MirrorTaint: Practical Non-intrusive Dynamic Taint
Tracking for JVM-based Microservice Systems

Kailai Shao
Ant Group
Shanghai, China
kailai.skl@antgroup.com

Yicheng Ouyang
University of llinois
Urbana-Champaign, USA
youyang8 @illinois.edu

Chao Chen, Mingze Xu
Ant Group
Shanghai, China
{chixi.cc,mingze.xmz} @antgroup.com

Yuqun Zhang*
Southern University of
Science and Technology

Shenzhen, China

Kungiu Chen
Southern University of
Science and Technology

Shenzhen, China

Ruobing Shen

Peking University

Beijing, China
ruobingshen @pku.edu.cn

11911626 @mail.sustech.edu.cn

Lingming Zhang
University of Illinois
Urbana-Champaign, USA
lingming @illinois.edu

zhangyq@sustech.edu.cn

Abstract—Taint analysis, i.e., labeling data and propagating the
labels through data flows, has been widely used for analyzing pro-
gram information flows and ensuring system/data security. Due
to its important applications, various taint analysis techniques
have been proposed, including static and dynamic taint analysis.
However, existing taint analysis techniques can be hardly applied
to the rising microservice systems for industrial applications.
To address such a problem, in this paper, we proposed the
first practical non-intrusive dynamic taint analysis technique
MirrorTaint for extensively supporting microservice systems on
JVMs. In particular, by instrumenting the microservice systems,
MirrorTaint constructs a set of data structures with their respec-
tive policies for labeling/propagating taints in its mirrored space.
Such data structures are essentially non-intrusive, i.e., modifying
no program meta-data or runtime system. Then, during program
execution, MirrorTaint replicates the stack-based JVM instruction
execution in its mirrored space on-the-fly for dynamic taint
tracking. We have evaluated MirrorTaint against state-of-the-art
dynamic and static taint analysis systems on various popular
open-source microservice systems. The results demonstrate that
MirrorTaint can achieve better compatibility, quite close precision
and higher recall (97.9%/100.0%) than state-of-the-art Phosphor
(100.0%/9.9%) and FlowDroid (100%/28.2%). Also, MirrorTaint
incurs lower runtime overhead than Phosphor (although both
are dynamic techniques). Moreover, we have performed a case
study in Ant Group, a global billion-user FinTech company,
to compare MirrorTaint and their mature developer-experience-
based data checking system for automatically generated fund
documents. The result shows that the developer experience can be
incomplete, causing the data checking system to only cover 84.0%
total data relations, while MirrorTaint can automatically find
99.0% relations with 100.0% precision. Lastly, we also applied
MirrorTaint to successfully detect a recently wide-spread Logd4j2
security vulnerability.

Index Terms—dynamic taint analysis, microservice, JVM

I. INTRODUCTION

Nowadays, the microservice architecture [1], which refers
to decomposing software into small independent services that

*Yuqun Zhang is the corresponding author.

communicate over well-defined APIs (the resulting compo-
nents are called microservices), has become dominating in
industrial applications. In contrast to developing traditional
monolithic applications which can be quite inefficient (espe-
cially for big code base) [2], the microservice architecture
is advanced in enabling a lightweight development paradigm
of industrial applications. According to the JetBrains survey
in 2021 upon 31,743 developers from 183 countries/regions,
35% of all respondents develop microservices, among whom
88% adopt microservice for their system design, where Java is
the most popular programming language (41%) [3]. Big tech
companies, e.g., Uber [4], [5], Twitter [6], and Paypal [7], all
build their microservices upon Java Virtual Machines (JVMs)
[8]. They also contribute many frameworks for developing
JVM-based microservices, e.g., Spotify’s appollo [9], Netflix
OSS [10], and Alibaba’s SOFABoot framework [11], which
have been widely used by industrial cloud applications.

However, JVM-based microservice systems can be vulner-
able to data security threats, which can cause severe dam-
ages, e.g., million-dollar or even billion-dollar losses. For
example, a vulnerability [12] in widely-used Java logging
library Log4j2 [13] reported on November 24, 2021 allows
easily executing malicious code from attackers’ servers when
logging certain strings inputted by users. Such vulnerability
posed severe threats to almost all big companies like Google,
IBM, Intel, Apple, Microsoft, Tesla, VMware, Zoom, and
Cloudflare [14], [15] with millions of attacks per hour glob-
ally [16]. Volume developers worldwide have worked intensely
to resolve such issues in their respective applications and the
caused loss is still beyond estimation till now.

Taint analysis, which has been widely adopted in practice
to explore the dependencies between data during program
execution [17]-[30], is in nature the solution for such data
security threat to Java-based microservice systems above.
A typical taint analysis technique firstly marks the source
variables with taints (aka. sourcing). Next, it propagates such

taints between variables through pre-defined propagation rules.
Finally, the target variables are inspected for whether they
are attached with taints (aka. taint sinking). In general, taint
analysis techniques can be categorized into two dimensions:
static taint tracking and dynamic taint tracking. In particular,
static taint analysis techniques [29]-[31] apply static program
analysis to leverage control-flow graphs and call graphs for
further taint analysis. On the other hand, dynamic taint analysis
techniques [17]-[28] track taints by modifying the runtime
systems (e.g., operating systems and virtual machines) or
program source/intermediate code. Such techniques, if built
precisely, could sensitively track the spread range of program
information and facilitate multiple security tasks, e.g., privacy
leak detection of operation/back-end systems [18], [28].

Ideally, to solve the aforementioned Log4j2 vulnerability,
one can simply adopt the idea of taint analysis — taint-
ing the untrustworthy inputs from outside, and terminating
the ongoing execution when identifying Log4j2 attempts to
evaluate tainted variables. However, JVM-based microservice
architectures can hardly be fully supported by the existing
dynamic or static taint analysis techniques. To illustrate, static
taint analysis techniques [29]-[31] can incur false positives
due to its unawareness of the real-time execution paths.
Specifically, such techniques usually collect taints through
all the possible paths, resulting in inevitable impreciseness.
On the other hand, while dynamic taint analysis techniques
can be essentially more precise compared with static taint
analysis techniques, they tend to result in poor portability by
modifying the specific execution runtime systems for various
microservice systems, which is impractical and even unaccept-
able in industrial production environment where risks cannot
be taken to affect stability of runtime systems. Intuitively, such
issues can be potentially addressed by modifying the source
code to extensively track taints. However, it can be quite
impractical since the source code can often be unavailable.
Note that while recent effort, i.e., Phosphor [17], attempts
to modify program bytecode for enhancing portability and
feasibility, it still cannot be applied to extensively support
microservice systems because it requires to instrument the
Java Development Kit (JDK) and modify the program meta-
data (e.g., class fields, method parameters and return types).
For example, such meta-data modifications can easily fail the
object serialization/de-serialization process widely adopted in
microservice communication. Moreover, they can also fail
the meta-data inspections/modifications adopted by widely-
used dependency injection (DI) [32] and Aspect-Oriented
Programming (AOP) [33] techniques for microservice systems,
e.g., Spring-based systems [34].

To make dynamic taint analysis practical to microservice
systems, our insight is to mirror the application memory
space and enable the taint operations in that mirrored memory
space to retain program meta-data and make dynamic taint
analysis practical on microservice applications. To this end,
in this paper, we present the first non-intrusive dynamic
taint analysis technique, MirrorTaint, which keeps meta-data
in JVM classes infact during instrumentation and can be

widely used in various microservice systems. In particular,
MirrorTaint contains three components in its mirrored mem-
ory space (named mirrored space) to dynamically track the
taints: TaintHeap, TaintStackFrame, and StackFrameRegister.
TaintHeap and TaintStackFrame are two specifically designed
data structures for mirroring the heap and stack in JVM to
store the taints of variables. Moreover, they also re-implement
the associated JVM instructions in terms of taints instead of
associated variables at runtime, as their “mirror’s. To realize
such execution replication, we also design StackFrameRegis-
ter, a temporary taint storage to pass the taints across JVM
stack frames. These components enable MirrorTaint to track
taints without modifying the meta-data of the programs in
field- and object-sensitive manners. Additionally, in order
to further support microservice scenarios, MirrorTaint also
supports automatically taint sourcing and sinking for input
and output data of various APIs, as well as user-defined
taint propagation rules. Noticing that by adopting such an
automatic sourcing and sinking mechanism, MirrorTaint can
track taints across different services in a post-analysis manner,
even though the data communicated between services is not
tainted. However, it is still limited in 1) not supporting implicit
information flow, 2) relying on pre-defined rules to handle
native methods and 3) incurring relatively high memory costs.

We evaluate MirrorTaint on a set of popular (reflected by
star numbers) and available open-source microservice systems
on GitHub. The evaluation result presents that MirrorTaint
can achieve very close precision (97.9%) and superior recall
(100.0%) for taint tracking while two compared state-of-
the-art techniques Phosphor and FlowDroid either result in
limited performance or even fail to be applied. Meanwhile,
MirrorTaint only incurs an overhead of 32.7% on average.
We further conduct a case study in a global billion-user
FinTech company Ant Group to apply MirrorTaint to their
industrial microservice applications, and compare its explored
data relations with a mature developer-experience-based data
checking system widely used in the company. As a result,
while such a system only covers 84.0% relations, MirrorTaint
achieves 100.0% precision and 99.0% recall in exploring data
relations. We also apply MirrorTaint to a recent influential
Log4j2 security vulnerability and find that MirrorTaint pre-
cisely detects that vulnerability. To summarize, our paper
makes the following contributions:

o To our best knowledge, MirrorTaint is the first work to
build mirrored memory structures for JVM-based programs
to perform dynamic taint analysis, i.e., creating an isolated
mirrored space for taint storage/propagation and keeping
original program meta-data for non-intrusive execution of
microservice applications.

