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Abstract—Automated Program Repair (APR) aims to help
developers automatically patch software bugs. However, current
state-of-the-art traditional and learning-based APR techniques
face the problem of limited patch variety, failing to fix com-
plicated bugs. This is mainly due to the reliance on bug-fixing
datasets to craft fix templates (traditional) or directly predict
potential patches (learning-based). Large Pre-Trained Language
Models (LLMs), trained using billions of text/code tokens, can
potentially help avoid this issue. Very recently, researchers have
directly leveraged LLMs for APR without relying on any bug-
fixing datasets. Meanwhile, such existing work either failed to
include state-of-the-art LLMs or was not evaluated on realistic
datasets. Thus, the true power of modern LLMs on the important
APR problem is yet to be revealed.

In this work, we perform the first extensive study on directly
applying LLMs for APR. We select 9 recent state-of-the-art
LLMs, including both generative and infilling models, ranging
from 125M to 20B in size. We designed 3 different repair settings
to evaluate the different ways we can use LLMs to generate
patches: 1) generate the entire patch function, 2) fill in a chunk
of code given the prefix and suffix 3) output a single line fix.
We apply the LLMs under these repair settings on 5 datasets
across 3 different languages and compare different LLMs in the
number of bugs fixed, generation speed and compilation rate.
We also compare the LLMs against recent state-of-the-art APR
tools. Our study demonstrates that directly applying state-of-
the-art LLMs can already substantially outperform all existing
APR techniques on all our datasets. Among the studied LLMs,
the scaling effect exists for APR where larger models tend to
achieve better performance. Also, we show for the first time
that suffix code after the buggy line (adopted in infilling-style
APR) is important in not only generating more fixes but more
patches with higher compilation rate. Besides patch generation,
the LLMs consider correct patches to be more natural than other
ones, and can even be leveraged for effective patch ranking or
patch correctness checking. Lastly, we show that LLM-based
APR can be further substantially boosted via: 1) increasing the
sample size, and 2) incorporating fix template information.

I. INTRODUCTION

As software programs and systems become more and more

ubiquitous in everyday life, so do software bugs. Due to

the wide-ranging adoption of software systems in fields from

healthcare [1] to transportation [2], these bugs can potentially

cause dangerous safety issues [3] and financial losses [4]. As

such, developers often need to spend a significant amount of

time and effort to fix software bugs [5]. In order to help

developers reduce this manual effort, Automated Program

Repair (APR) tools have been built to automatically generate

potential patches given the original buggy program [6].

Among traditional APR techniques [7]–[18], template-based

APR has been widely recognized as the state of the art [19],

[20]. These techniques leverage fix templates, often designed

by human experts, to fix specific types of bugs in the source

code. As a result, these APR tools are constrained by the

underlying fix templates in the types of bugs that can be

fixed. To combat this, researchers have proposed learning-

based APR tools [21]–[24], which typically model program

repair as a Neural Machine Translation (NMT) problem [25],

where the goal is to translate a buggy program into a fixed

program. The core component of these learning-based APR

tools is an encoder and decoder pair, where the model aims

to capture the buggy context via the encoder and then autore-

gressively generate the patch using the decoder. As such, these

learning-based APR tools require supervised training datasets

containing pairs of buggy and patched code, usually obtained

by mining historical bug fixes from open-source repositories.

While learning-based APR tools have shown improvements in

both the number and variety of bugs that can be fixed [21],

[22], they are still restricted by their training data which may

contain unrelated commits and only contain limited bug-fix

types, which may not generalize to unseen bug types [26].

Recent developments in building Large Pre-Trained Lan-

guage Models (LLMs) offer an alternative solution that can

be applied for program repair without relying on historical

bug fixes. While LLMs are usually general-purpose tools for

NLP tasks (e.g., GPT3 [27]), they have also been used for pro-

gramming languages by finetuning on code (e.g., Codex [28]

and ChatGPT [29]). Unlike the specifically designed learning-

based APR models, LLMs are trained in an unsupervised

fashion using up to billions of text/code tokens and can be used

in a variety of code tasks. Recently, AlphaRepair [26] proposes

to leverage CodeBERT [30], a large code model pre-trained on

millions of code snippets, directly for APR. The key insight

from AlphaRepair is instead of learning transformations to

go from buggy code to fixed code, we can directly use the

model to predict what the correct code should look like given

its surrounding context (including both prefix and suffix), i.e.,

infilling-style APR. Using this idea, AlphaRepair demonstrated

state-of-the-art repair results without finetuning on bug fixing

dataset. While AlphaRepair has shown improvements over



previous learning-based APR, the model (125M parameters)

it uses is far smaller than the current state-of-the-art LLMs

(Codex: 12B parameters and GPT-3: 175B parameters). Beside

AlphaRepair, researchers have also directly leveraged Codex

for generative APR [31], [32], i.e., generating the fixes based

on the context before bugs (i.e., prefix only). However, these

studies mostly focus on Codex and are only evaluated on a

small dataset with 40 bugs on simple programming tasks.

Current state-of-the-art LLMs [28], [33] have also included

evaluation for code related tasks such as code completion [28],

docstring generation [34] and variable/type prediction [34].

However, these evaluations still mainly focus on NLP metrics

such as BLEU score [35] which do not accurately measure the

functional or semantic correctness of the generated code. Fur-

thermore, the datasets consist of hand-curated code problems

which do not accurately reflect the type of projects developers

work on in the real world.

