
Fuzzing Automatic Differentiation in

Deep-Learning Libraries

Chenyuan Yang

University of Illinois

Urbana-Champaign

cy54@illinois.edu

Yuxing Tu

Huazhong University of

Science and Technology

yxtu@hust.edu.cn

Yinlin Deng

University of Illinois

Urbana-Champaign

yinlind2@illinois.edu

Hanchi Li

University of Science

and Technology of China

slxiaochi@mail.ustc.edu.cn

Jiayi Yao

The Chinese University of

Hong Kong, Shenzhen

jiayiyao@link.cuhk.edu.cn

Lingming Zhang

University of Illinois

Urbana-Champaign

lingming@illinois.edu

Abstract—Deep learning (DL) has attracted wide attention and
has been widely deployed in recent years. As a result, more and
more research efforts have been dedicated to testing DL libraries
and frameworks. However, existing work largely overlooked one
crucial component of any DL system, automatic differentiation
(AD), which is the basis for the recent development of DL.
To this end, we propose ∇Fuzz, the first general and practical
approach specifically targeting the critical AD component in DL
libraries. Our key insight is that each DL library API can be
abstracted into a function processing tensors/vectors, which can
be differentially tested under various execution scenarios (for
computing outputs/gradients with different implementations). We
have implemented ∇Fuzz as a fully automated API-level fuzzer
targeting AD in DL libraries, which utilizes differential testing
on different execution scenarios to test both first-order and high-
order gradients, and also includes automated filtering strategies
to remove false positives caused by numerical instability. We have
performed an extensive study on four of the most popular and
actively-maintained DL libraries, PyTorch, TensorFlow, JAX, and
OneFlow. The result shows that ∇Fuzz substantially outperforms
state-of-the-art fuzzers in terms of both code coverage and bug
detection. To date, ∇Fuzz has detected 173 bugs for the studied
DL libraries, with 144 already confirmed by developers (117 of
which are previously unknown bugs and 107 are related to AD).
Remarkably, ∇Fuzz contributed 58.3% (7/12) of all high-priority
AD bugs for PyTorch and JAX during a two-month period. None
of the confirmed AD bugs were detected by existing fuzzers.

I. INTRODUCTION

Recent years have witnessed the rapid advancement of

deep learning (DL) research and the wide adoption of DL

solutions/technologies in various application domains, e.g.,

natural language processing [1], healthcare [2], scientific dis-

covery [3], and software engineering [4]–[9]. As a result, there

is a growing concern about the correctness and reliability of

such systems. For example, for a safety-critical application

domain such as autonomous driving, a bug in the DL system

can cause serious consequences or even death [10].

As it is critical to ensure the quality of increasingly

influential DL systems, much research attention has been

focused on testing/verifying DL models [11]–[21] or applica-

tion programs [22]–[24]. Recently, testing underlying DL li-

braries/frameworks (e.g., PyTorch/TensorFlow) has also drawn

wide attention, since DL libraries serve as the central infras-

tructure for all DL applications. CRADLE [25] is one of the pi-

oneering work to perform differential testing on multiple back-

ends of Keras [26] using various DL models. AUDEE [27] and

LEMON [28] further apply search-based mutation strategies

on existing models to generate more diverse test inputs. While

these mutation-based techniques heavily rely on seed models,

Muffin [29] directly synthesizes DL models from DL APIs

via a top-down generation approach. Moreover, Muffin can

detect inconsistencies in both the model training and inference

phases across different backends of Keras. Unlike the above

model-level testing techniques, the recent FreeFuzz work [30]

proposes a fully-automated API-level fuzzing technique via

mining API inputs from open source. Similarly, another recent

work, DocTer [31], directly generates inputs for each API

based on DL-specific input constraints extracted from DL API

documentation (assisted with human annotations). Despite

the recent advances in DL library testing, existing techniques

still suffer from a major limitation: The inference phase of

DL models or the direct execution of DL APIs has received

the most attention, while a crucial component of any DL

system - automatic differentiation (AD) [32] - is still under-

studied. Many DL algorithms, notably back-propagation [33],

one of the key algorithms for training feed-forward neural

networks, rely heavily on AD for derivative computation of

arbitrary numerical functions. AD enables the development

of sophisticated DL models and algorithms since, without

AD, people would have to manually/symbolically calculate the

derivatives of billions of parameters for large DL models [34].

To obtain the derivatives automatically, special gradient/Ja-

cobian computation operations in DL libraries need to be

explicitly triggered (e.g., tf.GradientTape.gradient() in

TensorFlow). Notably, bugs in AD may cause DL models to

fail to converge and/or perform poorly in practical deployment,

which is fatal for safety-critical applications. For example,

silent AD computation bugs may cause the output of the

deployed DL models to diverge significantly from the output





def f(x1, x2):

v1 = x1 * x2

v2 = log(v1)

v3 = sin(x1)

v4 = v2 + v3

return v4

(a) Definition (b) Computational graph

Fig. 3: Function f(x1, x2) = log(x1 · x2) + sin(x1)

following: build a DL model, load a dataset, train the DL

model with labeled training data, and test it with evaluation

data. The example TensorFlow program shown in the left side

of Figure 2 constructs a dense neural network, which contains

two Dense layers, with relu and softmax as the activation

functions. Starting from an input layer input, the tensor

output is obtained by invoking the DL APIs sequentially.

The model is then constructed by defining the inputs and

outputs, and compiled with specified optimizer (SGD) and loss

function (MeanAbsoluteError). Next, we train the model

with the high-level API model.fit and make predictions with

model.predict.

Training phase. For model training, DL libraries usually

provide high-level APIs (e.g., model.fit() in TensorFlow)

for ease of use. However, the actual training phase is com-

plicated and composed of three stages: forward pass, loss

computation, and backward pass. Such training steps will be

carried out repeatedly until convergence. Figure 2 depicts an

illustration of one training step for the example program,

where W1 and W2 stand for the weight tensors of Dense layers.

During the forward pass when the output tensor is computed

with input and weight tensors, every executed operation will

be automatically recorded for automatic differentiation (AD).

Please note that additional traced information is omitted in

Figure 2 for simplicity. After loss computation (requiring

labels), the recorded AD context will be used to compute

gradients (Grad1, Grad2) of the loss w.r.t the weight tensors.

Lastly, the optimizer will apply the gradients to update W1 and

W2 by adding ∆W1 and ∆W2 (computed from the gradients).

Inference phase. During the inference phase, DL APIs will

be executed to compute the output tensor as in the forward

pass, except that AD is usually disabled for efficiency.

