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Abstract—As a widely-used platform to support various Java-
bytecode-based applications, Java Virtual Machine (JVM) in-
curs severe performance loss caused by its real-time program
interpretation mechanism. To tackle this issue, the Just-in-Time
compiler (JIT) has been widely adopted to strengthen the efficacy
of JVM. Therefore, how to effectively and efficiently detect JIT
bugs becomes critical to ensure the correctness of JVM. In this
paper, we propose a coverage-guided fuzzing framework, namely
JITfuzz, to automatically detect JIT bugs. In particular, JITfuzz
adopts a set of optimization-activating mutators to trigger the
usage of typical JIT optimizations, e.g., function inlining and
simplification. Meanwhile, given JIT optimizations are closely
coupled with program control flows, JITfuzz also adopts mutators
to enrich the control flows of target programs. Moreover, JITfuzz
also proposes a mutator scheduler which iteratively schedules
mutators according to the coverage updates to maximize the
code coverage of JIT. To evaluate the effectiveness of JITfuzz, we
conduct a set of experiments based on a benchmark suite with
16 popular JVM-based projects from GitHub. The experimental
results suggest that JITfuzz outperforms the state-of-the-art
mutation-based and generation-based JVM fuzzers by 27.9%
and 18.6% respectively in terms of edge coverage on average.
Furthermore, JITfuzz also successfully detects 36 previously
unknown bugs (including 23 JIT bugs) and 27 bugs (including
18 JIT bugs) have been confirmed by the developers.

I. INTRODUCTION

Java Virtual Machine (JVM) has been widely adopted in

many popular application domains, e.g., mobile applications

and cloud computing, by supporting the execution of Java

bytecode compiled from various high-level programming lan-

guages, e.g., Java, Scala, and Clojure [1]. However, while
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JVM is advanced in adopting interpretation in addition to

compilation for cross-platform execution, interpreting JVM-

based programs incurs high performance overhead. To tackle

this issue, the Just-in-Time compiler (JIT) has been designed to

improve runtime compilation performance of JVM-based pro-

grams by compiling selected code (e.g., frequently executed

code) into native machine code. In this way, the resulting JVM

bytecode can be executed directly without the costly interpre-

tation process, leading to efficient program execution. To date,

JIT has become a crucial component in JVM implementations

where its correctness plays a vital role in ensuring correct and

efficient execution of JVM-based programs.

While it is evident that testing JITs to ensure their correct-

ness is vital for the correct execution for JVMs, how to effec-

tively and efficiently test JITs remains rather challenging due

to the following reasons. First, JITs can hardly be thoroughly

tested because they include diverse optimization techniques

which are activated under diverse scenarios. That said, to

thoroughly test JITs, it is essential to create as many such

optimization scenarios as possible, which can be potentially

challenging. Second, while random/probabilistic mutation be-

comes a major paradigm adopted by many fuzzers [2, 3, 4, 5],

it is nevertheless inefficient for JIT testing since massive

resulting mutants cannot conform to JVM specification and

executing them easily terminates JIT testing early (e.g., in the

input verification phase [6]) to prevent testing deep JIT states.

At last, although traditional JVM fuzzing techniques have

proven that applying control-flow mutators can improve testing

effectiveness, such mutators can hardly be directly applied

in fuzzing JITs, e.g., adding new transitions in the existing

control flow graphs can easily break variable dependencies [7],

causing early-terminated JVM executions and thus leading

to insufficient JIT testing. Therefore, albeit general-purpose





B. Motivation

JIT has been demonstrated to significantly impact the run-

time performance of JVM-based applications [23] and thus

strongly recommended by industrial developers [24]. While

testing JITs to ensure their correctness is essential, there

exists no dedicated testing technique for such specific purpose

to our best knowledge. Albeit the existing general-purpose

JVM fuzzers [25, 7, 9] can potentially expose JIT bugs

occasionally, they encounter severe challenges to prevent them

from effectively exposing the JIT bugs. In particular, when

ClassFuzz [25] randomly manipulates (e.g., deletes or inserts)

instructions, it can also generate vast invalid/illegal seeds

which essentially lead to testing ineffectiveness. Although

Classming [7] aims at improving over ClassFuzz for gener-

ating more valid seeds by intentionally breaching the variable

dependencies to expose erroneous data flows, it potentially

causes early-terminated JVM executions, i.e., insufficient test-

ing of JITs. Meanwhile, noticing that JavaTailor [9] demands

a preset database containing the Java programs executed to

trigger JVM bugs, applying JavaTailor to specifically expose

JIT bugs can be potentially challenging since the size of

the JIT bug datasets are often limited and can only cover a

small subset of possible bugs. To address these issues, it is

essential for a fuzzer aiming at extending the usage of the JIT

optimization techniques, which can be intuitively realized by

proposing the fuzzing strategy to both advance the activation

of the JIT optimization techniques and mutate control flows

while preventing early termination of their associated testing

runs.