« We have implemented MirrorTaint, the first practical dy-
namic taint analysis technique which can be extensively ap-
plied to modern JVM-based microservice systems. It lever-
ages extensive bytecode engineering based on ASM [35]
and javaagent [36] to mirror the application memory space
and operate taints in this mirrored space while keeping the

program meta-data intact.

e We evaluate MirrorTaint upon real-world open-source mi-
croservice benchmarks as well as large-scale industrial mi-
croservice applications. All the evaluation results suggest
that MirrorTaint can substantially outperform state-of-the-
art dynamic and static taint analysis techniques in terms of
compatibility and recall for tracked taints under quite limited
overhead. Moreover, for industrial applications, MirrorTaint
shows its superiority in exploring industrial sensitive data
relations and significantly outperforms a mature developer-
experience-based data checking system in Ant Group. Addi-
tionally, its ability to detect the recent Log4j2 vulnerability
further shows its value in practice.

II. BACKGROUND AND RELATED WORK

In this section, we are going to describe the background
about JVM, Java bytecode, and taint analysis.

A. JVM and Java Bytecode

Java Virtual Machine (JVM) [8] executes the programs writ-
ten by languages that can be compiled into Java bytecode [37].

1) Data Types and Meta-data: There are two general data
types in Java bytecode: the primitive and reference types.
Specifically, the primitive types include boolean, byte,
short, char, int, long, float and double. Each prim-
itive type corresponds to a wrapper type (essentially reference
type), i.e., Boolean, Byte, Short, Character, Inte-
ger, Long, Float, and Double, respectively. On the other
hand, the reference types contain the references/addresses of
objects, e.g., class, interface, and array.

The meta-data of Java bytecode refers to the information
of fields, methods, annotations, inheritance, etc., such as the
descriptor/signature of fields/methods and the number of meth-
ods and fields. Many techniques are proposed to inspect and
modify such bytecode meta-data such as Java reflection [38],
ASM [35], javaassit [39], etc. Note that when performing
code instrumentation, such bytecode-level meta-data can be
changed, causing the execution failure of the original program.

2) JVM Memory and Execution Model: A typical JVM
memory structure contains 5 components: method area, heap,
JVM stacks, pc registers, and native method stacks. The heap
memory and JVM stacks are used to store runtime variables.
JVM stacks contain stack frames with local and temporary
variables, while the heap stores all objects.

JVM constructs its execution model to execute bytecode
instructions. Typically, once a Java method is invoked/ter-
minated, its corresponding JVM stack frame would be
pushed/popped to/from the JVM stack. Specifically, a JVM
stack frame contains local variable array and operand stack for
storing the local/temporary variables. Upon the invocation of
a method, its corresponding stack frame is initialized and the
head of local variable array is initialized with the arguments
passed by the caller. Figure 1 shows an example of the exe-
cution model. When adding two local variables a and b of the
int type and storing the result into the local variable c, firstly
a and b should be loaded to the operand stack (instructions

~

e
Local
Varibles 05] 2 [v [e |
i ,"’ Operand
N il I I I
i o N J ILOAD 1
i Stack Frame T o ~ ILOAD 2
H I ocal N v
T/ Varinbles | s | 2 | b] < |
V) Operand
1
; i sack |2 [o] []
H Stack Frame i g
: ; ~ IADD
! . Local -
P variabies 05 [2 [o [¢ |
1
Operand
[P P -
1 1
B i
: Stack Frame H = A\ TSTORE 3
i oca
[varablos | 15 | a [b [aw]
\\ " Operand
----------------- el ———
JVM Stack \ /

Fig. 1: JVM Execution Model

ILOAD 1 and ILOAD 2). Next, instruction IADD is executed
so that a and b are popped from the operand stack and the
result of their addition is pushed to the operand stack. Finally,
the result is stored into local variable array, where variable ¢
is located (instruction ISTORE 3).

B. Taint Analysis

1) Static Taint Analysis: Many of the static taint analysis
tools target Android applications. Lu et al. [31] studied a vul-
nerability type called component hijacking vulnerability found
in Android apps and proposed a static data flow analysis ap-
proach to automatically detect them. Arzt et al. [29] proposed
FlowDroid, a novel static taint analysis tool which precisely
models Android lifecycle with multidimensional sensitivity to
support both Android and generic Java applications. Sridharan
et al. [30] proposed F4F, which firstly generates a specification
for framework-related behaviors and then performs deeper
static taint analysis on the framework-based applications.
Livshits et al. [40] built a static taint analyzer based on
user-provided specification of vulnerabilities. Although it finds
many vulnerabilities in open-source applications and Java
libraries, its effectiveness relies on the completeness of the
given specification. Targeting vulnerable web applications, Jo-
vanovic et al. [41] proposed Pixy to perform flow-sensitive and
context-sensitive static analysis to detect cross-site scripting
vulnerabilities in PHP scripts. However, it suffers from around
50% false positive rate.

Although static taint analysis techniques are usually ad-
vanced in requiring no program execution and resulting in
high recall, they suffer from high false positive rates and large
analysis overhead. Moreover, since they are not designed to
cope with the techniques leading to undetermined program
behaviors, e.g., aspect-oriented programming [33] and depen-
dency injection [32] which are widely used in microservice
systems, they can be unfit for microservice systems.

2) Dynamic Taint Analysis: A group of dynamic taint
analysis techniques are built upon modifying the hardwares
or runtime systems. Suh et al. [27] implemented dynamic
taint analysis in the hardware level to achieve low space and
performance overhead via a new register and instructions to the
processor to track information flows. Enck et al. [18] imple-
mented a system-wide dynamic taint tracking tool TaintDroid

on Android systems by integrating 4 granularities of taint prop-
agation in terms of variables, messages, methods, and files.
For the typical operation system threat that multiple threads
in a JVM process sharing the same security domain even with
illegal information flows, Azadmanesh et al. [42] proposed
SEJVM, a modified JVM to dynamically track information
flows and associate them with confidentiality polices. Lam et
al. [43] proposed GIFT, a compiler for C programs, which is
integrated with general dynamic information flow framework
and provides interfaces for user-defined tag initialization, prop-
agation, and processing. Although these techniques extend the
ability of hardware and runtime systems, their practicability
can be limited due to the strong coupling with specific runtime
systems. For example, TaintDroid has to make efforts on
supporting different Android system versions which can be
rather cost-inefficient.

Taint tracking logics have also been implemented by in-
strumenting executable binaries. Clause et al. [23] proposed
a general dynamic taint tracking framework and implemented
Dytan prototype tool to track taints in x86 binaries. Kemerlis et
al. [26] proposed Libdft to manage tags in a shadow memory
and track taints through binary instrumentation. Newsome et
al. [44] proposed TaintCheck to detect overwrite attacks, which
uses shadow memory with page-table-like structure for each
byte of memory to track data operation instructions and taint
propagation. Note that these techniques mainly target binary
programs and are not applicable to the stack-based memory
layout of JVMs since they will have to modify JVMs which is
not portable and may bring stability/cost issues in production
environment to hinder the execution of microservices.

As for dynamic taint analysis for JVM-based programs,
Bell et al. [17] proposed state-of-the-art Phosphor which
instruments JDKs and dynamically tracks taints by modifying
the bytecode of the executing programs. However, Phosphor
suffers from program meta-data pollution (details shown in
Section III).

III. MOTIVATION

Many microservice frameworks adopt bytecode inspec-
tions/modifications based techniques, e.g., the widely-used
Aspect-Oriented Programming (AOP) [33] and Dependency
Injection (DI) [32] techniques which use JDK reflection, ASM,
and other bytecode operation libraries to construct invocations
and dynamically create instances at runtime.

Existing static taint analysis techniques such as Flow-
Droid [29] hardly support generic microservice systems. For
example, when certain fields are left uninitialized for DI
at runtime, such techniques cannot figure out the concrete
type of the field, missing taints passed to it. Additionally,
such techniques are usually insufficiently precise either. For
example, static taint analysis tools cannot accurately predict
element states inside the container-type data structures such
as Array, Map and Collection and thus can hardly find out
whether their inclusive elements are tainted.

Existing dynamic taint analysis techniques modifying oper-
ating systems [18], [27] and virtual machines [42], [45], [46]

| - public class Example {

2 + public class Example implements TaintedWithObjTag{

3+ public Taint PHOSPHOR_TAG; aint for Example object

4

5 static int val;

6 + public static Taint valPHOSPHOR_TAG; 1int for field va

7

8 int doMath (int in) {

9 B return in + val;

return this.doMath$$PHOSPHORTAGGED (Taint.emptyTaint (), in,

11+ Taint.emptyTaint (), new TaintedIntWithObjTag()).val;
12 }

TaintedIntWithObjTag doMath$$PHOSPHORTAGGED (Taint varl, int in,
Taint in$$PHOSPHORTAGGED, TaintedIntWithObjTag vard) {
Taint ret$$PHOSPHORTAG =
Taint.combineTags (in$$PHOSPHORTAGGED, valPHOSPHOR_TAG) ;
vard.taint = ret$$PHOSPHORTAG;
var4.val = in + val;
return vard;

+ + + + + + + o+

Fig. 2: Phosphor Instrumentation Example

can also hardly support generic microservice systems under
various environments due to their unportability. As source
code can be often unavailable in deployment environments,
dynamic taint analysis techniques based on modifying the
source code [43], [47] can be quite impractical.