B. Automatic Differentiation

Automatic differentiation (AD) is one of the core com-

ponents of DL frameworks, which contributes substantially

to the success of DL. AD decomposes a function/model

into a set of elementary operations for which derivatives are

known and leverages chain rule to compose the derivatives of

these operations [39]. It allows us to calculate the derivative

of any function/model without extensive manual effort. AD

usually has two distinct modes, reverse mode (or reverse

accumulation) and forward mode (or forward accumulation).

Reverse Mode. Reverse mode is the most common AD

mode in DL libraries. It evaluates the chain rule from the

output to the input, which is the reverse order of the original

function/model. Reverse mode calculates the derivative in two

different phases: forward phase and backward phase. In the

TABLE I: Reverse mode AD computation trace

Forward Phase Backward Phase

x1 = 1 x̄1 = 1.54
x2 = 2 x̄2 = 0.5

v1 = x1 · x2 = 2 x̄1 = x̄1 + v̄1 ·
∂v1

∂x1
= 0.54 + 0.5 · 2 = 1.54

x̄2 = v̄1 ·
∂v1

∂x2
= 0.5

v2 = log(v1) = 0.69 v̄1 = v̄2 ·
∂v2

∂v1
= 1/v1 = 0.5

v3 = sin(x1) = 0.84 x̄1 = v̄3 ·
∂v3

∂x1
= cos(1) = 0.54

v4 = v2 + v3 = 1.53 v̄2 = v̄4 ·
∂v4

∂v2
= 1

v̄3 = v̄4 ·
∂v4

∂v3
= 1

f = v4 = 1.53 v̄4 = f̄ = ∂f/∂v4 = 1

forward phase, we will obtain the output of the original

function, and evaluate the output value and all the intermediate

variables, whose values are stored in memory. In the backward

phase, derivatives are calculated by leveraging the chain rule

and the intermediate value, which could propagate back the

derivative from the output to the input.

Figure 3 presents an example function f(x1, x2) together

with its computation graph. When (x1, x2) is (1, 2), the trace

of computation of reverse mode AD is shown in Table I. To

simplify the representations, we use v̄ = ∂f
∂v

to represent the

partial derivative of f w.r.t the variant v. First, the function

evaluates the output value (f = 1.53) and stores all the

intermediate values in the forward phase, shown on the left

side of Table I. Because the derivatives of the elementary

operations are known, e.g., the derivative of sin(x1) is cos(x1),
the reverse mode AD can leverage the chain rule and stored

values to propagate back the derivative from f to inputs x1, x2

automatically, shown on the right side of Table I.

It is worth noting that derivatives x̄1 = 1.54 and x̄2 = 0.5
are calculated in just one reverse pass since the output value

of this function is scalar. If the function is more general (e.g.,

f : Rn → R
m), the reverse mode AD needs m reverse pass to

calculate the gradients. As DL usually computes the gradient

of a low dimensional tensor (e.g., scalar loss values) w.r.t a

huge number of parameters in practice, reverse mode is the

main AD used in DL libraries.

Forward Mode. Different from reverse mode, forward mode

AD computes the derivatives simultaneously with the original

function/model outputs, i.e., it evaluates the chain rule from

input to output. Thus, it does not need to store the intermediate

values like reverse mode. Forward mode AD also has two

phases: forward primal phase and forward tangent phase. The

forward primal phase obtains the output of the original func-

tion, while concurrently the forward tangent phase calculates

the gradient by applying the chain rule from input to output.

Back to f shown in Figure 3, whose forward mode com-

putational trace is shown in Table II. The forward mode

AD computes the derivative by applying the chain rule to

each elementary operation along the forward primal phase.

However, it can only compute the gradient of one input in

one pass. In this example, we calculate the partial gradient of

f w.r.t x1. For simplicity, we define v̇ = ∂v
∂x1

as the partial

gradient of v w.r.t to the input x1. Thus, we set ẋ1 = 1, ẋ2 = 0
at the beginning since the gradient of x1 w.r.t itself is 1 and

3



TABLE II: Forward mode AD computation trace

Forward Primal Phase Forward Tangent Phase

x1 = 1 ẋ1 = 1
x2 = 2 ẋ2 = 0

v1 = x1 · x2 = 2 v̇1 = ẋ1 · x2 = 2
v2 = log(v1) = 0.69 v̇2 = v̇1/v1 = 1
v3 = sin(x1) = 0.84 v̇3 = ẋ1 · cos(x1) = 0.54
v4 = v2 + v3 = 1.53 v̇4 = v̇2 + v̇3 = 1.54

f = v4 = 1.53 ḟ = v̇4 = 1.54

x2 does not affect x1. Along the forward tangent phase shown

on the right side of Table II, the final partial gradient ḟ = ∂f
∂x1

is 1.54, the same as computed by reverse mode.

In general, for function f : Rn → R
m, forward mode AD

requires n evaluations to calculate the gradient by setting ẋi =
1 and the rest to zero for each input. Thus, forward mode AD

can be more time and memory efficient than reverse mode

when n ≤ m, and is useful in cases like computing the Hessian

matrix [40] efficiently.

Despite the recent advances in DL library testing [25], [27]–

[31], [41], there is still limited work that can effectively test the

crucial AD component for DL libraries. Therefore, this paper

aims to build the first practical fuzzing technique specifically

targeting AD in DL libraries.

III. PRELIMINARIES

In this section, we will present the preliminaries for differ-

entiation computations, which are essential for understanding

AD implementation in DL libraries and our approach.

A. Mathematics behind Automatic Differentiation

Differentiation is a process of computing the gradient for

a given function at a given point. Especially, the gradient is

defined for scalar-valued functions as below:

Definition 1. Gradient. For a scalar-valued function f :
R

n → R and a point x, its gradient at x is defined as below:

∇f(x) =
[

∂f
∂x1

· · ·
∂f
∂xn

]T

(1)

The gradient can be further generalized to functions that

return non-scalar values, namely the Jacobian matrix [42]:

Definition 2. Jacobian. The Jacobian matrix of a vector-

valued function f : Rn → R
m is defined as an m× n matrix:

J(f) =







∇T f1
...

∇T fm






=







∂f1
∂x1

· · ·
∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · ·
∂fm
∂xn






(2)

where f(x) = (f1(x), f2(x), . . . , fm(x)).

In this paper, for simplicity, we use “gradient” to represent

the Jacobian matrix for the vector-valued function. The gra-

dient function of f is defined as f
′ : Rn → R

m × R
n, where

f
′(x) is the Jacobian matrix of f at the point x.