Many fuzzers, e.g., AFL [2], MOPT [4], and Neuzz [26],

adopt code coverage as guidance to facilitate bug/vulnerability

exposure, i.e., generating mutants and retaining them as seeds

for further mutations if they are executed to increase/optimize

code coverage of target programs. However, code coverage can

hardly be applied for general-purpose JVM testing techniques

because JVMs are likely to cause non-deterministic coverage

at runtime due to their adopted mechanisms, e.g., parallel

compilation and on-demand garbage collection [7]. On the

other hand, we also notice that code coverage can be more

deterministically captured for JITs. Therefore, it is plausible

and potentially beneficial to adopt code coverage to guide our

JIT testing.

III. APPROACH

We propose JITfuzz, a coverage-guided fuzzer for JVM JIT

with two mutator types and a mutation scheduler. In particular,

JITfuzz is implemented with Jimple-level instructions provided

by Soot [12] which is a framework for analyzing and trans-

forming JVM-based applications. Figure 2 presents the overall

workflow of JITfuzz. Typically, Initialized with a seed corpus,

JITfuzz iterates each seed to generate mutants under a given

time budget. For each iteration, JITfuzz determines its mutation

limit (i.e., the number of mutators applied to the given seed)

according to the collected coverage updates. Note that in this

paper, JITfuzz develops four optimization-activating mutators

and two control-flow-enriching mutators to facilitate the usage

Fig. 2: The framework of JITfuzz

of JIT optimization techniques and enrich the control flows.

Accordingly, JITfuzz adopts a mutator scheduler to select

and schedule the mutators by the mutation limit based on a

lightweight dynamic optimization algorithm to optimize the

runtime code coverage. Eventually, if such resulting mutant

increases code coverage in the target JIT, it is added to the

seed corpus for further mutations.

A. Mutators

As mentioned in Section II, JIT adopts multiple opti-

mization techniques to strengthen the runtime compilation

performance of JVM-based programs. Many such optimization

techniques involve complicated mechanisms, e.g., code analy-

sis and semantics-preserving code transformations, potentially

having the defects which can cause erroneous program ex-

ecutions. Intuitively, extensively applying such optimization

techniques can advance JIT bug exposure. Accordingly, we

determine to design optimization-activating mutators. Specif-

ically, we first analyze typical JIT optimization techniques,

e.g., simplification [19] and escape analysis [22, 27], and

then derive the strategies which aim for extensively triggering

the corresponding optimization techniques. As a result, such

strategies are adopted as the optimization-activating mutators.

We further realize that mutating control flows in seeding

class files for executing JIT can potentially advance the

effectiveness of JIT fuzzing due to the following reasons.

First, control-flow analysis can potentially advance the JIT

optimization techniques by identifying where and how to

optimize JVM-based programs [8]. Second, control-flow anal-

ysis can facilitate the correct compilation from Java pro-

grams into native machine code by verifying correctness of

semantics [28], etc. At last, existing work [29, 30, 31, 7]

also demonstrate that diversifying control flows in running

programs can significantly increase fuzzing performance, e.g.,

coverage. Accordingly in JITfuzz, we propose a set of control-

flow-enriching mutators including one statement-wrapping

mutator to strengthen the usage of basic blocks and one

transition-injecting mutator to strengthen the usage of their

transitions respectively based on the control flow of a given

seed. In addition, they both are designed to preserve semantics



correctness of target programs for preventing early-terminated

testing runs, e.g., causing no verification errors.

Note that prior to proposing the mutators, one should adjust

the setups of running JVMs such that JITs can be explicitly

launched. To this end, we use the JVM command java -

Xcomp cls for a given class cls.

