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Abstract—Deep learning (DL) has attracted wide attention and
has been widely deployed in recent years. As a result, more and
more research efforts have been dedicated to testing DL libraries
and frameworks. However, existing work largely overlooked one
crucial component of any DL system, automatic differentiation
(AD), which is the basis for the recent development of DL.
To this end, we propose VFuzz, the first general and practical
approach specifically targeting the critical AD component in DL
libraries. Our key insight is that each DL library API can be
abstracted into a function processing tensors/vectors, which can
be differentially tested under various execution scenarios (for
computing outputs/gradients with different implementations). We
have implemented VFuzz as a fully automated API-level fuzzer
targeting AD in DL libraries, which utilizes differential testing
on different execution scenarios to test both first-order and high-
order gradients, and also includes automated filtering strategies
to remove false positives caused by numerical instability. We have
performed an extensive study on four of the most popular and
actively-maintained DL libraries, PyTorch, TensorFlow, JAX, and
OneFlow. The result shows that VFuzz substantially outperforms
state-of-the-art fuzzers in terms of both code coverage and bug
detection. To date, VFuzz has detected 173 bugs for the studied
DL libraries, with 144 already confirmed by developers (117 of
which are previously unknown bugs and 107 are related to AD).
Remarkably, VFuzz contributed 58.3% (7/12) of all high-priority
AD bugs for PyTorch and JAX during a two-month period. None
of the confirmed AD bugs were detected by existing fuzzers.

I. INTRODUCTION

Recent years have witnessed the rapid advancement of
deep learning (DL) research and the wide adoption of DL
solutions/technologies in various application domains, e.g.,
natural language processing [1], healthcare [2], scientific dis-
covery [3], and software engineering [4]-[9]. As a result, there
is a growing concern about the correctness and reliability of
such systems. For example, for a safety-critical application
domain such as autonomous driving, a bug in the DL system
can cause serious consequences or even death [10].

As it is critical to ensure the quality of increasingly
influential DL systems, much research attention has been
focused on testing/verifying DL models [11]-[21] or applica-
tion programs [22]-[24]. Recently, testing underlying DL Ili-
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braries/frameworks (e.g., PyTorch/TensorFlow) has also drawn
wide attention, since DL libraries serve as the central infras-
tructure for all DL applications. CRADLE [25] is one of the pi-
oneering work to perform differential testing on multiple back-
ends of Keras [26] using various DL models. AUDEE [27] and
LEMON [28] further apply search-based mutation strategies
on existing models to generate more diverse test inputs. While
these mutation-based techniques heavily rely on seed models,
Muffin [29] directly synthesizes DL models from DL APIs
via a top-down generation approach. Moreover, Muffin can
detect inconsistencies in both the model training and inference
phases across different backends of Keras. Unlike the above
model-level testing techniques, the recent FreeFuzz work [30]
proposes a fully-automated API-level fuzzing technique via
mining API inputs from open source. Similarly, another recent
work, DocTer [31], directly generates inputs for each API
based on DL-specific input constraints extracted from DL API
documentation (assisted with human annotations). Despite
the recent advances in DL library testing, existing techniques
still suffer from a major limitation: The inference phase of
DL models or the direct execution of DL APIs has received
the most attention, while a crucial component of any DL
system - automatic differentiation (AD) [32] - is still under-
studied. Many DL algorithms, notably back-propagation [33],
one of the key algorithms for training feed-forward neural
networks, rely heavily on AD for derivative computation of
arbitrary numerical functions. AD enables the development
of sophisticated DL models and algorithms since, without
AD, people would have to manually/symbolically calculate the
derivatives of billions of parameters for large DL models [34].
To obtain the derivatives automatically, special gradient/Ja-
cobian computation operations in DL libraries need to be
explicitly triggered (e.g., t £.GradientTape.gradient () in
TensorFlow). Notably, bugs in AD may cause DL models to
fail to converge and/or perform poorly in practical deployment,
which is fatal for safety-critical applications. For example,
silent AD computation bugs may cause the output of the
deployed DL models to diverge significantly from the output



input = tensor (shape=[5, 5, 5])

target = tensor (shape=[5])
RevGrad (KLDivLoss, (input,

Fig. 1: Crash bug in AD

target)) # crash

in the training phase. Besides, AD bugs may also directly
crash the entire training process, wasting massive computation
resources when training recent popular large models and/or
causing potential denial-of-service (DoS) attacks [35]. Figure |
shows a dangerous crash bug where a widely used PyTorch
API XLDivLoss [36] will crash during AD computation with
a special input shape. However, such AD engines have not
been thoroughly tested by existing work.

Although the recent Muffin work [29] can potentially test
the training phase of DL models, it is still far from practical.
First, Muffin needs to manually annotate the input constraints
of considered DL APIs and use reshaping operations to ensure
the validity of the generated models. As a result, Muffin
can only cover a small set of APIs (confirmed in §VI-A).
Second, whole model testing is inefficient, especially for
large models/datasets. Third, false positives can originate from
randomness, precision loss, and numerical instability, which
are further amplified in the model training scenario. Fourth,
differential testing of the training phase requires the same
API interfaces across different DL libraries, which further
limits its application. Muffin uses Keras and its supported
backends TensorFlow, Theano, and CNTK. However, Keras
2.3.0 in 2019 is the last release supporting backends other
than TensorFlow [37]. Lastly, Muffin cannot fully test the AD
engines in DL libraries, as it only covers part of reverse mode
AD and ignores forward mode AD. In fact, the Muffin paper
did not report any confirmed AD bug (confirmed in §VI-A).

To thoroughly and automatically test the AD engines in DL
libraries, we propose VFuzz, the first general and practical
framework specifically targeting the crucial AD component.
Our key insight is that each API in a DL library can be ab-
stracted into a function processing tensors/vectors, which can
be differentially tested under various execution scenarios (for
computing outputs/gradients with different implementations).
For example, the same DL API can be executed without AD
or with different AD modes, but both the API output and gra-
dient should be consistent across different execution scenarios,
which can naturally serve as the oracle for differential testing.
In addition, since our test oracle is general at the function level,
we can further transform each API into its gradient function
to test the correctness of high-order gradient computation.

VFuzz can potentially address all the aforementioned limi-
tations of Muffin. Through API-level testing, VFuzz no longer
suffers from strict input constraints in model-level testing, and
can be fully automated. Also, API-level mutation is more
efficient because it avoids extensive computation on large
models with large datasets. Besides, false positives can be
significantly reduced, since floating-point precision loss will
not be accumulated in API-level testing. Lastly, compared to
Muffin, our technique is also more general, because we utilize
the natural AD oracles available in any DL library.

