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Abstract—Automated Program Repair (APR) aims to help
developers automatically patch software bugs. However, current
state-of-the-art traditional and learning-based APR techniques
face the problem of limited patch variety, failing to fix com-
plicated bugs. This is mainly due to the reliance on bug-fixing
datasets to craft fix templates (traditional) or directly predict
potential patches (learning-based). Large Pre-Trained Language
Models (LLMs), trained using billions of text/code tokens, can
potentially help avoid this issue. Very recently, researchers have
directly leveraged LLMs for APR without relying on any bug-
fixing datasets. Meanwhile, such existing work either failed to
include state-of-the-art LLMs or was not evaluated on realistic
datasets. Thus, the true power of modern LLMs on the important
APR problem is yet to be revealed.

In this work, we perform the first extensive study on directly
applying LLMs for APR. We select 9 recent state-of-the-art
LLMs, including both generative and infilling models, ranging
from 125M to 20B in size. We designed 3 different repair settings
to evaluate the different ways we can use LLMs to generate
patches: 1) generate the entire patch function, 2) fill in a chunk
of code given the prefix and suffix 3) output a single line fix.
We apply the LLMs under these repair settings on 5 datasets
across 3 different languages and compare different LLMs in the
number of bugs fixed, generation speed and compilation rate.
We also compare the LLMs against recent state-of-the-art APR
tools. Our study demonstrates that directly applying state-of-
the-art LLMs can already substantially outperform all existing
APR techniques on all our datasets. Among the studied LLMs,
the scaling effect exists for APR where larger models tend to
achieve better performance. Also, we show for the first time
that suffix code after the buggy line (adopted in infilling-style
APR) is important in not only generating more fixes but more
patches with higher compilation rate. Besides patch generation,
the LLMs consider correct patches to be more natural than other
ones, and can even be leveraged for effective patch ranking or
patch correctness checking. Lastly, we show that LLM-based
APR can be further substantially boosted via: 1) increasing the
sample size, and 2) incorporating fix template information.

I. INTRODUCTION

As software programs and systems become more and more
ubiquitous in everyday life, so do software bugs. Due to
the wide-ranging adoption of software systems in fields from
healthcare [1] to transportation [2], these bugs can potentially
cause dangerous safety issues [3] and financial losses [4]. As
such, developers often need to spend a significant amount of
time and effort to fix software bugs [S]. In order to help
developers reduce this manual effort, Automated Program
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Repair (APR) tools have been built to automatically generate
potential patches given the original buggy program [6].
Among traditional APR techniques [7]-[18], template-based
APR has been widely recognized as the state of the art [19],
[20]. These techniques leverage fix templates, often designed
by human experts, to fix specific types of bugs in the source
code. As a result, these APR tools are constrained by the
underlying fix templates in the types of bugs that can be
fixed. To combat this, researchers have proposed learning-
based APR tools [21]-[24], which typically model program
repair as a Neural Machine Translation (NMT) problem [25],
where the goal is to translate a buggy program into a fixed
program. The core component of these learning-based APR
tools is an encoder and decoder pair, where the model aims
to capture the buggy context via the encoder and then autore-
gressively generate the patch using the decoder. As such, these
learning-based APR tools require supervised training datasets
containing pairs of buggy and patched code, usually obtained
by mining historical bug fixes from open-source repositories.
While learning-based APR tools have shown improvements in
both the number and variety of bugs that can be fixed [21],
[22], they are still restricted by their training data which may
contain unrelated commits and only contain limited bug-fix
types, which may not generalize to unseen bug types [26].
Recent developments in building Large Pre-Trained Lan-
guage Models (LLMs) offer an alternative solution that can
be applied for program repair without relying on historical
bug fixes. While LLMs are usually general-purpose tools for
NLP tasks (e.g., GPT3 [27]), they have also been used for pro-
gramming languages by finetuning on code (e.g., Codex [28]
and ChatGPT [29]). Unlike the specifically designed learning-
based APR models, LLMs are trained in an unsupervised
fashion using up to billions of text/code tokens and can be used
in a variety of code tasks. Recently, AlphaRepair [26] proposes
to leverage CodeBERT [30], a large code model pre-trained on
millions of code snippets, directly for APR. The key insight
from AlphaRepair is instead of learning transformations to
go from buggy code to fixed code, we can directly use the
model to predict what the correct code should look like given
its surrounding context (including both prefix and suffix), i.e.,
infilling-style APR. Using this idea, AlphaRepair demonstrated
state-of-the-art repair results without finetuning on bug fixing
dataset. While AlphaRepair has shown improvements over



previous learning-based APR, the model (125M parameters)
it uses is far smaller than the current state-of-the-art LLMs
(Codex: 12B parameters and GPT-3: 175B parameters). Beside
AlphaRepair, researchers have also directly leveraged Codex
for generative APR [31], [32], i.e., generating the fixes based
on the context before bugs (i.e., prefix only). However, these
studies mostly focus on Codex and are only evaluated on a
small dataset with 40 bugs on simple programming tasks.

Current state-of-the-art LLMs [28], [33] have also included
evaluation for code related tasks such as code completion [28],
docstring generation [34] and variable/type prediction [34].
However, these evaluations still mainly focus on NLP metrics
such as BLEU score [35] which do not accurately measure the
functional or semantic correctness of the generated code. Fur-
thermore, the datasets consist of hand-curated code problems
which do not accurately reflect the type of projects developers
work on in the real world.

Our Work. We present the first extensive evaluation of recent
LLMs for fixing real-world projects. We designed 3 different
APR experimental settings: 1) complete function generation 2)
correct code infilling and 3) single line generation to showcase
the different ways LLMs can be applied for APR. In our
study, we include both popular types of LLM architectures
(generative and infilling models) to show the advantages and
flaws of using each type for APR. We include models with
a wide range of different parameter sizes, spanning from 125
million to 20 billion. We evaluate not only the improvement in
repair effectiveness but also the trade-off with respect to speed
when increasing the model size. In total, we use 5 different
repair datasets containing real open-source bugs and developer
written tests across 3 programming languages to evaluate APR
under realistic settings. Compared with existing applications of
LLMs for APR [26], [31], [32], our study is the first to include
state-of-the-art LLMs for both infilling-style and generative
APR on various datasets and programming languages. To
summarize, this paper makes the following contributions.

* Dimension. This paper bridges the gap between the re-
cent advances in LLMs and a crucial software engineering
problem — APR. This paper not only demonstrates the
potential and future for directly leveraging LLMs for solving
the important APR problem, but also provides a realistic
evaluation scenario for the recent LLMs, which were mainly
evaluated on simple/synthetic coding problems rather than
real-world systems as studied in the APR area.

* Study. We conduct extensive evaluations using 9 different
recent LLMs on 5 different repair datasets across 3 different
programming languages (Java, Python, and C). We compare
the LLMs against each other using the 3 repair settings
we designed. Using the popular repair datasets, we further
compare the LLMs with state-of-the-art APR tools.