Our Work. We present the first extensive evaluation of recent

LLMs for fixing real-world projects. We designed 3 different

APR experimental settings: 1) complete function generation 2)

correct code infilling and 3) single line generation to showcase

the different ways LLMs can be applied for APR. In our

study, we include both popular types of LLM architectures

(generative and infilling models) to show the advantages and

flaws of using each type for APR. We include models with

a wide range of different parameter sizes, spanning from 125

million to 20 billion. We evaluate not only the improvement in

repair effectiveness but also the trade-off with respect to speed

when increasing the model size. In total, we use 5 different

repair datasets containing real open-source bugs and developer

written tests across 3 programming languages to evaluate APR

under realistic settings. Compared with existing applications of

LLMs for APR [26], [31], [32], our study is the first to include

state-of-the-art LLMs for both infilling-style and generative

APR on various datasets and programming languages. To

summarize, this paper makes the following contributions.

⋆ Dimension. This paper bridges the gap between the re-

cent advances in LLMs and a crucial software engineering

problem – APR. This paper not only demonstrates the

potential and future for directly leveraging LLMs for solving

the important APR problem, but also provides a realistic

evaluation scenario for the recent LLMs, which were mainly

evaluated on simple/synthetic coding problems rather than

real-world systems as studied in the APR area.

⋆ Study. We conduct extensive evaluations using 9 different

recent LLMs on 5 different repair datasets across 3 different

programming languages (Java, Python, and C). We compare

the LLMs against each other using the 3 repair settings

we designed. Using the popular repair datasets, we further

compare the LLMs with state-of-the-art APR tools.

⋆ Practical Guidelines. Our study shows for the first time

that directly applying state-of-the-art LLMs can already

substantially outperform all existing APR tools on the

widely studied Defects4J 1.2 dataset (and other ones), e.g.,

Codex can fix 32 more bugs than the existing best APR

technique. Among the studied LLMs, the scaling effect

exists for APR where larger models tend to deliver stronger

APR results. Also, we show for the first time that suffix

code after the buggy line (adopted in infilling-style APR) is

important in not only generating more fixes but more patches

with higher compilation rate. Besides patch generation, the

LLMs consider correct patches to be more natural than other

ones, and can even be used for effective patch ranking or

correctness checking. Lastly, we show that LLM-based APR

can be further substantially improved via: 1) increasing the

sample size, and 2) incorporating fix template information.

II. BACKGROUND AND RELATED WORK

A. Large Pre-Trained Language Model

Large Pre-Trained Language Models (LLMs) have become

ubiquitous in the domain of NLP, achieving impressive per-

formance in many tasks such as machine translation [25], text

summarization [36] and classification [37]. LLMs follow the

Transformer architecture [38] – an encoder to capture input

representation and a decoder to generate output tokens. These

LLMs are first pre-trained in an unsupervised manner, on

large amounts of text data and then finetuned for downstream

tasks. However, certain tasks may not have an abundance of

finetuned data available. As such, researchers have evaluated

the ability for LLMs to perform on downstream tasks without

finetuning. This is achieved via prompt engineering [39] –

providing the model with natural language descriptions and

demonstrations of the task it is trying to solve before giving the

model the target input. This works by leveraging the general-

purpose setup of LLMs where the unsupervised pretraining

dataset already encompasses many domains of problems/tasks.

Using this idea and the exponential growth in LLM size [40],

impressive performance in many tasks can be achieved even

without any finetuning [27].

LLMs can be classified into encoder-only, decoder-only and

encoder-decoder models based on their architectures. Encoder-

only models (such as BERT [41]) contain only the encoder

component of a Transformer. They are typically designed to

learn data representations and are trained using the Masked

Language Modeling (MLM) objective – a small percentage

(e.g., 15%) of tokens in the training data will be replaced by

masked tokens, and then the models are trained to predict the

original values of the masked tokens based on the bidirectional

contexts. Decoder-only models (such as GPT-3 [27] and GPT-

Neo [42]) are large generative models that use the decoder to

predict the next token output given all previous tokens (i.e., left

context or prefix only). To combine the usage of both encoder

and decoder, encoder-decoder models (such as T5 [43] and

BART [44]) have also been proposed for sequence-to-sequence

tasks where the training objective aims to recover the correct

output sequence given the original input (e.g., corrupted to

uncorrupted). One such training objective is span prediction

tasks, where random spans (multiple tokens) are replaced with

artificial span tokens and the model is tasked with recovering

the original tokens. For inferencing, one can use the encoder-

decoder models to infill text by also adding the artificial



span token in place. Recently, researchers have also combined

MLM with generative models to perform both bidirectional

and autoregressive text generation or infilling [45]. In our APR

scenario, all types of LLMs can potentially be leveraged for

generative or infilling-style APR, and we select 9 state-of-the-

art LLMs for our study (detailed in Section III-A).

B. Automated Program Repair

Automated Program Repair (APR) tools are used to generate

patched code given the original code and the corresponding

buggy location. Each patch generated by the APR tool is

validated against the test suite. Plausible patches are ones

which pass the entire suite. Correct patches are plausible

patches which correctly fix the underlying bug.

Traditional APR tools can be classified as heuristic-

based [7]–[9], constraint-based [10]–[12] and template-

based [13]–[16], [19]. Traditionally, template-based APR tools

achieve the best performance, where each template is hand-

crafted by human experts designed to provide a fix for a

specific type of bug. However, these template-based APR tools

can only fix the bug types that are part of the templates. As

a result, researchers employed learning-based APR tools to

generate more expressive patches. Learning-based APR tools

such as Recoder [21], RewardRepair [23], and CURE [22]

are based on NMT techniques [25] which require specific bug

fixing data to train the NMT model to generate a fix line

given the buggy line. Due to this reliance on the bug-fixing

data, these learning-based tools are still limited in terms of the

type of fixes it can apply. Recent work of AlphaRepair [26]

addresses this by performing APR under a zero-shot setting by

directly using the CodeBERT model for repair. AlphaRepair

fills the original buggy line with masked tokens and uses

CodeBERT to replace the masked tokens with correct code

tokens to generate repair, i.e., infilling-style (also called cloze-

style) APR. While AlphaRepair is able to achieve state-of-

the-art results, CodeBERT is considerably smaller than the

newest LLMs. Additionally, AlphaRepair is designed for the

repair setting where the buggy line location is known (e.g.,

computed by fault localization techniques [46]).