# Model building Forward pass

input = Input(shape=(784,))

Input Hidden Output Label

hidden = Dense(64, activation="relu")(input)
output = Dense(10,

O e}
activation="softmax") (hidden) O/\O O
model = Model(inputs=input, outputs=output) <2 le) O Loss
# Dataset loading ©} o

x_train, y_train, x_test, y_test = load_data() O

# Training S [

model . compile( Densel Dense2
optimizer=SGD(),
loss=MeanAbsoluteError())

model.fit(x_train, y_train)

# Inference

predictions = model.predict(x_test)

Backward pass

Fig. 2: An example of DL model training and inference

We have implemented VFuzz as a fully automated tech-
nique for API-level fuzzing with test oracles specifically
targeting AD in DL libraries. More precisely, while our
approach is general and can leverage any existing API-level
DL library fuzzer for input generation, we build VFuzz on top
of state-of-the-art FreeFuzz [38] because it is fully automated
and publicly available. For test oracle, VFuzz automatically
performs differential testing of each DL library API (and its
high-order gradients) under different execution scenarios pro-
vided by the underlying DL library. VFuzz also incorporates
automated filter strategies to further reduce false positives
caused by numerical instability issues. We have conducted an
extensive study of VFuzz on four of the most widely-used
and actively-maintained DL libraries: PyTorch, TensorFlow,
JAX, and OneFlow. Our results show that VFuzz substantially
outperforms state-of-the-art DL library fuzzers (including both
FreeFuzz and Muffin) in terms of both code coverage and bug
detection. In fact, the bug in Figure 1 is detected by VFuzz
and cannot be detected by any previous techniques. Overall,
our paper makes the following contributions:

1) To the best of our knowledge, this is the first work
specifically targeting fuzzing the crucial AD component
in DL libraries with practical and general test oracles.
Our proposed AD oracles can potentially strengthen and
impact all future work on fuzzing DL libraries/systems.

2) We have implemented VFuzz as a fully automated
technique for testing AD in DL libraries. VFuzz is built
on state-of-the-art FreeFuzz and resolves the test oracle
challenge with differential testing on various differenti-
ation scenarios; VFuzz can also test the correctness of
gradient computation of any order. Moreover, we have
also designed novel strategies to filter out false positives.

3) We conduct an extensive study on popular DL libraries
(PyTorch, TensorFlow, JAX, and OneFlow). VFuzz has
detected 173 bugs in total, with 144 confirmed by
developers (117 are previously unknown and 107 are
AD-related) and 38 already fixed. Remarkably, VFuzz
contributed 58.3% (7/12) of all high-priority AD bugs
for PyTorch and JAX within two months. None of the
107 AD-related bugs can be detected by existing work.

II. BACKGROUND

A. Basics about DL Libraries

DL Models and DL APIs. To develop a DL pipeline, users
usually call DL APIs in a DL program to accomplish the



def f(x1, x2):

vl = x1 * x2
v2 = log(vl)
v3 = sin(x1)
vd = v2 + v3

return v4

(a) Definition

(b) Computational graph
Fig. 3: Function f(z1,22) = log(zy - x2) + sin(xq)

following: build a DL model, load a dataset, train the DL
model with labeled training data, and test it with evaluation
data. The example TensorFlow program shown in the left side
of Figure 2 constructs a dense neural network, which contains
two Dense layers, with relu and softmax as the activation
functions. Starting from an input layer input, the tensor
output is obtained by invoking the DL APIs sequentially.
The model is then constructed by defining the inputs and
outputs, and compiled with specified optimizer (SGD) and loss
function (MeanAbsoluteError). Next, we train the model
with the high-level API model . fit and make predictions with
model.predict.

Training phase. For model training, DL libraries usually
provide high-level APIs (e.g., model.fit () in TensorFlow)
for ease of use. However, the actual training phase is com-
plicated and composed of three stages: forward pass, loss
computation, and backward pass. Such training steps will be
carried out repeatedly until convergence. Figure 2 depicts an
illustration of one training step for the example program,
where w1 and w2 stand for the weight tensors of Dense layers.
During the forward pass when the output tensor is computed
with input and weight tensors, every executed operation will
be automatically recorded for automatic differentiation (AD).
Please note that additional traced information is omitted in
Figure 2 for simplicity. After loss computation (requiring
labels), the recorded AD context will be used to compute
gradients (Gradl, Grad2) of the loss w.r.t the weight tensors.
Lastly, the optimizer will apply the gradients to update w1 and
W2 by adding Awl and Aw2 (computed from the gradients).

Inference phase. During the inference phase, DL APIs will
be executed to compute the output tensor as in the forward
pass, except that AD is usually disabled for efficiency.

B. Automatic Differentiation

Automatic differentiation (AD) is one of the core com-
ponents of DL frameworks, which contributes substantially
to the success of DL. AD decomposes a function/model
into a set of elementary operations for which derivatives are
known and leverages chain rule to compose the derivatives of
these operations [39]. It allows us to calculate the derivative
of any function/model without extensive manual effort. AD
usually has two distinct modes, reverse mode (or reverse
accumulation) and forward mode (or forward accumulation).
Reverse Mode. Reverse mode is the most common AD
mode in DL libraries. It evaluates the chain rule from the
output to the input, which is the reverse order of the original
function/model. Reverse mode calculates the derivative in two
different phases: forward phase and backward phase. In the

TABLE I: Reverse mode AD computation trace

Forward Phase Backward Phase

1 =1 z1 =154

T2 =2 Z2 = 0.5

vi =31 @2 =2 Z1=21 401 54 =054+05-2=154
T — a3 . OVL
Ty =01 50 = 0.5

vz =log(v1) =0.69 |51 =52 522 =1/v1 =05

vz =sin(z1) =0.84 |z =73 - 22; = cos(1) = 0.54
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forward phase, we will obtain the output of the original
function, and evaluate the output value and all the intermediate
variables, whose values are stored in memory. In the backward
phase, derivatives are calculated by leveraging the chain rule
and the intermediate value, which could propagate back the
derivative from the output to the input.

Figure 3 presents an example function f(z1,z2) together
with its computation graph. When (21, x2) is (1, 2), the trace
of computation of reverse mode AD is shown in Table I. To
simplify the representations, we use v = % to represent the
partial derivative of f w.r.t the variant v. First, the function
evaluates the output value (f = 1.53) and stores all the
intermediate values in the forward phase, shown on the left
side of Table I. Because the derivatives of the elementary
operations are known, e.g., the derivative of sin(x1) is cos(z1),
the reverse mode AD can leverage the chain rule and stored
values to propagate back the derivative from f to inputs x1, 2
automatically, shown on the right side of Table I.

It is worth noting that derivatives 1 = 1.54 and z5 = 0.5
are calculated in just one reverse pass since the output value
of this function is scalar. If the function is more general (e.g.,
f : R™ — R™), the reverse mode AD needs m reverse pass to
calculate the gradients. As DL usually computes the gradient
of a low dimensional tensor (e.g., scalar loss values) w.r.t a
huge number of parameters in practice, reverse mode is the
main AD used in DL libraries.

Forward Mode. Different from reverse mode, forward mode
AD computes the derivatives simultaneously with the original
function/model outputs, i.e., it evaluates the chain rule from
input to output. Thus, it does not need to store the intermediate
values like reverse mode. Forward mode AD also has two
phases: forward primal phase and forward tangent phase. The
forward primal phase obtains the output of the original func-
tion, while concurrently the forward tangent phase calculates
the gradient by applying the chain rule from input to output.