* Practical Guidelines. Our study shows for the first time
that directly applying state-of-the-art LLMs can already
substantially outperform all existing APR tools on the
widely studied Defects4J 1.2 dataset (and other ones), e.g.,
Codex can fix 32 more bugs than the existing best APR

technique. Among the studied LLMs, the scaling effect
exists for APR where larger models tend to deliver stronger
APR results. Also, we show for the first time that suffix
code after the buggy line (adopted in infilling-style APR) is
important in not only generating more fixes but more patches
with higher compilation rate. Besides patch generation, the
LLM:s consider correct patches to be more natural than other
ones, and can even be used for effective patch ranking or
correctness checking. Lastly, we show that LLM-based APR
can be further substantially improved via: 1) increasing the
sample size, and 2) incorporating fix template information.

II. BACKGROUND AND RELATED WORK
A. Large Pre-Trained Language Model

Large Pre-Trained Language Models (LLMs) have become
ubiquitous in the domain of NLP, achieving impressive per-
formance in many tasks such as machine translation [25], text
summarization [36] and classification [37]. LLMs follow the
Transformer architecture [38] — an encoder to capture input
representation and a decoder to generate output tokens. These
LLMs are first pre-trained in an unsupervised manner, on
large amounts of text data and then finetuned for downstream
tasks. However, certain tasks may not have an abundance of
finetuned data available. As such, researchers have evaluated
the ability for LLMs to perform on downstream tasks without
finetuning. This is achieved via prompt engineering [39] —
providing the model with natural language descriptions and
demonstrations of the task it is trying to solve before giving the
model the target input. This works by leveraging the general-
purpose setup of LLMs where the unsupervised pretraining
dataset already encompasses many domains of problems/tasks.
Using this idea and the exponential growth in LLM size [40],
impressive performance in many tasks can be achieved even
without any finetuning [27].

LLMs can be classified into encoder-only, decoder-only and
encoder-decoder models based on their architectures. Encoder-
only models (such as BERT [41]) contain only the encoder
component of a Transformer. They are typically designed to
learn data representations and are trained using the Masked
Language Modeling (MLM) objective — a small percentage
(e.g., 15%) of tokens in the training data will be replaced by
masked tokens, and then the models are trained to predict the
original values of the masked tokens based on the bidirectional
contexts. Decoder-only models (such as GPT-3 [27] and GPT-
Neo [42]) are large generative models that use the decoder to
predict the next token output given all previous tokens (i.e., left
context or prefix only). To combine the usage of both encoder
and decoder, encoder-decoder models (such as T5 [43] and
BART [44]) have also been proposed for sequence-to-sequence
tasks where the training objective aims to recover the correct
output sequence given the original input (e.g., corrupted to
uncorrupted). One such training objective is span prediction
tasks, where random spans (multiple tokens) are replaced with
artificial span tokens and the model is tasked with recovering
the original tokens. For inferencing, one can use the encoder-
decoder models to infill text by also adding the artificial



span token in place. Recently, researchers have also combined
MLM with generative models to perform both bidirectional
and autoregressive text generation or infilling [45]. In our APR
scenario, all types of LLMs can potentially be leveraged for
generative or infilling-style APR, and we select 9 state-of-the-
art LLMs for our study (detailed in Section III-A).

B. Automated Program Repair

Automated Program Repair (APR) tools are used to generate
patched code given the original code and the corresponding
buggy location. Each patch generated by the APR tool is
validated against the test suite. Plausible patches are ones
which pass the entire suite. Correct patches are plausible
patches which correctly fix the underlying bug.

Traditional APR tools can be classified as heuristic-
based [7]-[9], constraint-based [10]-[12] and template-
based [13]-[16], [19]. Traditionally, template-based APR tools
achieve the best performance, where each template is hand-
crafted by human experts designed to provide a fix for a
specific type of bug. However, these template-based APR tools
can only fix the bug types that are part of the templates. As
a result, researchers employed learning-based APR tools to
generate more expressive patches. Learning-based APR tools
such as Recoder [21], RewardRepair [23], and CURE [22]
are based on NMT techniques [25] which require specific bug
fixing data to train the NMT model to generate a fix line
given the buggy line. Due to this reliance on the bug-fixing
data, these learning-based tools are still limited in terms of the
type of fixes it can apply. Recent work of AlphaRepair [26]
addresses this by performing APR under a zero-shot setting by
directly using the CodeBERT model for repair. AlphaRepair
fills the original buggy line with masked tokens and uses
CodeBERT to replace the masked tokens with correct code
tokens to generate repair, i.e., infilling-style (also called cloze-
style) APR. While AlphaRepair is able to achieve state-of-
the-art results, CodeBERT is considerably smaller than the
newest LLMs. Additionally, AlphaRepair is designed for the
repair setting where the buggy line location is known (e.g.,
computed by fault localization techniques [46]).

Recent work [31], [32] has also looked into directly apply-
ing LLMs for APR. Prenner et al. [32] conducted a small-scale
evaluation for the Codex model on a simple dataset containing
both Java and Python versions of buggy algorithm imple-
mentations. Codex is given the buggy function and by using
prompt engineering, are then asked to generate a complete
fixed function. The results show that Codex is competitive
with state-of-the-art learning-based APR tools in Python but
worse in Java. In contrast, we show that by using our repair
settings, LLMs are able to outperform state-of-the-art APR
tools on both Java and Python. Kolak et al. [31] also used
Codex along with 2 smaller LLMs and evaluated their ability
to generate the correct patch line when given the code prefix
on the same dataset as the previous work [32]. The evaluation
demonstrated the scaling effect of LLMs where the repair
results can be improved by using larger models. Interestingly,
the study leverages sum entropy for patch ranking while

TABLE I: Studied LLMs

Model #Parameters  Training Dataset Type
GPT-Neo 125M/1.3B/2.7B The Pile Generative
GPT-J 6.7B The Pile Generative
GPT-NeoX 20B The Pile Generative
Generative
Codex 12B N.R. & Infilling
CodeSearchNet .
CodeT5 220M & BigQuery Infilling
INCODER 1.3B/6.7B N.R. Infilling

AlphaRepair leverages mean entropy (i.e., both favors more
natural [47] patches). Thus, we also perform a study of
leveraging various recent LLMs for computing both entropies
for patch ranking on real-world systems. In addition, to the
best of our knowledge, we are the first to study LLMs or
entropies for patch correctness checking (i.e., distinguishing
correct patches from plausible ones).

Overall, the 2 prior studies [31], [32] are done on a small
dataset with synthetic bugs using only a small number of
LLMs. Moreover, the input and repair setting being used in the
studies are also limited, e.g., only considered generative APR.
In this paper, we present an extensive study of applying various
state-of-the-art LLMs for both infilling-style and generative
APR on diverse repair datasets across programming languages.

