
MirrorTaint: Practical Non-intrusive Dynamic Taint

Tracking for JVM-based Microservice Systems

Yicheng Ouyang

University of Illinois

Urbana-Champaign, USA

youyang8@illinois.edu

Kailai Shao

Ant Group

Shanghai, China

kailai.skl@antgroup.com

Kunqiu Chen

Southern University of

Science and Technology

Shenzhen, China

11911626@mail.sustech.edu.cn

Ruobing Shen

Peking University

Beijing, China

ruobingshen@pku.edu.cn

Chao Chen, Mingze Xu

Ant Group

Shanghai, China

{chixi.cc,mingze.xmz}@antgroup.com

Yuqun Zhang*

Southern University of

Science and Technology

Shenzhen, China

zhangyq@sustech.edu.cn

Lingming Zhang

University of Illinois

Urbana-Champaign, USA

lingming@illinois.edu

Abstract—Taint analysis, i.e., labeling data and propagating the
labels through data flows, has been widely used for analyzing pro-
gram information flows and ensuring system/data security. Due
to its important applications, various taint analysis techniques
have been proposed, including static and dynamic taint analysis.
However, existing taint analysis techniques can be hardly applied
to the rising microservice systems for industrial applications.
To address such a problem, in this paper, we proposed the
first practical non-intrusive dynamic taint analysis technique
MirrorTaint for extensively supporting microservice systems on
JVMs. In particular, by instrumenting the microservice systems,
MirrorTaint constructs a set of data structures with their respec-
tive policies for labeling/propagating taints in its mirrored space.
Such data structures are essentially non-intrusive, i.e., modifying
no program meta-data or runtime system. Then, during program
execution, MirrorTaint replicates the stack-based JVM instruction
execution in its mirrored space on-the-fly for dynamic taint
tracking. We have evaluated MirrorTaint against state-of-the-art
dynamic and static taint analysis systems on various popular
open-source microservice systems. The results demonstrate that
MirrorTaint can achieve better compatibility, quite close precision
and higher recall (97.9%/100.0%) than state-of-the-art Phosphor
(100.0%/9.9%) and FlowDroid (100%/28.2%). Also, MirrorTaint

incurs lower runtime overhead than Phosphor (although both
are dynamic techniques). Moreover, we have performed a case
study in Ant Group, a global billion-user FinTech company,
to compare MirrorTaint and their mature developer-experience-
based data checking system for automatically generated fund
documents. The result shows that the developer experience can be
incomplete, causing the data checking system to only cover 84.0%
total data relations, while MirrorTaint can automatically find
99.0% relations with 100.0% precision. Lastly, we also applied
MirrorTaint to successfully detect a recently wide-spread Log4j2
security vulnerability.

Index Terms—dynamic taint analysis, microservice, JVM

I. INTRODUCTION

Nowadays, the microservice architecture [1], which refers

to decomposing software into small independent services that

*Yuqun Zhang is the corresponding author.

communicate over well-defined APIs (the resulting compo-

nents are called microservices), has become dominating in

industrial applications. In contrast to developing traditional

monolithic applications which can be quite inefficient (espe-

cially for big code base) [2], the microservice architecture

is advanced in enabling a lightweight development paradigm

of industrial applications. According to the JetBrains survey

in 2021 upon 31,743 developers from 183 countries/regions,

35% of all respondents develop microservices, among whom

88% adopt microservice for their system design, where Java is

the most popular programming language (41%) [3]. Big tech

companies, e.g., Uber [4], [5], Twitter [6], and Paypal [7], all

build their microservices upon Java Virtual Machines (JVMs)

[8]. They also contribute many frameworks for developing

JVM-based microservices, e.g., Spotify’s appollo [9], Netflix

OSS [10], and Alibaba’s SOFABoot framework [11], which

have been widely used by industrial cloud applications.

However, JVM-based microservice systems can be vulner-

able to data security threats, which can cause severe dam-

ages, e.g., million-dollar or even billion-dollar losses. For

example, a vulnerability [12] in widely-used Java logging

library Log4j2 [13] reported on November 24, 2021 allows

easily executing malicious code from attackers’ servers when

logging certain strings inputted by users. Such vulnerability

posed severe threats to almost all big companies like Google,

IBM, Intel, Apple, Microsoft, Tesla, VMware, Zoom, and

Cloudflare [14], [15] with millions of attacks per hour glob-

ally [16]. Volume developers worldwide have worked intensely

to resolve such issues in their respective applications and the

caused loss is still beyond estimation till now.

Taint analysis, which has been widely adopted in practice

to explore the dependencies between data during program

execution [17]–[30], is in nature the solution for such data

security threat to Java-based microservice systems above.

A typical taint analysis technique firstly marks the source

variables with taints (aka. sourcing). Next, it propagates such

taints between variables through pre-defined propagation rules.