Back to f shown in Figure 3, whose forward mode com-
putational trace is shown in Table II. The forward mode
AD computes the derivative by applying the chain rule to
each elementary operation along the forward primal phase.
However, it can only compute the gradient of one input in
one pass. In this example, we calculate the partial gradient of
f w.rt 1. For simplicity, we define v = 687“1 as the partial
gradient of v w.r.t to the input x;. Thus, we set 21 = 1,22 =0
at the beginning since the gradient of x; w.r.t itself is 1 and



TABLE II: Forward mode AD computation trace

Forward Primal Phase

Forward Tangent Phase

T =1
T2 =0
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V1 =21 -T2 = 2

vo = log(v1) = 0.69
vg = sin(z1) = 0.84
v4 = v +v3 = 1.53
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Z9 does not affect x;. Along the forward tangent phase shown
on the right side of Table II, the final partial gradient f = 881{1
is 1.54, the same as computed by reverse mode.

In general, for function f : R™ — R™, forward mode AD
requires n evaluations to calculate the gradient by setting z; =
1 and the rest to zero for each input. Thus, forward mode AD
can be more time and memory efficient than reverse mode
when n < m, and is useful in cases like computing the Hessian
matrix [40] efficiently.

Despite the recent advances in DL library testing [25], [27]—
[31], [41], there is still limited work that can effectively test the
crucial AD component for DL libraries. Therefore, this paper
aims to build the first practical fuzzing technique specifically
targeting AD in DL libraries.

III. PRELIMINARIES

In this section, we will present the preliminaries for differ-
entiation computations, which are essential for understanding
AD implementation in DL libraries and our approach.

A. Mathematics behind Automatic Differentiation

Differentiation is a process of computing the gradient for
a given function at a given point. Especially, the gradient is
defined for scalar-valued functions as below:

Definition 1. Gradient. For a scalar-valued function f :
R™ — R and a point x, its gradient at x is defined as below:

Al (1)

Vi) = |4

The gradient can be further generalized to functions that
return non-scalar values, namely the Jacobian matrix [42]:

Definition 2. Jacobian. The Jacobian matrix of a vector-
valued function f : R™ — R™ is defined as an m X n matrix:

w=| =] @
where f(x) = (fi(x), fa(x),. .., fm(x)).

In this paper, for simplicity, we use “gradient” to represent
the Jacobian matrix for the vector-valued function. The gra-
dient function of f is defined as f' : R® — R™ x R", where
f'(x) is the Jacobian matrix of f at the point .

The gradient f'(x) € R™ x R™ can also be considered as a
linear map, which maps the tangent space [43] of the domain
of f at the point x to the tangent space of the codomain of

f at the point f(x). Given this mapping of f'(x) : R" —
R™, we can now define Jacobian-vector product (JVP) and
vector-Jacobian product (VJP), which have been adopted as
the theoretical basis for efficient DL training and implemented
using forward-/reverse-mode AD in DL libraries:

Definition 3. Jacobian-vector product. Given an input point
x € R™ and a tangent vector u € R" from the tangent space
of £ at x, the Jacobian-vector product is defined as below:

JVP(z,u) =f'(z) - u 3)

JVP computes the directional gradient, with direction u €
R™, for the function f : R” — R™ at the point x € R",
and is implemented with forward mode AD in DL libraries.
Back to the example shown in Figure 3, the (i1,43) in the
forward mode AD trace (Table II) is the tangent vector u in
the Definition 3. As a result, for the input @ € R™ and tangent
vector u € R"”, the forward mode AD can compute JVP in
only one pass by setting * = u. Meanwhile, computing the
full Jacobian matrix requires n passes with forward mode AD.

Definition 4. Vector-Jacobian product. Given an input point
x € R" and a cotangent vector v € R™, the vector-Jacobian
product is defined as the below mapping:

VIP(z,v) =v-f(x) 4)

With direction v € R™, VJP computes the adjoint direc-
tional gradient for the function f : R™ — R™ at the point
x € R”. Similarly, DL libraries implement the reverse mode
AD to compute VIP. f = 1 in the reverse mode AD trace
(Table I) is a special case of the cotangent vector v when the
output is scalar. Generally, for the input € R™ and cotangent
vector v € R™ the reverse mode AD is capable of calculating
the VJP in just one pass with initialization of f = v. By
contrast, it requires m passes for reverse mode to compute
the full Jacobian matrix.

B. Numerical Differentiation

Numerical differentiation (ND) [44] is another approach to
estimating the derivatives of a function by using the values
of the original function at some sampled points. The most
common method is to use finite difference approximation. For
example, for a scalar-valued function f : R™ — R at the point
x, we can calculate the partial derivative of x; by using ND:

of(x) _ flz +cei) — f(x — ecei)
ox; ~ 2¢ )
7
where e; is i-th unit vector and € > 0 is a small step.

However, ND can be inaccurate due to truncation and
rounding errors [39], especially for the low precision data
type. Besides, the time cost of ND is O(n) for a gradient in
n dimensions, which is the primary barrier to its usage in DL
library since n can be as large as billions in DL models [34].
Therefore, DL libraries do not rely on ND as the main
approach to calculating the gradient. Instead, most DL libraries
leverage ND to cross-check their own implementations of
gradient calculation during developer testing.




In this work, we further augment VFuzz oracle with ND.
This is because two AD modes may return the same wrong
gradient, which cannot be detected by comparing reverse and
forward modes (detailed in §1V-B2). To our knowledge, we are
also the first to adopt ND for automated DL library fuzzing.

IV. APPROACH

Figure 4 shows the overview of our VFuzz approach for
testing the AD mechanism of DL libraries. Note that for ease
of presentation, we abstract each DL library API under test
into a function f : R” — R™. VFuzz first invokes an off-
the-shelf API-level fuzzer to generate input © € R"™ for the
function (§IV-A). Then VFuzz will cross-check its outputs
and gradients at x in different execution scenarios (§IV-B). If f
passes the testing given = (without any inconsistency), VFuzz
continues to test the higher-order gradient of f: VFuzz will
wrap f to its gradient function f' : R™ — R™ x R™ and re-run
the test oracle (§IV-B3). If there is any inconsistency (during
first- or high-order gradient computation), VFuzz will filter
out the false positives caused by numerical instability (§IV-C).
Finally, VFuzz returns the candidate bugs. The following sub-
sections would explain each component in detail.

A. API-level Fuzzer

VFuzz’s first component is an API-level fuzzer for gener-
ating inputs to invoke each DL API. Our approach is gen-
eral, and can leverage any off-the-shelf API-level DL library
fuzzer [30], [31]. In this work, we leverage FreeFuzz [30] to
create the input for the function/API since it is fully automated
and state-of-the-art. DL library APIs are often exposed in
Python, a dynamically typed language, making it even hard to
determine the input types for each DL API. To overcome this
issue, FreeFuzz automatically traces API inputs when execut-
ing code mined from various sources, including DL models,
developer tests, and code snippets from DL documentation.
FreeFuzz further includes mutation strategies to generate more
inputs based on the traced seed API inputs.