III. APPROACH

In this section we describe the LLMs selected for evaluation
and introduce 3 different APR generation settings we use to
evaluate each LLM. These settings are designed to showcase
the different practical ways we can directly use LLMs for
APR and highlight advantages and differences of the studied
LLM types. Also, we detail the patch ranking strategy of using
entropy to prioritize patches that are more likely to be correct.

A. Models

We begin by describing the different LLMs we use for
evaluation. Our selection process starts with the list of popular
models hosted on the Hugging Face [48] — an open-source
platform to host and deploy large models. We sort the list
of models based on popularity (#downloads this month) and
select the LLMs which contain code as training data. Fur-
thermore, we also pick models from different organizations
and types (described below) to obtain a diverse set of models.
Along with the open-source models, we also use the closed-
source Codex model [28] (accessible only via API) since it
has shown to achieve impressive performance on code related
tasks. In total, we use 9 different LLMs for our experiment.

Our chosen LLMs range from 125M to 20B in parameter
size. Table I presents the LLM overview. Column Model is
the model name, #Parameters presents the number of model
parameters, Training Dataset indicates the dataset used for
pre-training (N.R. is not released), and Type refers to the type
of APR the model can perform (infilling or generative).

1) Generative Models:

e« GPT-Neo [42], GPT-J [49], GPT-NeoX [50] All three
models are open-source implementations of the GPT-3 trans-
former architecture [27]. In our experiments, we use GPT-
Neo models with 125M, 1.3B and 2.7B parameters. GPT-J



and GPT-NeoX are even larger models with 6.7B and 20B
parameters. These models were trained on The Pile [51],
an 800GB dataset combining 22 diverse text-based datasets
with 7.6% containing open-source Github code.

o Codex [28] A 12B parameter GPT-3 based model designed
for code generation. Codex is initialized with GPT-3 weights
trained on natural language corpus and then finetuned on a
large corpus of 159GB code files.

2) Infilling Models:

o CodeT5 [52] A 220M parameter model based on T5 [43] ar-
chitecture designed for code related tasks. CodeT? is trained
using span prediction objective on 8.35 million functions
across 8 different programming languages by combining
CodeSearchNet [53] with C/C# dataset from BigQuery [54].

« INCODER [33] A model designed for code infilling by
adopting a causal masking objective [45]. INCODER is
trained on both open-source Github/GitLab code (159 GB)
and StackOverFlow questions and answers (57 GB). We use
both the 1.3B and 6.7B parameter version.

o Codex In addition to using Codex as a generative model, we
use the recently added suffix feature [55] to perform code
infilling. Since Codex is not open-sourced, we do not know
how the model performs the infilling.

B. LLM-based Patch Generation

In our study, we designed three settings for APR:

1) Complete function generation — the input is a buggy
function and the goal is to output the patched function.

2) Correct code infilling — the buggy location is known and
the goal is to generate the correct replacement code given the
prefix and suffix of the buggy function.

3) Single line generation — the bug location is provided and
the bug is fixed by a single line change. Single line generation
uses a subset of bugs in correct code infilling. We separate
this case since many fault-localization techniques provides a
ranking in the granularity of individual code lines [46], [56].
More importantly, both infilling and generative LLMs can be
applied for this setting, enabling direct comparison of the two.
We now describe the different inputs for each setting.

1) Complete function generation: For this setting, the initial
input is the original buggy function. We aim to use a generative
model to autoregressively generate the entire patched version
of the buggy function. However, naively feeding the LLMs
the buggy function will not work since each LLM is not pre-
trained for APR (i.e., they do not know that the goal is to
generate a patched function). Therefore, to facilitate the direct
usage of LLMs for APR, we use specific prompts to enable the
models to perform few-shot learning. This allows the LLMs
to recognize the task and generate a patched function by
completing the input provided. We note here that the task of
complete function generation makes no assumption of 1) the
location of the bug and 2) the type of bug or fix required.
Therefore, the LLM needs to figure out why the function is
buggy and provide a patch to fix the bug.

Figure 1 shows the input which is made up of two ex-
ample bug fixes (one crafted by us and one from the same

Example @ |# Provide a fix for the buggy function

# Buggy Function
def fibonacci(n):

Example Bug if n ==e:
return @
elif n == 1 or n == 2:
return 1
Bug Fix else:
Example
# Fixed Function
def fibonacci(n):
. if n == 0:
Example Fix return @
elif n ==1or n == 2:

return 1
else:

Example @ |# Provide a fix for the buggy function

# Buggy Function

Previous Bu # Fixed Function
and Fix

Buggy
Project # Provide a fix for the buggy function

| target sug | ? bBLLJJgggiV Function

# Fixed Function

Fig. 1: APR input for complete function generation

prefix -

primes = []

for n in range(2, max + 1):

— <INFILL>
primes.append(n)

return primes

Buggy
Function

suffix

Fig. 2: APR input for correct code infilling

project/dataset the target bug is from) in order to demonstrate
the task and the expected format of the output. To start off, we
follow the prior study [32] and begin with a description of the
task: # Provide a fix for the buggy function. This
describes in natural language the task we want the LLM to
perform. This is a Python example and we use the Python
comment format of # as a prefix for this description (we
use other comment prefixes depending on the language of the
buggy code). We then provide an example bug and patch pair.
In Figure 1, this example is a function which computes the
Fibonacci number. We prefix the example buggy and fixed
function with # Buggy Function and # Fixed Function
to provide additional context for the model. For our second
example, we follow the same prompting style and pick a buggy
and patched function pair from the same project that the bug is
from. This way we can provide the model with some examples
of the coding style used in the project. Finally, we finish the
prompt by adding the bug we want to fix.

2) Correct code infilling: Unlike complete function gen-
eration, where the buggy location within the function is not
known. For correct code infilling, the input is the prefix and
suffix after removing the buggy code hunk. In order to fill in
the correct code, both the prefix and suffix can provide useful
information. As a result, generative models are not suitable for

prefix s o (] prefix
for n in range(2, max + 1):
<INFILL>
primes.append(n)

return primes

primes = []

Buggy single for n in range(2, max + 1):

Function TIine bug

Buggy
Function

suffix

a) b)

Fig. 3: APR input for single line generation



this task since the generation process conditions only on the
context to the left (prefix). Therefore, for correct code infilling,
we only use infilling models which perform generation by
conditioning on both left (prefix) and right (suffix) code.

Figure 2 shows an example input for the infilling task.
We start with the target buggy function we want to fix and
remove the buggy code hunk. This gives us the prefix and
suffix code which are still correct. We then place an infilling
token between the prefix and suffix. This infilling token (e.g.,
<INFILL>) indicates to the model that this is the location
where we want the new code to be generated at. The model
then generates only the code to fill in the missing chunk and
we obtain a patch by combining the model output with the
prefix and suffix code snippets.