Finally, the target variables are inspected for whether they

are attached with taints (aka. taint sinking). In general, taint

analysis techniques can be categorized into two dimensions:

static taint tracking and dynamic taint tracking. In particular,

static taint analysis techniques [29]–[31] apply static program

analysis to leverage control-flow graphs and call graphs for

further taint analysis. On the other hand, dynamic taint analysis

techniques [17]–[28] track taints by modifying the runtime

systems (e.g., operating systems and virtual machines) or

program source/intermediate code. Such techniques, if built

precisely, could sensitively track the spread range of program

information and facilitate multiple security tasks, e.g., privacy

leak detection of operation/back-end systems [18], [28].

Ideally, to solve the aforementioned Log4j2 vulnerability,

one can simply adopt the idea of taint analysis – taint-

ing the untrustworthy inputs from outside, and terminating

the ongoing execution when identifying Log4j2 attempts to

evaluate tainted variables. However, JVM-based microservice

architectures can hardly be fully supported by the existing

dynamic or static taint analysis techniques. To illustrate, static

taint analysis techniques [29]–[31] can incur false positives

due to its unawareness of the real-time execution paths.

Specifically, such techniques usually collect taints through

all the possible paths, resulting in inevitable impreciseness.

On the other hand, while dynamic taint analysis techniques

can be essentially more precise compared with static taint

analysis techniques, they tend to result in poor portability by

modifying the specific execution runtime systems for various

microservice systems, which is impractical and even unaccept-

able in industrial production environment where risks cannot

be taken to affect stability of runtime systems. Intuitively, such

issues can be potentially addressed by modifying the source

code to extensively track taints. However, it can be quite

impractical since the source code can often be unavailable.

Note that while recent effort, i.e., Phosphor [17], attempts

to modify program bytecode for enhancing portability and

feasibility, it still cannot be applied to extensively support

microservice systems because it requires to instrument the

Java Development Kit (JDK) and modify the program meta-

data (e.g., class fields, method parameters and return types).

For example, such meta-data modifications can easily fail the

object serialization/de-serialization process widely adopted in

microservice communication. Moreover, they can also fail

the meta-data inspections/modifications adopted by widely-

used dependency injection (DI) [32] and Aspect-Oriented

Programming (AOP) [33] techniques for microservice systems,

e.g., Spring-based systems [34].

To make dynamic taint analysis practical to microservice

systems, our insight is to mirror the application memory

space and enable the taint operations in that mirrored memory

space to retain program meta-data and make dynamic taint

analysis practical on microservice applications. To this end,

in this paper, we present the first non-intrusive dynamic

taint analysis technique, MirrorTaint, which keeps meta-data

in JVM classes intact during instrumentation and can be

widely used in various microservice systems. In particular,

MirrorTaint contains three components in its mirrored mem-

ory space (named mirrored space) to dynamically track the

taints: TaintHeap, TaintStackFrame, and StackFrameRegister.

TaintHeap and TaintStackFrame are two specifically designed

data structures for mirroring the heap and stack in JVM to

store the taints of variables. Moreover, they also re-implement

the associated JVM instructions in terms of taints instead of

associated variables at runtime, as their “mirror”s. To realize

such execution replication, we also design StackFrameRegis-

ter, a temporary taint storage to pass the taints across JVM

stack frames. These components enable MirrorTaint to track

taints without modifying the meta-data of the programs in

field- and object-sensitive manners. Additionally, in order

to further support microservice scenarios, MirrorTaint also

supports automatically taint sourcing and sinking for input

and output data of various APIs, as well as user-defined

taint propagation rules. Noticing that by adopting such an

automatic sourcing and sinking mechanism, MirrorTaint can

track taints across different services in a post-analysis manner,

even though the data communicated between services is not

tainted. However, it is still limited in 1) not supporting implicit

information flow, 2) relying on pre-defined rules to handle

native methods and 3) incurring relatively high memory costs.

We evaluate MirrorTaint on a set of popular (reflected by

star numbers) and available open-source microservice systems

on GitHub. The evaluation result presents that MirrorTaint

can achieve very close precision (97.9%) and superior recall

(100.0%) for taint tracking while two compared state-of-

the-art techniques Phosphor and FlowDroid either result in

limited performance or even fail to be applied. Meanwhile,

MirrorTaint only incurs an overhead of 32.7% on average.

We further conduct a case study in a global billion-user

FinTech company Ant Group to apply MirrorTaint to their

industrial microservice applications, and compare its explored

data relations with a mature developer-experience-based data

checking system widely used in the company. As a result,

while such a system only covers 84.0% relations, MirrorTaint

achieves 100.0% precision and 99.0% recall in exploring data

relations. We also apply MirrorTaint to a recent influential

Log4j2 security vulnerability and find that MirrorTaint pre-

cisely detects that vulnerability. To summarize, our paper

makes the following contributions:

• To our best knowledge, MirrorTaint is the first work to

build mirrored memory structures for JVM-based programs

to perform dynamic taint analysis, i.e., creating an isolated

mirrored space for taint storage/propagation and keeping

original program meta-data for non-intrusive execution of

microservice applications.