DL library APIs may have configuration arguments (in addi-
tion to input tensors). For example, torch. sum (input, dim)
returns the sum of each row of the input tensor in the
dimension dim, which is a configuration argument. FreeFuzz
can generate inputs for both input tensors and configuration
arguments. For each successful API invocation generated
by FreeFuzz, VFuzz would automatically create a wrapper
function to transform the API invocation into a function
mapping from the input to the output tensor(s). Moreover, DL
library APIs could take several multi-dimensional tensors as
input/output, such as tf.add (x,y), which adds two multi-
dimensional tensors x and y element-wise. While VFuzz is
directly applied to such APIs (with tensor input/output) in our
implementation, we abstract each API into f : R* — R™
for the ease of presentation. This abstraction can be viewed
as flattening multi-dimensional tensors into vectors (and con-
catenating them if there are multiple input/output tensors).

Algorithm 1: VFuzz oracle algorithm

1 Function VFuzz-Oracle (fn, input, order):

Input : The function under test fn, the function input
input, and the gradient order to be tested order
Output: The oracle outcome
2 curOrder « 1
3 while curOrder < order do
4 outputs <« DirectInv (fn, input, REP=10)
5 if not IsOutputConsistent (outputs) then
6 | return RANDOM
7 revOutput, revGrad < RevInv (fn, input)
8 fwdOutput, fwdGrad « FwdInv (fn, input)
9 if not IsOutputConsistent (outputs,
revOutput, fwdOutput) then
10 L return OUTPUT_INCONSISTENT
11 ndGrad <+ NDGrad (fn, input)
12 if not IsGradientConsistent (revGrad,
fwdGrad, ndGrad) then
13 L return GRADIENT_INCONSISTENT
14 fn < Grad (fn)
15 | curOrder « curOrder + 1
16 | return PASS

B. Test Oracles

As shown in Algorithm 1, the input to the VFuzz oracle
algorithm is the function under test, an input for the function,
and the highest order of gradient to be tested. We start with
the first-order gradient test (Line 2). VFuzz first checks the
determinism of the function by directly invoking it with the
given input for multiple (by default 10) times (Line 4). If
the outputs are inconsistent, VFuzz will return RANDOM
and terminate the fuzzing process for this function (Line 5-6).
Otherwise, it continues to invoke this function with reverse-
and forward-mode AD (Line 7-8). Then it compares outputs
returned by direct invocation and invocations with AD. If
any inconsistency is detected (Line 9), VFuzz will skip the
gradient check and return this output inconsistency (Line 10).
Otherwise, VFuzz proceeds to check the correctness of gradi-
ent computation by comparing gradients calculated by reverse
mode AD, forward mode AD, and ND (Line 12). It will return
the inconsistency if these gradients are different (Line 13). If
the function passes all the above checks and we want to keep
testing the higher-order gradient computation (Line 3), VFuzz
will transform the function to its gradient function (Line 14).
The main loop will continue to test this new function until the
termination criterion is met, e.g., detecting inconsistency or
passing the test for the highest-order gradient computation. We
next present more details of our output and gradient checks.

1) Output Check: When calculating the gradient in re-
verse or forward mode AD, some additional operations are
always incurred, such as tracing or shape checking. Thus,
the invocation with AD may have different output from the
direct invocation. However, the outputs in different execution
scenarios should not differ, which means any inconsistency
can potentially be a bug. Therefore, VFuzz would compare the
output of the direction invocation, as well as the invocations
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with reverse mode and forward mode AD.

Take JAX API jax.lax.dynamic_index_in_dim for in-
stance, which performs integer indexing for input array [45].
Figure 5 shows an example that its output values in direct
invocation and reverse mode AD are different. The root cause
of this issue is that reverse mode AD leads to the index being
normalized multiple times, which changes the results for the
out-of-bound negative index. This bug is detected by VFuzz
and has been confirmed and fixed by the JAX developers.

def fn (input):

return dynamic_index in dim(input, index=-7, axis=1)
input = array([[l., 2., 3., 4., 5.11)
DirectValue (fn, input) # [[1.0]]
RevValue (fn, input) # [[4.0]]

Fig. 5: Inconsistent outputs w/ and w/o AD

2) Gradient Check: Because reverse mode and forward
mode apply different ways to calculate gradients, they could
produce different gradients for the same function and input.
Furthermore, ND can be used to test the gradient computation
of AD since an improper formula may be adopted in both
reverse and forward modes, resulting in the same incorrect
gradient value. Thus, VFuzz compares gradients computed by
reverse mode AD, forward mode AD, and ND to detect bugs.

For instance, a PyTorch APl torch.trace [46] returns
the sum of the diagonal elements of the input 2-D matrix.
Obviously, an input with shape (4,2) has two elements in
its diagonal, so this API will return the sum of these two
elements. However, three elements of the gradient computed in
reverse mode have gradient 1, compared to only rwo elements
in forward mode. This inconsistency is caused by the wrong
formula used in reverse mode AD for torch. trace. This bug
found by VFuzz has been confirmed by the developers.

Here is another example showing the value of further lever-
aging ND. The PyTorch API hardshrink (x,lambd) [47]
returns x when |x|>1lambd; otherwise, it just returns 0. That
said, when lambd is 0, this API is equivalent to the linear
function y = x. However, it will have different gradients
for input O in AD and ND with l1ambd=0. Both reverse and
forward mode AD return O as the gradient, while ND returns
1 as the gradient. Obviously, the gradient should be 1. This
bug detected by VFuzz has also been confirmed in PyTorch.

Nevertheless, due to the drawbacks of ND (e.g. truncating
and rounding errors), it could produce inconsistent gradients.
Thus, we only use ND for the input with high precision, such
as float64, which can minimize the effect of truncating and
rounding errors. Furthermore, we design strategies to mitigate

the false positives caused by the instability of ND in §IV-C.

3) High-order Gradients: Besides the basic first-order gra-
dient, VFuzz is capable of testing the correctness of higher-
order gradient computation. To be more precise, VFuzz can
take as input the gradient function f’ : R” — R™ x R"™ of the
current tested function f : R™ — R"™ since our designed test
oracles are general to the gradient function. Then, VFuzz can
apply both output and gradient checks on f’. But how does
the gradient for f’ (i.e., the second-order gradient for f) look
like? To illustrate it, let us first introduce Hessian matrix [40],
the second-order gradient of scalar-valued functions:

Definition 5. Hessian. The Hessian matrix of a scalar-valued
function f : R™ — R is defined as an n x n matrix as follows:

9*f 8% f 8% f
azl Ox10x2 Ox10x,
9% 8% f 8% f
Ox20x1 Ox Ox20x
H(f) = | ™ : S O
9% f 8%f 8%f
0z, 011 O0x, 022 ox?2

In this way, the second-order gradient of a more general
vector-valued function f : R®™ — R™ can be defined as an
m X n X n matrix, which can be seen as an array of m Hessian
matrices. Formally, for the function f(x) = (f;(x)),, the
second-order gradient can be defined:

H(f) - (H(fl)aH(fQ)avH(fm)) (7

Notably, the current tested function can be the gradient
of other functions. Hence, theoretically, VFuzz can test any
order of gradient computation. When the ath-order gradient
function passes all the testing described above and we want to
test the correctness of its higher-order gradient computation,
VFuzz would transform the ath-order gradient function to its
gradient function and re-run the test. In this work, we target
the correctness of first- and second-order gradient computation
since they are the most frequently used. Besides, to the best of
our knowledge, very few existing DL libraries provide APIs
calculating the gradient above the third order.