Recent work [31], [32] has also looked into directly apply-

ing LLMs for APR. Prenner et al. [32] conducted a small-scale

evaluation for the Codex model on a simple dataset containing

both Java and Python versions of buggy algorithm imple-

mentations. Codex is given the buggy function and by using

prompt engineering, are then asked to generate a complete

fixed function. The results show that Codex is competitive

with state-of-the-art learning-based APR tools in Python but

worse in Java. In contrast, we show that by using our repair

settings, LLMs are able to outperform state-of-the-art APR

tools on both Java and Python. Kolak et al. [31] also used

Codex along with 2 smaller LLMs and evaluated their ability

to generate the correct patch line when given the code prefix

on the same dataset as the previous work [32]. The evaluation

demonstrated the scaling effect of LLMs where the repair

results can be improved by using larger models. Interestingly,

the study leverages sum entropy for patch ranking while

TABLE I: Studied LLMs

Model #Parameters Training Dataset Type

GPT-Neo 125M/1.3B/2.7B The Pile Generative
GPT-J 6.7B The Pile Generative
GPT-NeoX 20B The Pile Generative

Codex 12B N.R.
Generative
& Infilling

CodeT5 220M
CodeSearchNet

& BigQuery
Infilling

INCODER 1.3B/6.7B N.R. Infilling

AlphaRepair leverages mean entropy (i.e., both favors more

natural [47] patches). Thus, we also perform a study of

leveraging various recent LLMs for computing both entropies

for patch ranking on real-world systems. In addition, to the

best of our knowledge, we are the first to study LLMs or

entropies for patch correctness checking (i.e., distinguishing

correct patches from plausible ones).
Overall, the 2 prior studies [31], [32] are done on a small

dataset with synthetic bugs using only a small number of

LLMs. Moreover, the input and repair setting being used in the

studies are also limited, e.g., only considered generative APR.

In this paper, we present an extensive study of applying various

state-of-the-art LLMs for both infilling-style and generative

APR on diverse repair datasets across programming languages.

III. APPROACH

In this section we describe the LLMs selected for evaluation

and introduce 3 different APR generation settings we use to

evaluate each LLM. These settings are designed to showcase

the different practical ways we can directly use LLMs for

APR and highlight advantages and differences of the studied

LLM types. Also, we detail the patch ranking strategy of using

entropy to prioritize patches that are more likely to be correct.

A. Models

We begin by describing the different LLMs we use for

evaluation. Our selection process starts with the list of popular

models hosted on the Hugging Face [48] – an open-source

platform to host and deploy large models. We sort the list

of models based on popularity (#downloads this month) and

select the LLMs which contain code as training data. Fur-

thermore, we also pick models from different organizations

and types (described below) to obtain a diverse set of models.

Along with the open-source models, we also use the closed-

source Codex model [28] (accessible only via API) since it

has shown to achieve impressive performance on code related

tasks. In total, we use 9 different LLMs for our experiment.
Our chosen LLMs range from 125M to 20B in parameter

size. Table I presents the LLM overview. Column Model is

the model name, #Parameters presents the number of model

parameters, Training Dataset indicates the dataset used for

pre-training (N.R. is not released), and Type refers to the type

of APR the model can perform (infilling or generative).
1) Generative Models:

• GPT-Neo [42], GPT-J [49], GPT-NeoX [50] All three

models are open-source implementations of the GPT-3 trans-

former architecture [27]. In our experiments, we use GPT-

Neo models with 125M, 1.3B and 2.7B parameters. GPT-J





this task since the generation process conditions only on the

context to the left (prefix). Therefore, for correct code infilling,

we only use infilling models which perform generation by

conditioning on both left (prefix) and right (suffix) code.

Figure 2 shows an example input for the infilling task.

We start with the target buggy function we want to fix and

remove the buggy code hunk. This gives us the prefix and

suffix code which are still correct. We then place an infilling

token between the prefix and suffix. This infilling token (e.g.,

<INFILL>) indicates to the model that this is the location

where we want the new code to be generated at. The model

then generates only the code to fill in the missing chunk and

we obtain a patch by combining the model output with the

prefix and suffix code snippets.

3) Single line generation: In single line generation, the

buggy location is provided and the bug requires only a single

line change. Figure 3a shows a similar setup to correct code

infilling where we provide both the prefix and suffix code and

use infilling models to generate a replacement line. Different

from correct code infilling, we can also use generative models

by providing only the prefix. Figure 3b demonstrates the setup

to use generative models for this task. Since we know the bug

requires only a single line change, we can stop the generation

after the model has provided us with one line. We cannot

apply the same strategy using generative models for correct

code infilling since those bugs may need multiple lines to fix

and we do not know when we can stop the generation [31].

Additionally, when using generative models for single line

generation, we cannot provide the models with the suffix code

due to the causal nature of the generative models. We contrast

this with infilling models on the same task to demonstrate the

effect of including the suffix context for APR.

C. Patch Ranking and Validation

For all 3 repair tasks, the patch generation process is

similar – we provide the LLMs with the constructed input

and use sampling to generate multiple patches per bug. We use

nucleus sampling [57] with a sampling temperature. A lower

temperature means the model is likely to pick tokens with

higher likelihood, resulting in samples that are more similar

(temperature of 0 gives deterministic result by picking the most

likely token at each generation step). A higher temperature

gives more probability for the model to pick a token with

a lower likelihood, leading to more unique and interesting

samples. How to pick an optimal temperature value is not

obvious for a problem such as APR. For certain bugs, one may

prefer a lower temperature value in order to quickly arrive at a

reasonable patch. For harder bugs, a higher temperature value

can be useful to generate more unique patches in an attempt to

provide a fix. For our experiments, we use the default setting

used in previous work [28], [33].