3) Single line generation: In single line generation, the
buggy location is provided and the bug requires only a single
line change. Figure 3a shows a similar setup to correct code
infilling where we provide both the prefix and suffix code and
use infilling models to generate a replacement line. Different
from correct code infilling, we can also use generative models
by providing only the prefix. Figure 3b demonstrates the setup
to use generative models for this task. Since we know the bug
requires only a single line change, we can stop the generation
after the model has provided us with one line. We cannot
apply the same strategy using generative models for correct
code infilling since those bugs may need multiple lines to fix
and we do not know when we can stop the generation [31].
Additionally, when using generative models for single line
generation, we cannot provide the models with the suffix code
due to the causal nature of the generative models. We contrast
this with infilling models on the same task to demonstrate the
effect of including the suffix context for APR.

C. Patch Ranking and Validation

For all 3 repair tasks, the patch generation process is
similar — we provide the LLMs with the constructed input
and use sampling to generate multiple patches per bug. We use
nucleus sampling [57] with a sampling temperature. A lower
temperature means the model is likely to pick tokens with
higher likelihood, resulting in samples that are more similar
(temperature of 0 gives deterministic result by picking the most
likely token at each generation step). A higher temperature
gives more probability for the model to pick a token with
a lower likelihood, leading to more unique and interesting
samples. How to pick an optimal temperature value is not
obvious for a problem such as APR. For certain bugs, one may
prefer a lower temperature value in order to quickly arrive at a
reasonable patch. For harder bugs, a higher temperature value
can be useful to generate more unique patches in an attempt to
provide a fix. For our experiments, we use the default setting
used in previous work [28], [33].

In addition to generating patches, we also record the entropy
value of each patch. Entropy captures how natural [47] the
generated sample is according to the model and can be
calculated as the negative log probability of each generated
token. Let tq,to,...,t, be the list of tokens generated and

pe; be the model probability of generating token ¢; given the
previous context and generated tokens. Entropy is defined as:

n 1 )
mean_entropy = —Z M (D
- "
sum_entropy = —Z log(pe,) 2)
i=1

Mean entropy averages entropies of all tokens generated
whereas sum entropy computes the total entropy of the se-
quence. For patch ranking, we prioritize patches with lower
entropy first. In this way, patches that are more natural [47]
can be ranked higher. Previous work on leveraging LLMs
for APR either used mean entropy [26] or sum entropy [31]
without thorough evaluation, and mainly focused on patch
ranking. In contrast, in this work, we empirically compare both
entropy computations, and have further applied them for patch
correctness checking [58]. Finally, for each patch generated,
we filter out any patches with syntactic or semantic errors
and validate the rest against the test suites to identify patches
which pass all the tests.

IV. EXPERIMENTAL SETUP
A. Research Questions

We study the following research questions:

« RQ1: How do different types of LLMs perform for
different APR settings? We study the effectiveness of
different LLMs on different repair datasets, across different
languages and on different APR tasks. Furthermore, we
evaluate the scaling behavior of LLMs when increasing
model size with respect to APR ability, computation time
and compilation rates to holistically evaluate each LLM.

« RQ2: How does directly applying LLMs for APR com-
pare against state-of-the-art APR tools? We compare the
results using LLMs against state-of-the-art baselines. We
study the unique bugs fixed by LLMs and highlight the
advantages of directly applying LLMs for APR.

e« RQ3: Can LLMs be directly used for patch ranking
and correctness checking? We use the built-in naturalness
metric of LLMs (entropy) to evaluate if LLMs considers
patched functions to be more natural than buggy functions
and if entropy can directly rank the patches for patch ranking
and correctness checking.

« RQ4: Can we further improve the performance of
LLMs? We explore two directions for further improving
LLMs’ performance for APR: 1) increasing the number of
samples, and 2) combining LLMs with templates.

B. Implementation

We implement the generation pipeline in Python using
PyTorch [59] versions of each LLM. We use the Hugging
Face [48] to load the model weights and generate outputs. For
Codex, we use API access provided by OpenAl to query the
model [60]. To use Codex for correct code infilling, we append
the API request with an additional suffix parameter [55] with



TABLE III: Complete function APR (SF bugs)

TABLE II: Evaluation dataset statistics
Dataset #Bugs #SF #SH #SL Source Language
Defects4] 1.2 391 255 154 80 real-world Java
Defects4] 2.0 438 228 159 78 real-world Java
QuixBugs- 40 40 37 36 coding Java
Java problems
QuixBugs- coding
Python 40 40 40 40 problems Python
ManyBugs 185 39 23 12 real-world C
Total 1094 572 413 246

the extracted suffix from the bug. For all our experiments, we
directly reuse the weights of each model. Our default setting
for generation uses nucleus sampling [57] with top p = 0.95,
temperature = 0.8 and 200 samples per bug. This generation
setting is consistent with previous studies on LLMs [28], [31],
[33]. Patches are generated on a 32-Core workstation with
Ryzen Threadripper PRO 3975WX CPU, 256 GB RAM and
NVIDIA RTX A6000 GPU, running Ubuntu 20.04.4 LTS.

C. Subject Systems

For evaluation, we use 5 APR benchmarks spanning across
3 programming languages. We focus on bugs where the fix is
within a single function, which is also the focus of most recent
APR work [21], [22], [24], [61]. To this end, we filter these
benchmarks to find bugs that fit our designed repair settings.
Table II presents the details of each repair dataset. Column
Dataset is the dataset name, #Bugs is the total number of bugs,
#SF, #SH, #SL shows the number of bugs which the reference
fix is within a single function, single hunk (consecutive lines)
and single line. Source refers to where the bugs are collected
from, Language is the programming language of the bugs.
We next discuss the detailed dataset information:

1) Defects4J 1.2 and 2.0 [62]: The most widely studied
APR benchmark with a collection of bugs gathered from
open-source projects in Java containing pairs of buggy and
patch versions of the source project. Since Defects4] has
been updated to include more bugs from additional projects,
we consider 2 different versions of Defects4]. Defects4] 1.2
contains 391 bugs (removing the 4 depreciated bugs) from
6 open-source Java projects. Defects4] 2.0 contains 438 new
bugs from 9 additional projects. Each bug in Defects4] also
contains developer tests exposing the bug.

2) QuixBugs-Python and -Java [63]: A multi-lingual repair
benchmark with 40 classic programming problems. QuixBugs
benchmark is constructed from a programming challenge
where programmers were asked to fix a small buggy function.
QuixBugs was originally in Python but has been translated to
Java, with both versions having the same 40 bugs. Each bug is
accompanied with multiple test inputs and expected outputs.

3) ManyBugs [64]: A C repair dataset consisting of 185
bugs gathered from 9 open-source projects with developer
written tests. Each bug is manually verified and classified into
a bug type. However, we were not able to reproduce all bugs
from the dataset (i.e., builds successfully and reference patches
can pass all provided tests). As such we only use the 91 bugs
where the results were reproducible by us.