• We have implemented MirrorTaint, the first practical dy-

namic taint analysis technique which can be extensively ap-

plied to modern JVM-based microservice systems. It lever-

ages extensive bytecode engineering based on ASM [35]

and javaagent [36] to mirror the application memory space

and operate taints in this mirrored space while keeping the

on Android systems by integrating 4 granularities of taint prop-

agation in terms of variables, messages, methods, and files.

For the typical operation system threat that multiple threads

in a JVM process sharing the same security domain even with

illegal information flows, Azadmanesh et al. [42] proposed

SEJVM, a modified JVM to dynamically track information

flows and associate them with confidentiality polices. Lam et

al. [43] proposed GIFT, a compiler for C programs, which is

integrated with general dynamic information flow framework

and provides interfaces for user-defined tag initialization, prop-

agation, and processing. Although these techniques extend the

ability of hardware and runtime systems, their practicability

can be limited due to the strong coupling with specific runtime

systems. For example, TaintDroid has to make efforts on

supporting different Android system versions which can be

rather cost-inefficient.

Taint tracking logics have also been implemented by in-

strumenting executable binaries. Clause et al. [23] proposed

a general dynamic taint tracking framework and implemented

Dytan prototype tool to track taints in x86 binaries. Kemerlis et

al. [26] proposed Libdft to manage tags in a shadow memory

and track taints through binary instrumentation. Newsome et

al. [44] proposed TaintCheck to detect overwrite attacks, which

uses shadow memory with page-table-like structure for each

byte of memory to track data operation instructions and taint

propagation. Note that these techniques mainly target binary

programs and are not applicable to the stack-based memory

layout of JVMs since they will have to modify JVMs which is

not portable and may bring stability/cost issues in production

environment to hinder the execution of microservices.

As for dynamic taint analysis for JVM-based programs,

Bell et al. [17] proposed state-of-the-art Phosphor which

instruments JDKs and dynamically tracks taints by modifying

the bytecode of the executing programs. However, Phosphor

suffers from program meta-data pollution (details shown in

Section III).

III. MOTIVATION

Many microservice frameworks adopt bytecode inspec-

tions/modifications based techniques, e.g., the widely-used

Aspect-Oriented Programming (AOP) [33] and Dependency

Injection (DI) [32] techniques which use JDK reflection, ASM,

and other bytecode operation libraries to construct invocations

and dynamically create instances at runtime.

Existing static taint analysis techniques such as Flow-

Droid [29] hardly support generic microservice systems. For

example, when certain fields are left uninitialized for DI

at runtime, such techniques cannot figure out the concrete

type of the field, missing taints passed to it. Additionally,

such techniques are usually insufficiently precise either. For

example, static taint analysis tools cannot accurately predict

element states inside the container-type data structures such

as Array, Map and Collection and thus can hardly find out

whether their inclusive elements are tainted.

Existing dynamic taint analysis techniques modifying oper-

ating systems [18], [27] and virtual machines [42], [45], [46]

1 - public class Example {

2 + public class Example implements TaintedWithObjTag{

3 + public Taint PHOSPHOR_TAG; // Taint for Example object

4

5 static int val;

6 + public static Taint valPHOSPHOR_TAG; // Taint for field val

7

8 int doMath(int in) {

9 - return in + val;

10 + return this.doMath$$PHOSPHORTAGGED(Taint.emptyTaint(), in,

11 + Taint.emptyTaint(), new TaintedIntWithObjTag()).val;

12 }

13

14 + TaintedIntWithObjTag doMath$$PHOSPHORTAGGED(Taint var1, int in,

15 + Taint in$$PHOSPHORTAGGED, TaintedIntWithObjTag var4) {

16 + Taint ret$$PHOSPHORTAG =

17 + Taint.combineTags(in$$PHOSPHORTAGGED, valPHOSPHOR_TAG);

18 + var4.taint = ret$$PHOSPHORTAG;

19 + var4.val = in + val;

20 + return var4;

21 + }

22 }

Fig. 2: Phosphor Instrumentation Example

can also hardly support generic microservice systems under

various environments due to their unportability. As source

code can be often unavailable in deployment environments,

dynamic taint analysis techniques based on modifying the

source code [43], [47] can be quite impractical.

Although state-of-the-art Phosphor [17] attempts to modify

the bytecode of the applications, it also needs to modify the

program meta-data during bytecode instrumentation and can

hinder the meta-data inspection techniques widely adopted in

microservice systems such as AOP and DI, severely impacting

its applicability on microservice systems.

Figure 2 shows an example of Phosphor instrumenting

a class. First, the class is implementing a new interface

(Line 2). Next, the class instances’ taints are stored in an

inserted field in the class (Line 3) and the primitive field’s

taint is stored in the inserted field inside the same class

(Line 6). The method is further instrumented into Phosphored

method (Lines 14-21) whose parameter list is expanded to

allow taints to pass through method invocations and the

return type is changed to a customized container type to

contain both the taint and the returned value. Actually, we

have observed many cases where such meta-data modification

breaks the functionalities of microservice frameworks when

the frameworks check the number of implemented interfaces,

the signatures of fields/methods, the elements in stack traces,

etc. For example, in the processRaftService method of

a class [48] in a microservice framework, the number of the

interfaces implemented by the application class is asserted to

be 1, which causes the Phosphor-instrumented application to

crash because Phosphor makes the class implement an extra

interface TaintedWithObjTag.