1) Optimization-activating mutators: While optimization-

activating mutators can be proposed in accordance with

each existing optimization technique, exhaustively designing

them can be cost-ineffective. In this paper, we design four

optimization-activating mutators corresponding to the repre-

sentative optimization techniques in the existing JITs. i.e.,

function inlining [18], simplification [19], escape analysis [20],

and scalar replacement [21] which are commonly adopted by

the JITs from diverse well-recognized JVMs [14, 32, 33, 34].

Table I shows the details of the optimization-activating muta-

tors via rewrite rules [35].

Function-inlining-activating mutator. Noticing that func-

tion inlining refers to merging the instructions of small-scale

functions into their callers to reduce the cost of function calls,

our function-inlining-activating mutator is proposed to replace

a randomly selected instruction with a function where only

such instruction is contained, as Rule 1. More specifically,

given an expression α op β (op denotes a binary operator),

we create a new function f(x, y) which returns the expression

x op y. Consequently, we mutate the original expression

γ = α op β as its corresponding transformation γ = f(α, β) in

the given program context e. For instance, Example 1 shows

that the original instruction return i0 + i1 is mutated

by a function inline containing it in order to facilitate the

application of function inlining and test its capacity of merging

small-scale functions into their callers.

Simplification-activating mutator. Noticing that simpli-

fication refers to simplifying an arithmetic expression, the

simplification-activating mutator replaces a simplistic arith-

metic expression as a semantics-preserving yet complicated

expression. As in Rule 2, we update the original expression

α op β with its semantics-preserving expression α op β + 0
and generate an expression expr calculated to be zero. Cor-

respondingly, we mutate the original expression γ = α op β

as γ = α op β + expr. To illustrate, Example 2 shows that

we mutate the instruction i2 = i0 + i1 by adding and

subtracting a randomly generated integer i3 at the same time

to facilitate the application of simplification on the expression.

Scalar-replacement-activating mutator. Scalar replace-

ment essentially refers to investigating whether a stack variable

can replace an object allocated in the heap in order to

save memory resources. Accordingly, our scalar-replacement-

activating mutator is proposed to replace stack variables with

objects in the heap on target programs. Specifically, Rule 3

demonstrates that we first create an object obj and assign an

existing variable α as its field, and then replace α with the

field obj.field in any original expression α op β. Example

3 shows that we create a Digit object r0 to mutate the

constant integer 0 in the original instruction to be its associated

value stored in r0.integer so as to facilitate the application

Algorithm 1 Statement-wrapping Mutator

Input : I, seed, Cnt
Output : mutant

1: function DEFAULTCONTROLFLOW

2: if Cnt ≥ LIMITATION then
3: return mutant ← seed

4: strategy ← randomly select 0 or 1
5: if strategy == 0 then
6: expr ← “if (true) {I;}”

7: if strategy == 1 then
8: expr ← “loop (limit) {I; limit -= 1;}”

9: mutant ← update with expr in the seed
10: Cnt ← Cnt + 1
11: return DEFAULTCONTROLFLOW(expr, mutant, Cnt)

of scalar replacement. Note that such mutator can also be used

for the escape analysis in the ArgEscape level [22] when JIT

verifies whether an object in the heap has side effects or not.

Escape-analysis-activating mutator. To facilitate the es-

cape analysis in the GlobalEscape level [22], we also design an

escape-analysis-activating mutator that replaces a local object

α with the static field of the object this.field, which is

referred by this pointer, as Rule 4. In Example 4, we first

create the local object and assign it as the static field of this

object, and then reassign the reference i0 to this.object.

Thus we create a GlobalEscape scenario to access the original

local object i0 via the static field this.object to facilitate

the application of escape analysis.

2) Control-flow-enriching mutator: In this paper, we pro-

pose a set of control-flow-enriching mutators to enrich the

program control flows for augmenting the fuzzing effective-

ness. Note that while the existing JVM fuzzers Classming and

ClassFuzz also adopt control-flow mutators, applying them

can easily cause early-terminated testing runs by generating

random transitions and fail to expand the size of control flows,

e.g., increase the number of basic blocks.