GPT-Neo GPT-Neo GPT-Neo GPT-

Dataset 125M 1.3B 27B GPT-J NeoX Codex
Defects4] 1.2 6/8 7/16 10/24 14/31 18/36 63/ 102
Defects4) 2.0 2/ 17 4/18 6/20 11/33 15/36 49/93
QuixBugs-Java 1/3 4/5 3/5 3/5 8/9 32/35
QuixBugs-Py 1/3 4/6 4/6 13/17 19/22 37/37
ManyBugs 0/2 1/4 2/4 3/6 4712 71715

TABLE IV: Correct code infilling APR (SH bugs)

Dataset CodeT5 INCODER 1.3B  INCODER 6.7B  Codex
Defects4] 1.2 6/13 32/51 371753 62 /77
Defects4] 2.0 12719 31/56 37761 56 /85
QuixBugs-Java 10/ 10 21726 26 /29 34 /36
QuixBugs-Py 7178 251726 27 /28 39739
ManyBugs 2/5 8712 9/13 12 /15

D. Compared Techniques

We compare against the state-of-the-art APR baselines with
both learning-based and traditional APR tools. We choose
8 recent learning-based APR tools: AlphaRepair [26], Re-
wardRepair [23], Recoder [21], DeepDebug [65], CURE [22],
CoCoNuT [24], DLFix [66] and SequenceR [67]. Apart from
AlphaRepair, these learning-based APR baselines are based on
the NMT models. AlphaRepair combines a LLM (CodeBERT)
with simple templates to generate patches under a zero-
shot setting. Furthermore, we also choose 12 traditional APR
tools: TBar [19], PraPR [20], AVATAR [16], SimFix [68],
FixMiner [15], CapGen [9], JAID [69], SketchFix [13],
NOPOL [12], jGenProg [70], jMutRepair [14], and jKali [14].
In total, we evaluate against 20 different APR tools. We
compare against the baseline results on Defects4] 1.2, 2.0,
QuixBugs-Python and Java on perfect fault localization - the
ground-truth fix location is known to the repair tool. This is
the preferred comparison setting as it eliminates the impact
of differences in fault localization have on the result [21],
[22], [24], [71]. Due to the lack of recent APR tools that are
evaluated on ManyBugs, we only use it for RQ1. We follow
prior work [19]-[22] and directly use the correct patch results
from previous studies [19], [20], [26].

E. Evaluation Metrics

To evaluate the repair performance, we use the standard
metrics of plausible patches — passing the all test cases, and
correct patches — syntactically or semantically equivalent to
the reference patches. To determine correct patches, we follow
the standard practice in APR research and manually inspect
each plausible patch for semantic equivalency.

V. RESULT
A. RQI: Comparison of Different LLMs

1) Repair effectiveness: We first compare LLMs against
each other in generating plausible and correct patches. Ta-
ble III shows the results of 6 generative models under complete
function generation setting. The two integers in each cell
represent the number of correct and plausible patches. We
first observe that similar to previous studies in NLP [40],
there is a scaling effect on the repair effectiveness. As we
increase the size of the model, we also increase in the number



TABLE V: Single line APR (SL bugs)

GPT-Neo GPT-Neo  GPT-Neo INCODER  INCODER Codex Codex
Dataset 125M 1.3B o7 OPTT GPTNeoX  CodeT5S 7y 5p 67B  single-line  suffix
Defects4] 1.2 5/10 12720  13/21  16/26 21731 5/12 21736 26/38  32/37  39/47
Defects4] 2.0 8/17  10/26  16/28 12/26  19/36  9/15  15/32  21/37  26/38  31/45
QuixBugs-Java 8/9 19/20  16/17 20/21  20/21  10/10 21/26  26/29  30/31  34/36
QuixBugs-Python ~ 9/10  14/14  22/23 26/27  28/28 718  25/26  27/28  36/36  39/39
ManyBugs 274 275 3/5 617 6/9 274 8/11 9/11 8/10 10/ 11

of correct and plausible patches generated. Directly looking
at the group of GPT models trained on the same dataset,
we see that the performance consistently increases as we use
larger models across all repair datasets. However, we see that
the Codex model (12B) outperforms the biggest model (GPT-
NeoX (20B)). We hypothesize that this is because Codex is
designed and finetuned for code generation; on the other hand,
while the training dataset of GPT-NeoX is partially made up
of code, it is designed for general purpose text generation.

Tables IV and V show the results on the correct code
infilling and single line generation repair tasks. Similar to the
previous result, we again see the scaling effect of increased
performance as model size increases. Compared to complete
function generation, we observe that each model using correct
code infilling and single line generation is able to produce
a higher ratio of correct fixes to the total number of bugs.
Furthermore, we also observe that the ratio of correct patches
to plausible patches is higher in the latter 2 settings as well.
This signals that patches produced using code infilling and
single line generation is more likely to be the correct fix.
The improved performance is because for complete function
generation the model needs to understand the prompt given
(Section III-B1), localize the bug and provide the correct fix.
On the other hand, when we provide the model with the buggy
location information in correct code infilling and single line
generation, it only needs to fill in or complete the partial
code, leading to more correct patches. This comparison is more
direct when evaluating the Codex model, the only model that
can perform both code infilling and function generation. We
see that when performing correct code infilling, Codex is able
to fix 40% (62/154) of the total bugs whereas when asked to
generate the entire function, it drops to 28% (63/225).

For single line generation results in Table V, we included
both generative and infilling models. However, for generative
models we are not able to provide it with suffix code snippets
since their generation is dependent only on the previous
context. We compare this with infilling models, which can
perform infilling conditioned on both the context before and
after. We observe that infilling models perform better than their
generative counterparts. Additionally, since we are able to use
both the generative and infilling versions of Codex, we can
directly compare the repair ability of the model when given
only the prefix versus both prefix and suffix context. We see
that when using the suffix information from the original buggy
function, the Codex model is able to improve the number
of correct and plausible fixes across all repair datasets. This
shows that for repair, successfully utilizing the code after the
buggy lines is important for fixing bugs.

TABLE VI: Patch generation speed (#patch/min)

Models Defects4] 1.2 QuixBugs-Python
CF CI SL CF CI SL
GPT-Neo 125M 139 - 1080 369 - 1061
GPT-Neo 1.3B 31 - 543 127 - 814
GPT-Neo 2.7B 27 - 489 85 - 625
GPT-J 15 - 227 39 - 354
GPT-NeoX 2 - 47 6 - 73
CodeT5 - 969 - - 1991 -
INCODER 1.3B - 535 - - 1083 -
INCODER 6.7B - 288 - - 419 -
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Fig. 4: Syntactic and semantic error rates on Defects4]J 1.2

2) Speed: Next we look at the speed of patch generation
using LLMs. We already saw from the previous result analysis
that as we increase the size of the model, we obtain an increase
in repair performance. However, such performance increase
does not come for free as larger models require longer time
for inferencing. Table VI shows the samples generated per
minute for different LLMs on Defects4] 1.2 and QuixBugs-
Python with the 3 repair generation settings (Columns CF, CI,
SL refer to complete function, correct infilling and single line
generation, respectively). We only include models that we run
locally on the same hardware (i.e., excluding Codex since it is
only accessible through API access). We first observe that as
we increase model size, the patch generation speed drastically
slows down (71x slower on GPT-NeoX than GPT-Neo 125M
on complete function generation). This demonstrates the trade-
off between repair effectiveness and time cost when using
large models. Additionally, we see that compared to single
line generation and correct code infilling, complete function
generation takes significantly more time, since generating an
entire function is much more time consuming than generating a
single line or hunk. This shows while LLMs have the capability
to perform fault localization and repair in one shot, for real-
world software systems, it is still more cost-effective to first
use traditional fault localization techniques [46] to pinpoint
the precise bug locations and then leverage LLMs for more
targeted patch generation.