Because of such a flaw in its design, Phosphor cannot

completely handle the meta-data inspection issues as such

issues can be endless regarding the diversity of various

microservice architectures and inspection approaches. For

example, by investigating its commit logs, we found that

Phosphor has been struggling for such issues since 2015 [49].

Figure 3 shows that in the commit “Bug fixes for re-

cent versions of Spring” [50], when Spring frame-

work uses an AnnotationMetadataReadingVisitor

are dumped, the information of the current trace is recorded

as well. Next, MirrorTaint links the taint tracking results of

the caller/callee services by the following criteria: (1) their

taint tracking results are dumped in the same trace; (2) the

sink data identifier in the caller service matches the source

data identifier in the callee service. In this way, by matching

the output data (sinked) of one service and the input data

(sourced) of another service, MirrorTaint is able to show how

the taint can be propagated across different services in the

whole invocation trace.

V. EVALUATION

Our evaluation addresses the following research questions:

• RQ1 How does MirrorTaint perform compared to other taint

analysis tools on open-source microservice systems in terms

of precision and recall?

• RQ2 How does MirrorTaint perform compared to Phosphor

in terms of overhead on open-source microservice systems?

• RQ3 How does MirrorTaint perform on commercial sys-

tems?

A. Benchmarks

Table I presents the benchmarks adopted for the evaluation,

including 8 open-source projects and 5 industrial projects. In

order to collect open-source microservice systems, we collect

the benchmarks from GitHub by the following process: Firstly

we search the projects with the keyword “microservice”, so

that the displayed projects are all related to microservice. Next,

since MirrorTaint aims at the applications executed on JVMs

and most of the microservice applications running on JVMs

are written in Java, we further filter the displayed results by the

Java language. Furthermore, we sort the search results by the

star numbers in order to select more influential projects. Then,

we manually inspect each result in the first 5 pages to select

the projects that are microservice applications instead of tools,

plugins, libraries or frameworks. Finally, we clone and execute

the projects following the instructions on their documentations.

We notice that only 8 applications meet our requirements

because 1) microservice systems are intrinsically hard to build

due to its complexity and distributed design and 2) outdated

third-party components like databases, message brokers, and

other services can cause problems in our environment. As a

result, we collect these 8 popular open-source microservice

applications as our open-source benchmarks.

Additionally, in order to investigate the effectiveness of

MirrorTaint in industry, we cooperated with a world-leading

FinTech company Ant Group, which provides services to more

than one billion users. In Ant Group, fund consignment is

one important business with more than 90 fund companies

as consignors. Specifically, the users purchase funds on the

platform provided by Ant Group which, as a broker, gener-

ates multiple standardized fund documents with the rigorous

format regulated by Ant Group’s residential country. Such

files contain the transaction data (including customers’ trading

records and acknowledgments of receipt) for each consignor

which are transferred to them through FTP at the end of each

TABLE I: Subjects
Open-source Microservice System Description LoC Star

ctripcorp/apollo Configuration management system 55473 27.7k

sqshq/piggymetrics Financial advisor app 3292 12.1k

zlt2000/microservices-platform Enterprise-class microservice application 17732 3.9k

microservices-demo/microservices-demo Online sock shop 3577 3.3k

febsteam/FEBS-Cloud Permission management system 9924 1.6k

techa03/goodsKill Online flash sale system 7340 1.4k

macrozheng/mall-swarm Shopping mall management system 65720 9.8k

GoogleLLP/SuperMarket Online supermarket app 2399 1.8k

Industry Microservice System Description LoC TPM

finfundtrade Fund transaction system 252516 2693302.4

finfundtaskcenter Fund clearing system 295259 200405.7

finfundprotocol Fund protocol system 84544 5182782.6

finfundmng Fund back-end management system 65953 182569.3

finvirtualta Fund virtual transfer agent system 57589 2026439.1

day. Subsequently, the transactions take effect for the users

by processing these documents. In order to protect the users’

financial security, it is vital for Ant Group to ensure the data

correctness of programs for generating fund documents since

a small error can spread to all the consignors easily.

In Ant Group, we deploy MirrorTaint on the pre-launch

environments of 5 core microservice applications involved

in generating fund documents such as transaction, protocol,

and clearing to explore the source-sink data relations. Table I

presents the statistics about our studied projects, including the

star number in GitHub for the open-source projects, the aver-

age Transaction Per Minute (TPM) for industrial microservice

systems, and their lines of code (LoC). Note that the detailed

studied services and APIs of open-source systems are shown

later in Table II, while those of industrial systems are omitted

in this paper for brevity due to their excessively large amount.