The gradient f ′(x) ∈ R
m ×R

n can also be considered as a

linear map, which maps the tangent space [43] of the domain

of f at the point x to the tangent space of the codomain of

f at the point f(x). Given this mapping of f
′(x) : R

n →

R
m, we can now define Jacobian-vector product (JVP) and

vector-Jacobian product (VJP), which have been adopted as

the theoretical basis for efficient DL training and implemented

using forward-/reverse-mode AD in DL libraries:

Definition 3. Jacobian-vector product. Given an input point

x ∈ R
n and a tangent vector u ∈ R

n from the tangent space

of f at x, the Jacobian-vector product is defined as below:

JVP(x,u) = f
′(x) · u (3)

JVP computes the directional gradient, with direction u ∈

R
n, for the function f : R

n → R
m at the point x ∈ R

n,

and is implemented with forward mode AD in DL libraries.

Back to the example shown in Figure 3, the (ẋ1, ẋ2) in the

forward mode AD trace (Table II) is the tangent vector u in

the Definition 3. As a result, for the input x ∈ R
n and tangent

vector u ∈ R
n, the forward mode AD can compute JVP in

only one pass by setting ẋ = u. Meanwhile, computing the

full Jacobian matrix requires n passes with forward mode AD.

Definition 4. Vector-Jacobian product. Given an input point

x ∈ R
n and a cotangent vector v ∈ R

m, the vector-Jacobian

product is defined as the below mapping:

VJP(x,v) = v · f
′(x) (4)

With direction v ∈ R
m, VJP computes the adjoint direc-

tional gradient for the function f : Rn → R
m at the point

x ∈ R
n. Similarly, DL libraries implement the reverse mode

AD to compute VJP. f̄ = 1 in the reverse mode AD trace

(Table I) is a special case of the cotangent vector v when the

output is scalar. Generally, for the input x ∈ R
n and cotangent

vector v ∈ R
m the reverse mode AD is capable of calculating

the VJP in just one pass with initialization of f̄ = v. By

contrast, it requires m passes for reverse mode to compute

the full Jacobian matrix.

B. Numerical Differentiation

Numerical differentiation (ND) [44] is another approach to

estimating the derivatives of a function by using the values

of the original function at some sampled points. The most

common method is to use finite difference approximation. For

example, for a scalar-valued function f : Rn → R at the point

x, we can calculate the partial derivative of xi by using ND:

∂f(x)

∂xi

≈
f(x+ ϵei)− f(x− ϵei)

2ϵ
(5)

where ei is i-th unit vector and ϵ > 0 is a small step.

However, ND can be inaccurate due to truncation and

rounding errors [39], especially for the low precision data

type. Besides, the time cost of ND is O(n) for a gradient in

n dimensions, which is the primary barrier to its usage in DL

library since n can be as large as billions in DL models [34].

Therefore, DL libraries do not rely on ND as the main

approach to calculating the gradient. Instead, most DL libraries

leverage ND to cross-check their own implementations of

gradient calculation during developer testing.

4



In this work, we further augment ∇Fuzz oracle with ND.

This is because two AD modes may return the same wrong

gradient, which cannot be detected by comparing reverse and

forward modes (detailed in §IV-B2). To our knowledge, we are

also the first to adopt ND for automated DL library fuzzing.

IV. APPROACH

Figure 4 shows the overview of our ∇Fuzz approach for

testing the AD mechanism of DL libraries. Note that for ease

of presentation, we abstract each DL library API under test

into a function f : Rn → R
m. ∇Fuzz first invokes an off-

the-shelf API-level fuzzer to generate input x ∈ R
n for the

function (§IV-A). Then ∇Fuzz will cross-check its outputs

and gradients at x in different execution scenarios (§IV-B). If f

passes the testing given x (without any inconsistency), ∇Fuzz

continues to test the higher-order gradient of f : ∇Fuzz will

wrap f to its gradient function f
′ : Rn → R

m×R
n and re-run

the test oracle (§IV-B3). If there is any inconsistency (during

first- or high-order gradient computation), ∇Fuzz will filter

out the false positives caused by numerical instability (§IV-C).

Finally, ∇Fuzz returns the candidate bugs. The following sub-

sections would explain each component in detail.

A. API-level Fuzzer

∇Fuzz’s first component is an API-level fuzzer for gener-

ating inputs to invoke each DL API. Our approach is gen-

eral, and can leverage any off-the-shelf API-level DL library

fuzzer [30], [31]. In this work, we leverage FreeFuzz [30] to

create the input for the function/API since it is fully automated

and state-of-the-art. DL library APIs are often exposed in

Python, a dynamically typed language, making it even hard to

determine the input types for each DL API. To overcome this

issue, FreeFuzz automatically traces API inputs when execut-

ing code mined from various sources, including DL models,

developer tests, and code snippets from DL documentation.

FreeFuzz further includes mutation strategies to generate more

inputs based on the traced seed API inputs.

DL library APIs may have configuration arguments (in addi-

tion to input tensors). For example, torch.sum(input,dim)

returns the sum of each row of the input tensor in the

dimension dim, which is a configuration argument. FreeFuzz

can generate inputs for both input tensors and configuration

arguments. For each successful API invocation generated

by FreeFuzz, ∇Fuzz would automatically create a wrapper

function to transform the API invocation into a function

mapping from the input to the output tensor(s). Moreover, DL

library APIs could take several multi-dimensional tensors as

input/output, such as tf.add(x,y), which adds two multi-

dimensional tensors x and y element-wise. While ∇Fuzz is

directly applied to such APIs (with tensor input/output) in our

implementation, we abstract each API into f : R
n → R

m

for the ease of presentation. This abstraction can be viewed

as flattening multi-dimensional tensors into vectors (and con-

catenating them if there are multiple input/output tensors).

Algorithm 1: ∇Fuzz oracle algorithm

1 Function ∇Fuzz-Oracle(fn, input, order):
Input : The function under test fn, the function input

input, and the gradient order to be tested order
Output: The oracle outcome

2 curOrder ← 1
3 while curOrder ≤ order do
4 outputs ← DirectInv (fn, input, REP=10)
5 if not IsOutputConsistent (outputs) then
6 return RANDOM

7 revOutput, revGrad ← RevInv (fn, input)
8 fwdOutput, fwdGrad ← FwdInv (fn, input)
9 if not IsOutputConsistent (outputs,

revOutput, fwdOutput) then
10 return OUTPUT INCONSISTENT

11 ndGrad ← NDGrad (fn, input)
12 if not IsGradientConsistent (revGrad,

fwdGrad, ndGrad) then
13 return GRADIENT INCONSISTENT

14 fn ← Grad (fn)
15 curOrder ← curOrder + 1

16 return PASS

B. Test Oracles

As shown in Algorithm 1, the input to the ∇Fuzz oracle

algorithm is the function under test, an input for the function,

and the highest order of gradient to be tested. We start with

the first-order gradient test (Line 2). ∇Fuzz first checks the

determinism of the function by directly invoking it with the

given input for multiple (by default 10) times (Line 4). If

the outputs are inconsistent, ∇Fuzz will return RANDOM

and terminate the fuzzing process for this function (Line 5-6).