TABLE VII: Defects4J 1.2 baseline comparison

Single func. Patch  Correct Single

Tools / Models (255 bugs) func. hunk line
AlphaRepair 67

RewardRepair 48

Recoder 61

TBar 54

CURE 52

GPT-Neo 125M 9 6 - 5
GPT-Neo 1.3B 18 7 - 12
GPT-Neo 2.7B 20 10 - 13
GPT-J 28 14 - 16
GPT-NeoX 34 18 - 21
CodeT5 6 - 6 -
INCODER 1.3B 32 - 32 -
INCODER 6.7B 37 - 37 -
Codex 99 63 62 32
Total 109 69 74 40

3) Compilation rate: We evaluate the compilation rate of
the patches generated by each LLM. Figure 4 shows the
syntactic and semantic error rates of all studied LLMs using
the three repair settings on Defects4] 1.2. We first observe that
the overall error rate (syntactic + semantic) of the generated
patches goes down as we increase the size of the model. This
reaffirms the previously discussed scaling effect of LLMs and
show that the patches generated by larger models contain less
errors. Next we see that all generative models using single line
generation produced a high number of syntactic errors. Recall
that single line generation when using generative models only
provides the prefix in the buggy function. As a result, the
generated line can easily introduce some syntax errors (e.g.,
adding an if statement with an opening bracket) since the
model does not know what the suffix code context is. On
the other hand, the amount of syntax errors produced in the
two other settings are much lower. For complete function
generation, LLMs can effectively retain the syntax of the
language during training and generate syntactically correct
functions. For correct code infilling, not only do we get low
syntactic errors but also achieve the lowest semantic errors.
Having both the prefix and suffix provides the model with
sufficient context which leads to higher compilable patch rate.

B. RQ2: Comparison against State-of-the-art APR tools

1) Defects4J 1.2 results: We first compare the results of
directly using LLMs for repair against both traditional and
learning-based APR tools on Defects4J 1.2. Table VII shows
the number of correct bug fixes of the top baseline tools and
also the LLMs in our evaluation. The last 3 columns present
the number of correct patches generated when using each of
the three APR settings. We then combine all patches generated
for each of the models together (Column 2) to demonstrate the
total number of fixes that can be obtained for the 255 single
function bugs in Defects4] 1.2. Note that this is still a fair
comparison — prior APR techniques typically use a timeout of
5h for each bug [21], [22], [26], while generating 200 patches
for each of the 3 settings (i.e., at most 600 patches in total)
costs no more than 2.5 hours for each model.

We observe that some of the models are able to achieve
comparable performances compared to some of the recent

Others Recoder

Combined AlphaRepair Combined AlphaRepair

a) with all models b) with all models w/o exact developer patch

Fig. 5: Bug fix Venn diagram on Defects4J 1.2

public static boolean areEqual(Object ol, Object 02) {

+ if (ol == 02) {
+ return true;
+ } else if (01 == null || 02 == null) {
return ol == null && 02 == null;
} else if (isArray(ol)) {
Bug: Mockito-22
Repaired by: INCODER 6.7B

a)

double r = correlationMatrix.getEntry(i, j);

double t = Math.abs(r * Math.sqrt((nObs - 2)/(1 - r * r)));

+ out[i][j] = 2 * tDistribution.cumulativeProbability(-t);

Bug: Math-69
Repaired by: Codex

b)

Fig. 6: Unique bug fixes generated by LLMs

state-of-the-art APR tools. Additionally, this result is obtained
while generating only up to 600 samples per bug whereas
prior approaches, especially learning-based tools, can generate
up to 5000 patches per bug [22], [24], [26]. While the most
effective model (Codex) can already outperform all existing
techniques (e.g., fixing 99 single-function bugs), by combining
the patches generated by all models (Total), we can achieve
109 correct fixes on single function bugs! The surprising
results show that by directly applying LLMs for APR without
any specific change/finetuning, we can already achieve the
highest number of correct fixes compared to existing baselines.

Figure 5 presents the Venn diagram of unique fixes that can
be generated using LLMs compared to the 3 best performing
baselines on all the single function bugs in Defects4] 1.2.
We also combine all fixes from other baselines together into
the “Others” category in the Venn diagram. We observe that
by combining all the models together, we can generate a
significant amount of unique bug fixes (36) that no other
tools have fixed so far. Due to the potential data leakage
issue (discussed in detail in Section VI), we further investigate
whether LLMs can generate correct patches that are not
exactly the same as developer patches. Figure 5b shows the
unique bug fixes on Defects4] 1.2 compared to the baselines
when we remove all fixes which are exactly the same as the
developer patch. We observe that combining all LLMs together
would still achieve the highest number of bug fixes (93) with
31 unique bug fixes.

To demonstrate the ability of these LLMs, we show some
unique fixes produced by them. Figure 6a is a correct patch
produced by the INCODER 6.7B model under correct code
infilling task. We see here that the function is called areEqual
and the bug is caused by missing a specific case of comparing



TABLE VIII: Additional baseline comparison

TABLE IX: Mean entropy of generated patches

Defects4] 2.0  QuixBugs-Java  QuixBugs-Python

Tools / Models

(78 bugs) (40 bugs) (40 bugs)
AlphaRepair 35 28 27
RewardRepair 25 20 -
DeepDebug - - 21
Recoder 11 17 -
CURE - 21 -
TBar 8 - -
CoCoNuT - 13 19
GPT-Neo 125M 10 8 9
GPT-Neo 1.3B 11 20 17
GPT-Neo 2.7B 19 18 24
GPT-J 16 22 29
GPT-NeoX 24 21 31
CodeT5 9 10 7
INCODER 1.3B 15 21 25
INCODER 6.7B 21 26 27
Codex 45 38 40
Total 52 38 40

if the two inputs have the same reference. Using both the prefix
(name of the function) and suffix (other comparison statements
with return values), the model figures out the correct code
to be inserted here (first checking if the references are the
same before proceeding). Such code is commonly found in
open-source projects which use similar comparison functions
where the LLMs can learn from. In fact, we found several
similar comparison functions (checking if the objects have the
same reference) [72]-[75] in different projects as a part of
The Pile dataset [51] that some of the LLMs were trained on.
Furthermore, unlike traditional APR tools which often work
on a single line, LLMs can generate multiple lines of code in
order to provide the correct fixes.