Take the JAX API jax.lax.pow(a,b) [48] for example,
which returns a®. When the input (a,b) is (2,0), this API
can pass the test for the first-order gradient. Then VFuzz will
test the correctness of its second-order gradient computation
given this input, which is shown in Figure 6. It turns out that
the second-order gradient computed in reverse mode AD is
different than the one in ND while the latter is correct. This
is because the gradlent 5 should be exactly the same as



% for the API jax.lax.pow. This inconsistency detected
by VFuzz is confirmed and even labeled as “urgent” by the
JAX developers, which was fixed immediately after our report.

a, b = array(2.0), array(0.0)
RevGrad (Grad(jax.lax.pow), (a, b)) #[[0.0, 2.0],[0.5, L4871
NDGrad (Grad (jax.lax.pow), (a, b)) #[[0.0, 0.5] 0.5, 0.48]]

Fig. 6: Inconsistent 2nd-order gradients in AD and ND

C. Filtering Strategies

The gradient check for VFuzz checks gradients computed
by totally different modes/implementations and may have
more false positives than the output check (which checks
values returned by largely shared implementations), as also
confirmed by our result analysis in §VI-C. Therefore, VFuzz
further performs two additional filtering strategies for the
gradient inconsistencies caused by numerical instability issues.

1) Differentiability: For the
inconsistent gradients caused
by non-differentiable points,
we take the absolute function 1
as an example, which is shown D
in Figure 7. Its gradient com- = =2 <+ o 1 2 3
puted by AD in JAX is 1 for Fig. 7: Abs function
input 0, but ND will calculate
the gradient as 0. However, this inconsistency is acceptable
since the absolute function is non-differentiable at point 0. The
gradient at the non-differentiable point is undefined, so AD is
allowed to return any value as the gradient. Thus, we need to
filter out such cases caused by non-differentiable points. To
do so, we first define the property of differentiability [49]:

3

2

Definition 6. Differentiability. A function f is differentiable
at x iff 1) f is continuous at x, and 2) all partial derivatives
of f exist in the neighborhood of x and are continuous at x.

Based on Definition 6, to test the differentiability of a
function f at a point &, we can sample some neighbors of
x. After sampling, the outputs and gradients at these points
are computed and compared with the output and gradient at
x. Note that we choose ND for differerntiability checking as
the main test target is the AD mechanism and we do not want
to mistakenly treat AD bugs as instability and miss them.

We will sample N (default 5) random neighbors to check
the differentiability. More specifically, we define random
neighbor as random(x) = x + uniform(—4,40), where sam-
pling distance J is a hyper-parameter (default 10~%). If the
output or gradient of any neighbor is different from the point
x, VFuzz will consider f is non-differentiable at the point
x. Back to the absolute function example. For point 0, it is
obvious that the gradient of its left neighbor is -1 and the
gradient of its right neighbor is 1. Both of them are different
from 0, which is the gradient computed by ND at point 0. As
a result, VFuzz will filter out this false-positive case.

2) Precision Conversion: Figure 8 shows a function fn
which casts the input tensor to floatlé data type and
returns the sum of all its elements [50]. Though input has

def fn(input):
input = torch.tensor([16.0],
fn (input) # tensor(le6.,
fn(input + le-4) # tensor(lé6.,
fn(input - le-4) # tensor(le.,

return torch.sum(input, dtype=floatlé)
dtype=float64)
dtype=floatl6)
dtype=floatlé)
dtype=floatl6)

Fig. 8: Example of precision loss

TABLE III: Details of the studied DL libraries

Github Stars ~ Company  # Total APIs  # Covered APIs  Version
PyTorch 57.7K Meta 1592 1071 .11
TensorFlow 167K Google 6381 1902 29
JAX 19.7K Google 791 634 0.3.14
OneFlow 3.6K  OneFlow 409 299 0.7.0

data type floaté4, applying perturbation le-4 to it cannot
change the output due to the loss of precision caused by
rounding as shown in Figure 8. As a result, ND will return 0 as
the gradient, which is absolutely wrong. Besides, the precision
conversion can also cause inconsistent gradients in reverse
mode and forward mode AD. In most DL libraries, the gradient
computed by reverse mode AD has the same data type as the
input, while the gradient returned by forward mode has the
same data type as the output. Thus, forward- and backward-
mode AD may have slight inconsistencies due to precision
loss. To filter out such inconsistencies, we exclude all cases
where the API input and output have different precisions.

V. EXPERIMENTAL SETUP

In the study, we address the following research questions:

¢ RQ1: Is VFuzz effective in detecting real-world bugs and
improving code coverage?

« RQ2: How do different components of VFuzz oracle
affect its performance?

« RQ3: How do the filter strategies contribute to the
reduction of the false positive rate of VFuzz?

To answer the RQs, we have performed an extensive study
on PyTorch, TensorFlow, JAX, and OneFlow, whose details are
shown in Table III. With 57.7K and 167K stats on GitHub, Py-
Torch and TensorFlow are the two most popular DL libraries,
and they are also widely studied in prior DL library testing
work [30], [31], [41]. In addition, JAX [51] and OneFlow [52]
are two emerging DL libraries, with 19.7K and 3.6K stars on
GitHub. JAX provides simple and powerful APIs for writing
accelerated numerical code for high-performance machine
learning research. With the growing research on training large
models on distributed devices, OneFlow features a simple,
neat redesign that enables easier programming of various
parallelism paradigms compared to existing frameworks.

We compare VFuzz against both state-of-the-art model-
level (Muffin [29]) and API-level (FreeFuzz [30]) DL library
fuzzers. We run all experiments on a machine with 32-core
AMD CPU (3.5GHz), 256GB RAM, and Ubuntu 20.04.

A. Implementation

1) Input Generator: We leverage the input database and
fuzzing strategies of FreeFuzz [38] to generate API inputs.
While our approach is general, we choose FreeFuzz since it
is state-of-the-art and fully automated. We follow its default



setting to generate (via mutation) 1000 inputs for each APL
Because FreeFuzz is only implemented for PyTorch and Ten-
sorFlow, we further implement a FreeFuzz-like fuzzing engine
for JAX and OneFlow by ourselves. Following FreeFuzz,
we collect API inputs from open source and implement the
fuzzing strategies. For the input collection of JAX, we only
trace the developer tests (83 test files) since they already cover
80.2% JAX APIs (634/791). For OneFlow, we collect the input
from all three sources: documentation, 519 developer tests, and
51 DL models, covering 73.1% (299/409) OneFlow APIs.

2) Execution Scenarios: Table IV shows the example dif-
ferentiation APIs used in our tool for each execution scenario.
Note that not all the AD-related APIs we leverage are included
in the table due to the space limit. The “N/A” in the table
means the DL library does support or provide the API for that
scenario. Only OneFlow has not implemented forward mode
AD, we thus skip the forward mode AD testing for OneFlow.