Otherwise, it continues to invoke this function with reverse-

and forward-mode AD (Line 7-8). Then it compares outputs

returned by direct invocation and invocations with AD. If

any inconsistency is detected (Line 9), ∇Fuzz will skip the

gradient check and return this output inconsistency (Line 10).

Otherwise, ∇Fuzz proceeds to check the correctness of gradi-

ent computation by comparing gradients calculated by reverse

mode AD, forward mode AD, and ND (Line 12). It will return

the inconsistency if these gradients are different (Line 13). If

the function passes all the above checks and we want to keep

testing the higher-order gradient computation (Line 3), ∇Fuzz

will transform the function to its gradient function (Line 14).

The main loop will continue to test this new function until the

termination criterion is met, e.g., detecting inconsistency or

passing the test for the highest-order gradient computation. We

next present more details of our output and gradient checks.

1) Output Check: When calculating the gradient in re-

verse or forward mode AD, some additional operations are

always incurred, such as tracing or shape checking. Thus,

the invocation with AD may have different output from the

direct invocation. However, the outputs in different execution

scenarios should not differ, which means any inconsistency

can potentially be a bug. Therefore, ∇Fuzz would compare the

output of the direction invocation, as well as the invocations

5







setting to generate (via mutation) 1000 inputs for each API.

Because FreeFuzz is only implemented for PyTorch and Ten-

sorFlow, we further implement a FreeFuzz-like fuzzing engine

for JAX and OneFlow by ourselves. Following FreeFuzz,

we collect API inputs from open source and implement the

fuzzing strategies. For the input collection of JAX, we only

trace the developer tests (83 test files) since they already cover

80.2% JAX APIs (634/791). For OneFlow, we collect the input

from all three sources: documentation, 519 developer tests, and

51 DL models, covering 73.1% (299/409) OneFlow APIs.

2) Execution Scenarios: Table IV shows the example dif-

ferentiation APIs used in our tool for each execution scenario.

Note that not all the AD-related APIs we leverage are included

in the table due to the space limit. The “N/A” in the table

means the DL library does support or provide the API for that

scenario. Only OneFlow has not implemented forward mode

AD, we thus skip the forward mode AD testing for OneFlow.

For the DL libraries with APIs that could compare ND

and AD gradients (shown in Column “ND”), ∇Fuzz directly

leverages such APIs. It turns out that only OneFlow does not

have such an API, so we implement ND for it by ourselves.

3) Filter: For the neighbor sampling of differentiability

check, we set the sampling number N as 5, and the distance

δ as 10−4 by default. We also explore their impact in §VI-C.

B. Metrics

Number of Detected Bugs. Following prior work on testing

or fuzzing the DL libraries [25], [28]–[31], [41], [53], we

report the number of bugs detected by ∇Fuzz and compared

baselines.

False Positive Rate. After filtering the inconsistent cases

caused by instability, we get the bug candidates. However,

not all candidates are real bugs. False positive rate (FPR)

computes the proportion of the candidates that are false alarms,

and is widely used in prior work on testing/fuzzing [53]–

[56]. Following Muffin [29], for every inconsistency reported

by ∇Fuzz, three authors independently inspected it to decide

whether that is a bug or not and then discussed it together to

reach a consensus. Moreover, different from Muffin, we further

used developer feedback to calibrate our inspection. That said,

any inconsistency will be reported as FP if the authors reach

the consensus that this is not a bug or the developers rejected

our report.

Code Coverage. Code coverage is one of the main criteria

in software testing, and has also been recently adopted for

testing DL libraries/compilers [29], [30], [57]. While state-of-

the-art FreeFuzz [30] and Muffin [29] only adopted C++ or

Python coverage, we adopt both the code coverage criteria for

more thorough evaluation. Following FreeFuzz and Muffin, we

adopt line coverage, and trace the line coverage for C++ and

Python via GCOV [58] and Coverage.py [59], respectively.

Execution Time. Since ∇Fuzz leverages additional oracles for

detecting AD bugs, it would take more time than existing API-

level fuzzers, such as FreeFuzz. Thus, we take the execution

time into account following prior work [28], [30], [57].

VI. RESULT ANALYSIS

A. RQ1: Detected Bugs and Coverage

1) Detected Bugs: Table V presents the summary of real-

world bugs detected by ∇Fuzz for all studied libraries. Column

“Total” shows the total number of detected bugs. Column

“Confirmed (Fixed)” presents the number of bugs confirmed

and fixed by developers. We further categorize the confirmed

bugs into previously unknown and known. Plus, Column

“Rejected” shows the number of bugs rejected by developers.

Lastly, Column “Pending” is the number of bugs not yet

triaged by the developers.

We can observe that ∇Fuzz is capable of detecting 173 bugs

in total for the four studied DL libraries, with 144 confirmed

by developers and 38 already fixed, emphasizing the effective-

ness of ∇Fuzz. Notably, 117 are confirmed by developers as

previously unknown bugs and only 6 are rejected. Out of those

144 confirmed bugs, state-of-the-art FreeFuzz and Muffin can

only detect 21 non-AD bugs (all by FreeFuzz and 0 by Muffin).

For these bugs detected by FreeFuzz, 15 of them are unknown

bugs and 6 are previously known. Of those unknown bugs, 10

are from JAX and OneFlow, the libraries not supported by the

original FreeFuzz, and 5 are from PyTorch and TensorFlow.

6 bugs were rejected for the following reasons: 3 resulted

from precision loss by using low-precision data types, 2 were

intentionally implemented for numerical stability, and 1 arose

from undefined behavior at a non-differentiable point.

Notably, 6 of our detected bugs for PyTorch are labeled with

“high-priority” and 1 bug for JAX is labeled as “P0(urgent)”

(all these 7 bugs are related to AD) since they are critical

and should be addressed urgently. The other two libraries

(TensorFlow and OneFlow) do not have such labels so they are

not discussed here. Figure 9 shows a wrong gradient bug we

detected in rrelu [60] which was commented by PyTorch

developers as a massive bug and labeled as “high-priority”

and fixed immediately. For PyTorch, there are 78 high-priority

bugs in total for its entire issue-tracking system during the two

months of our issue reporting (May and June 2022), while 11

of them are related to AD. That said, ∇Fuzz contributed 7.7%

of the high-priority bugs and 55.5% for the high-priority AD

bugs, showing the effectiveness of our approach. The issue-

tracking system of JAX has 22 “urgent” bugs in all-time while

only 1 of them is related to AD, which is reported by us.

def fn(input): return rrelu(input, -2.9, -2.7, True)

input = torch.tensor([0.1250, 0.4313])

RevGrad(fn, input) # tensor([[0.,0.],[0.,0.])