Although state-of-the-art Phosphor [17] attempts to modify
the bytecode of the applications, it also needs to modify the
program meta-data during bytecode instrumentation and can
hinder the meta-data inspection techniques widely adopted in
microservice systems such as AOP and DI, severely impacting
its applicability on microservice systems.

Figure 2 shows an example of Phosphor instrumenting
a class. First, the class is implementing a new interface
(Line 2). Next, the class instances’ taints are stored in an
inserted field in the class (Line 3) and the primitive field’s
taint is stored in the inserted field inside the same class
(Line 6). The method is further instrumented into Phosphored
method (Lines 14-21) whose parameter list is expanded to
allow taints to pass through method invocations and the
return type is changed to a customized container type to
contain both the taint and the returned value. Actually, we
have observed many cases where such meta-data modification
breaks the functionalities of microservice frameworks when
the frameworks check the number of implemented interfaces,
the signatures of fields/methods, the elements in stack traces,
etc. For example, in the processRaftService method of
a class [48] in a microservice framework, the number of the
interfaces implemented by the application class is asserted to
be 1, which causes the Phosphor-instrumented application to
crash because Phosphor makes the class implement an extra
interface TaintedWithObjTag.

Because of such a flaw in its design, Phosphor cannot
completely handle the meta-data inspection issues as such
issues can be endless regarding the diversity of various
microservice architectures and inspection approaches. For
example, by investigating its commit logs, we found that
Phosphor has been struggling for such issues since 2015 [49].
Figure 3 shows that in the commit “Bug fixes for re-
cent versions of Spring” [50], when Spring frame-
work uses an AnnotationMetadataReadingVisitor

public class HidePhosphorFromASMCV extends ClassVisitor {

1
2 .
3 boolean enabled;
4 @Override

5

public void visit (int version, int access, String name, String

signature, String superName, String[] interfaces) {

6 super.visit (version, access, name, signature, superName,
interfaces);

7 enabled = name.equals ("org/springframework/core/type/classreading
/AnnotationMetadataReadingVisitor");

8 }

9 @Override

10 public MethodVisitor visitMethod(final int access, final String
name, final String descriptor, String signature, String[]
exceptions) {

11 if (enabled && name.equals ("visitMethod")) {

12 AN« ingVisitor to hide

14 return mv;
15 }
16}

Fig. 3: Phosphor Meta-data Issue Patch Example

to check the methods’ annotations, Phosphor attempts to patch
the issues by instrumenting the visitor to hide its instrumented
methods from this specific visitor introduced by the new
version of Spring. Such issues can be widespread upon any
microservice framework, rendering the patching attempts from
Phosphor unbounded.

In contrast, our approach, while instrumenting the bytecode
to track the taint dynamically, keeps the class meta-data intact
in the mean time to support various microservice systems.
Instead of modifying the original classes to store and pass the
taints, MirrorTaint replicates the stack-based JVM execution
in its isolated mirrored space for non-intrusive dynamic taint
tracking.

! g N
| [
' f Y v
! v
i H W i
; ! Stack e Tam[Stack Tam(Heap v
. 1 Frame M Frame i
! ' 1 e
i ! N Vi
H H Smks ~ [
1 ~, i
; : 1 \.-.—\ o
: N, execue \ ' | Sources ,*' N [
_____ L (Y =, i 1 4 : H
f ! 1 ! H
I fpgramented 1 Stack 1 TaintStack Stack Frame | 1 1
Bytecode 1 : Frame H Frame Register | | 1
: ; Bytecode H H [
1 ! HE
. " [

i "k
i M e AN s
N, JVM Stack MirrorTaint L

Javaagent

Fig. 4: The Overall Workflow of MirrorTaint

IV. APPROACH

MirrorTaint essentially refers to that its taints can follow
the JVM operations on variables as their “mirrors”. As the
existing dynamic taint analysis techniques can inevitably incur
substantial modifications on bytecode meta-data, our insight
is to store taints in an isolated mirrored space and perform
propagation by replicating the operations on JVM heap and
stack to keep meta-data intact. More specifically, we attempt
to construct “mirrored” data structures similar as JVM heap
and stack called TaintHeap and TaintStackFrame, i.e., replicate
executions just as JVM heap and stack in terms of taints
instead of original variables. Additionally, in order to prevent
modifying the method parameters/return types to pass the
taints of variables, we introduce another data structure called
StackFrameRegister to temporarily store the taints for method

invocations. Such 3 components together enable MirrorTaint
to track the taints dynamically in a non-intrusive way.

Figure 4 shows the overall workflow of MirrorTaint. Firstly,
as a javaagent [36], our tool instruments the bytecode of the
original program at runtime. Secondly, it taints target variables
for tracking. Next, when invoking methods, TaintStackFrame
is initialized along with the JVM stack frame and interacts with
TaintHeap and StackFrameRegister to store and propagate the
taints. Finally, MirrorTaint outputs the sink results when the
invocation is terminated.

a N e\
[1 Ve ~ .
1 B Mis 1
; 11| Local Variables |) [T H
! Stack Frame H Mirrored I:I:I:I:l" | Stack Frame Register H
I ; Operand Stack .
H . . 1
(AN J N S ;
! ——J i Taint Stack Frame — ;
1 Local .o Arguments’ .
i (Ve Lo J e 175 4 e L1 i
- | operand 1! Retumed i
O o I I) B virte = 1| | !
1 .
! i .
.t 1
i i i
! Y Object Taint Map -
. 1
! ' 4) H
1 .
. 'L < Field1, Taint1 1> H
v " Object, { < Fieldz, Taint1 2 > Stack Frame Register !
H [< Field3, Taint1.3 >]
. 1 H
\ Stack Frame ! ; _ V) !
H 1 Field Taint Map - S
PN— ! Stack Frame i
N R Register Stack /7
N m i m i m ettt —————— P i m el m i m i mtm ittt - -
JVM Stack JVM Heap

Fig. 5: Data Structures for MirrorTaint

A. Taint Storage

1) Data Structures: Figure 5 presents the data structures
of TaintHeap, TaintStackFrame and StackFrameRegister. Cor-
responding to JVM heap, TaintHeap (marked green) is essen-
tially constructed by two global maps—ObjectTaintMap which
stores the objects and their corresponding taints as well as
FieldTaintMap which stores the field names and the primitive
type field taints of objects. Corresponding to the JVM stack,
TaintStackFrame (marked blue) contains the similar structure
as JVM stack frame. As variables in JVM stack frame are
mainly stored in local variable array and operand stack,
TaintStackFrame also constructs mirrored local variables and
mirrored operand stack to store their taints. In particular,
as each JVM stack frame corresponds to a TaintStackFrame
object, MirrorTaint uses ASM to increase the size of local
variable array and stores the reference of TaintStackFrame in
the expanded space (the TaintStackFrame object pointed by
the reference is stored in heap). Since such expanded space
does not override any existing data in local variable array
and is only accessed by MirrorTaint, it will not affect the
original program execution. Moreover, StackFrameRegisters
(marked purple) are stored in a global StackFrameRegister
stack in the heap. Corresponding to a JVM stack frame,
each StackFrameRegister contains a list of taints for method
arguments and another taint for method return value.

2) Storage Principles: MirrorTaint adopts the following
principles in terms of our proposed three data structures:
For TaintStackFrame: At runtime, variable v in the local
variable array or operand stack and its taint in mirrored local
variables or mirrored operand stack should be identically
indexed.

Algorithm 1 Sourcing Variable

1: function SOURCE(V ariable)

if Variable is a primitive then
Put a taint at the corresponding place in TaintStackFrame
for Variable;

else if Variable is an terminating type object then
Store the pair of Variable and taint into TaintHeap;

else if Variable is an non-terminating type object then
TAGOBIECT(V ariable, 1, 0);

XNk

9: function TAGOBJECT(V ariable, depth, searchedList)
10: if searchedList.contains(V ariable) then return
11: if depth > DEPTH_THRESHOLD then return
12: searchedList.add(V ariable);

13: if Variable is of terminating type then

14: Store a new taint along with Variable into TaintHeap;
15 else if Variable is of Collection type or object Array then
16: for element in Variable do

17: TAGOBJECT(element, depth+1, searchedList);

18: else if Variable is of Map type then

19: for element in Variable.values() do

20: TAGOBIJECT(element, depth+1, searchedList);

21: else if Variable is an primitive Array then

22: for element in Variable do

23: storePrimitiveFieldToTaintHeap(V ariable,index taint);
24: else

25: for field in Variable.fields do

26: if field is an object then

27: TAGOBJECT(field, depth+1, searchedList);

28: else if field is a primitive then

29: storePrimitiveFieldToTaintHeap(V ariable,

field.name, taint);

For StackFrameRegister: When taints are passed across JVM
stack frames, they are first transferred to StackFrameRegister
by a TaintStackFrame, and then fetched from the Stack-
FrameRegister by another TaintStackFrame.

For TaintHeap: Before propagating the taint of an object,
the taint must be fetched from TaintHeap first; if an object is
tainted after taint propagation, the object and taint should be
stored in TaintHeap as the key and value.