B. Implementation

We implement MirrorTaint in Java and utilize ASM [35] and

javaagent [36] to instrument JVM bytecode at runtime. With

over 20,000 lines of Java code, MirrorTaint has been care-

fully implemented to support both open-source and industrial

microservice systems so that the input/output of microservice

APIs are sourced/sinked as described in Section IV-B.

C. Experimental Setup

1) Environment: All of our experiments are performed on

an Ubuntu Server 20.04 LTS with Intel Xeon CPU E5-4610

and 320 GB memory. While MirrorTaint essentially can run on

different JVMs, i.e., is not specific to JVM implementations,

we adopt Hotspot JDK8u252-b09 as the JVM to perform our

evaluations in this paper due to page limit. We execute each

evaluation task for 20 times to obtain their average results.

2) Approaches for Comparison: We determine to adopt the

state-of-the-art dynamic taint analysis technique Phosphor [17]

and static taint analysis technique FlowDroid [29] for perfor-

mance comparison. Note that although there are other potential

options, they are selected because (1) they represent state-of-

the-art dynamic and static taint analysis, and (2) their source

code is publicly available for successful execution.

3) Metrics: Following prior work [17], [29], we adopt the

widely-used metrics for evaluating our studied approaches:

precision, recall, and time overhead. Since the output of taint

analysis is data relations (aka. source-sink pairs [54]–[56],

which are used to check data correctness, track suspicious

outer input, prevent data leaks, etc), we use the reported

data relations to calculate precision and recall. Specifically,

precision refers to the fraction of correctly found data relations

among the all the relations found, while recall refers to the

fraction of correctly found data relations among all the ground-

truth relations. Time overhead refers to the extra execution

time when applying taint analysis tools to the benchmarks.

D. Result Analysis

1) RQ1: Precision and Recall on Open-source Benchmarks:

As stated in Section IV-B, the sink sites (where the data is

likely to be exposed to external environments) are tightly

associated with communications between microservice sys-

tem components. Since such communications can be time-

consuming [57], [58], we determine to use the 5 most time-

consuming APIs of each open-source project as the bench-

marks. For the API having its corresponding test(s), we

directly use such tests. Otherwise we write a test to invoke

the API to simulate user operations. Specifically, for a test

case T, the ground truth is defined by the pairs of the tainted

variable at the sink site and the corresponding sourced variable

which propagates the taint to it on the T’s execution path.

Therefore, we collected the test execution code coverage and

manually analyzed the data-flow along the exact test execution

path to find such ground truth relations and compare it with

the analysis results of MirrorTaint, Phosphor and FlowDroid.

Their precision and recall results are shown in the columns

4-7 in Table II where “F” and “M” respectively denote found

and missed data relations. Additionally, the numbers of false

positives are denoted with parentheses in the column “F”.

We can observe from the results that MirrorTaint has found

all the relations while incurring 9 false positives. We find

such false positives are caused by “over-taint” which means

some variables are unnecessarily tainted when a variable

is correctly tainted. For example, as the “String” class is

immutable in Java, when tainting a constant String variable,

other variables sharing the same constant String value will

be tainted as well. Moreover, because of the Java Integer

caching mechanism [59], where the Integer objects from -128

to 127 are cached internally and reused when creating a new

Integer, multiple Integer variables can be tainted together when

they share the same Integer objects. As a result, MirrorTaint

achieves 97.9% precision and 100.0% recall.

Note that FlowDroid and Phosphor actually report the

results of analysis at a coarser-grained statement granularity,

while MirrorTaint’s variable-granularity reports present not

only sink/source statements but also the specific values and

variables that are tainted at the sink statement. For example,

consider an object O sourced at source statement Ssr and

its taint found at sink statement Ssk. While FlowDroid and

Phosphor report Ssr and Ssk, MirrorTaint also reports the

presence of taint in the fields (including recursive ones) of O

at Ssk. For an illustration of the comparison of the results of

these tools, refer to an example provided in our repository [51].

Therefore, MirrorTaint and FlowDroid/Phosphor derive differ-

ent ground-truth results and we have to define the “M” column

differently (“M” in table) for FlowDroid and Phosphor, i.e.,

missed reports for sink-source statements instead of missed

variable relations. As the result shows, FlowDroid produces

empty results for most of the APIs. We find that FlowDroid

fails to support taint tracking in asynchronized invocations

and polymorphism scenarios. Notably, since the sink-source

statements found by FlowDroid are quite simple, FlowDroid

does not incur any false positives. Finally, while FlowDroid

results in 100% precision, it only enables 28.2% recall and

misses 51 records. On the other hand, Phosphor fails to

execute 7 out of the 8 benchmarks. Their failure messages

all imply meta-data-related issues which can hardly be fixed

once and for all. As for the benchmark which can be executed

with Phosphor, Phosphor finds all the sink-source statements,

leading to a precision of 100.0% and a recall of 9.9%.