Statement-wrapping mutator. Intuitively, to increase the

number of basic blocks in the existing control flows without

devastating their executions, one can design if(true) state-

ments and/or loop(limit) statements to contain the existing

program statements. Accordingly, we design a statement-

wrapping mutator to wrap a given statement within if and/or

loop statement(s). Algorithm 1 presents the details of applying

a statement-wrapping mutator under an input instruction I,

its associated seed, and a counter Cnt denoting the runtime

recursion depth. If Cnt exceeds threshold LIMITATION, the

real-time resulting mutant is returned (lines 2 to 3). Otherwise,

we randomly choose a design strategy to generate a new

expression expr to contain I (line 4). One is to generate

an if(true) block (lines 5 to 6). The other is to generate a

loop(limit) block (lines 7 to 8). Then the mutant is derived

by updating the seed with the resulting expr (line 9) followed

by updating Cnt (line 10). Note that the above operations are

recursively executed (line 11).

Transition-injecting mutator. We propose a transition-

injecting mutator to enrich the transitions among basic blocks.

While we simply select two random basic blocks for generat-

ing their transition, we also realize that without ensuring the





Algorithm 2 Transition Redirection Mechanism

Input: seed
Output: mutant

1: function REDIRECTBASICBLOCKTRANSITION

2: controlFlowGraph ← obtainCFG(seed)
3: entry ← identifyEntry(seed)
4: directedCFG ← deleteSelectedEdges(controlFlowGraph)
5: src ← randomlySelectBasicBlock(directedCFG)
6: sink ← randomlySelectBasicBlock(directedCFG)
7: srcPre, sinkPre, sinkFiC ← {}, {}, {}
8: srcNxt, sinkNxt ← src, sink
9: while entry ̸∈ srcPre do

10: srcNxt ← getDominator(srcNxt, directedCFG)
11: srcPre ← srcPre ∪ {srcNxt}

12: while entry ̸∈ sinkPre do
13: sinkFiC ← sinkPre ∩ srcPre
14: if sinkFiC ̸= ∅ then
15: break ▷ sinkFiC only contains one dominator

16: sinkNxt ← getDominator(sinkNxt, directedCFG)
17: sinkPre ← sinkPre ∪ {sinkNxt}

18: sinkNew← get the immediate post-dominator of sinkFiC from
sinkPre

19: mutant ← create a transition from src to sinkNew
20: return mutant

error in the original error-free program execution, i.e., a vari-

able is used without a definition in sinkNew after redirection.

Then we infer that this variable can be accessed by sinkFiC

since sinkFiC dominates sinkNew in sinkPre. Accord-

ingly, this undefined variable error can be spread in sinkFiC

(otherwise, sinkFiC is obliged to define variables to prevent

the undefined variable error in sinkNew), contradicting our

assumption. Thus, redirecting the transition to sinkNew is

ensured to incur no undefined variable error. Next, we discuss

why sinkNew is the closest dominator of sink which the

transition can be redirected to without causing any undefined

variable error. Similarly, assume there is a post-dominator of

sinkNew which the transition can be redirected to without

causing any undefined variable error. Since redirecting the

transition from src to the post-dominator of sinkNew does

not cause any undefined variable error, we infer that sinkNew

is not allowed to define new variables (otherwise, it is possible

that the variable is only defined in sinkNew which is not

included in the execution after the transition redirection, caus-

ing an undefined variable error in its post-dominator). Such

inference contradicts the fact that sinkNew is allowed to

define new variables as a dominator of sink. Thus, sinkNew

is ensured to be the closest dominator of sink causing no

undefined variable error.

B. Mutator Scheduler

After proposing multiple mutator types to strengthen the

usage of the optimization techniques in JITs in JITfuzz, how to

aggregate their strengths to optimize their overall effectiveness

becomes our next challenge. To this end, intuitively, an opti-

mization guide is essential. Note that while JVMs are likely

to cause non-deterministic coverage at runtime due to their

adopted mechanisms, e.g., parallel compilation and on-demand

garbage collection [7] (such that coverage usually cannot be

applied as a guide for testing JVMs), coverage updates can

be more deterministically captured for JITs. Therefore, we

determine to adopt the runtime coverage updates of target

programs for guiding our mutator scheduling plans.