NDGrad(fn, input) # tensor([[1.,1.],[1.,1.])

Fig. 9: High priority crash bug in PyTorch

Given multiple confirmed/fixed bugs have already been

discussed in §IV, here we will discuss an example re-

jected bug. Figure 10 shows an instance of JAX API

jax.numpy.sinc(x) [61], which computes sin(πx)/(πx).
When the input x has the lowest precision floating datatype

bfloat16 [62], this API will have different gradients com-

puted in forward mode and reverse mode AD. We reported

this inconsistency to JAX developer, however, it was rejected:

8





TABLE VIII: Scenario distribution of confirmed bugs

Direct
AD

ND

Invocation All Rev-Only Fwd-Only

PyTorch 11 64 33 9 2
TensorFlow 3 18 5 4 2
JAX 3 20 3 1 0
OneFlow 16 5 5 N/A N/A

Total 33 107 46 14 4

TABLE IX: Symptoms of confirmed bugs

Output Gradient Total 1st-order 2nd-order

PyTorch 31 46 44 2
TensorFlow 4 19 17 2
JAX 14 9 8 1
OneFlow 16 5 2 3

Total 65 79 71 8

are located in, such as direct invocation, AD, and ND. Among

the bugs in AD, Column “All” displays the total number of

bugs located in AD, while Column “Rev-Only”/“Fwd-Only”

presents the number of bugs only appearing in reverse/forward

mode respectively. That said, 47 (107-46-14) bugs are in

both reverse and forward AD modes. From this table, we

can conclude that most of the bugs detected by ∇Fuzz

are related to our main target AD, showing the strength of

∇Fuzz in fuzzing AD for DL libraries. One interesting fact

is that we detect more bugs in direct invocation than AD in

OneFlow. This may be because OneFlow was not tested by the

original FreeFuzz work and only supports reverse-mode AD.

Furthermore, we detect more reverse mode unique bugs than

forward mode since reverse mode is more widely implemented

in DL libraries. As mentioned in §V-A2, we directly leverage

the ND computation/comparison APIs in PyTorch, TensorFlow

and JAX. It turns out we can even detect 4 bugs in such APIs.

We also categorize all the confirmed bugs by how they were

detected in Table IX, e.g., the bugs are found by inconsistent

outputs (Column “Output”) or gradients (Column “Gradient

Total”). We further split the bugs detected by the gradient into

checks for the first-order gradients (Column “1st-order”) and

second-order gradients (Column “2nd-order”). We can observe

that more than half bugs are detected by inconsistent gradients,

showing the importance of gradient oracles. Plus, most of the

gradient-related bugs are first-order. This is because the first-

and second-order gradient computations often share part of the

implementation, and any bug in the former will prevent ∇Fuzz

from testing the latter. Notably, ∇Fuzz can still detect 8 bugs

using the second-order gradient check, showing the generality

of our approach. More interestingly, 65 bugs are revealed by

discrepant outputs, indicating that the AD mechanism could

even affect normal DL API forward computation!

2) Impact on Code Coverage: To study the impact of

execution scenarios on code coverage, we have two ∇Fuzz

variants: ∇Fuzz-Rev (disabling reverse mode AD) and ∇Fuzz-

Fwd (disabling forward mode AD). We skip the coverage

analysis of ND since it is typically implemented based on the

basic direct API invocations and can hardly cover new code.

Figure 11 also presents the research findings for the studied

variants with various amounts of mutations for each API. We

can observe that the reverse mode AD occupies a larger portion

of the DL library implementation than the forward mode

because ∇Fuzz-Fwd outperforms ∇Fuzz-Rev in terms of code

coverage. This complies with the truth that reverse mode AD

is the main technique used in DL systems. More importantly,

we can also observe that the code coverage of both reverse and

forward mode AD is not negligible, indicating the necessity

of considering both of them for DL library fuzzing.

C. RQ3: FPR and Effectiveness of the Filtering Strategies

Table X shows the results of the FPR, which is categorized

based on the checks. Column “Output”/“Gradient” shows the

FPR of output/gradient check respectively. Column “Total” is

the overall FPR of our technique. Under Column “Gradient”,

Column “All” is the FPR when both filtering strategies are

used, and Column “N/A” is the FPR without any strategy.

Column “Diff”/“Precision” presents the FPR with only the dif-

ferentiability/precision strategy, respectively. From the table,

we can observe that the overall FPR of ∇Fuzz is only around

20%, implying the efficacy of ∇Fuzz. Notably, our filtering

strategies do not remove any true bug mistakenly, as confirmed

by our manual check for all reported inconsistencies. Besides,

the FPR of the gradient oracle with filtering (22.4%) is much

lower than without it (66.7%), showing the effectiveness of

our filtering strategies. Also, we can observe that both filtering

strategies are effective in reducing FPR. More precisely, the

differentiability strategy is more helpful than the precision

strategy, especially in OneFlow, where the latter cannot help

reduce any false positives. Moreover, the FPR of the output

oracle is lower than the gradient oracle (even after filtering).

The main reason is that API outputs should not be affected

by different AD modes, while the computed gradients can be

slightly different across reverse-/forward-mode AD and ND

due to different underlying implementations.

We further evaluate the impact of hyper-parameters, sam-

pling number N (default 5) and distance δ (default 10−4).

The study is conducted on our default subjects, PyTorch and

TensorFlow, due to the space limit. For the impact of sampling

number N , we run our experiments with different N values of

1, 2, 5, 10 as shown in Table XI. The choice of N contributes

little to the FPR of gradient oracle since all of them are close.

Plus, the FPR decreases as N increases, as more neighbors to

compare implies more false positives will be filtered. However,

the time cost will also increase as N increases (e.g. the time

cost of N = 10 is about 1.5X higher than that of N = 5). Thus,

N = 5 is a trade-off between the FPR and the time cost.

As for the impact of distance δ, we run with different δ
values of 10−1, 10−2, 10−3, 10−4, 10−5. The result is shown

in Table XII. First, the FPR decreases as δ increases. This is

because the neighbor with a farther distance is more likely to

have a different gradient, causing some false positives to be

filtered. However, it may also exclude the real bugs since the

large distance may cause the gradient to change dramatically

even at differentiable points. For example, in PyTorch, δ =

10−3 could filter out 2 true positives. We choose δ = 10−4 as

our default setting since it does not filter out any true positives.