In order to investigate the contributions made by the compo-

nents of MirrorTaint, we implement a variant of MirrorTaint

marked as MirrorTaintTH by disabling the TaintStackFrame

(MirrorTaint cannot work without TaintHeap). As Mirror-

TaintTH cannot store the taints of primitive types without

TaintStackFrame, it loses the relations when primitive wrapper

types are cast into primitive types. However, such cases are

not common. As shown in Table II, MirrorTaint without

TaintStackFrame can still achieve 98.1% precision and 97.9%

recall. Note that it enables higher precision than MirrorTaint

because it misses some data relations that are false positives

in MirrorTaint’s results. Therefore, we can infer that Mirror-

TaintTH is capable of exploring most relations.

In a nutshell, MirrorTaint is close in precision and superior

in recall compared to state-of-the-art Phosphor and FlowDroid.

2) RQ2: Overhead on Open-source Benchmarks: For the

overhead of MirrorTaint/Phosphor (static techniques like

FlowDroid do not dynamically execute the application, thus

incomparable), we collect the time/memory costs of the orig-

inal API executions, followed by the time/memory costs of

the same process while applying MirrorTaint’s and Phosphor’s

javaagents. As presented in the last two columns of Table II,

where TO/MO, TMirrorTaint/MMirrorTaint and TPhos/MPhos refer to

the runtime/memory costs of the original execution, Mirror-

Taint, and Phosphor respectively. The numbers in parentheses

indicate the overhead percentage. Specifically, for the only

microservice application (i.e., SockShop) Phosphor can run

on, MirrorTaint incurs 83.4% runtime overhead and 167.6%

memory overhead on average, while Phosphor incurs 138.6%

and 40.36%. Overall, MirrorTaint achieves an average 32.7%

runtime overhead and 127.9% memory overhead on all studied

APIs. Note that such memory overhead is normally acceptable

following prior work (e.g., DYTAN [23]).

Interestingly, although high memory overhead cases (e.g.,

greater than 500%) are observed from the memory overhead

results, such cases are mainly distributed in the benchmarks

with low/moderate memory usage (less than 1000kB) as shown

in Figure 8. On the benchmarks consuming more than 1000

kB, MirrorTaint’s memory overhead is much more stable,

i.e., having a relatively low percentage (around 100%), which

implies the scalability of MirrorTaint.

3) RQ3: MirrorTaint in Industry:

REFERENCES

[1] “Microservices,” https://en.wikipedia.org/wiki/Microservices, 2022.

[2] “Microservices vs monolith: The ultimate comparison 2021.” https://
www.clickittech.com/devops/microservices-vs-monolith/, 2022.

[3] “The state of developer ecosystem 2021 - microservices.” https://www.
jetbrains.com/lp/devecosystem-2021/microservices/, 2022.

[4] “The architecture of uber’s api gateway.” https://eng.uber.com/
architecture-api-gateway/, 2022.

[5] “The uber engineering tech stack, part i: The foundation.” https://eng.
uber.com/tech-stack-part-one-foundation/, 2022.

[6] “How airbnb and twitter cut back on mi-
croservice complexities.” https://thenewstack.io/
how-airbnb-and-twitter-cut-back-on-microservice-complexities/,
2022.

[7] “Spring boot @ paypal.” https://www.infoq.com/presentations/
paypal-spring-boot/, 2022.

[8] “Java virtual machine,” https://en.wikipedia.org/wiki/Java virtual
machine, 2022.

[9] “Apollo.” https://github.com/spotify/apollo, 2022.

[10] “Netflix open source software center.” https://netflix.github.io/, 2022.

[11] “Sofaboot.” https://github.com/sofastack/sofa-boot, 2022.

[12] “Cve-2021-44228.” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-44228, 2022.

[13] “Apache log4j 2.” https://logging.apache.org/log4j/2.x/, 2022.

[14] “The log4j bug exposes a bigger issue: Open-
source funding.” https://thenextweb.com/news/
log4j-bug-internet-open-source-contributors-analysis, 2022.

[15] “Cisa log4j (cve-2021-44228) affected vendor software
list.” https://github.com/cisagov/log4j-affected-db/blob/develop/
SOFTWARE-LIST.md, 2022.

[16] “Akamai recommendations for log4j mitigation.” https://www.akamai.
com/blog/security/akamai-recommendations-for-log4j-mitigation, 2022.

[17] J. Bell and G. Kaiser, “Phosphor: Illuminating dynamic data flow in off-
the shelf jvms,” in Proceeding of the 29th ACM SIGPLAN Conference

on Object Oriented Programming Systems Languages and Applications,
ser. OOPSLA 2014, 2014, acceptance rate: 28expectations. [Online].
Available: https://jonbell.net/publications/phosphor

[18] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: An information-flow
tracking system for realtime privacy monitoring on smartphones,” ACM

Trans. Comput. Syst., vol. 32, no. 2, Jun. 2014. [Online]. Available:
https://doi.org/10.1145/2619091

[19] A. Reina, A. Fattori, and L. Cavallaro, “A system call-centric analysis
and stimulation technique to automatically reconstruct android malware
behaviors,” in ACM European Workshop on Systems Security (EuroSec).
ACM, Apr. 2013.