In this paper, we build our mutator scheduler upon the

UCB-1 algorithm [37], a lightweight algorithm which con-

structs an optimistic guess to the expected payoff of each

action and picks the action with the optimal payoff to guide

future iterative executions. The UCB-1 algorithm is adopted

to schedule the mutators in JITfuzz due to the following

reasons. First, in JITfuzz, scheduling mutators to optimize their

aggregated effectiveness at runtime essentially is a stochastic

optimization problem which exploits limited knowledge (i.e.,

runtime coverage). Notably, the UCB-1 algorithm is proposed

to exactly address such stochastic optimization problem and

has been widely adopted for similar tasks [37, 38, 39]. Next,

scheduling mutators for fuzzing essentially demands limited

overhead such that adequate computing resources can be lever-

aged for key technique components, e.g., mutations, program

executions, and coverage collections. Notably, the UCB-1

algorithm yields rather limited overhead, i.e., quickly adjusting

the mutator options based on runtime coverage updates, to

approach the optimal solutions for each iterative execution. As

a result, JITfuzz utilizes the UCB-1 algorithm to schedule the

mutators according to runtime coverage updates. In particular,

for a given seed, JITfuzz first identifies a mutation limit to

determine how many mutators should be scheduled. Similar to

AFL [2], JITfuzz adopts multiple mutation limit options (four

in our paper, i.e., 4, 8, 16, 32). Next, by the scheduled mutation

limit, JITfuzz repeatedly selects one mutator out of all the

six possible options (i.e., four optimization-activating mutators

and two control-flow-enriching mutators). More specifically,

the mutators can be scheduled via Equation 1 where result(t)
denotes both the mutation limit result and the corresponding

mutator result at the t-th iteration.

result(t) = argmax
j

(
1

tj

tj
∑

i=1

xji +

√

2 ln (t− 1)

tj
) (1)

In Equation 1, tj denotes the total number that the j-th

mutator/limit option has been selected till the t-th iteration, and

xji refers to the reward of the j-th mutator/limit option in the

i-th iteration. Accordingly, the selected mutators are applied

to the given seed in turn for generating the mutants at the t-

th iteration. Meanwhile, the obtained coverage is recorded to

update the scheduler as a reward, which is one if the coverage

is increased and zero otherwise.

C. Discussion

We consider the concept of JITfuzz can be inspiring for more

fuzzing domains where multiple components are included in

one testing target. In particular, when proposing mutants to

cope with the target program as a whole instead of their indi-

vidual components, it is possible that the generated mutators

fail to fully access their components and thus compromise

the fuzzing effectiveness. On the other hand, applying the

mutators for addressing individual components only might still



incur testing ineffectiveness, since they are highly likely to

cause divergent testing effects respectively [4]. Therefore, it

is promising to include an additional mutator scheduler to

augment their collective power.

IV. EVALUATION

In this section, we conduct a set of experiments to evaluate

the effectiveness of JITfuzz on a real-world benchmark suite

composed of 16 projects. In particular, we first collect 6

projects commonly adopted from prior work [7, 9] and 10

additional popular open-source Java projects in GitHub [10].

Next, we compare JITfuzz with state-of-the-art mutation-based

JVM fuzzer Classming [7] and generation-based JVM fuzzer

JavaTailor [9] in terms of the edge coverage results obtained

from JIT of our target JVM, and evaluate the effectiveness of

different components of JITfuzz. In particular, we attempt to

answer the following research questions:

• RQ1: Is JITfuzz effective in fuzzing JIT?

• RQ2: Are the different components of JITfuzz effective in

terms of ablation study?

Moreover, we report and analyze the bugs on our adopted

benchmark exposed by JITfuzz. Note that all the evaluation

details are presented in our GitHub page [13].

A. Benchmark Construction

In this paper, we define a set of rules to collect influential

real-world Java projects in GitHub to form our benchmark

for our evaluation. In particular, we search with the keyword

“Java” on GitHub, and then randomly select 10 projects

with decent star number (larger than 100) and LoC numbers

(larger than 10k). In addition, we select all 6 projects from

state-of-the-art JavaTailor which are all excerpted from the

dacapo benchmark [40] with 102 stars. Table II demonstrates

the detailed information of our benchmark suite where the

top 6 projects are adopted by JavaTailor. Furthermore, for

each of these projects, we randomly select one of the ten

classes with the highest cyclomatic complexity [41] as the

seed program where the cyclomatic complexity refers to the

number of linearly independent paths through the source code

of a class [42, 43, 44, 45].