10



TABLE X: False positive rate (FPR)

Output
Gradient

Total

All Diff Precision N/A

PyTorch 19.3% 21.2% 25.5% 57.3% 61.9% 20.7%
TensorFlow 8.3% 21.1% 34.8% 46.4% 53.1% 16.1%
JAX 11.1% 21.0% 58.1% 68.6% 78.2% 17.3%
OneFlow 12.5% 25.0% 25.0% 64.0% 64.0% 20.0%

Total 15.0% 22.4% 37.7% 59.8% 66.7% 19.3%

TABLE XI: FPR of gradient oracle w.r.t N

Sampling Number N 1 2 5 10

PyTorch 23.6% 22.6% 21.2% 21.2%
TensorFlow 21.1% 21.1% 21.1% 21.1%

TABLE XII: FPR of gradient oracle w.r.t δ

Sampling Distance δ 10−1 10−2 10−3 10−4 10−5

PyTorch 17.2% 19.3% 20.4% 21.2% 22.9%
TensorFlow 7.1% 18.8% 18.8% 21.1% 21.1%

D. Threats to Validity

The main threat to internal validity lies in the implemen-

tation of ∇Fuzz. The authors have thoroughly tested and

reviewed the code of ∇Fuzz to lessen the threat. The threats

to external validity mainly lie in the evaluation benchmarks

used. We evaluated ∇Fuzz on four of the most widely-used

and actively-maintained DL libraries to confirm the generality

of our approach. Moreover, we adopt detected bugs, code

coverage, false positive analysis, and execution time to reduce

the threats to construct validity for the metrics used.

VII. RELATED WORK

CRADLE [25] is a pioneering work on DL library fuzzing,

which leverages differential testing to detect bugs by running

existing DL models on different low-level DL libraries of

Keras [26]. AUDEE [27] and LEMON [28] further augment

CRADLE by applying search-based mutation strategies on ex-

isting DL models to cover more library code. While LEMON

adopted advanced mutation rules (e.g., layer addition), it still

only covers a small set of APIs [30] due to its strict mutation

rules, e.g., an API cannot be added/removed in the model

unless its input and output tensor shapes are identical. More

importantly, these techniques focus on the inference phase of

DL models, and thus cannot detect any AD bug. To mitigate

this, the recent Muffin work [29] is proposed to detect bugs in

both inference and training phases by generating DL models

via a top-down approach. While Muffin can potentially cover

reverse-mode AD, it can only cover a small number of APIs

in specific libraries, and cannot detect any confirmed AD

bug (please see §I for detailed discussion). More recently,

NNSmith [64] leverages lightweight formal specifications to

model each operator, and generates diverse and valid models

via symbolic constraint solving. While NNSmith has been

demonstrated to be state-of-the-art model-level DL library

fuzzer, it still only targets the inference phase, while our

work is orthogonal and can be applied to further augment

NNSmith.

Besides leveraging DL models for testing DL libraries,

researchers have also investigated directly fuzzing DL library

APIs. Meanwhile, DL library APIs are often exposed in

Python, a dynamically typed language, making it hard even

to determine the input types for DL APIs. To overcome this

issue, Predoo [65] requires manually setting up API arguments

for DL library fuzzing, and thus was only evaluated on 7

TensorFlow APIs (due to the manual efforts). More recently,

DocTer [31] synthesizes rules to extract API input constraints

from DL library documentations, and then generates API in-

puts based on the constraints. However, it still requires manual

efforts for annotating 30% of API parameters. Different from

above work, FreeFuzz [30] is a fully-automated technique for

DL library API fuzzing. More specifically, FreeFuzz automat-

ically tracks API inputs when running code mined from the

open-source; additional mutations are performed to generate

more inputs based on tracked seed API inputs. Another line

of recent work designs other test oracles for DL libraries, e.g.,

DeepREL [53] automatically infers relational APIs (e.g., the

APIs that should return the same values/statuses when given

the same inputs) as the oracle to detect inconsistency bugs

for DL libraries, while EAGLE [41] uses equivalent graphs

to differentially test DL APIs. While effective, none of the

existing API-level techniques targeted the crucial AD engines

in DL libraries.

Different from the above model- and API-level fuzzers

which struggle to cover valid API sequences for a large

number of APIs (due to complicated input/shape constraints),

the very recent LLMFuzz work [66] proposes to directly apply

modern Large Language Models (LLMs) [67] to generate

diverse DL API sequences. The insight is that LLMs can im-

plicitly learn intricate DL API constraints from DL programs

in their massive training corpora. LLMFuzz demonstrates,

for the first time, that modern LLMs (e.g., Codex [67]) can

be directly leveraged for end-to-end fuzzing of real-world

systems. ∇Fuzz is also orthogonal to LLMFuzz and can be

further applied to enhance its oracle support.

VIII. CONCLUSION

∇Fuzz is the first approach specifically targeting the AD

engine in DL libraries, which is a crucial component of any

DL system. It leverages different execution scenarios as test

oracles to test first- and high-order gradients and incorporates

an automated filter to reduce the false positives caused by

numerical instability. The evaluation of ∇Fuzz on PyTorch,

TensorFlow, JAX and OneFlow shows that ∇Fuzz can detect

173 bugs in total, with 144 confirmed by developers (117 of

which are previously unknown) and 38 already fixed. Notably,

∇Fuzz contributed 58.3% (7/12) of all high-priority AD bugs

for PyTorch and JAX during a two-month period.

Data Availability: Our code and data are available at [68].

ACKNOWLEDGMENTS

This work was partially supported by NSF grants CCF-

2131943, and CCF-2141474. We also acknowledge support

from Google and Meta.

11



REFERENCES

[1] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in
deep learning based natural language processing,” ieee Computational

intelligenCe magazine, vol. 13, no. 3, pp. 55–75, 2018.

[2] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo,
K. Chou, C. Cui, G. Corrado, S. Thrun, and J. Dean, “A guide to deep
learning in healthcare,” Nature medicine, vol. 25, no. 1, pp. 24–29, 2019.

[3] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Žı́dek, A. Potapenko, A. Bridgland,
C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-
Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman,
E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer,
S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu,
P. Kohli, and D. Hassabis, “Highly accurate protein structure prediction
with AlphaFold,” Nature, vol. 596, no. 7873, pp. 583–589, 2021.

[4] A. Goffi, A. Gorla, M. D. Ernst, and M. Pezzè, “Automatic generation of
oracles for exceptional behaviors,” in Proceedings of the 25th interna-

tional symposium on software testing and analysis, 2016, pp. 213–224.

[5] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in 2018 IEEE/ACM

40th International Conference on Software Engineering (ICSE). IEEE,
2018, pp. 933–944.

[6] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: Integrating multiple fault
diagnosis dimensions for deep fault localization,” in Proceedings of the

28th ACM SIGSOFT International Symposium on Software Testing and

Analysis, 2019, pp. 169–180.