For the DL libraries with APIs that could compare ND
and AD gradients (shown in Column “ND”), VFuzz directly
leverages such APIs. It turns out that only OneFlow does not
have such an API, so we implement ND for it by ourselves.

3) Filter: For the neighbor sampling of differentiability
check, we set the sampling number N as 5, and the distance
§ as 10~* by default. We also explore their impact in §VI-C.

B. Metrics

Number of Detected Bugs. Following prior work on testing
or fuzzing the DL libraries [25], [28]-[31], [41], [53], we
report the number of bugs detected by VFuzz and compared
baselines.

False Positive Rate. After filtering the inconsistent cases
caused by instability, we get the bug candidates. However,
not all candidates are real bugs. False positive rate (FPR)
computes the proportion of the candidates that are false alarms,
and is widely used in prior work on testing/fuzzing [53]-
[56]. Following Muffin [29], for every inconsistency reported
by VFuzz, three authors independently inspected it to decide
whether that is a bug or not and then discussed it together to
reach a consensus. Moreover, different from Muffin, we further
used developer feedback to calibrate our inspection. That said,
any inconsistency will be reported as FP if the authors reach
the consensus that this is not a bug or the developers rejected
our report.

Code Coverage. Code coverage is one of the main criteria
in software testing, and has also been recently adopted for
testing DL libraries/compilers [29], [30], [57]. While state-of-
the-art FreeFuzz [30] and Muffin [29] only adopted C++ or
Python coverage, we adopt both the code coverage criteria for
more thorough evaluation. Following FreeFuzz and Muffin, we
adopt line coverage, and trace the line coverage for C++ and
Python via GCOV [58] and Coverage.py [59], respectively.
Execution Time. Since VFuzz leverages additional oracles for
detecting AD bugs, it would take more time than existing API-
level fuzzers, such as FreeFuzz. Thus, we take the execution
time into account following prior work [28], [30], [57].

VI. RESULT ANALYSIS
A. RQI: Detected Bugs and Coverage

1) Detected Bugs: Table V presents the summary of real-
world bugs detected by VFuzz for all studied libraries. Column
“Total” shows the total number of detected bugs. Column
“Confirmed (Fixed)” presents the number of bugs confirmed
and fixed by developers. We further categorize the confirmed
bugs into previously unknown and known. Plus, Column
“Rejected” shows the number of bugs rejected by developers.
Lastly, Column “Pending” is the number of bugs not yet
triaged by the developers.

We can observe that VFuzz is capable of detecting 173 bugs
in total for the four studied DL libraries, with 144 confirmed
by developers and 38 already fixed, emphasizing the effective-
ness of VFuzz. Notably, 117 are confirmed by developers as
previously unknown bugs and only 6 are rejected. Out of those
144 confirmed bugs, state-of-the-art FreeFuzz and Muffin can
only detect 21 non-AD bugs (all by FreeFuzz and 0 by Muffin).
For these bugs detected by FreeFuzz, 15 of them are unknown
bugs and 6 are previously known. Of those unknown bugs, 10
are from JAX and OneFlow, the libraries not supported by the
original FreeFuzz, and 5 are from PyTorch and TensorFlow.
6 bugs were rejected for the following reasons: 3 resulted
from precision loss by using low-precision data types, 2 were
intentionally implemented for numerical stability, and 1 arose
from undefined behavior at a non-differentiable point.

Notably, 6 of our detected bugs for PyTorch are labeled with
“high-priority” and 1 bug for JAX is labeled as “PO(urgent)”
(all these 7 bugs are related to AD) since they are critical
and should be addressed urgently. The other two libraries
(TensorFlow and OneFlow) do not have such labels so they are
not discussed here. Figure 9 shows a wrong gradient bug we
detected in rrelu [60] which was commented by PyTorch
developers as a massive bug and labeled as “high-priority”
and fixed immediately. For PyTorch, there are 78 high-priority
bugs in total for its entire issue-tracking system during the two
months of our issue reporting (May and June 2022), while 11
of them are related to AD. That said, V Fuzz contributed 7.7 %
of the high-priority bugs and 55.5% for the high-priority AD
bugs, showing the effectiveness of our approach. The issue-
tracking system of JAX has 22 “urgent” bugs in all-time while
only 1 of them is related to AD, which is reported by us.

def fn(input):
input = torch.tensor ([0.
RevGrad (fn, input) # tensor ([[
NDGrad (fn, input) # tensor ([[1

return rrelu(input, -2.9, -2.7,
250, 0.4313])
0.,0.1,00.,0.7)
101,010,100

True)

Fig. 9: High priority crash bug in PyTorch

Given multiple confirmed/fixed bugs have already been
discussed in §IV, here we will discuss an example re-
jected bug. Figure 10 shows an instance of JAX API
jax.numpy.sinc(x) [61], which computes sin(mz)/(mz).
When the input x has the lowest precision floating datatype
bfloatl6 [62], this API will have different gradients com-
puted in forward mode and reverse mode AD. We reported
this inconsistency to JAX developer, however, it was rejected:



TABLE IV: Examples of AD-related APIs of the studied DL libraries

Reverse Mode AD

Forward Mode AD ND

PyTorch torch.autograd.grad
TensorFlow  tf.GradientTape.gradient
JAX jax.jacrev
OneFlow oneflow.autograd.grad

torch.autograd. forward_ad
tf.autodiff.ForwardAccumulator

torch.autograd.gradcheck
tf.test.compute_gradient
jax.jacfwd jax.test_util.check_grads

N/A N/A

TABLE V: Summary of detected bugs

| Total M Rejected | Pending

| | Unknown Known | |
PyTorch 80 62 (10) 15 (9) 3 0
TensorFlow 29 18 (0) 5(12) 2 4
JAX 34 20 (5) 32 1 10
OneFlow 30 17 (6) 44 0 9
Total | 173 | uren 2737 | 6 | 23

“This is a consequence of the intended design of bfloat1é6. It
is a worthwhile tradeoff for speed in deep learning contexts...”.

x = array(-0.125,
RevGrad (jax.numpy.sinc, x)
FwdGrad (jax.numpy.sinc, x)

dtype=bfloatl6)
# 0.34375
# 0.375

Fig. 10: Inconsistent gradients in reverse/forward mode

2) Coverage: We present the code coverage achieved by
VFuzz and state-of-the-art FreeFuzz on our default subjects,
PyTorch and TensorFlow, since they are not only the most
popular DL libraries but also the only two libraries studied by
FreeFuzz. The comparison results on JAX/OneFlow are similar
and omitted due to the space limit. We follow the default
setting of FreeFuzz [30], which executes 1000 mutated inputs
for each API after running the seed inputs in the database.