In addition to generating patches, we also record the entropy

value of each patch. Entropy captures how natural [47] the

generated sample is according to the model and can be

calculated as the negative log probability of each generated

token. Let t1, t2, ..., tn be the list of tokens generated and

pti be the model probability of generating token ti given the

previous context and generated tokens. Entropy is defined as:

mean entropy = −

n∑

i=1

log(pti)

n
(1)

sum entropy = −

n∑

i=1

log(pti) (2)

Mean entropy averages entropies of all tokens generated

whereas sum entropy computes the total entropy of the se-

quence. For patch ranking, we prioritize patches with lower

entropy first. In this way, patches that are more natural [47]

can be ranked higher. Previous work on leveraging LLMs

for APR either used mean entropy [26] or sum entropy [31]

without thorough evaluation, and mainly focused on patch

ranking. In contrast, in this work, we empirically compare both

entropy computations, and have further applied them for patch

correctness checking [58]. Finally, for each patch generated,

we filter out any patches with syntactic or semantic errors

and validate the rest against the test suites to identify patches

which pass all the tests.

IV. EXPERIMENTAL SETUP

A. Research Questions

We study the following research questions:

• RQ1: How do different types of LLMs perform for

different APR settings? We study the effectiveness of

different LLMs on different repair datasets, across different

languages and on different APR tasks. Furthermore, we

evaluate the scaling behavior of LLMs when increasing

model size with respect to APR ability, computation time

and compilation rates to holistically evaluate each LLM.

• RQ2: How does directly applying LLMs for APR com-

pare against state-of-the-art APR tools? We compare the

results using LLMs against state-of-the-art baselines. We

study the unique bugs fixed by LLMs and highlight the

advantages of directly applying LLMs for APR.

• RQ3: Can LLMs be directly used for patch ranking

and correctness checking? We use the built-in naturalness

metric of LLMs (entropy) to evaluate if LLMs considers

patched functions to be more natural than buggy functions

and if entropy can directly rank the patches for patch ranking

and correctness checking.

• RQ4: Can we further improve the performance of

LLMs? We explore two directions for further improving

LLMs’ performance for APR: 1) increasing the number of

samples, and 2) combining LLMs with templates.

B. Implementation

We implement the generation pipeline in Python using

PyTorch [59] versions of each LLM. We use the Hugging

Face [48] to load the model weights and generate outputs. For

Codex, we use API access provided by OpenAI to query the

model [60]. To use Codex for correct code infilling, we append

the API request with an additional suffix parameter [55] with



TABLE II: Evaluation dataset statistics

Dataset #Bugs #SF #SH #SL Source Language

Defects4J 1.2 391 255 154 80 real-world Java
Defects4J 2.0 438 228 159 78 real-world Java

QuixBugs-
Java

40 40 37 36
coding

problems
Java

QuixBugs-
Python

40 40 40 40
coding

problems
Python

ManyBugs 185 39 23 12 real-world C

Total 1094 572 413 246

the extracted suffix from the bug. For all our experiments, we

directly reuse the weights of each model. Our default setting

for generation uses nucleus sampling [57] with top p = 0.95,

temperature = 0.8 and 200 samples per bug. This generation

setting is consistent with previous studies on LLMs [28], [31],

[33]. Patches are generated on a 32-Core workstation with

Ryzen Threadripper PRO 3975WX CPU, 256 GB RAM and

NVIDIA RTX A6000 GPU, running Ubuntu 20.04.4 LTS.

C. Subject Systems

For evaluation, we use 5 APR benchmarks spanning across

3 programming languages. We focus on bugs where the fix is

within a single function, which is also the focus of most recent

APR work [21], [22], [24], [61]. To this end, we filter these

benchmarks to find bugs that fit our designed repair settings.

Table II presents the details of each repair dataset. Column

Dataset is the dataset name, #Bugs is the total number of bugs,

#SF, #SH, #SL shows the number of bugs which the reference

fix is within a single function, single hunk (consecutive lines)

and single line. Source refers to where the bugs are collected

from, Language is the programming language of the bugs.

We next discuss the detailed dataset information:

1) Defects4J 1.2 and 2.0 [62]: The most widely studied

APR benchmark with a collection of bugs gathered from

open-source projects in Java containing pairs of buggy and

patch versions of the source project. Since Defects4J has

been updated to include more bugs from additional projects,

we consider 2 different versions of Defects4J. Defects4J 1.2

contains 391 bugs (removing the 4 depreciated bugs) from

6 open-source Java projects. Defects4J 2.0 contains 438 new

bugs from 9 additional projects. Each bug in Defects4J also

contains developer tests exposing the bug.

2) QuixBugs-Python and -Java [63]: A multi-lingual repair

benchmark with 40 classic programming problems. QuixBugs

benchmark is constructed from a programming challenge

where programmers were asked to fix a small buggy function.

QuixBugs was originally in Python but has been translated to

Java, with both versions having the same 40 bugs. Each bug is

accompanied with multiple test inputs and expected outputs.

3) ManyBugs [64]: A C repair dataset consisting of 185

bugs gathered from 9 open-source projects with developer

written tests. Each bug is manually verified and classified into

a bug type. However, we were not able to reproduce all bugs

from the dataset (i.e., builds successfully and reference patches

can pass all provided tests). As such we only use the 91 bugs

where the results were reproducible by us.