TABLE II: Benchmark information
Project Stars LoC Initial class(seed)

avrora

102

111k ...avrora/Main.class

eclipse 26.4k ...EclipseStarter.class

pmd 197.4k ...pmd/PMD.class

jython 360.7k ...python/util/jython.class

fop 331.3k ...fop/cli/Main.class

sunflow 28.5k ...sunflow/Benchmark.class

hutool [46] 23.5k 265.7k ..core.text.PasswdStrength.class

javapoet [47] 9.7k 12.4k ...ClassName.class

mybatis-3 [48] 17.5k 161.3k ...ibatis.parsing.GenericTokenParser.class

zxing [49] 29.9k 219.3k ...zxing.qrcode.encoder.Encoder.class

fastjson [50] 24.8k 103.9k ...fastjson.JSON.class

guice [51] 11.3k 110.6k ...inject.spi.InjectionPoint.class

commons-text [52] 242 54.7k ...commons.text.numbers.ParsedDecimal.class

rocketmq [53] 17.8k 178.2k ...rocketmq.filter.util.BloomFilter.class

spark [54] 9.3k 23.1k spark.resource.UriPath.class

vert.x [55] 3.3k 215.4k ...vertx.core.json.JsonArray.class

B. Environment Setup and Implementation

We perform our evaluations on a work station, with AMD

EPYC 7H12 CPU and 256 GB memory. The operating system

is 64-bit Ubuntu 18.04.5 LTS. We choose HotSpot (Java

19) [14] as our target JVM to obtain the coverage results

and set the LIMITATION for Algorithm 1 to two. Note that

the results of more LIMITATION setups are presented in

our GitHub link [13] due to page limit. Moreover, following

prior work [2, 26, 56], we adopt the edge coverage [57]

obtained from JIT to reflect the effectiveness of our studied

techniques. To collect runtime edge coverage, we first obtain

all the source files of JIT only. Next, we utilize the partial

instrumentation tool from AFL++ [58] to instrument such

source files for runtime edge collection. Note that JVM does

have non-deterministic coverage such as garbage-collection

mechanism [7]. However, since we only include the source

files of JIT, such issues are mitigated while we collect the

edge coverage information during fuzzing JIT.

All our experiments are run for 24 hours following prior

work [56, 26, 59]. Note that all the experimental results are

averaged from five runs to reduce the impact of randomness.

C. Result Analysis

1) RQ1: the effectiveness of JITfuzz: Table III demon-

strates the evaluation results of JITfuzz, JavaTailor and Class-

ming in terms of edge coverage.

Overall, we observe that JITfuzz can significantly outper-

form Classming in terms of the edge coverage. Specifically,

JITfuzz can explore averagely 34,939 edges, while Classming

only explores 27,306 edges, i.e., JITfuzz explores over 27.9%

more edges than Classming. Meanwhile, we also find that

JITfuzz outperforms JavaTailor by 18.6% (34,939 edges vs.

29,451 edges). Moreover, JITfuzz can significantly outper-

form Classming and JavaTailor on each individual project

(from 4.9% to 1.8× for Classming and from 3.0% to 98.4%

for JavaTailor). Such results altogether reflect that JITfuzz

achieves significant edge coverage advantages over Classming

and JavaTailor.

We also apply the Mann-Whitney U test [60] to illustrate

the significance of JITfuzz in Table III. We can observe that

the p-values of JITfuzz comparing with other studied fuzzers

in terms of average edge coverage are far below 0.05, which

indicates JITfuzz outperforms all studied fuzzers significantly.

Finding 1: JITfuzz is more effective than Classming and

JavaTailor by exploring 27.9% and 18.6% more edges

on average.

2) RQ2: Effectiveness of each component: In this section,

we conduct a set of ablation studies to evaluate the effective-

ness of the key technical components in JITfuzz.

Effectiveness of the mutators. to perform ablation studies

on the effectiveness of each mutator, we build the following

six variant techniques of the original JITfuzz by disabling the

corresponding mutators, i.e., JITfuzz−inline, JITfuzz−simp,

JITfuzz−scalar, and JITfuzz−escape, JITfuzz−wrap, and



JITfuzz−trans which respectively disables the function-

inlining-activating mutator, the simplification-activating

mutator, the scalar-replacement-activating mutator, the

escape-analysis-activating mutator, the statement-wrapping

mutator, and the transition-injecting mutator. Accordingly,

we can derive the effectiveness of a mutator by comparing

the performance of its associated technique variant with the

original JITfuzz. Table III demonstrates the edge coverage

results of JITfuzz and our studied technique variants. In

general, we can observe that JITfuzz outperforms each variant

averagely from 12.2% to 26.9% in terms of edge coverage,

which is rather substantial. Moreover, we also find that

all the variant can outperform Classming in terms of edge

coverage from 0.8% to 14.0% respectively and three variants

outperform JavaTailor from 2.6% to 5.7%, which delivers the

fact that the framework of JITfuzz is robust even with partial

mutators. Such results suggest that all mutators are effective

and integrating them together optimizes the performance in

exploring edges for JIT.