Figure 11 shows the coverage results, where the x axis is the
number of mutants generated for each API (from 100 to 1000
with the interval of 100), while the y axis is the overall line
coverage achieved. Note that the code coverage achieved by
running the seed inputs in the FreeFuzz database (without any
mutation) is the start point for each line. For C++ coverage,
we can observe that VFuzz outperforms FreeFuzz significantly
on both PyTorch and TensorFlow, with an improvement of
22.4%/16.6% respectively. Note that such an improvement is
highly valuable as the additionally covered code is mostly
about the crucial AD mechanism. For Python coverage, VFuzz
still outperforms FreeFuzz, but with a smaller improvement
than C++. The possible reason could be that the crucial AD
functionality of DL libraries is mainly implemented in C++,
e.g., the official material of PyTorch said, “Autograd is a
hotspot for PyTorch performance, so most of the heavy lifting
is implemented in C++” [63].

Table VI further presents the time cost and overall system
coverage rate for FreeFuzz and VFuzz. The time cost of
VFuzz is higher than FreeFuzz due to the additional gradient
computation (mostly on the expensive second-order gradients).
Meanwhile, we can find that the VFuzz only running the
seed inputs in the database (Row “VFuzz (seed only)”) still
outperforms FreeFuzz in terms of code coverage even with
less time. Moreover, VFuzz achieves decent system coverage
rates, e.g., 25.8% for the entire PyTorch C++ codebase and
33.3% for the entire TensorFlow Python codebase.

We also compare VFuzz with Muffin. Since Muffin does
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TABLE VI: Comparison with FreeFuzz

(d) TensorFlow Python Coverage

| PyTorch | TensorFlow
| C++ Cov  Python Cov  Time | C++ Cov  Python Cov  Time
70639 14579 36279 80220
FrecFuzz ‘ 21.1%) (139%) b ‘ 9.77%) @01%) >N
86459 15042 42284 88783
VEuzz ‘ (25.8%) (43%) 7 ‘ (11.4%) @33%) 243
VFuzz 79808 14854 37233 gagas o
(sced only) | (23.4%) (141%) (10.0%) (B1.9%) =
TABLE VII: Comparison with Muffin
| C++ Coverage Python Coverage # Covered API Time
VFuzz | 41625 (11.21%) 88524 (33.24%) 1902 6.lh
Muffin 36884 (9.94%) 78754 (29.57%) 79 6.8h

not support PyTorch, JAX, or OneFlow, we conduct this
comparison on TensorFlow only. We run Muffin with its
default setting (which takes 6.8h). For a fair comparison, we
run VFuzz by setting the number of mutants for each API to
150, so it can finish within 6.8h. As shown in Table VII, with
slightly less execution time (6.1h), VFuzz already substantially
outperforms Muffin in both code and API coverage. In fact,
even only running the seed API inputs without mutation with
our AD oracle (taking only 2.9h) is sufficient to outperform
Muffin in terms of C++ and Python coverage. This is because
VFuzz can cover much more APIs and more AD modes,
while Muffin only considers reverse mode AD on a small set
of APIs. More precisely, Muffin only covers 79 TensorFlow
APIs, while VFuzz can cover 1902. This is because Muffin
only considers a set of predefined high-level layer APIs [29]
for model generation. Meanwhile, Muffin can already achieve
decent code coverage (albeit lower than VFuzz) because such
high-level APIs will use various low-level operations.

B. RQ2: Different Components of Test Oracles

1) Impact on Bug Detection: In Table VIII, we categorize
all confirmed bugs based on which execution scenarios they



TABLE VIII: Scenario distribution of confirmed bugs

AD

‘ Direct ‘ ‘ ND

| Invocation | Al Rev-Only Fwd-Only |
PyTorch 11 64 33 9 2
TensorFlow 3 18 5 4 2
JAX 3 20 3 1 0
OneFlow 16 5 5 N/A | N/A
Total \ 33 | 107 46 14| 4

TABLE IX: Symptoms of confirmed bugs

| Output | Gradient Total 1st-order  2nd-order
PyTorch 31 46 44 2
TensorFlow 4 19 17 2
JAX 14 9 8 1
OneFlow 16 5 2 3
Total | 65 | 79 71 8

are located in, such as direct invocation, AD, and ND. Among
the bugs in AD, Column “All” displays the total number of
bugs located in AD, while Column “Rev-Only”/“Fwd-Only”
presents the number of bugs only appearing in reverse/forward
mode respectively. That said, 47 (107-46-14) bugs are in
both reverse and forward AD modes. From this table, we
can conclude that most of the bugs detected by VFuzz
are related to our main target AD, showing the strength of
VFuzz in fuzzing AD for DL libraries. One interesting fact
is that we detect more bugs in direct invocation than AD in
OneFlow. This may be because OneFlow was not tested by the
original FreeFuzz work and only supports reverse-mode AD.
Furthermore, we detect more reverse mode unique bugs than
forward mode since reverse mode is more widely implemented
in DL libraries. As mentioned in §V-A2, we directly leverage
the ND computation/comparison APIs in PyTorch, TensorFlow
and JAX. It turns out we can even detect 4 bugs in such APIs.

We also categorize all the confirmed bugs by how they were
detected in Table IX, e.g., the bugs are found by inconsistent
outputs (Column “Output”) or gradients (Column “Gradient
Total”). We further split the bugs detected by the gradient into
checks for the first-order gradients (Column “Ist-order”) and
second-order gradients (Column “2nd-order’””). We can observe
that more than half bugs are detected by inconsistent gradients,
showing the importance of gradient oracles. Plus, most of the
gradient-related bugs are first-order. This is because the first-
and second-order gradient computations often share part of the
implementation, and any bug in the former will prevent VFuzz
from testing the latter. Notably, VFuzz can still detect 8 bugs
using the second-order gradient check, showing the generality
of our approach. More interestingly, 65 bugs are revealed by
discrepant outputs, indicating that the AD mechanism could
even affect normal DL API forward computation!

2) Impact on Code Coverage: To study the impact of
execution scenarios on code coverage, we have two VFuzz
variants: VFuzz-Rev (disabling reverse mode AD) and VFuzz-
Fwd (disabling forward mode AD). We skip the coverage
analysis of ND since it is typically implemented based on the
basic direct API invocations and can hardly cover new code.
Figure 11 also presents the research findings for the studied
variants with various amounts of mutations for each API. We
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can observe that the reverse mode AD occupies a larger portion
of the DL library implementation than the forward mode
because VFuzz-Fwd outperforms VFuzz-Rev in terms of code
coverage. This complies with the truth that reverse mode AD
is the main technique used in DL systems. More importantly,
we can also observe that the code coverage of both reverse and
forward mode AD is not negligible, indicating the necessity
of considering both of them for DL library fuzzing.

C. RQ3: FPR and Effectiveness of the Filtering Strategies

Table X shows the results of the FPR, which is categorized
based on the checks. Column “Output”/“Gradient” shows the
FPR of output/gradient check respectively. Column “Total” is
the overall FPR of our technique. Under Column “Gradient”,
Column “All” is the FPR when both filtering strategies are
used, and Column “N/A” is the FPR without any strategy.
Column “Diff”/*Precision” presents the FPR with only the dif-
ferentiability/precision strategy, respectively. From the table,
we can observe that the overall FPR of VFuzz is only around
20%, implying the efficacy of VFuzz. Notably, our filtering
strategies do not remove any true bug mistakenly, as confirmed
by our manual check for all reported inconsistencies. Besides,
the FPR of the gradient oracle with filtering (22.4%) is much
lower than without it (66.7%), showing the effectiveness of
our filtering strategies. Also, we can observe that both filtering
strategies are effective in reducing FPR. More precisely, the
differentiability strategy is more helpful than the precision
strategy, especially in OneFlow, where the latter cannot help
reduce any false positives. Moreover, the FPR of the output
oracle is lower than the gradient oracle (even after filtering).
The main reason is that API outputs should not be affected
by different AD modes, while the computed gradients can be
slightly different across reverse-/forward-mode AD and ND
due to different underlying implementations.