TABLE III: Complete function APR (SF bugs)

Dataset
GPT-Neo

125M
GPT-Neo

1.3B
GPT-Neo

2.7B
GPT-J

GPT-
NeoX

Codex

Defects4J 1.2 6 / 8 7 / 16 10 / 24 14 / 31 18 / 36 63 / 102
Defects4J 2.0 2 / 17 4 / 18 6 / 20 11 / 33 15 / 36 49 / 93
QuixBugs-Java 1 / 3 4 / 5 3 / 5 3 / 5 8 / 9 32 / 35
QuixBugs-Py 1 / 3 4 / 6 4 / 6 13 / 17 19 / 22 37 / 37
ManyBugs 0 / 2 1 / 4 2 / 4 3 / 6 4 / 12 7 / 15

TABLE IV: Correct code infilling APR (SH bugs)

Dataset CodeT5 INCODER 1.3B INCODER 6.7B Codex

Defects4J 1.2 6 / 13 32 / 51 37 / 53 62 / 77
Defects4J 2.0 12 / 19 31 / 56 37 / 61 56 / 85
QuixBugs-Java 10 / 10 21 / 26 26 / 29 34 / 36
QuixBugs-Py 7 / 8 25 / 26 27 / 28 39 / 39
ManyBugs 2 / 5 8 / 12 9 / 13 12 / 15

D. Compared Techniques

We compare against the state-of-the-art APR baselines with

both learning-based and traditional APR tools. We choose

8 recent learning-based APR tools: AlphaRepair [26], Re-

wardRepair [23], Recoder [21], DeepDebug [65], CURE [22],

CoCoNuT [24], DLFix [66] and SequenceR [67]. Apart from

AlphaRepair, these learning-based APR baselines are based on

the NMT models. AlphaRepair combines a LLM (CodeBERT)

with simple templates to generate patches under a zero-

shot setting. Furthermore, we also choose 12 traditional APR

tools: TBar [19], PraPR [20], AVATAR [16], SimFix [68],

FixMiner [15], CapGen [9], JAID [69], SketchFix [13],

NOPOL [12], jGenProg [70], jMutRepair [14], and jKali [14].

In total, we evaluate against 20 different APR tools. We

compare against the baseline results on Defects4J 1.2, 2.0,

QuixBugs-Python and Java on perfect fault localization - the

ground-truth fix location is known to the repair tool. This is

the preferred comparison setting as it eliminates the impact

of differences in fault localization have on the result [21],

[22], [24], [71]. Due to the lack of recent APR tools that are

evaluated on ManyBugs, we only use it for RQ1. We follow

prior work [19]–[22] and directly use the correct patch results

from previous studies [19], [20], [26].

E. Evaluation Metrics

To evaluate the repair performance, we use the standard

metrics of plausible patches – passing the all test cases, and

correct patches – syntactically or semantically equivalent to

the reference patches. To determine correct patches, we follow

the standard practice in APR research and manually inspect

each plausible patch for semantic equivalency.

V. RESULT

A. RQ1: Comparison of Different LLMs

1) Repair effectiveness: We first compare LLMs against

each other in generating plausible and correct patches. Ta-

ble III shows the results of 6 generative models under complete

function generation setting. The two integers in each cell

represent the number of correct and plausible patches. We

first observe that similar to previous studies in NLP [40],

there is a scaling effect on the repair effectiveness. As we

increase the size of the model, we also increase in the number



TABLE V: Single line APR (SL bugs)

Dataset
GPT-Neo

125M
GPT-Neo

1.3B
GPT-Neo

2.7B
GPT-J GPT-NeoX CodeT5

INCODER

1.3B
INCODER

6.7B
Codex

single-line
Codex
suffix

Defects4J 1.2 5 / 10 12 / 20 13 / 21 16 / 26 21 / 31 5 / 12 21 / 36 26 / 38 32 / 37 39 / 47
Defects4J 2.0 8 / 17 10 / 26 16 / 28 12 / 26 19 / 36 9 / 15 15 / 32 21 / 37 26 / 38 31 / 45
QuixBugs-Java 8 / 9 19 / 20 16 / 17 20 / 21 20 / 21 10 / 10 21 / 26 26 / 29 30 / 31 34 / 36
QuixBugs-Python 9 / 10 14 / 14 22 / 23 26 / 27 28 / 28 7 / 8 25 / 26 27 / 28 36 / 36 39 / 39
ManyBugs 2 / 4 2 / 5 3 / 5 6 / 7 6 / 9 2 / 4 8 / 11 9 / 11 8 / 10 10 / 11

of correct and plausible patches generated. Directly looking

at the group of GPT models trained on the same dataset,

we see that the performance consistently increases as we use

larger models across all repair datasets. However, we see that

the Codex model (12B) outperforms the biggest model (GPT-

NeoX (20B)). We hypothesize that this is because Codex is

designed and finetuned for code generation; on the other hand,

while the training dataset of GPT-NeoX is partially made up

of code, it is designed for general purpose text generation.

Tables IV and V show the results on the correct code

infilling and single line generation repair tasks. Similar to the

previous result, we again see the scaling effect of increased

performance as model size increases. Compared to complete

function generation, we observe that each model using correct

code infilling and single line generation is able to produce

a higher ratio of correct fixes to the total number of bugs.

Furthermore, we also observe that the ratio of correct patches

to plausible patches is higher in the latter 2 settings as well.

This signals that patches produced using code infilling and

single line generation is more likely to be the correct fix.

The improved performance is because for complete function

generation the model needs to understand the prompt given

(Section III-B1), localize the bug and provide the correct fix.

On the other hand, when we provide the model with the buggy

location information in correct code infilling and single line

generation, it only needs to fill in or complete the partial

code, leading to more correct patches. This comparison is more

direct when evaluating the Codex model, the only model that

can perform both code infilling and function generation. We

see that when performing correct code infilling, Codex is able

to fix 40% (62/154) of the total bugs whereas when asked to

generate the entire function, it drops to 28% (63/225).

For single line generation results in Table V, we included

both generative and infilling models. However, for generative

models we are not able to provide it with suffix code snippets

since their generation is dependent only on the previous

context. We compare this with infilling models, which can

perform infilling conditioned on both the context before and

after. We observe that infilling models perform better than their

generative counterparts. Additionally, since we are able to use

both the generative and infilling versions of Codex, we can

directly compare the repair ability of the model when given

only the prefix versus both prefix and suffix context. We see

that when using the suffix information from the original buggy

function, the Codex model is able to improve the number

of correct and plausible fixes across all repair datasets. This

shows that for repair, successfully utilizing the code after the

buggy lines is important for fixing bugs.