Figure 6b shows a patch of the Math-69 bug generated by
Codex. The function here calculates a matrix of p-values of a
2-sided, 2-sample t-test. The bug is caused by precision error
when the function call is extremely close to 1. Here the model
generates an alternative way of calculating the p-value which
is much more stable than before. This is a hard bug to fix since
the change is quite subtle but it does not fit any of the common
templates used in traditional APR. To generate the correct fix,
the model needs to understand the goal of the function (p-
value calculation) and use statistical formulas. Both of which
can be achieved by Codex as it is trained not only on code
but also on general text, which contains many descriptions and
examples of t-test p-value calculations. This unique fix shows
the benefit of using LLMs for program repair where domain
knowledge of the project can be utilized as well.

2) Additional results: In addition to comparing against
state-of-the-art baselines on Defects4] 1.2, we also compare
the performance of LLMs on other datasets widely used to
evaluate previous APR tools. Table VIII shows the results
on Defects4] 2.0, QuixBugs-Java and -Python where we also
combine the correct bug fixes of the 3 generation strategies
together. Similar to the Defects4J 1.2 results, we observe that
many models can achieve similar (or even better) performance
with carefully designed APR tools. More surprisingly, all 9
studied LLMs can outperform TBar, state-of-the-art template-
based APR tool, and are competitive compared with the recent

Models Defects4] 1.2 QuixBugs-Python
C P NP C P NP
< GPT-Neo 125M 0.08 0.13 023 0.10 0.10 020
&8 GPT-Neo 1.3B 0.12 0.12 019 0.06 005 0.09
g GPT-Neo 2.7B 009 0.13 0.17 005 0.06 0.08
E GPTJ 0.07 0.10 012 0.04 005 0.08
5 GPT-NeoX 0.08 0.11 013 0.05 007 0.10
% Codex 0.04 0.05 0.08 0.11 0.13 0.16
oy CodeT5 0.50 051 054 051 050 0.59
S INCODER 1.3B 049 058 065 054 056 065
E: INCODER 6.7B 045 050 061 0.61 060 0.65
= Codex 043 043 050 032 033 042
GPT-Neo 125M 038 042 058 041 045 061
£ GPT-Neo 1.3B 032 038 058 025 027 047
O GPT-Neo 2.7B 028 032 055 021 026 040
2 GPTJ 029 033 054 020 022 038
3 GPT-NeoX 039 042 071 026 028 0.55
Codex 0.19 028 057 0.18 023 0.60

Recoder technique on the Defects4J 2.0 dataset. Furthermore,
unlike many baselines which can only be used on a single
language (specifically designed for a particular language or re-
quiring additional finetuning on another language), the LLMs
can be directly applied for multi-lingual repair.

C. RQ3: Patch Ranking and Correctness Checking Analysis

1) Entropy: As we are using LLMs for patch generation,
this allows us to compute the entropy of each patch. Entropy
calculates how natural the generated sample is (Equation 1).
Table IX shows the mean entropy values for correct (C),
plausible (P) and non-plausible patches (NP). Each row shows
the results of a LLM on a repair scenario containing bugs
for which the LLM can produce a correct patch. We observe
that average entropy value of correct and plausible patches
for all models are less than non-plausible patches. Although
not shown in the table, we observe the same finding when
comparing patches using sum entropy. In other words, the
studied LLMs consider correct patches which correctly fix
the underlying bugs to be more nature than other patches.
Additionally, while the entropy difference between correct and
plausible patches is not as drastic as compared to non-plausible
patches, we also find that correct patches are in general less
entropic than plausible ones. Recent work [58] has shown
that existing solutions for patch-correctness checking (i.e.,
identifying correct patches from plausible patches) can suffer
from dataset overfitting and performance drops when applied
on more complicated patches. We demonstrate for the first
time that entropy computation via LLMs can help distinguish
correct patches from plausible patches, indicating a promising
future of directly leveraging the LLM entropy metric for patch-
correctness checking.

2) Patch ranking: Using the entropy values of each gen-
erated patch, we perform ranking to validate patches with
higher rank (lower entropy) first. We pick 5 LLMs with the
highest number of correct patches to perform this analysis.
Figure 7 shows the number of bugs fixed for the Defects4J 1.2
dataset using different patch ranking strategies as we increase
the number of patches to validate. We see that compared to
randomly picking patches to validate (blue line), when using
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Fig. 7: Number of bugs fixes when using different patch ranking strategies on Defects4J 1.2

TABLE X: Further improving LLM-based APR

Defects4]  Defects4] 2.0  QuixBugs-
Tools / Models 12 Al Single Line  Python
AlphaRepair 74 35 27
RewardRepair 50 25 -
DeepDebug - - 21
Recoder 65 11 -
TBar 68 8 -
INCODER (200) 37 21 27
INCODER (2000) 64 25 32
INCODER w/ template (2000) 78 39 37

entropy rankings (orange and green line), we can validate
the correct patches faster. This shows that entropy can be
an effective measure used to rank the potential patches to
prioritize lower entropy patches for validation under tighter
time constraints. Furthermore, we observe that sum entropy
performs slightly better compared to mean entropy. We hy-
pothesize that this is because sum entropy calculates the entire
sequence entropy regardless of the length of the generated
sequence. As such, shorter sequences tend to have lower sum
entropy compared to longer sequences; interestingly, this is
consistent with traditional APR or patch correctness checking
techniques [11], [76], [77], which favor simple patches over
complicated ones following the Occam’s razor hypothesis [78].

D. RQA4: Improvements on Direct LLM-based APR

In previous RQs, we showed that by directly applying LLMs
for APR we can already achieve comparable performance with
previous APR tools. We further explore the possibilities to
boost the ability of LLMs for APR. For this experimental
setup, we choose the best performing model (apart from
Codex, which already outperforms existing APR techniques
without any further extension) — INCODER 6.7B and run
the model longer (2000 samples per bug) combined with
repair templates. We evaluate on all bugs in Defects4] 1.2 by
adjusting our infilling-style repair settings, following AlphaRe-
pair [26] (which demonstrated the best performance among all
settings in our study), to generate patches for every location
which is changed by the reference patch instead of only on
a single change location. This setup is similar to previous
learning-based repair tools [21], [26] and allows us to compare
on the full Defects4J 1.2 dataset. Furthermore, following prior
work [26], we include evaluation on Defects4] 2.0 single line
bugs and QuixBugs-Python.

Table X shows the baseline tools along with our model
setups. INCODER (200) is our default setup from previous
evaluation that generates 200 samples per bug. INCODER
(2000) shows the results when we increase the number of
samples to 2000. INCODER w/ template (2000) contains

the results when combining repair template with the IN-
CODER model. Following the AlphaRepair baseline, we apply
different repair templates by using the original buggy line.
Such templates include: keeping parts of the prefix or suffix,
replacing method calls or parameters, and changing/adding
new boolean conditions or operators to the buggy line. These
repair templates make use of the original buggy line and
provide important starting code for the model.