We further evaluate the impact of hyper-parameters, sam-
pling number N (default 5) and distance & (default 10~%).
The study is conducted on our default subjects, PyTorch and
TensorFlow, due to the space limit. For the impact of sampling
number [N, we run our experiments with different N values of
1, 2, 5, 10 as shown in Table XI. The choice of N contributes
little to the FPR of gradient oracle since all of them are close.
Plus, the FPR decreases as IV increases, as more neighbors to
compare implies more false positives will be filtered. However,
the time cost will also increase as IV increases (e.g. the time
cost of N =10 is about 1.5X higher than that of N =5). Thus,
N =5 is a trade-off between the FPR and the time cost.

As for the impact of distance §, we run with different §
values of 10~1, 1072, 102, 10~%, 10~°. The result is shown
in Table XII. First, the FPR decreases as § increases. This is
because the neighbor with a farther distance is more likely to
have a different gradient, causing some false positives to be
filtered. However, it may also exclude the real bugs since the
large distance may cause the gradient to change dramatically
even at differentiable points. For example, in PyTorch, § =
10~3 could filter out 2 true positives. We choose § = 10~4 as
our default setting since it does not filter out any true positives.



TABLE X: False positive rate (FPR)

Gradient

‘ Output ‘ Total

| | All Diff  Precision N/A |
PyTorch 193% | 21.2% 25.5% 573% 61.9% | 20.7%
TensorFlow 83% | 21.1% 34.8% 46.4%  53.1% 16.1%
JAX 11.1% | 21.0% 58.1% 68.6%  78.2% 17.3%
OneFlow 12.5% | 25.0% 25.0% 64.0% 64.0% | 20.0%
Total ‘ 15.0% ‘ 224%  37.7% 59.8%  66.7% ‘ 19.3%
TABLE XI: FPR of gradient oracle w.r.t N
Sampling Number N | 1 2 5 10
PyTorch 23.6% 22.6% 212% 212%
TensorFlow 21.1% 21.1% 21.1% 21.1%
TABLE XII: FPR of gradient oracle w.r.t §
Sampling Distance 5 | 10~ 1072 1072 107* 107°
PyTorch 17.2% 193% 204% 212% 22.9%
TensorFlow 71% 18.8% 188% 21.1% 21.1%

D. Threats to Validity

The main threat to internal validity lies in the implemen-
tation of VFuzz. The authors have thoroughly tested and
reviewed the code of VFuzz to lessen the threat. The threats
to external validity mainly lie in the evaluation benchmarks
used. We evaluated VFuzz on four of the most widely-used
and actively-maintained DL libraries to confirm the generality
of our approach. Moreover, we adopt detected bugs, code
coverage, false positive analysis, and execution time to reduce
the threats to construct validity for the metrics used.

VII. RELATED WORK

CRADLE [25] is a pioneering work on DL library fuzzing,
which leverages differential testing to detect bugs by running
existing DL models on different low-level DL libraries of
Keras [26]. AUDEE [27] and LEMON [28] further augment
CRADLE by applying search-based mutation strategies on ex-
isting DL models to cover more library code. While LEMON
adopted advanced mutation rules (e.g., layer addition), it still
only covers a small set of APIs [30] due to its strict mutation
rules, e.g., an API cannot be added/removed in the model
unless its input and output tensor shapes are identical. More
importantly, these techniques focus on the inference phase of
DL models, and thus cannot detect any AD bug. To mitigate
this, the recent Muffin work [29] is proposed to detect bugs in
both inference and training phases by generating DL models
via a top-down approach. While Muffin can potentially cover
reverse-mode AD, it can only cover a small number of APIs
in specific libraries, and cannot detect any confirmed AD
bug (please see §I for detailed discussion). More recently,
NNSmith [64] leverages lightweight formal specifications to
model each operator, and generates diverse and valid models
via symbolic constraint solving. While NNSmith has been
demonstrated to be state-of-the-art model-level DL library
fuzzer, it still only targets the inference phase, while our
work is orthogonal and can be applied to further augment
NNSmith.

Besides leveraging DL models for testing DL libraries,
researchers have also investigated directly fuzzing DL library
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APIs. Meanwhile, DL library APIs are often exposed in
Python, a dynamically typed language, making it hard even
to determine the input types for DL APIs. To overcome this
issue, Predoo [65] requires manually setting up API arguments
for DL library fuzzing, and thus was only evaluated on 7
TensorFlow APIs (due to the manual efforts). More recently,
DocTer [31] synthesizes rules to extract API input constraints
from DL library documentations, and then generates API in-
puts based on the constraints. However, it still requires manual
efforts for annotating 30% of API parameters. Different from
above work, FreeFuzz [30] is a fully-automated technique for
DL library API fuzzing. More specifically, FreeFuzz automat-
ically tracks API inputs when running code mined from the
open-source; additional mutations are performed to generate
more inputs based on tracked seed API inputs. Another line
of recent work designs other test oracles for DL libraries, e.g.,
DeepREL [53] automatically infers relational APIs (e.g., the
APIs that should return the same values/statuses when given
the same inputs) as the oracle to detect inconsistency bugs
for DL libraries, while EAGLE [41] uses equivalent graphs
to differentially test DL APIs. While effective, none of the
existing API-level techniques targeted the crucial AD engines
in DL libraries.

Different from the above model- and API-level fuzzers
which struggle to cover valid API sequences for a large
number of APIs (due to complicated input/shape constraints),
the very recent LLMFuzz work [66] proposes to directly apply
modern Large Language Models (LLMs) [67] to generate
diverse DL API sequences. The insight is that LLMs can im-
plicitly learn intricate DL API constraints from DL programs
in their massive training corpora. LLMFuzz demonstrates,
for the first time, that modern LLMs (e.g., Codex [67]) can
be directly leveraged for end-to-end fuzzing of real-world
systems. VFuzz is also orthogonal to LLMFuzz and can be
further applied to enhance its oracle support.

VIII. CONCLUSION

VFuzz is the first approach specifically targeting the AD
engine in DL libraries, which is a crucial component of any
DL system. It leverages different execution scenarios as test
oracles to test first- and high-order gradients and incorporates
an automated filter to reduce the false positives caused by
numerical instability. The evaluation of VFuzz on PyTorch,
TensorFlow, JAX and OneFlow shows that VFuzz can detect
173 bugs in total, with 144 confirmed by developers (117 of
which are previously unknown) and 38 already fixed. Notably,
VFuzz contributed 58.3% (7/12) of all high-priority AD bugs
for PyTorch and JAX during a two-month period.

Data Availability: Our code and data are available at [68].
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