[7] Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: Context-based code trans-
formation learning for automated program repair,” in Proceedings of

the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 602–614.

[8] C. S. Xia, Y. Wei, and L. Zhang, “Automated program repair in the era
of large pre-trained language models,” in ICSE, 2023, to appear.

[9] C. S. Xia and L. Zhang, “Less training, more repairing please: Revisiting
automated program repair via zero-shot learning,” in FSE, 2022.

[10] Garcia, Joshua and Feng, Yang and Shen, Junjie and Almanee, Sumaya
and Xia, Yuan and Chen, and Qi Alfred, “A comprehensive study
of autonomous vehicle bugs,” in Proceedings of the ACM/IEEE 42nd

International Conference on Software Engineering, 2020, pp. 385–396.

[11] D. Shriver, S. Elbaum, and M. Dwyer, “Artifact: reducing dnn properties
to enable falsification with adversarial attacks,” in 2021 IEEE/ACM

43rd International Conference on Software Engineering: Companion

Proceedings (ICSE-Companion). IEEE, 2021, pp. 162–163.

[12] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning
in computer vision: A survey,” Ieee Access, vol. 6, pp. 14 410–14 430,
2018.

[13] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras,
I. Goodfellow, A. Madry, and A. Kurakin, “On evaluating adversarial
robustness,” arXiv preprint arXiv:1902.06705, 2019.

[14] D. Gopinath, M. Zhang, K. Wang, I. B. Kadron, C. Pasareanu, and
S. Khurshid, “Symbolic execution for importance analysis and adver-
sarial generation in neural networks,” in 2019 IEEE 30th International

Symposium on Software Reliability Engineering (ISSRE). IEEE, 2019,
pp. 313–322.

[15] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint

arXiv:1706.06083, 2017.

[16] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2574–2582.

[17] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
2016 IEEE European symposium on security and privacy (EuroS&P).
IEEE, 2016, pp. 372–387.

[18] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in proceedings of the 26th Symposium

on Operating Systems Principles, 2017, pp. 1–18.

[19] M. Yan, J. Chen, X. Zhang, L. Tan, G. Wang, and Z. Wang, “Exposing
numerical bugs in deep learning via gradient back-propagation,” in
Proceedings of the 29th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering, 2021, pp. 627–638.

[20] H. Zhang, Z. Fu, G. Li, L. Ma, Z. Zhao, H. Yang, Y. Sun, Y. Liu,
and Z. Jin, “Towards robustness of deep program processing mod-
els—detection, estimation, and enhancement,” ACM Transactions on

Software Engineering and Methodology (TOSEM), vol. 31, no. 3, pp.
1–40, 2022.

[21] Z. Yang, J. Shi, J. He, and D. Lo, “Natural attack for pre-trained
models of code,” in Proceedings of the 44th International Conference

on Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2022, p. 1482–1493. [Online]. Available:
https://doi.org/10.1145/3510003.3510146

[22] J. Cao, B. Chen, C. Sun, L. Hu, and X. Peng, “Characterizing perfor-
mance bugs in deep learning systems,” arXiv preprint arXiv:2112.01771,
2021.

[23] Y. Zhang, L. Ren, L. Chen, Y. Xiong, S.-C. Cheung, and T. Xie, “De-
tecting numerical bugs in neural network architectures,” in Proceedings

of the 28th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering,
2020, pp. 826–837.

[24] S. Lagouvardos, J. Dolby, N. Grech, A. Antoniadis, and Y. Smaragdakis,
“Static analysis of shape in tensorflow programs,” in 34th European

Conference on Object-Oriented Programming (ECOOP 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[25] H. V. Pham, T. Lutellier, W. Qi, and L. Tan, “CRADLE: Cross-Backend
Validation to Detect and Localize Bugs in Deep Learning Libraries,” in
2019 IEEE/ACM 41st International Conference on Software Engineering

(ICSE), 2019, pp. 1027–1038.

[26] “Keras,” https://keras.io, 2015.

[27] Q. Guo, X. Xie, Y. Li, X. Zhang, Y. Liu, X. Li, and C. Shen, “Audee: Au-
tomated testing for deep learning frameworks,” in 2020 35th IEEE/ACM

International Conference on Automated Software Engineering (ASE).
IEEE, 2020, pp. 486–498.

[28] Z. Wang, M. Yan, J. Chen, S. Liu, and D. Zhang, “Deep learning
library testing via effective model generation,” in Proceedings of the

28th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, 2020, pp.
788–799.

[29] J. Gu, X. Luo, Y. Zhou, and X. Wang, “Muffin: Testing
deep learning libraries via neural architecture fuzzing,” in
2022 IEEE/ACM 44th International Conference on Software

Engineering (ICSE). Los Alamitos, CA, USA: IEEE Computer
Society, may 2022, pp. 1418–1430. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1145/3510003.3510092

[30] A. Wei, Y. Deng, C. Yang, and L. Zhang, “Free lunch for testing:
Fuzzing deep-learning libraries from open source,” in 2022 IEEE/ACM

44th International Conference on Software Engineering (ICSE), 2022,
pp. 995–1007.

[31] D. Xie, Y. Li, M. Kim, H. V. Pham, L. Tan, X. Zhang, and M. W. God-
frey, “Docter: Documentation-guided fuzzing for testing deep learning
api functions,” in Proceedings of the 31st ACM SIGSOFT International

Symposium on Software Testing and Analysis, 2022, to appear.

[32] B. van Merrienboer, O. Breuleux, A. Bergeron, and P. Lamblin, “Au-
tomatic differentiation in ml: Where we are and where we should be
going,” in NeurIPS, 2018.

[33] Wikipedia contributors, “Backpropagation — Wikipedia, the free ency-
clopedia,” https://en.wikipedia.org/w/index.php?title=Backpropagation&
oldid=1104872812, 2022.

[34] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan,
M. Diab, X. Li, X. V. Lin et al., “Opt: Open pre-trained transformer
language models,” arXiv preprint arXiv:2205.01068, 2022.

[35] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang, “Dos and ddos in named
data networking,” in 2013 22nd International Conference on Computer

Communication and Networks (ICCCN), 2013, pp. 1–7.

[36] “Definition of Xlogy from Pytorch official documentation,” https://
pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html, 2022.

[37] “Keras 2.3.0 release,” https://github.com/keras-team/keras/releases/tag/2.
3.0, 2019.

[38] “FreeFuzz Repository,” https://github.com/ise-uiuc/FreeFuzz, 2022.

[39] A. G. Baydin, B. A. Pearlmutter, A. Radul, and J. M. Siskind, “Au-
tomatic differentiation in machine learning: a survey,” J. Mach. Learn.