Finding 2: Each mutator of JITfuzz is effective and

integrating them optimizes the performance of exploring

edges.

Effectiveness of the transition redirection mechanism.

We further investigate the effectiveness of the transition

redirection mechanism for applying the transition-injecting

mutator. As in Algorithm 2, the transition-injecting mutator

redirects a randomly generated transition from the source to

a dominator of the sink to prevent using undefined variables.

Accordingly, we build a technique variant JITfuzzrandtr, which

simply creates transition directly for two randomly chosen

basic blocks without applying any redirection while retaining

all other proposed mutators in this paper.

We can observe from Table III JITfuzz significantly outper-

forms JITfuzzrandtr by 28.6% on average in terms of edge

coverage, indicating that redirecting transitions is essential to

facilitate the efficacy of the transition-injecting mutator.

Finding 3: Transition redirection mechanism is essential

for the transition-injecting mutator in augmenting its

edge coverage performance.

Effectiveness of the mutator scheduler. To investigate

the effectiveness of mutator scheduler, we build a technique

variant JITfuzzrandsch, which randomly schedules the mutators

and the mutation limit in each iterative execution instead of

applying the coverage-guided mutator scheduler.

In general, we can observe from Table III that mutator

scheduler is effective since JITfuzz outperforms JITfuzzrandsch
significantly by 10.2% (34,939 vs. 31,700 explored edges)

on average in terms of edge coverage. More specifically, we

can further observe that JITfuzz outperforms JITfuzzrandsch
consistently upon all the benchmark projects. Such results

indicate that our adopted mutator scheduler is rather powerful

in strengthening the effectiveness of JIT fuzzing.

Finding 4: Adopting mutator scheduler can significantly

improve edge exploration for JITfuzz by scheduling

mutators and its mutation limit.

D. Bug Report and Analysis

JITfuzz is effective in exposing multiple real-world JIT/JVM

bugs where a bug is defined as a defect within a specific

JVM version in this paper. In our paper, a bug is exposed if a

seed 1) triggers any JVM crash, or 2) incurs different outputs

among different JVMs (e.g., one JVM normally terminates

while another reports an exception). After careful manual

analysis, we then report the potential bugs as well as the

corresponding seeds to the developers. Specifically, we apply

the seeds generated by JITfuzz in our evaluation to run multiple

JVMs, i.e., different versions of OpenJ9 [15], OpenJDK [14],

and OracleJDK [16], for exposing their bugs. Note that we

tend to include their recent versions since they are typically

adopted by a large-scale collection of real-world projects, i.e.,

potentially having more impact than the older ones.

Table IV demonstrates the detailed information where we

have successfully detected 36 JVM bugs. After reporting

them to the corresponding JVM developers, 27 of them have

been confirmed and 16 have been fixed. More specifically,

23 of them are JIT bugs, 18 have been confirmed, and 7

are fixed by the developers. Note that none of the bugs can

be detected by Classming or JavaTailor. To illustrate, we

observe that executing many seeds adopted by Classming

fail to activate JIT optimization techniques with the abrupt

termination. Meanwhile, the database adopted by JavaTailor

which contains the Java programs exposing JVM bugs fails to

contain sufficient JIT bugs for reference. We then introduce

four typical bugs exposed by JITfuzz as follows.

1) JIT segmentation fault: We reported a vulnerability [61]

on the C2 compiler [62]—a specific JIT compiler in HotSpot

(OpenJDK), which affects several OpenJDK versions, includ-

ing 7u351, 8, 11, 17.0.2, 18, and 19. It was assigned with a bug

ID JDK-8283441 and has been fixed later. This vulnerability

is exposed by running the original JUnit tests with a seed

generated from JSON.class. In particular, the affected

JVMs crashed due to a segment fault within ciMethod-

Blocks::make_block_at(int), as in Figure 4.