=% Source
= Sink

Read Cunﬁguratiunl

[Config Server] [Message Server]

Subscribe Publish Message
Message

RPC Request RPC Request

. Downstream
Service 3
Service
INSERT/UPDATE
Database

Distributed
Cache

Fig. 6: Source and Sink Types of Microservice Services

B. Source and Sink Automatically for Microservice Systems

Noticing that manually configuring arbitrary source/sink
methods for performing MirrorTaint can be impractical since
any source/sink configuration change demands re-deploying
MirrorTaint in production environments which can be rather
inconvenient, we propose a mechanism for automatic sourcing
and sinking. In particular, we model each service as a black
box, i.e., ignoring the details inside each service and only
focusing on the data flows in and out of it. Accordingly,
our automatic sourcing and sinking mechanism is designed

to source all the input data and sink all the output data of
a service to deploy MirrorTaint once and for all. Figure 6
presents the inputs/outputs which need to be sourced/sinked,
marked as blue/red arrows. The input data include the ar-
guments passed by an upstream service, the returned result
of a downstream RPC invocation, the data from storage
(databases and distributed caches), and the data from config
server and message server. On the other hand, the output data
include its returned value, the arguments of a downstream
RPC invocation, the data written to storage and the message
published to the message server.

We further design an algorithm to correctly source different
types of variables as presented in Algorithm 1. As “nested”
composition can frequently occur in objects (e.g., class A
contains a field of class B, class B contains a field of class C,
etc), for a fine-grained sourcing process, we recursively source
the objects and their inclusive objects under the termination
condition that either the variable is already sourced or the
recursion depth reaches a threshold (16 by default) or a field of
“terminating type”, including the primitive types, the wrapper
types of primitives, our specified terminating types (i.e., String,
StringBuilder, Date, BigDecimal, and Enum), and other user-
designated types, is reached. As presented in Algorithm 1,
we determine whether the variable is of primitive-type or
terminating-type first. If a variable to be sourced is a primitive,
its taint will be created in TaintStackFrame (Lines 2-3); if
the variable is an terminating-type object, its taint will be
created and stored into TaintHeap (Lines 4-5). Otherwise, as
the variable is a non-terminating-type object, it will be passed
to the recursive method TacOBJECT to source (Line 7). In
method TacOBJECT, the terminating conditions are firstly
checked (Lines 10-11, 13-14). At the same time, the variable,
if has not been sourced before, is added to the list storing the
variables already sourced (Line 12). After that, MirrorTaint
further determines whether the variable is of container-type
(i.e., Collection, Map, and Array). If so, its elements are
directly stored into the FieldTaintMap of TaintHeap (if they
are primitives) or passed to method TAGOBJECT recursively
(Lines 15-23). Otherwise, each field of the variable is tagged
by storing it to the TaintHeap (if it is primitive) or invoking
method TacOBJECT (Lines 24-29).

The sinking algorithm is quite similar to Algorithm 1 except
that storing the taints to TaintHeap is replaced by fetching the
taints from TaintHeap or TaintStackFrame and outputting them
to the sink result. After the execution of Microservice APIs,
the logs of sink results will be dumped for further processing.

C. Taint Propagation

1) Interprocedural Taint Propagation: Figure 7 presents
our approach for interprocedural taint propagation. In Fig-
ure 7a, before invoking a method, according to the storage
principles, the mirrored operand stack of the caller should
contain the taints corresponding to the associated arguments,
which are stored in the operand stack of the caller. Then,
MirrorTaint firstly transfers those taints to the StackFrameReg-
ister (marked as red dashed arrow la). To prepare the method

g T .
(A ——
Local Variables Taint Stack Local Variables
Frame Rel
Operand Stack Arguments I
()

Mirrored Taints of

Operand Stack Arguments

I
' '
' |
' I
1 1
' '
'
A}
AN J ™ A
! Stack Frame of Caller A | Taint Stack Frame of Caller 1a\
I 1 ' 1
! Invoke | e Mimored \ |‘
i P v | Local Variables Taints of Arguments = |l
. " Tl
1| Local Variables | Arguments H Mirrored [l
1 1| Operand Stack II 'I
I
' H s
HIAN | Frame of Callee 7 !
' Stack Frame of Callee /) ’ 1b 7
/
N e e e e e e e - 'I
JVM Stack —
'
Taints of Arguments 4|
——p JVM Operation
Taint of Returned Value
== MirrorTaint Operation

Stack Frame Register

(a) Before Method Invocation.

' | Local Variables . ;_f‘"‘ S'l:“; Local Variables
! rame Re
| Mirrored Taints of
V| Operand Stack Returned Value 1| Operand Stack Returned Value)\
AN \
1 ' \
! Stack Frame of Caller 3 ! Taint Stack Frame of Caller \ 3b
| Invoke : : 5
ok - \
: A4 I MO | ints of Arguments \
e ! [Local Variables * & * !
! | Local Variables ! Mirrored R
i i | Operand Stack \
| X7]
v
i i
Operand Stack i Taint Stack S’ [
1 S
[N — ! Frame of Callee I 2 (-
! Stack Frame of Callee \{ ' 3a 1
M el ! TaintHeap Iy
1

1

JVM Stack 7

~.
~,

N
~.
S

—> JVM Operation

.
RS

Taints of Arguments
P ’
= =% MirrorTaint Operation Taint of Returned Value 4

Stack Frame Register

(b) After Method Invocation.

Fig. 7: Interprocedural Taint Propagation Workflow of MirrorTaint

invocation, JVM will create a JVM stack frame for the callee
and transfer the arguments from the operand stack of the caller
to the local variable array of the callee (marked as blue solid
arrow 1). Accordingly, MirrorTaint will transfer the taints of
the arguments from the StackFrameRegister to the mirrored
local variables of the callee.

Figure 7b demonstrates the process during and after method
invocation. When invoking a method, the callee executes the
instructions to operate the variables in local variable array and
operand stack (marked as blue solid arrow 2). Meanwhile,
MirrorTaint performs such operations on mirrored local vari-
ables and mirrored operand stack as well to align with JVM
and propagates taints on mirrored operand stack and mirrored
local variables (marked as red dashed arrow 2). Note that Mir-
rorTaint will query TaintHeap before object taint propagation
and store the resulting taints into TaintHeap after propagation
if taints are propagated to an object. Next, before the JVM
stack frame of the callee and TaintStackFrame are removed
upon the completion of the method invocation, JVM will pass
the returned value to the caller’s operand stack (marked as blue
solid arrow 3). Correspondingly, MirrorTaint passes the taint
of the returned value to the StackFrameRegister (marked as red
dashed arrow 3a). Finally, MirrorTaint fetches the taint of the
returned value from the StackFrameRegister and stores it to
the mirrored operand stack of the caller (marked as red dashed
arrow 3b), ensuring the mirrored operand stack can align with
the operand stack. Thus, taint tracking components are totally
separated from the original programs. Note that since the
references of the TaintStackFrames are stored in corresponding
JVM stack frames, once the references are removed together
with JVM stack frames after the method invocations, the
TaintStackFrame will be freed by the JVM garbage collector
because there is no reference pointing to it. Also, MirrorTaint
will remove the corresponding StackFrameRegisters from the
StackFrameRegister stack after method invocations.

2) Intraprocedural Taint Propagation: Intraprocedural taint
propagation refers to propagating the taints inside a method
during its execution. In order to update the TaintHeap and
TaintStackFrame at runtime, we overwrite all the taint-related
bytecode instructions for their executions upon our proposed

“mirrored” data structures. Besides the taint propagation of
instructions, MirrorTaint also allows the users to define their
own rules of taint propagation as “shortcuts” for specific meth-
ods. In particular, MirrorTaint includes a series of pre-defined
propagation rules (as presented in our repository [51]) for
commonly-used methods in JDK to avoid JDK instrumentation
(which may bring stability issues in production environment)
and bypass native methods.

D. Instruction Overwriting

202 Java bytecode instructions can be used in class files
since Java SE 8 [52]. MirrorTaint modifies 191 of them
(i.e., all the taint-related ones) to not only track taints in
its TaintHeap and TaintStackFrame, but also update mir-
rored local variables and mirrored operand stack at runtime
to align with the JVM local variable array and operand
stack. Specifically, to overwrite an instruction, MirrorTaint
uses ASM to append the original instruction with additional
instruction(s) handling mirrored space. For example, as the
instruction ALOAD loads a reference-type variable from the
local variable array to the operand stack, MirrorTaint will
append ALOAD with additional instructions to load the taint of
the target variable from mirrored local variables to mirrored
operand stack correspondingly. The whole list of instrumented
instructions can be found in our repository [51].

E. Cross-service Taint Tracking

Thanks to the automatic sourcing and sinking mechanism
described in Section IV-B, MirrorTaint is able to perform
cross-service taint tracking in a post-analysis manner. Firstly,
MirrorTaint performs taint analysis in each service indepen-
dently. As a result, every time a service is called (i.e., an API
in it is invoked), the relations between ALL its input and output
data during the invocation can be revealed upon the termina-
tion of the invocation. Note that each of such input/ouput data
is assigned with an identifier, e.g., [SERVICE]# [CLASS]—
[METHOD] # [ARGUMENT_ID] # [FIELD]. Then, Mirror-
Taint leverages the microservice tracing service (e.g., Spring
Cloud Sleuth [53]) to dynamically track the invocation traces
(i.e., route of requests) for cross-service communications.
Every time when the taint tracking results of the previous step

are dumped, the information of the current trace is recorded
as well. Next, MirrorTaint links the taint tracking results of
the caller/callee services by the following criteria: (1) their
taint tracking results are dumped in the same trace; (2) the
sink data identifier in the caller service matches the source
data identifier in the callee service. In this way, by matching
the output data (sinked) of one service and the input data
(sourced) of another service, MirrorTaint is able to show how
the taint can be propagated across different services in the
whole invocation trace.