TABLE VI: Patch generation speed (#patch/min)

Models Defects4J 1.2 QuixBugs-Python

CF CI SL CF CI SL

GPT-Neo 125M 139 - 1080 369 - 1061
GPT-Neo 1.3B 31 - 543 127 - 814
GPT-Neo 2.7B 27 - 489 85 - 625
GPT-J 15 - 227 39 - 354
GPT-NeoX 2 - 47 6 - 73
CodeT5 - 969 - - 1991 -
INCODER 1.3B - 535 - - 1083 -
INCODER 6.7B - 288 - - 419 -

Fig. 4: Syntactic and semantic error rates on Defects4J 1.2

2) Speed: Next we look at the speed of patch generation

using LLMs. We already saw from the previous result analysis

that as we increase the size of the model, we obtain an increase

in repair performance. However, such performance increase

does not come for free as larger models require longer time

for inferencing. Table VI shows the samples generated per

minute for different LLMs on Defects4J 1.2 and QuixBugs-

Python with the 3 repair generation settings (Columns CF, CI,

SL refer to complete function, correct infilling and single line

generation, respectively). We only include models that we run

locally on the same hardware (i.e., excluding Codex since it is

only accessible through API access). We first observe that as

we increase model size, the patch generation speed drastically

slows down (71x slower on GPT-NeoX than GPT-Neo 125M

on complete function generation). This demonstrates the trade-

off between repair effectiveness and time cost when using

large models. Additionally, we see that compared to single

line generation and correct code infilling, complete function

generation takes significantly more time, since generating an

entire function is much more time consuming than generating a

single line or hunk. This shows while LLMs have the capability

to perform fault localization and repair in one shot, for real-

world software systems, it is still more cost-effective to first

use traditional fault localization techniques [46] to pinpoint

the precise bug locations and then leverage LLMs for more

targeted patch generation.





TABLE VIII: Additional baseline comparison

Tools / Models
Defects4J 2.0

(78 bugs)
QuixBugs-Java

(40 bugs)
QuixBugs-Python

(40 bugs)

AlphaRepair 35 28 27
RewardRepair 25 20 -
DeepDebug - - 21
Recoder 11 17 -
CURE - 21 -
TBar 8 - -
CoCoNuT - 13 19

GPT-Neo 125M 10 8 9
GPT-Neo 1.3B 11 20 17
GPT-Neo 2.7B 19 18 24
GPT-J 16 22 29
GPT-NeoX 24 21 31
CodeT5 9 10 7
INCODER 1.3B 15 21 25
INCODER 6.7B 21 26 27
Codex 45 38 40

Total 52 38 40

if the two inputs have the same reference. Using both the prefix

(name of the function) and suffix (other comparison statements

with return values), the model figures out the correct code

to be inserted here (first checking if the references are the

same before proceeding). Such code is commonly found in

open-source projects which use similar comparison functions

where the LLMs can learn from. In fact, we found several

similar comparison functions (checking if the objects have the

same reference) [72]–[75] in different projects as a part of

The Pile dataset [51] that some of the LLMs were trained on.

Furthermore, unlike traditional APR tools which often work

on a single line, LLMs can generate multiple lines of code in

order to provide the correct fixes.

Figure 6b shows a patch of the Math-69 bug generated by

Codex. The function here calculates a matrix of p-values of a

2-sided, 2-sample t-test. The bug is caused by precision error

when the function call is extremely close to 1. Here the model

generates an alternative way of calculating the p-value which

is much more stable than before. This is a hard bug to fix since

the change is quite subtle but it does not fit any of the common

templates used in traditional APR. To generate the correct fix,

the model needs to understand the goal of the function (p-

value calculation) and use statistical formulas. Both of which

can be achieved by Codex as it is trained not only on code

but also on general text, which contains many descriptions and

examples of t-test p-value calculations. This unique fix shows

the benefit of using LLMs for program repair where domain

knowledge of the project can be utilized as well.

2) Additional results: In addition to comparing against

state-of-the-art baselines on Defects4J 1.2, we also compare

the performance of LLMs on other datasets widely used to

evaluate previous APR tools. Table VIII shows the results

on Defects4J 2.0, QuixBugs-Java and -Python where we also

combine the correct bug fixes of the 3 generation strategies

together. Similar to the Defects4J 1.2 results, we observe that

many models can achieve similar (or even better) performance

with carefully designed APR tools. More surprisingly, all 9

studied LLMs can outperform TBar, state-of-the-art template-

based APR tool, and are competitive compared with the recent

TABLE IX: Mean entropy of generated patches

Models Defects4J 1.2 QuixBugs-Python

C P NP C P NP

F
u

n
ct

io
n

G
en

. GPT-Neo 125M 0.08 0.13 0.23 0.10 0.10 0.20
GPT-Neo 1.3B 0.12 0.12 0.19 0.06 0.05 0.09
GPT-Neo 2.7B 0.09 0.13 0.17 0.05 0.06 0.08
GPT-J 0.07 0.10 0.12 0.04 0.05 0.08
GPT-NeoX 0.08 0.11 0.13 0.05 0.07 0.10
Codex 0.04 0.05 0.08 0.11 0.13 0.16

In
fi

ll
in

g CodeT5 0.50 0.51 0.54 0.51 0.50 0.59
INCODER 1.3B 0.49 0.58 0.65 0.54 0.56 0.65
INCODER 6.7B 0.45 0.50 0.61 0.61 0.60 0.65
Codex 0.43 0.43 0.50 0.32 0.33 0.42

L
in

e
G

en
.