[20] L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis,” in
Proceedings of the 21st USENIX Conference on Security Symposium,
ser. Security’12. USA: USENIX Association, 2012, p. 29.

[21] W. Chang, B. Streiff, and C. Lin, “Efficient and extensible security
enforcement using dynamic data flow analysis,” in Proceedings

of the 15th ACM Conference on Computer and Communications

Security, ser. CCS ’08. New York, NY, USA: Association for
Computing Machinery, 2008, p. 39–50. [Online]. Available: https:
//doi.org/10.1145/1455770.1455778

[22] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige, “Tainttrace: Efficient flow
tracing with dynamic binary rewriting,” in 11th IEEE Symposium on

Computers and Communications (ISCC’06), 2006, pp. 749–754.

[23] J. Clause, W. Li, and A. Orso, “Dytan: A generic dynamic taint analysis
framework,” in Proceedings of the 2007 International Symposium on

Software Testing and Analysis, ser. ISSTA ’07. New York, NY, USA:
Association for Computing Machinery, 2007, p. 196–206. [Online].
Available: https://doi.org/10.1145/1273463.1273490

[24] M. Ganai, D. Lee, and A. Gupta, “Dtam: Dynamic taint analysis
of multi-threaded programs for relevancy,” in Proceedings of the

ACM SIGSOFT 20th International Symposium on the Foundations

of Software Engineering, ser. FSE ’12. New York, NY, USA:
Association for Computing Machinery, 2012. [Online]. Available:
https://doi.org/10.1145/2393596.2393650

[25] V. Haldar, D. Chandra, and M. Franz, “Dynamic taint propagation
for java,” in 21st Annual Computer Security Applications Conference

(ACSAC’05), 2005, pp. 9 pp.–311.

[26] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis,
“Libdft: Practical dynamic data flow tracking for commodity systems,”
in Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on

Virtual Execution Environments, ser. VEE ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 121–132. [Online].
Available: https://doi.org/10.1145/2151024.2151042

[27] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” in Proceedings of

the 11th International Conference on Architectural Support for Program-

ming Languages and Operating Systems, ser. ASPLOS XI. Association
for Computing Machinery, 2004, p. 85–96.

[28] M. Azadmanesh and M. Sharifi, “Towards a system-wide and transparent
security mechanism using language-level information flow control,” 01
2010, pp. 19–26.

[29] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proceedings of the 35th ACM SIGPLAN Conference on

Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
259–269. [Online]. Available: https://doi.org/10.1145/2594291.2594299

[30] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, and
R. Berg, “F4f: Taint analysis of framework-based web applications,”
in Proceedings of the 2011 ACM International Conference on Object

Oriented Programming Systems Languages and Applications, ser.
OOPSLA ’11. New York, NY, USA: Association for Computing
Machinery, 2011, p. 1053–1068. [Online]. Available: https://doi.org/10.
1145/2048066.2048145

[31] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: Statically
vetting android apps for component hijacking vulnerabilities,” in
Proceedings of the 2012 ACM Conference on Computer and

Communications Security, ser. CCS ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 229–240. [Online].
Available: https://doi.org/10.1145/2382196.2382223

[32] “Dependency injection,” https://en.wikipedia.org/wiki/Dependency
injection, 2022.

[33] “Aspect-oriented programming,” https://en.wikipedia.org/wiki/
Aspect-oriented programming, 2022.

[34] “Spring,” https://spring.io/, 2022.

[35] “Asm,” https://asm.ow2.io/, 2022.

[36] “Package java.lang.instrument.” https://docs.oracle.com/javase/7/docs/
api/java/lang/instrument/package-summary.html, 2022.

[37] “Java bytecode,” https://en.wikipedia.org/wiki/Java bytecode, 2022.

[38] “Java reflection,” https://docs.oracle.com/javase/8/docs/technotes/guides/
reflection/index.html, 2022.

[39] “Javassist,” https://www.javassist.org/, 2022.

[40] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in java
applications with static analysis,” in Proceedings of the 14th Conference

on USENIX Security Symposium - Volume 14, ser. SSYM’05. USA:
USENIX Association, 2005, p. 18.

[41] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: a static analysis tool for
detecting web application vulnerabilities,” in 2006 IEEE Symposium on

Security and Privacy (SP’06), 2006, pp. 6 pp.–263.

[42] M. R. Azadmanesh and M. Sharifi, “Towards a system-wide and
transparent security mechanism using language-level information flow
control,” in Proceedings of the 3rd International Conference on

Security of Information and Networks, ser. SIN ’10. New York, NY,
USA: Association for Computing Machinery, 2010, p. 19–26. [Online].
Available: https://doi.org/10.1145/1854099.1854107

[43] L. C. Lam and T.-c. Chiueh, “A general dynamic information flow
tracking framework for security applications,” in 2006 22nd Annual

Computer Security Applications Conference (ACSAC’06), 2006, pp.
463–472.