V. EVALUATION

Our evaluation addresses the following research questions:

« RQ1 How does MirrorTaint perform compared to other taint
analysis tools on open-source microservice systems in terms
of precision and recall?

« RQ2 How does MirrorTaint perform compared to Phosphor
in terms of overhead on open-source microservice systems?

« RQ3 How does Mirrorlaint perform on commercial sys-
tems?

A. Benchmarks

Table I presents the benchmarks adopted for the evaluation,
including 8 open-source projects and 5 industrial projects. In
order to collect open-source microservice systems, we collect
the benchmarks from GitHub by the following process: Firstly
we search the projects with the keyword “microservice”, so
that the displayed projects are all related to microservice. Next,
since Mirrorlaint aims at the applications executed on JVMs
and most of the microservice applications running on JVMs
are written in Java, we further filter the displayed results by the
Java language. Furthermore, we sort the search results by the
star numbers in order to select more influential projects. Then,
we manually inspect each result in the first 5 pages to select
the projects that are microservice applications instead of tools,
plugins, libraries or frameworks. Finally, we clone and execute
the projects following the instructions on their documentations.
We notice that only 8 applications meet our requirements
because 1) microservice systems are intrinsically hard to build
due to its complexity and distributed design and 2) outdated
third-party components like databases, message brokers, and
other services can cause problems in our environment. As a
result, we collect these 8 popular open-source microservice
applications as our open-source benchmarks.

Additionally, in order to investigate the effectiveness of
MirrorTaint in industry, we cooperated with a world-leading
FinTech company Ant Group, which provides services to more
than one billion users. In Ant Group, fund consignment is
one important business with more than 90 fund companies
as consignors. Specifically, the users purchase funds on the
platform provided by Ant Group which, as a broker, gener-
ates multiple standardized fund documents with the rigorous
format regulated by Ant Group’s residential country. Such
files contain the transaction data (including customers’ trading
records and acknowledgments of receipt) for each consignor
which are transferred to them through FTP at the end of each

TABLE I: Subjects

Open-source Microservice System Description LoC Star
ctripcorp/apollo Configuration management system 55473 | 27.7k
sqshq/piggymetrics Financial advisor app 3292 12.1k
z1t2000/microservices-platform Enterprise-class microservice application | 17732 3.9k
microservices-demo/microservices-demo | Online sock shop 3577 3.3k
febsteam/FEBS-Cloud Permission management system 9924 1.6k
techa03/goodsKill Online flash sale system 7340 1.4k
macrozheng/mall-swarm Shopping mall management system 65720 | 9.8k
GoogleLLP/SuperMarket Online supermarket app 2399 1.8k
Industry Microservice System Description LoC TPM
finfundtrade Fund transaction system 252516 | 2693302.4
finfundtaskcenter Fund clearing system 295259 | 200405.7
finfundprotocol Fund protocol system 84544 | 5182782.6
finfundmng Fund back-end management system 65953 182569.3
finvirtualta Fund virtual transfer agent system 57589 | 2026439.1

day. Subsequently, the transactions take effect for the users
by processing these documents. In order to protect the users’
financial security, it is vital for Ant Group to ensure the data
correctness of programs for generating fund documents since
a small error can spread to all the consignors easily.

In Ant Group, we deploy MirrorTaint on the pre-launch
environments of 5 core microservice applications involved
in generating fund documents such as transaction, protocol,
and clearing to explore the source-sink data relations. Table I
presents the statistics about our studied projects, including the
star number in GitHub for the open-source projects, the aver-
age Transaction Per Minute (TPM) for industrial microservice
systems, and their lines of code (LoC). Note that the detailed
studied services and APIs of open-source systems are shown
later in Table II, while those of industrial systems are omitted
in this paper for brevity due to their excessively large amount.

B. Implementation

We implement MirrorTaint in Java and utilize ASM [35] and
javaagent [36] to instrument JVM bytecode at runtime. With
over 20,000 lines of Java code, MirrorTaint has been care-
fully implemented to support both open-source and industrial
microservice systems so that the input/output of microservice
APIs are sourced/sinked as described in Section I'V-B.

C. Experimental Setup

1) Environment: All of our experiments are performed on
an Ubuntu Server 20.04 LTS with Intel Xeon CPU E5-4610
and 320 GB memory. While MirrorTaint essentially can run on
different JVMs, i.e., is not specific to JVM implementations,
we adopt Hotspot JDK8u252-b09 as the JVM to perform our
evaluations in this paper due to page limit. We execute each
evaluation task for 20 times to obtain their average results.

2) Approaches for Comparison: We determine to adopt the
state-of-the-art dynamic taint analysis technique Phosphor [17]
and static taint analysis technique FlowDroid [29] for perfor-
mance comparison. Note that although there are other potential
options, they are selected because (1) they represent state-of-
the-art dynamic and static taint analysis, and (2) their source
code is publicly available for successful execution.

3) Metrics: Following prior work [17], [29], we adopt the
widely-used metrics for evaluating our studied approaches:
precision, recall, and time overhead. Since the output of taint
analysis is data relations (aka. source-sink pairs [54]-[56],
which are used to check data correctness, track suspicious
outer input, prevent data leaks, etc), we use the reported

data relations to calculate precision and recall. Specifically,
precision refers to the fraction of correctly found data relations
among the all the relations found, while recall refers to the
fraction of correctly found data relations among all the ground-
truth relations. Time overhead refers to the extra execution
time when applying taint analysis tools to the benchmarks.

D. Result Analysis

1) RQI: Precision and Recall on Open-source Benchmarks:
As stated in Section IV-B, the sink sites (where the data is
likely to be exposed to external environments) are tightly
associated with communications between microservice sys-
tem components. Since such communications can be time-
consuming [57], [58], we determine to use the 5 most time-
consuming APIs of each open-source project as the bench-
marks. For the API having its corresponding test(s), we
directly use such tests. Otherwise we write a test to invoke
the API to simulate user operations. Specifically, for a test
case T, the ground truth is defined by the pairs of the tainted
variable at the sink site and the corresponding sourced variable
which propagates the taint to it on the T’s execution path.
Therefore, we collected the test execution code coverage and
manually analyzed the data-flow along the exact test execution
path to find such ground truth relations and compare it with
the analysis results of MirrorTaint, Phosphor and FlowDroid.
Their precision and recall results are shown in the columns
4-7 in Table II where “F” and “M” respectively denote found
and missed data relations. Additionally, the numbers of false
positives are denoted with parentheses in the column “F”.

We can observe from the results that MirrorTaint has found
all the relations while incurring 9 false positives. We find
such false positives are caused by “over-taint” which means
some variables are unnecessarily tainted when a variable
is correctly tainted. For example, as the “String” class is
immutable in Java, when tainting a constant String variable,
other variables sharing the same constant String value will
be tainted as well. Moreover, because of the Java Integer
caching mechanism [59], where the Integer objects from -128
to 127 are cached internally and reused when creating a new
Integer, multiple Integer variables can be tainted together when
they share the same Integer objects. As a result, MirrorTaint
achieves 97.9% precision and 100.0% recall.

Note that FlowDroid and Phosphor actually report the
results of analysis at a coarser-grained statement granularity,
while MirrorTaint’s variable-granularity reports present not
only sink/source statements but also the specific values and
variables that are tainted at the sink statement. For example,
consider an object O sourced at source statement S, and
its taint found at sink statement S,;. While FlowDroid and
Phosphor report S, and Ssi, MirrorTaint also reports the
presence of taint in the fields (including recursive ones) of O
at Sgi. For an illustration of the comparison of the results of
these tools, refer to an example provided in our repository [51].
Therefore, MirrorTaint and FlowDroid/Phosphor derive differ-
ent ground-truth results and we have to define the “M” column
differently (“M” in table) for FlowDroid and Phosphor, i.e.,

missed reports for sink-source statements instead of missed
variable relations. As the result shows, FlowDroid produces
empty results for most of the APIs. We find that FlowDroid
fails to support taint tracking in asynchronized invocations
and polymorphism scenarios. Notably, since the sink-source
statements found by FlowDroid are quite simple, FlowDroid
does not incur any false positives. Finally, while FlowDroid
results in 100% precision, it only enables 28.2% recall and
misses 51 records. On the other hand, Phosphor fails to
execute 7 out of the 8 benchmarks. Their failure messages
all imply meta-data-related issues which can hardly be fixed
once and for all. As for the benchmark which can be executed
with Phosphor, Phosphor finds all the sink-source statements,
leading to a precision of 100.0% and a recall of 9.9%.

In order to investigate the contributions made by the compo-
nents of MirrorTaint, we implement a variant of MirrorTaint
marked as MirrorTaintg by disabling the TaintStackFrame
(MirrorTaint cannot work without TaintHeap). As Mirror-
Taint7p cannot store the taints of primitive types without
TaintStackFrame, it loses the relations when primitive wrapper
types are cast into primitive types. However, such cases are
not common. As shown in Table II, MirrorTaint without
TaintStackFrame can still achieve 98.1% precision and 97.9%
recall. Note that it enables higher precision than MirrorTaint
because it misses some data relations that are false positives
in MirrorTaint’s results. Therefore, we can infer that Mirror-
TaintT g is capable of exploring most relations.

