weakly F-regular and I C R is an ideal of
height dim(R) — 1, then it would follow that the property of weak F-regularity localizes,
cf. [12, Page 43], [20], [34, Conjecture 1], and [23, Conjecture 1].
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