[44] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software.” in NDSS, vol. 5. Citeseer, 2005, pp. 3–4.

[45] D. Chandra and M. Franz, “Fine-grained information flow analysis
and enforcement in a java virtual machine,” in Twenty-Third Annual

Computer Security Applications Conference (ACSAC 2007), 2007, pp.
463–475.

[46] S. K. Nair, P. N. D. Simpson, B. Crispo, and A. S. Tanenbaum, “A virtual
machine based information flow control system for policy enforcement,”
Electron. Notes Theor. Comput. Sci., vol. 197, no. 1, p. 3–16, Feb.
2008. [Online]. Available: https://doi.org/10.1016/j.entcs.2007.10.010

[47] W. Xu, S. Bhatkar, and R. Sekar, “Taint-enhanced policy enforcement:
A practical approach to defeat a wide range of attacks,” in 15th

USENIX Security Symposium (USENIX Security 06). Vancouver,
B.C. Canada: USENIX Association, Jul. 2006. [Online]. Available:
https://www.usenix.org/conference/15th-usenix-security-symposium/
taint-enhanced-policy-enforcement-practical-approach

[48] “RaftAnnotationBeanPostProcessor.java.” https://www.
programcreek.com/java-api-examples/?code=sofastack%
2Fsofa-registry%2Fsofa-registry-master%2Fserver%2Fserver%
2Fmeta%2Fsrc%2Fmain%2Fjava%2Fcom%2Falipay%2Fsofa%
2Fregistry%2Fserver%2Fmeta%2Frepository%2Fannotation%
2FRaftAnnotationBeanPostProcessor.java, 2022.

[49] “Reflection fixes,” https://github.com/gmu-swe/phosphor/commit/
081ff88f884497621eefd9e8016b9256e99e6a3f, 2022.

[50] “Bug fixes for recent versions of spring,” https://github.com/gmu-swe/
phosphor/commit/ca362a4a978778884a478f44b2479d5f302c00fd,
2022.

[51] “MirrorTaint repository.” https://github.com/MirrorTaint/MirrorTaint,
2022.

[52] “The java virtual machine instruction set.” https://docs.oracle.com/
javase/specs/jvms/se8/html/jvms-6.html, 2022.

[53] “Spring cloud sleuth.” https://spring.io/projects/spring-cloud-sleuth,
2022.

[54] L. Luo, E. Bodden, and J. Späth, “A qualitative analysis of android taint-
analysis results,” in 2019 34th IEEE/ACM International Conference on

Automated Software Engineering (ASE), 2019, pp. 102–114.
[55] X. Fu and H. Cai, “A dynamic taint analyzer for distributed

systems,” ser. ESEC/FSE 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 1115–1119. [Online]. Available:
https://doi.org/10.1145/3338906.3341179

[56] S. Wei and B. G. Ryder, “Practical blended taint analysis for
javascript,” ser. ISSTA 2013. New York, NY, USA: Association
for Computing Machinery, 2013, p. 336–346. [Online]. Available:
https://doi.org/10.1145/2483760.2483788

[57] “Overcoming io overhead in micro-services.” https://kislayverma.com/
programming/overcoming-io-overhead-in-micro-services/, 2022.

[58] “Microservice trade-offs.” https://martinfowler.com/articles/
microservice-trade-offs.html, 2022.

[59] “Java integer cache.” https://javapapers.com/java/java-integer-cache/,
2022.

[60] “Why is the log4j cybersecurity flaw the ‘most
serious’ in decades?” https://nypost.com/2021/12/20/
why-is-the-log4j-cybersecurity-flaw-the-most-serious-in-decades/,
2022.

[61] “Log4j could be the most serious security threat ever
seen, cisa head warns.” https://www.techradar.com/news/
log4j-could-be-the-most-serious-threat-ever-seen-cisa-head-warns,
2022.

[62] “Log4j vulnerability causes global panic.” https://www.israeldefense.co.
il/en/node/52976, 2022.

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	JVM and Java Bytecode
	Data Types and Meta-data
	JVM Memory and Execution Model

	Taint Analysis
	Static Taint Analysis
	Dynamic Taint Analysis

	MOTIVATION
	APPROACH
	Taint Storage
	Data Structures
	Storage Principles

	Source and Sink Automatically for Microservice Systems
	Taint Propagation
	Interprocedural Taint Propagation
	Intraprocedural Taint Propagation

	Instruction Overwriting
	Cross-service Taint Tracking

	EVALUATION
	Benchmarks
	Implementation
	Experimental Setup
	Environment
	Approaches for Comparison
	Metrics

	Result Analysis
	RQ1: Precision and Recall on Open-source Benchmarks
	RQ2: Overhead on Open-source Benchmarks
	RQ3: MirrorTaint in Industry

	THREATS TO VALIDITY
	CONCLUSION
	References