In a nutshell, MirrorTaint is close in precision and superior
in recall compared to state-of-the-art Phosphor and FlowDroid.

2) RQ2: Overhead on Open-source Benchmarks: For the
overhead of MirrorTaint/Phosphor (static techniques like
FlowDroid do not dynamically execute the application, thus
incomparable), we collect the time/memory costs of the orig-
inal API executions, followed by the time/memory costs of
the same process while applying MirrorTaint’s and Phosphor’s
javaagents. As presented in the last two columns of Table II,
where TO/MO’ TMirrorTaint/MMirmrTaint and TP/'ms/ MPhos refer to
the runtime/memory costs of the original execution, Mirror-
Taint, and Phosphor respectively. The numbers in parentheses
indicate the overhead percentage. Specifically, for the only
microservice application (i.e., SockShop) Phosphor can run
on, MirrorTaint incurs 83.4% runtime overhead and 167.6%
memory overhead on average, while Phosphor incurs 138.6%
and 40.36%. Overall, MirrorTaint achieves an average 32.7%
runtime overhead and 127.9% memory overhead on all studied
APIs. Note that such memory overhead is normally acceptable
following prior work (e.g., DYTAN [23]).

Interestingly, although high memory overhead cases (e.g.,
greater than 500%) are observed from the memory overhead
results, such cases are mainly distributed in the benchmarks
with low/moderate memory usage (less than 1000kB) as shown
in Figure 8. On the benchmarks consuming more than 1000
kB, MirrorTaint’s memory overhead is much more stable,
i.e., having a relatively low percentage (around 100%), which
implies the scalability of MirrorTaint.

3) RQ3: MirrorTaint in Industry:

TABLE II: Experimental results for MirrorTaint, MirrorTaint;, FlowDroid, and Phosphor

N MirrorTaint | MirrorTaintr; | FlowDroid | Phosphor Runtime Cost (ms) Memory Cost (kB)
Benchmark Serviee MethodName F (M| F [M [F[M [F]| M | To [Twmmm e M, My M
findNamespace 30 0 28 2 2 56.9 75.1 (32.0%) 363.2 3782.5 (941.5%)
findActiveReleases 14 0 14 0 0 1 323 39.7 (22.9%) 1182.1 1990.9 (68.4%)
apollo apollo getnstancesCountByNamespace 13 0 13 0 0 1 X 27.1 32.1 (18.5%) N/A 173.0 224.2 (29.6%) N/A
findBranch 3 0 3 0 [0 1 234 | 303 (29.5%) 8223 | 2119.7 (157.8%)
geiByRelease 2 (0] 12 0 [0 2 206 | 22.0 (68%) 319 2277 (178.0%)
. . saveCurrentAccount 18 0 17 1 2 0 45.6 | 555 (21.7%) 2742 2028.6 (639.8%)
aceount-service CreateNewAccount 2 0 2 0 [1] © 976 | 104.2 (6.8%) 3085 | 10084 (226.9%)
piggymetrics auth-service createUser 1 0 1 0 0 1 X 81.6 86.2 (5.6%) N/A 152.1 415.0 (172.9%) N/A
) getUser 0 0] 10 0 [1] © 70 | 74 (350%) 9.7 191 (97.1%)
notification-service | saveCurrentNotificationsSettings 11 (1) 0 11 (1) 0 2 0 2.7 5.9 (118.5%) 2109 640.7 (203.8%)
UaaServer Tist 2 0 2 0 [0 1 148 | 29.7 (100.7%) 4225 | 9366 (121.7%)
saveOrUpdate 7 [0 7M] 0 [0 1 51 | 7.6 (49.0%) 75878 | 32056 (23.9%)
ZLT-MP UserCenter findByMobile 7 (0] 17 0 [0 1 X 201 | 233 (159%) N/A 5134 8229 (60.3%) N/A
findUsers 7 (0] 17 0 [0 1 197 | 326 (655%) 7175 | 18187 (1535%)
gelLoginAppUser 5 [0 25] 0 [0 1 189 | 242 (28.0%) 689.7 | 10048 (45.1%)
Orders newOrder 7 0] 4 T [0 2 [2] 0 | 926 | 1403 (51.5%) | 209.0 (125.7%) | 17056 | 3521.5 (1065%) | 21088 (23.6%)
get 7 0 7 0 [0 T |1 37 | 80 (1162%) | 86 (1324%) | 1882 | 989.7 (425.9%) | 41955 (122.9%)
SockShop Carts delete 6 0 6 0 [0 T [1] 0 | 60 |149(1483%) | 16.1(1683%) | 1007 | 8162 (71104%) | 3176 (215.3%)
mergeCarts 5 0 5 0 [0 1 [1] 0 | 152 [37.8(148.7%) | 417 (1743%) | 2879 | 17040 (491.9%) | 504.7 (75.3%)
Shipping postShipping 7 0 Z 0 (2] 0 [2] 0 85 | 30.1 (254.1%) | 25.2 (196.5%) | 5904 6556 (11.0%) | 6818 (15.5%)
auth addOauthCliendetails 7 0 7 0 0] 1 766 | 102.7 (34.1%) 2047.6 | 491164 (1566.3%)
server-job JobList 9 [0 9 | 0 [0 1 I8 | 84 (150%) 865.7 | 26122 (201.7%)
FEBS-Cloud userList 6 0] 16 0 [0 1 X 77 | 131 (70.1%) N/A 9803 | 514590 (424.9%) N/A
server-system index T3 [0 [10 | 1T [0] 4 132 | 224 (69.7%) 24994 | 7000.6 (180.1%)
addUser 0 9 0 [0 1 749 | 81.8 92%) 20938 | 54600 (82.4%)
goodsservice executeSeckill 7 0 7 0 0 3 62.2 111.6 (79.4%) 82714.4 | 121789.9 (47.2%)
doWithSychronized 7 0 T 3 1] 3 330.6 | 385.1 (16.5%) 8394 | 20432 (1434%)
goodskill N getDirectoryPermissionList 10 (2) 0 10 (2) 0 0 4 X 123.2 | 214.5 (74.1%) N/A 11470.1 14156.8 (23.4%) N/A
goodsweb execute 10 0 10 0 (2] 2 785 | 84.8 (3.0%) 11221 1624.0 (44.7%)
roleLess T [0 1 0 (0] 3 79 | 118 (49.4%) TI14 | 13569 (90.7%)
portal Togin 8 0 8 0 |1 i 126.0 | 1306 (3.7%) 43911 | 87230 (98.1%)
register B3 (0] 13 0 [0 2 606 | 756 (24.8%) 13150 | 4771.6 (262.9%)
mall-swarm admn Togin 0 (0] 10 0 [1] 2 X 132.0 | 162.9 (22.6%) N/A 5945 | 121810 (1949.2%) N/A
updatePassword 8 0 3 0 [0 1 618 | 836 (353%) 9752 | 71751 (635.8%)
update 7 0 7 0 [1] 0 112.6 | 133.6 (18.7%) 33249 | 64774 (94.8%)
art updateCart 7 0 Z 0 |1 I 183 | 263 (43.1%) 4882 | 4542.1 (8304%)
addCart 7 0 7 0 [2] 1 228 | 295 (294%) 5275 | 38325 (626.6%)
SuperMarket order addOrder 11 0 11 0 0 2 X 96.4 | 173.5 (80.0%) N/A 512.1 6283.3 (1127.0%) N/A
product pageManage 9 0 8 1 0 2 9.0 17.2 (91.1%) 1024.3 7195.7 (602.5%)
user registUser 7 0 Z 0 [T 0 123 | 160 (30.1%) 20392 | 53313 (161.4%)

Sum / Average 43609 | 0 [927® | 9 [20] 51 | 7] 0 | 507 | 673 (32.7%) N/A 33429 | 7618.8 (127.9%) N/A
£20001 data checking system with a collection of checking rules
=)

%1500_ summarized by multiple teams. Such data checking system
g is executed to check data correctness in the fund documents
z

5 1000 .. .

3" before delivering the documents to fund companies. However,
§ 5001 such an approach is susceptible to missing potential checking
E rules and even incorporates wrong rules due to incomplete
3 0! =
= 0 S0 0w 1500 200 2500 3000 300 4000 oo a0 oo moo and unreliable human experience. For instance, taint analysis

The original memory cost of the open-source benchmarks (kB)
Fig. 8: MirrorTaint’s Memory Overhead on Open-source
Benchmarks in terms of Memory Usage of APIs

TABLE III: MirrorTaint and the Data Checking System
on Covering Data Relations for 01/03 Fund Documents

Developer-experience-based

. # Actual MirrorTaint Data Checking System
Fund Document | # Fields . - - =
Relations | # Found | # Correct | # Missed | # Covered | # Missed | Relation
Relations | Relations | Relations | Relations | Relations | Coverage
01 Fund Doc A 17 22 22 22 0 16 6 72.7%
01 Fund Doc B 22 28 28 28 0 23 5 82.1%
01 Fund Doc C
01 Fund Doc D .
01 Fund Doc E 17 23 23 23 0 17 6 73.9%
01 Fund Doc F
03 Fund Doc A 27 59 57 57 2 52 7 88.1%
03 Fund Doc B 13 17 17 17 0 15 2 88.2%
03 Fund Doc C
03 Fund Doc D
03 Fund Doc E 28 45 45 45 0 40 5 88.9%
03 Fund Doc F
Sum 124 194 192 192 2 163 31 84.0%

Case Study in Ant Group. To investigate the applicabil-
ity and effectiveness of MirrorTaint in industry, we apply
MirrorTaint to perform cross-service taint tracking to the
microservice systems for generating the fund documents in
Ant Group where 01 fund documents and 03 fund
documents are most hazardous as they are responsible for
account registration/closure and fund transactions (e.g., fund
purchase and redemption) respectively.