We observe that if we apply the model longer and generate
more samples, we can drastically improve the number of
correct bugs fixed in all three datasets and achieve very close
result to that obtained by the best baseline. Moreover, we can
obtain further improvements by using simple repair templates
and achieve the highest number of correctly fixed bugs on
all datasets, e.g., fixing 78 bugs on Defects4] 1.2 with 15
unique bug fixes that no other baseline tools have fixed before.
This finding shows that not only can LLMs be effective
when directly used for program repair, we can combine them
with more domain specific techniques such as simple repair
templates to further improve their performance.

VI. THREATS TO VALIDITY

Internal. One internal threat to validity comes from our man-
ual validation of plausible patches to determine semantically
correct patches. To address this, we carefully performed the
analysis and released the correct patches and code used to
perform the experiments for public evaluation [79].

Another internal threat comes from the potential data leak-
age of real developer patched functions being part of the
original training data. To address this, we examine the patches
LLMs generated for Defects4J 1.2 since this is the most widely
studied dataset for APR and we mainly compared with state-
of-the-art APR tools on this dataset. We first check if the bugs
fixed by each LLM contain correct patches different than the
reference developer patches. Out of the 354 individual bug
fixes by all models on Defects4] 1.2, 234 fixes (66%) contain
a patch that is different than the developer patch. We also
found that due to the simplicity of single line patches, majority
of the correct patches generated for single line bugs are the
same as the developer patch. If we exclude single line bugs, the
percentage increases to 77% (196/255). Out of the 109 bugs
that can be fixed by combining all correct patches generated
by all LLMs together (Total row in Table VII), 93 bugs (85%)
are fixed by at least one correct patch that is different than the
original developer patch, e.g., as shown in Figure 5b, removing
LLM fixes that are exactly the same as the developer patches
can still fix 31 bugs that prior tools cannot fix.



Since we only have access to the training data used in
CodeT5, GPT-Neo, GPT-J and GPT-NeoX models, we further
check if the fixed function is within the training datasets when
the correct patch is equivalent to the developer fix for these
models. We found that while 38% (48/128) of bugs fixes
contain only the same fix as the developer patch, only 15%
(20/128) of those patches are also found in the original training
data, showing that the majority of correct bug fixes provided by
these LLMs are not simply from memorizing the training data.
Moreover, our RQ4 shows that improvements can be further
made by combining repair templates with LLMs, which is
orthogonal to the data leakage issue. Additionally, We observe
that LLMs are able to achieve the state-of-the-art results on
QuixBugs dataset which is not part of the training data as
it has low number of stars on GitHub and contains synthetic
bugs and patches that are not part of any larger real-world
projects. Further reducing the data leakage issue would require
retraining the LLMs, which could be extremely costly.

External. We evaluate LLMs on 5 repair datasets across 3
programming languages, making our evaluation one of the
most comprehensive studies in APR. However, our findings
may still not generalize to other datasets or languages.

VII. DISCUSSION AND FUTURE WORK

In this work, we conduct a large-scale study on directly
applying LLMs for APR, one of the most important problems
in Software Engineering (SE). We demonstrate not only by
directly applying LLMs we can already outperform prior APR
techniques studied for over a decade, but also that we can
further boost LLM performance by combining domain-specific
techniques from SE. Building on these findings, we highlight
two key directions for future work:

Improving LLM performance for APR. We plan to con-
tinue improving the performance of LLMs for APR. One
approach is to use additional information, such as project-
specific knowledge (i.e., from buggy project itself following
the plastic surgery hypothesis [80]). For example, one could
fine-tune/prompt the LLMs on the original buggy project to
prime the model to generate code that fits the style/pattern
used in the project. Another approach is to incorporate repair-
specific knowledge by using additional templates as demon-
strated in Section V-D to reduce the amount of code LLM
has to generate and arrive at the correct patch faster. Along
with these potential improvement directions, we also believe
that we can use other new types of LLMs (i.e., dialogue-
based) for APR such as ChatGPT [29]. ChatGPT is fine-tuned
using reinforcement learning algorithm with human feedback
designed for dialogues/conversations. We can leverage the
currently underused testcase result to provide feedback to
ChatGPT in a conversational manner, allowing the model
to correct its previous mistakes and generate more correct
patches [81].

Application of LLMs for other relevant SE tasks. While we
study the performance of LLMs for APR, LLMs can be used
for various other software engineering tasks. One such task is

fuzzing [82], where LLMs can be potentially used to help gen-
erate arbitrary inputs to fuzz test various software systems (in-
cluding libraries, compilers, and interpreters). Compared with
traditional automated fuzzing techniques [83] which require
extensive human efforts for ensuring the syntactic/semantic va-
lidity of input generation/mutation, LLMs offer an alternative
solution by learning from billions of available code snippets
in the wild to generate syntactically and also semantically
valid input programs fully automatically (as demonstrated in
recent work [84]). LLMs can also be used to target more
context dependent tasks such as test [85] or test-oracle [86]
generation. For example, while existing learning-based test-
oracle generation techniques [87]-[89] mainly formulate the
problem as a classification or NMT problem, another natural
solution could be to leverage the LLMs to directly complete
or infill the oracles based on context information (such as
focal method and test prefix/suffix). Similar to APR, mutation
testing [90] or bug seeding in general [89], [91], [92] also
applies systematic modifications to programs under test. As
a result, it is also very natural to directly apply infilling-style
APR techniques (such as AlphaRepair [26]) for such domains.
In addition to these discussed SE tasks above, we believe our
study results and techniques can also motivate, inspire, and
be applied to many other relevant SE tasks involving code
generation/mutation. These potential applications along with
LLMs for APR highlight the promising future of using LLMs
to help with SE in general.

VIII. CONCLUSION

We present an extensive evaluation on LLMs for automated
program repair. We use 9 state-of-the-art LLMs with 5 differ-
ent repair datasets and design different practical repair settings
to compare and contrast the repair effectiveness of different
LLMs. In our evaluation, we shed light on the scaling effect
that increasing model size has on various important factors in
APR such as the number of bugs fixed, the speed of patch
generation, and the compilation rate. Also, we compare the
performance of LLMs against state-of-the-art APR tools and
highlight the unique fixes and advantages of using LLMs
for APR. Furthermore, we evaluated the ability for LLMs
to perform patch ranking and patch correctness checking in
order to prioritize correct patches for faster repair. Lastly,
we demonstrate the possibilities (i.e., increasing the sample
size and combining LLMs with repair templates) to further
boost the performance of LLMs for APR. The results from
our study demonstrate promising future of adopting LLMs
for APR and beyond (e.g., other SE tasks involving program
generation/mutation).
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