GPT-Neo 125M 0.38 0.42 0.58 0.41 0.45 0.61
GPT-Neo 1.3B 0.32 0.38 0.58 0.25 0.27 0.47
GPT-Neo 2.7B 0.28 0.32 0.55 0.21 0.26 0.40
GPT-J 0.29 0.33 0.54 0.20 0.22 0.38
GPT-NeoX 0.39 0.42 0.71 0.26 0.28 0.55
Codex 0.19 0.28 0.57 0.18 0.23 0.60

Recoder technique on the Defects4J 2.0 dataset. Furthermore,

unlike many baselines which can only be used on a single

language (specifically designed for a particular language or re-

quiring additional finetuning on another language), the LLMs

can be directly applied for multi-lingual repair.

C. RQ3: Patch Ranking and Correctness Checking Analysis

1) Entropy: As we are using LLMs for patch generation,

this allows us to compute the entropy of each patch. Entropy

calculates how natural the generated sample is (Equation 1).

Table IX shows the mean entropy values for correct (C),

plausible (P) and non-plausible patches (NP). Each row shows

the results of a LLM on a repair scenario containing bugs

for which the LLM can produce a correct patch. We observe

that average entropy value of correct and plausible patches

for all models are less than non-plausible patches. Although

not shown in the table, we observe the same finding when

comparing patches using sum entropy. In other words, the

studied LLMs consider correct patches which correctly fix

the underlying bugs to be more nature than other patches.

Additionally, while the entropy difference between correct and

plausible patches is not as drastic as compared to non-plausible

patches, we also find that correct patches are in general less

entropic than plausible ones. Recent work [58] has shown

that existing solutions for patch-correctness checking (i.e.,

identifying correct patches from plausible patches) can suffer

from dataset overfitting and performance drops when applied

on more complicated patches. We demonstrate for the first

time that entropy computation via LLMs can help distinguish

correct patches from plausible patches, indicating a promising

future of directly leveraging the LLM entropy metric for patch-

correctness checking.

2) Patch ranking: Using the entropy values of each gen-

erated patch, we perform ranking to validate patches with

higher rank (lower entropy) first. We pick 5 LLMs with the

highest number of correct patches to perform this analysis.

Figure 7 shows the number of bugs fixed for the Defects4J 1.2

dataset using different patch ranking strategies as we increase

the number of patches to validate. We see that compared to

randomly picking patches to validate (blue line), when using



Fig. 7: Number of bugs fixes when using different patch ranking strategies on Defects4J 1.2

TABLE X: Further improving LLM-based APR

Tools / Models
Defects4J

1.2 All
Defects4J 2.0
Single Line

QuixBugs-
Python

AlphaRepair 74 35 27
RewardRepair 50 25 -
DeepDebug - - 21
Recoder 65 11 -
TBar 68 8 -

INCODER (200) 37 21 27
INCODER (2000) 64 25 32

INCODER w/ template (2000) 78 39 37

entropy rankings (orange and green line), we can validate

the correct patches faster. This shows that entropy can be

an effective measure used to rank the potential patches to

prioritize lower entropy patches for validation under tighter

time constraints. Furthermore, we observe that sum entropy

performs slightly better compared to mean entropy. We hy-

pothesize that this is because sum entropy calculates the entire

sequence entropy regardless of the length of the generated

sequence. As such, shorter sequences tend to have lower sum

entropy compared to longer sequences; interestingly, this is

consistent with traditional APR or patch correctness checking

techniques [11], [76], [77], which favor simple patches over

complicated ones following the Occam’s razor hypothesis [78].

D. RQ4: Improvements on Direct LLM-based APR

In previous RQs, we showed that by directly applying LLMs

for APR we can already achieve comparable performance with

previous APR tools. We further explore the possibilities to

boost the ability of LLMs for APR. For this experimental

setup, we choose the best performing model (apart from

Codex, which already outperforms existing APR techniques

without any further extension) – INCODER 6.7B and run

the model longer (2000 samples per bug) combined with

repair templates. We evaluate on all bugs in Defects4J 1.2 by

adjusting our infilling-style repair settings, following AlphaRe-

pair [26] (which demonstrated the best performance among all

settings in our study), to generate patches for every location

which is changed by the reference patch instead of only on

a single change location. This setup is similar to previous

learning-based repair tools [21], [26] and allows us to compare

on the full Defects4J 1.2 dataset. Furthermore, following prior

work [26], we include evaluation on Defects4J 2.0 single line

bugs and QuixBugs-Python.

Table X shows the baseline tools along with our model

setups. INCODER (200) is our default setup from previous

evaluation that generates 200 samples per bug. INCODER

(2000) shows the results when we increase the number of

samples to 2000. INCODER w/ template (2000) contains

the results when combining repair template with the IN-

CODER model. Following the AlphaRepair baseline, we apply

different repair templates by using the original buggy line.

Such templates include: keeping parts of the prefix or suffix,

replacing method calls or parameters, and changing/adding

new boolean conditions or operators to the buggy line. These

repair templates make use of the original buggy line and

provide important starting code for the model.

We observe that if we apply the model longer and generate

more samples, we can drastically improve the number of

correct bugs fixed in all three datasets and achieve very close

result to that obtained by the best baseline. Moreover, we can

obtain further improvements by using simple repair templates

and achieve the highest number of correctly fixed bugs on

all datasets, e.g., fixing 78 bugs on Defects4J 1.2 with 15

unique bug fixes that no other baseline tools have fixed before.

This finding shows that not only can LLMs be effective

when directly used for program repair, we can combine them

with more domain specific techniques such as simple repair

templates to further improve their performance.

VI. THREATS TO VALIDITY

Internal. One internal threat to validity comes from our man-

ual validation of plausible patches to determine semantically

correct patches. To address this, we carefully performed the

analysis and released the correct patches and code used to

perform the experiments for public evaluation [79].