Res., vol. 18, pp. 153:1–153:43, 2017.

[40] Wikipedia contributors, “Hessian matrix — Wikipedia, the free ency-
clopedia,” https://en.wikipedia.org/w/index.php?title=Hessian matrix&
oldid=1107031412, 2022.

12



[41] J. Wang, T. Lutellier, S. Qian, H. V. Pham, and L. Tan, “Eagle: Creating
equivalent graphs to test deep learning libraries,” 2022.

[42] Wikipedia contributors, “Jacobian matrix and determinant — Wikipedia,
the free encyclopedia,” https://en.wikipedia.org/w/index.php?title=
Jacobian matrix and determinant&oldid=1104898576, 2022.

[43] Wikipedia contributors , “Tangent space — Wikipedia, the free en-
cyclopedia,” https://en.wikipedia.org/w/index.php?title=Tangent space&
oldid=1091055882, 2022.

[44] R. L. Burden, J. D. Faires, and A. M. Burden, Numerical analysis.
Cengage learning, 2015.

[45] “Definition of Dynamic index in dim from JAX official doc-
umentation,” https://jax.readthedocs.io/en/latest/ autosummary/jax.lax.
dynamic index in dim.html, 2022.

[46] “Definition of Trace from Pytorch official documentation,” https://
pytorch.org/docs/stable/generated/torch.trace.html, 2022.

[47] “Definition of Hardshrink from Pytorch official documentation,” https:
//pytorch.org/docs/stable/generated/torch.nn.Hardshrink.html, 2022.

[48] “Definition of Pow from JAX official documentation,” https://jax.
readthedocs.io/en/latest/ autosummary/jax.lax.pow.html, 2022.

[49] Wikipedia contributors, “Differentiable function — Wikipedia,
the free encyclopedia,” https://en.wikipedia.org/w/index.php?title=
Differentiable function&oldid=1101867284, 2022.

[50] “Definition of Sum from Pytorch official documentation,” https://
pytorch.org/docs/stable/generated/torch.sum.html, 2022.

[51] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclau-
rin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and
Q. Zhang, “JAX: composable transformations of Python+NumPy pro-
grams,” http://github.com/google/jax, 2018.

[52] J. Yuan, X. Li, C. Cheng, J. Liu, R. Guo, S. Cai, C. Yao, F. Yang, X. Yi,
C. Wu, H. Zhang, and J. Zhao, “Oneflow: Redesign the distributed deep
learning framework from scratch,” 2021.

[53] Y. Deng, C. Yang, A. Wei, and L. Zhang, “Fuzzing deep-learning
libraries via automated relational api inference,” in 30th ACM Joint

European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE), 2022.
[54] T. Su, Y. Yan, J. Wang, J. Sun, Y. Xiong, G. Pu, K. Wang, and

Z. Su, “Fully automated functional fuzzing of android apps for detecting
non-crashing logic bugs,” Proceedings of the ACM on Programming

Languages, vol. 5, no. OOPSLA, pp. 1–31, 2021.
[55] W. You, X. Wang, S. Ma, J. Huang, X. Zhang, X. Wang, and B. Liang,

“Profuzzer: On-the-fly input type probing for better zero-day vulnerabil-

ity discovery,” in 2019 IEEE symposium on security and privacy (SP).
IEEE, 2019, pp. 769–786.

[56] A. F. Donaldson, H. Evrard, A. Lascu, and P. Thomson, “Automated
testing of graphics shader compilers,” Proceedings of the ACM on

Programming Languages, vol. 1, no. OOPSLA, pp. 1–29, 2017.

[57] J. Liu, Y. Wei, S. Yang, Y. Deng, and L. Zhang, “Coverage-guided
tensor compiler fuzzing with joint ir-pass mutation,” Proc. ACM

Program. Lang., vol. 6, no. OOPSLA1, apr 2022. [Online]. Available:
https://doi.org/10.1145/3527317

[58] “GCOV,” https://gcc.gnu.org/onlinedocs/gcc/Gcov.html, 2022.

[59] “Coverage.py,” https://github.com/nedbat/coveragepy, 2022.

[60] “Definition of RReLU from Pytorch official documentation,” https:
//pytorch.org/docs/stable/generated/torch.nn.RReLU.html, 2022.

[61] “Definition of Sinc from JAX official documentation,” https://jax.
readthedocs.io/en/latest/ autosummary/jax.numpy.sinc.html, 2022.

[62] Wikipedia contributors, “Bfloat16 floating-point format — Wikipedia,
the free encyclopedia,” https://en.wikipedia.org/w/index.php?title=
Bfloat16 floating-point format&oldid=1041556217, 2021.

[63] “Autograd from Pytorch official material,” https://github.com/pytorch/
pytorch/blob/master/torch/csrc/autograd/README.md, 2022.

[64] J. Liu, J. Lin, F. Ruffy, C. Tan, J. Li, A. Panda, and L. Zhang,
“Nnsmith: Generating diverse and valid test cases for deep learning
compilers,” in Proceedings of the 28th ACM International Conference

on Architectural Support for Programming Languages and Operating

Systems, Volume 2, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 530–543. [Online].
Available: https://doi.org/10.1145/3575693.3575707

[65] X. Zhang, N. Sun, C. Fang, J. Liu, J. Liu, D. Chai, J. Wang, and Z. Chen,
“Predoo: precision testing of deep learning operators,” in Proceedings of

the 30th ACM SIGSOFT International Symposium on Software Testing

and Analysis, 2021, pp. 400–412.

[66] Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Fuzzing deep-
learning libraries via large language models,” in Proceedings of the

32nd ACM SIGSOFT International Symposium on Software Testing and

Analysis, ser. ISSTA 2023, 2023.

[67] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[68] “∇Fuzz Repository,” https://github.com/ise-uiuc/NablaFuzz, 2022.

13


	Introduction
	Background
	Basics about DL Libraries
	Automatic Differentiation

	Preliminaries
	Mathematics behind Automatic Differentiation
	Numerical Differentiation

	Approach
	API-level Fuzzer
	Test Oracles
	Output Check
	Gradient Check
	High-order Gradients

	Filtering Strategies
	Differentiability
	Precision Conversion


	Experimental Setup
	Implementation
	Input Generator
	Execution Scenarios
	Filter

	Metrics

	Result Analysis
	RQ1: Detected Bugs and Coverage
	Detected Bugs
	Coverage

	RQ2: Different Components of Test Oracles
	Impact on Bug Detection
	Impact on Code Coverage

	RQ3: FPR and Effectiveness of the Filtering Strategies
	Threats to Validity

	Related Work
	Conclusion
	References