Ant Group has built a mature developer-experience-based

can reveal the relationship between the actual amount of
paid money A, recorded in fund documents, and the product
price B stored in a database, and the discount C' stored in
another database. A should equal B minus C, but devel-
opers/experts may not know this relationship and miss the
correctness check. In order to investigate the effectiveness of
the data checking system and MirrorTaint, we perform a case
study on 12 01/03 fund documents of 6 business tasks
(such as standard funds and exchange-traded funds) which are
generated by adopting the 5 systems shown in Table I.

Table III shows the study results. Because the fund doc—
uments of C, D, E, F are similar (i.e., the classes generating
them share the same super class), we put them together in one
table cell. In order to obtain the complete number of data rela-
tions (shown in the “# Actual Relations” column), we invited
3 experienced developers to check them carefully. As shown in
the table, MirrorTaint almost explores all the ground-truth data
relations, achieving 99.0% recall and 100.0% precision, while
the developer-experience-based data checking system misses
31 relations (which are all explored by MirrorTaint) and
only achieves 84.0% relation coverage. The 2 data relations
missed by MirrorTaint are the constant source tracking cases
(new BigDecimal (0) and new Money (0)), which are

not included in the sourcing scope of MirrorTaint.

We found the data relations missed by the data checking
system can be divided into two categories: infrequent relation
omissions and source relation omissions. Figure 9a shows an
infrequent relation omission. It shows that the data in the
01 Fund Document A of field TransactionAccoun—
tID is passed from field trade_account of table fin-
fundprotocol.trade_account_info. Such a relation
only appears when there exists account closure application
records in the 01 Fund Document A, which is infrequent
and can be easily missed by human experience. Figure 9b
shows two source relations missed by the data checking
system. Although the data checking system has explored
the relation from field cert_no in table finfundproto-
cal.fund_sign_contract to field CertificateNo
in 01 Fund Document A, it still misses the other two
upstream relations which are explored by MirrorTaint (high-
lighted with red). All such results show that MirrorTaint covers
much more data relations than developer experience, and is
more reliable in ensuring data correctness.

Case Study on Log4j2 Vulnerability. At the end of 2021,
a reported vulnerability (CVE-2021-44228 [12]) in a widely-
used Java logging library Log4j2 [13] caused global panic and
was described as the most serious vulnerability in decades
by mass media [60]-[62]. Specifically, as a logging library,
Log4j2 supports a feature called “lookup” to evaluate variables
or expressions embedded in logging text, e.g., “${date :MM—
dd-yyyy}” can be logged as runtime date by Log4j2. How-
ever, among many different kinds of lookup, the vulnerability
allows JNDI (Java Naming and Directory Interface) lookup
(e.g., “${indi:1ldap://xxx.xxx/xxx}”’) to download
and execute malicious code from attackers’ servers.

In this paper, we also reproduce the vulnerability to inves-
tigate the potential of MirrorTaint in detecting such attacks.
Specifically, we reproduce the attack scenario in an API of
an earlier version of a microservice-based application in Ant
Group which suffers from this vulnerability as shown in Fig-
ure 10 (sensitive information is hidden for security reasons).
Dangers can occur when requesting this API with malicious
input such as ${jndi:1ldap://xxx.xxx/xxx}. Since the
outer inputs are untrustworthy, we source the arguments of
the API which receives input data from users and sink the
argument of the Log4j2 sensitive lookup method. After
executing the test case, MirrorTaint has identified the lookup to
be unsafe as taint is found in the argument of 1ookup method.
Its complete output log can be found in our repository [51].
Additionally, we also try to apply FlowDroid and Phosphor on
this API. While Phosphor still fails on execution, FlowDroid
reports no taint as it fails to track the taint under polymorphism
scenarios (invoking interface methods).

VI. THREATS TO VALIDITY

The threats to external validity mainly lie in the limited
set of studied open-source microservice projects and the
generalizability of the approach. Therefore, we also performed
a case study applying MirrorTaint to 5 microservice systems

A=) TransactionAccountID trade_account
B ¢-----—-=--=---- 5

01 Fund Doc A finfundprotocal.trade_account_info

(a) Missed Infrequent Relation

=) CertificateNo
———immes ==

01 Fund Doc A finfundprotocal.fund_sign_contract

(b) Missed Source Relations
Fig. 9: Missed Relations by Existing Data Checking System

finfundprotocal.trade_account_info obcif.iw_user

1 @GetMapping("/")
2 public String index (@RequestHeader ("Api-Version") String version) {
3

logger.info ("Received a request for version " + version);

4
5
6 3

Fig. 10: One Microservice API Triggering Logdj2 CVE

in the 1-billion-user Ant Group as benchmarks. As for the
generalizability, it is worth noting that MirrorTaint can be
easily extended to any JVM-based program. For such a pur-
pose, one only needs to modify the automatic sourcing and
sinking mechanism for different microservice inputs/outputs
while retainning other MirrorTaint components. The threats
to internal validity mainly lie in the approach implementation
and ground-truth sink result production. Thus, we collaborated
with experienced industrial engineers to develop our tool to
ensure the implementation correctness. We also standardized
the ground-truth sink result production procedure and had 4
authors analyze it individually and discuss the differences until
reaching a consensus. The threats to construct validity mainly
lie in the metrics used. Thus, following prior work [17], [29],
we adopt widely-used metrics — precision/recall/overhead for
evaluating our studied approaches.

VII. CONCLUSION

In this paper, we propose a practical non-intrusive dynamic
taint tracking tool named MirrorTaint which automatically
tracks the taints of the input and output data in microservice
systems via a mirrored JVM space, and successfully avoids
the meta-data modification. We compare its precision and
recall on open-source benchmarks to state-of-the-art Phosphor
and FlowDroid. The result shows that MirrorTaint is more
compatible with microservice systems and achieves quite
close precision and much higher recall than Phosphor and
FlowDroid with only 32.7% average runtime overhead. Also,
we apply MirrorTaint to 5 important microservice systems
in the world-leading FinTech company Ant Group where the
result shows that MirrorTaint can find 99.0% data relations
with 100.0% precision. Additionally, the fact that MirrorTaint
detects the severe Log4j2 vulnerability indicates its capability
of detecting real-world vulnerabilities.

ACKNOWLEDGMENTS

This work is partially supported by the National Natural Sci-
ence Foundation of China (Grant No. 61902169), Guangdong
Provincial Key Laboratory (Grant No. 2020B121201001), as
well as NSF grants CCF-2131943 and CCF-2141474. We also
acknowledge support from Ant Group.

[1]
[2]

[3

[t

[4]
[5]
[6]

[7

—

[8]

[9]
(10]
(11]
[12]

[13]
[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

“Microservices,” https://en.wikipedia.org/wiki/Microservices, 2022.
“Microservices vs monolith: The ultimate comparison 2021.” https://
www.clickittech.com/devops/microservices-vs-monolith/, 2022.

“The state of developer ecosystem 2021 - microservices.” https://www.
jetbrains.com/lp/devecosystem-2021/microservices/, 2022.

“The architecture of uber’s api gateway.” https://eng.uber.com/
architecture-api- gateway/, 2022.

“The uber engineering tech stack, part i: The foundation.” https://eng.
uber.com/tech-stack-part-one-foundation/, 2022.

“How airbnb and twitter cut back on mi-
croservice complexities.” https://thenewstack.io/
how-airbnb-and- twitter-cut-back-on-microservice-complexities/,

2022.

“Spring boot @ paypal” https://www.infoq.com/presentations/
paypal-spring-boot/, 2022.
“Java virtual machine,” https://en.wikipedia.org/wiki/Java_virtual _

machine, 2022.

“Apollo.” https://github.com/spotity/apollo, 2022.

“Netflix open source software center.” https://netflix.github.io/, 2022.
“Sofaboot.” https://github.com/sofastack/sofa-boot, 2022.
“Cve-2021-44228 https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-44228, 2022.

“Apache log4j 2.” https://logging.apache.org/log4j/2.x/, 2022.

“The log4j bug exposes a bigger issue: Open-
source funding.” https://thenextweb.com/news/
log4j-bug-internet-open-source-contributors-analysis, 2022.

“Cisa log4j (cve-2021-44228) affected vendor software
list.” https://github.com/cisagov/log4j-atfected-db/blob/develop/
SOFTWARE-LIST.md, 2022.

“Akamai recommendations for log4j mitigation.” https://www.akamai.
com/blog/security/akamai-recommendations- for-log4j-mitigation, 2022.
J. Bell and G. Kaiser, “Phosphor: Illuminating dynamic data flow in off-
the shelf jvms,” in Proceeding of the 29th ACM SIGPLAN Conference
on Object Oriented Programming Systems Languages and Applications,
ser. OOPSLA 2014, 2014, acceptance rate: 28expectations. [Online].
Available: https://jonbell.net/publications/phosphor

W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: An information-flow
tracking system for realtime privacy monitoring on smartphones,” ACM
Trans. Comput. Syst., vol. 32, no. 2, Jun. 2014. [Online]. Available:
https://doi.org/10.1145/2619091

A. Reina, A. Fattori, and L. Cavallaro, “A system call-centric analysis
and stimulation technique to automatically reconstruct android malware
behaviors,” in ACM European Workshop on Systems Security (EuroSec).
ACM, Apr. 2013.