Another internal threat comes from the potential data leak-

age of real developer patched functions being part of the

original training data. To address this, we examine the patches

LLMs generated for Defects4J 1.2 since this is the most widely

studied dataset for APR and we mainly compared with state-

of-the-art APR tools on this dataset. We first check if the bugs

fixed by each LLM contain correct patches different than the

reference developer patches. Out of the 354 individual bug

fixes by all models on Defects4J 1.2, 234 fixes (66%) contain

a patch that is different than the developer patch. We also

found that due to the simplicity of single line patches, majority

of the correct patches generated for single line bugs are the

same as the developer patch. If we exclude single line bugs, the

percentage increases to 77% (196/255). Out of the 109 bugs

that can be fixed by combining all correct patches generated

by all LLMs together (Total row in Table VII), 93 bugs (85%)

are fixed by at least one correct patch that is different than the

original developer patch, e.g., as shown in Figure 5b, removing

LLM fixes that are exactly the same as the developer patches

can still fix 31 bugs that prior tools cannot fix.



Since we only have access to the training data used in

CodeT5, GPT-Neo, GPT-J and GPT-NeoX models, we further

check if the fixed function is within the training datasets when

the correct patch is equivalent to the developer fix for these

models. We found that while 38% (48/128) of bugs fixes

contain only the same fix as the developer patch, only 15%

(20/128) of those patches are also found in the original training

data, showing that the majority of correct bug fixes provided by

these LLMs are not simply from memorizing the training data.

Moreover, our RQ4 shows that improvements can be further

made by combining repair templates with LLMs, which is

orthogonal to the data leakage issue. Additionally, We observe

that LLMs are able to achieve the state-of-the-art results on

QuixBugs dataset which is not part of the training data as

it has low number of stars on GitHub and contains synthetic

bugs and patches that are not part of any larger real-world

projects. Further reducing the data leakage issue would require

retraining the LLMs, which could be extremely costly.

External. We evaluate LLMs on 5 repair datasets across 3

programming languages, making our evaluation one of the

most comprehensive studies in APR. However, our findings

may still not generalize to other datasets or languages.

VII. DISCUSSION AND FUTURE WORK

In this work, we conduct a large-scale study on directly

applying LLMs for APR, one of the most important problems

in Software Engineering (SE). We demonstrate not only by

directly applying LLMs we can already outperform prior APR

techniques studied for over a decade, but also that we can

further boost LLM performance by combining domain-specific

techniques from SE. Building on these findings, we highlight

two key directions for future work:

Improving LLM performance for APR. We plan to con-

tinue improving the performance of LLMs for APR. One

approach is to use additional information, such as project-

specific knowledge (i.e., from buggy project itself following

the plastic surgery hypothesis [80]). For example, one could

fine-tune/prompt the LLMs on the original buggy project to

prime the model to generate code that fits the style/pattern

used in the project. Another approach is to incorporate repair-

specific knowledge by using additional templates as demon-

strated in Section V-D to reduce the amount of code LLM

has to generate and arrive at the correct patch faster. Along

with these potential improvement directions, we also believe

that we can use other new types of LLMs (i.e., dialogue-

based) for APR such as ChatGPT [29]. ChatGPT is fine-tuned

using reinforcement learning algorithm with human feedback

designed for dialogues/conversations. We can leverage the

currently underused testcase result to provide feedback to

ChatGPT in a conversational manner, allowing the model

to correct its previous mistakes and generate more correct

patches [81].

Application of LLMs for other relevant SE tasks. While we

study the performance of LLMs for APR, LLMs can be used

for various other software engineering tasks. One such task is

fuzzing [82], where LLMs can be potentially used to help gen-

erate arbitrary inputs to fuzz test various software systems (in-

cluding libraries, compilers, and interpreters). Compared with

traditional automated fuzzing techniques [83] which require

extensive human efforts for ensuring the syntactic/semantic va-

lidity of input generation/mutation, LLMs offer an alternative

solution by learning from billions of available code snippets

in the wild to generate syntactically and also semantically

valid input programs fully automatically (as demonstrated in

recent work [84]). LLMs can also be used to target more

context dependent tasks such as test [85] or test-oracle [86]

generation. For example, while existing learning-based test-

oracle generation techniques [87]–[89] mainly formulate the

problem as a classification or NMT problem, another natural

solution could be to leverage the LLMs to directly complete

or infill the oracles based on context information (such as

focal method and test prefix/suffix). Similar to APR, mutation

testing [90] or bug seeding in general [89], [91], [92] also

applies systematic modifications to programs under test. As

a result, it is also very natural to directly apply infilling-style

APR techniques (such as AlphaRepair [26]) for such domains.

In addition to these discussed SE tasks above, we believe our

study results and techniques can also motivate, inspire, and

be applied to many other relevant SE tasks involving code

generation/mutation. These potential applications along with

LLMs for APR highlight the promising future of using LLMs

to help with SE in general.

VIII. CONCLUSION

We present an extensive evaluation on LLMs for automated

program repair. We use 9 state-of-the-art LLMs with 5 differ-

ent repair datasets and design different practical repair settings

to compare and contrast the repair effectiveness of different

LLMs. In our evaluation, we shed light on the scaling effect

that increasing model size has on various important factors in

APR such as the number of bugs fixed, the speed of patch

generation, and the compilation rate. Also, we compare the

performance of LLMs against state-of-the-art APR tools and

highlight the unique fixes and advantages of using LLMs

for APR. Furthermore, we evaluated the ability for LLMs

to perform patch ranking and patch correctness checking in

order to prioritize correct patches for faster repair. Lastly,

we demonstrate the possibilities (i.e., increasing the sample

size and combining LLMs with repair templates) to further

boost the performance of LLMs for APR. The results from

our study demonstrate promising future of adopting LLMs

for APR and beyond (e.g., other SE tasks involving program

generation/mutation).
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