L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis,” in
Proceedings of the 21st USENIX Conference on Security Symposium,
ser. Security’12. USA: USENIX Association, 2012, p. 29.

W. Chang, B. Streiff, and C. Lin, “Efficient and extensible security
enforcement using dynamic data flow analysis,” in Proceedings
of the 15th ACM Conference on Computer and Communications
Security, ser. CCS ’08. New York, NY, USA: Association for
Computing Machinery, 2008, p. 39-50. [Online]. Available: https:
//doi.org/10.1145/1455770.1455778

W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige, “Tainttrace: Efficient flow
tracing with dynamic binary rewriting,” in 1/th IEEE Symposium on
Computers and Communications (ISCC’06), 2006, pp. 749-754.

J. Clause, W. Li, and A. Orso, “Dytan: A generic dynamic taint analysis
framework,” in Proceedings of the 2007 International Symposium on
Software Testing and Analysis, ser. ISSTA *07. New York, NY, USA:
Association for Computing Machinery, 2007, p. 196-206. [Online].
Available: https://doi.org/10.1145/1273463.1273490

M. Ganai, D. Lee, and A. Gupta, “Dtam: Dynamic taint analysis
of multi-threaded programs for relevancy,” in Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, ser. FSE ’12. New York, NY, USA:
Association for Computing Machinery, 2012. [Online]. Available:
https://doi.org/10.1145/2393596.2393650

V. Haldar, D. Chandra, and M. Franz, “Dynamic taint propagation
for java,” in 21st Annual Computer Security Applications Conference
(ACSAC’05), 2005, pp. 9 pp.—311.

[26]

[27]

[28]

[29]

(30]

[31]

(32]
[33]
[34]
[35]
[36]

(37]
(38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis,
“Libdft: Practical dynamic data flow tracking for commodity systems,”
in Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on
Virtual Execution Environments, ser. VEE "12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 121-132. [Online].
Available: https://doi.org/10.1145/2151024.2151042

G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” in Proceedings of
the 11th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ser. ASPLOS XI. Association
for Computing Machinery, 2004, p. 85-96.

M. Azadmanesh and M. Sharifi, “Towards a system-wide and transparent
security mechanism using language-level information flow control,” 01
2010, pp. 19-26.

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
259-269. [Online]. Available: https://doi.org/10.1145/2594291.2594299
M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, and
R. Berg, “F4f: Taint analysis of framework-based web applications,”
in Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications, ser.
OOPSLA ’11. New York, NY, USA: Association for Computing
Machinery, 2011, p. 1053—-1068. [Online]. Available: https://doi.org/10.
1145/2048066.2048145

L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: Statically
vetting android apps for component hijacking vulnerabilities,” in
Proceedings of the 2012 ACM Conference on Computer and
Communications Security, ser. CCS ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 229-240. [Online].
Available: https://doi.org/10.1145/2382196.2382223

“Dependency injection,” https://en.wikipedia.org/wiki/Dependency_
injection, 2022.

“Aspect-oriented programming,”
Aspect-oriented_programming, 2022.
“Spring,” https://spring.io/, 2022.
“Asm,” https://asm.ow2.io/, 2022.
“Package java.lang.instrument.” https://docs.oracle.com/javase/7/docs/
api/java/lang/instrument/package-summary.html, 2022.

“Java bytecode,” https://en.wikipedia.org/wiki/Java_bytecode, 2022.
“Java reflection,” https://docs.oracle.com/javase/8/docs/technotes/guides/
reflection/index.html, 2022.

“Javassist,” https://www.javassist.org/, 2022.

V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in java
applications with static analysis,” in Proceedings of the 14th Conference
on USENIX Security Symposium - Volume 14, ser. SSYM’05. USA:
USENIX Association, 2005, p. 18.

N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: a static analysis tool for
detecting web application vulnerabilities,” in 2006 IEEE Symposium on
Security and Privacy (SP’06), 2006, pp. 6 pp.—263.

M. R. Azadmanesh and M. Sharifi, “Towards a system-wide and
transparent security mechanism using language-level information flow
control,” in Proceedings of the 3rd International Conference on
Security of Information and Networks, ser. SIN *10. New York, NY,
USA: Association for Computing Machinery, 2010, p. 19-26. [Online].
Available: https://doi.org/10.1145/1854099.1854107

L. C. Lam and T.-c. Chiueh, “A general dynamic information flow
tracking framework for security applications,” in 2006 22nd Annual
Computer Security Applications Conference (ACSAC’06), 2006, pp.
463-472.

J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software.” in NDSS, vol. 5. Citeseer, 2005, pp. 3-4.

D. Chandra and M. Franz, “Fine-grained information flow analysis
and enforcement in a java virtual machine,” in Twenty-Third Annual
Computer Security Applications Conference (ACSAC 2007), 2007, pp.
463-475.

S. K. Nair, P. N. D. Simpson, B. Crispo, and A. S. Tanenbaum, “A virtual
machine based information flow control system for policy enforcement,”
Electron. Notes Theor. Comput. Sci., vol. 197, no. 1, p. 3-16, Feb.
2008. [Online]. Available: https://doi.org/10.1016/j.entcs.2007.10.010

https://en.wikipedia.org/wiki/

[47]

[48]

[49]

[50]

[51]
[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

W. Xu, S. Bhatkar, and R. Sekar, “Taint-enhanced policy enforcement:
A practical approach to defeat a wide range of attacks,” in I5th
USENIX Security Symposium (USENIX Security 06). Vancouver,
B.C. Canada: USENIX Association, Jul. 2006. [Online]. Available:
https://www.usenix.org/conference/1 5th-usenix- security-symposium/
taint-enhanced- policy-enforcement-practical-approach
“RaftAnnotationBeanPostProcessor.java.” https://www.
programcreek.com/java-api-examples/?code=sofastack%
2Fsofa-registry %2Fsofa-registry-master%2Fserver%2Fserver%
2Fmeta%?2Fsrc%2Fmain%?2Fjava%2Fcom%2Falipay %2Fsofa%
2Fregistry %2Fserver%2Fmeta%2Frepository %2Fannotation%
2FRaftAnnotationBeanPostProcessor.java, 2022.

“Reflection fixes,” https://github.com/gmu-swe/phosphor/commit/
0818888449762 1eefd9e8016b9256e99e6a3t, 2022.

“Bug fixes for recent versions of spring,” https://github.com/gmu-swe/
phosphor/commit/ca362a4a978778884a478f44b2479d5t302c00fd,
2022.

“MirrorTaint repository.” https://github.com/MirrorTaint/MirrorTaint,
2022.

“The java virtual machine instruction set.” https://docs.oracle.com/
javase/specs/jvms/se8/html/jvms-6.html, 2022.

“Spring cloud sleuth.” https://spring.io/projects/spring-cloud-sleuth,
2022.

L. Luo, E. Bodden, and J. Spith, “A qualitative analysis of android taint-
analysis results,” in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2019, pp. 102-114.

X. Fu and H. Cai, “A dynamic taint analyzer for distributed
systems,” ser. ESEC/FSE 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 1115-1119. [Online]. Available:
https://doi.org/10.1145/3338906.3341179

S. Wei and B. G. Ryder, “Practical blended taint analysis for
javascript,” ser. ISSTA 2013. New York, NY, USA: Association
for Computing Machinery, 2013, p. 336-346. [Online]. Available:
https://doi.org/10.1145/2483760.2483788

“Overcoming io overhead in micro-services.” https://kislayverma.com/
programming/overcoming-io-overhead-in-micro-services/, 2022.
“Microservice trade-offs.” https://martinfowler.com/articles/
microservice-trade-offs.html, 2022.

“Java integer cache.” https://javapapers.com/java/java-integer-cache/,
2022.

“Why is the log4j cybersecurity ~ flaw the ‘most
serious’ in decades?” https://nypost.com/2021/12/20/
why-is-the-log4j-cybersecurity-flaw-the-most-serious-in-decades/,
2022.

“Log4j could be the most serious security threat ever
seen, cisa head warns.” https://www.techradar.com/news/
log4j-could-be- the- most-serious-threat-ever-seen-cisa-head-warns,
2022.

“Log4j vulnerability causes global panic.” https://www.israeldefense.co.
il/en/node/52976, 2022.

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	JVM and Java Bytecode
	Data Types and Meta-data
	JVM Memory and Execution Model

	Taint Analysis
	Static Taint Analysis
	Dynamic Taint Analysis

	MOTIVATION
	APPROACH
	Taint Storage
	Data Structures
	Storage Principles

	Source and Sink Automatically for Microservice Systems
	Taint Propagation
	Interprocedural Taint Propagation
	Intraprocedural Taint Propagation

	Instruction Overwriting
	Cross-service Taint Tracking

	EVALUATION
	Benchmarks
	Implementation
	Experimental Setup
	Environment
	Approaches for Comparison
	Metrics

	Result Analysis
	RQ1: Precision and Recall on Open-source Benchmarks
	RQ2: Overhead on Open-source Benchmarks
	RQ3: MirrorTaint in Industry

	THREATS TO VALIDITY
	CONCLUSION
	References