The developers located the issue to two methods in the seed

whose bytecodes end abruptly with unreachable basic blocks,

as shown in Figure 5. They found that HotSpot builds control

flow graphs for unreachable basic blocks where JIT fails to

validate. As a result, by compiling unreachable basic blocks,

JIT accesses invalid memory, causing the segmentation fault.

Eventually, they fixed this issue as follows:

“The new verifier checks by bytecodes falling off the

end of the method, and the old verify does the same,

but only for reachable code. So we need to be careful

of falling off the end when compiling unreachable code

verified by the old verifier.”



TABLE III: Effectiveness of the JITfuzz mutators

Benchmark JITfuzz Classming JavaTailor
Variants by Disabling Mutators Other Variants

JITfuzz−scalar JITfuzz−escape JITfuzz−simp JITfuzz−inline JITfuzz−wrap JITfuzz−trans JITfuzzrandtr JITfuzzrandsch

hutool 37,006 32,994 33,345 34,209 34,483 35,276 32,018 29,378 30,374 31,367 35,038

javapoet 36,178 33,948 35,138 33,675 30,990 34,296 34,135 32,381 32,070 32,465 33,599

mybatis 29,209 18,708 21,642 23,165 22,354 25,358 24,126 22,874 24,642 16,560 26,064

zxing 36,184 28,350 33,406 35,214 30,161 34,931 35,680 34,474 28,731 29,682 32,156

fastjson 36,222 26,121 26,956 30,114 34,367 34,963 33,715 33,269 28,711 26,341 32,874

guice 36,852 30,757 32,257 29,805 31,241 30,571 24,521 26,937 28,227 26,734 32,144

commons-text 36,863 35,147 34,058 35,075 36,075 36,881 34,503 32,958 34,039 33,129 33,039

rocketmq 32,808 29,043 30,910 26,977 28,457 24,097 26,241 26,012 24,060 24,782 30,422

spark 33,936 12,130 17,109 28,145 24,270 24,854 32,568 28,613 26,279 25,638 29,695

vert.x 34,056 24,162 25,598 28,056 23,806 31,199 22,785 27,322 25,302 26,986 32,238

avrora 36,835 29,339 32,634 28,879 28,208 36,275 32,539 28,344 24,598 28,150 33,073

eclipse 33,057 30,299 29,692 29,518 26,841 31,556 28,035 24,086 24,933 24,925 28,692

pmd 36,985 28,898 32,505 30,263 30,123 29,788 30,522 27,963 28,801 25,441 32,623

jython 35,284 25,827 29,060 29,443 31,155 30,630 29,892 32,110 25,226 28,139 33,102

fop 32,713 22,972 26,782 27,439 27,934 29,878 31,426 29,269 28,880 26,912 30,453

sunflow 34,846 28,202 30,133 33,632 26,595 27,584 30,553 30,851 25,713 27,317 32,002

average 34,939 27,306 29,451 30,225 29,191 31,133 30,203 29,177 27,536 27,160 31,700

p-value N/A 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

TABLE IV: Issues found by JITfuzz

JVMs
# Issues Reported # Issues Confirmed # Issues Fixed

JIT Non-JIT JIT Non-JIT JIT Non-JIT

OracleJDK 1 0 1 0 0 0

OpenJDK 18 5 13 5 7 5

OpenJ9 4 8 4 4 0 4

TOTAL 23 13 18 9 7 9

1 ciBlock *ciMethodBlocks::make_block_at(int bci) {

2 ciBlock *cb = block_containing(bci);

3 if (cb == NULL ) {

4 ciBlock *nb = new(_arena) ciBlock(_method,

_num_blocks++, bci);

5 _blocks->append(nb);

6 // segmentation fault

7 _bci_to_block[bci] = nb;

8 return nb;

9 } else if (cb->start_bci() == bci) {

10 return cb;

11 } else {

12 return split_block_at(bci);

13 }

14 }

15

Fig. 4: One C2 segmentation fault bug in HotSpot

2) Dead loop assertion failure: JITfuzz discovered a

HotSpot vulnerability [61] on JIT caused by an assertion

failure, indicating that a dead loop was detected as in Figure 6.

The OpenJDK versions 8, 11, 17, 18, 19 and 20 are affected

by this vulnerability which has been reported to the developers

and assigned with a bug ID JDK-8280126.

The developers confirmed this bug and tried to analyze

the corresponding buggy class file but failed by applying

the tools provided by OpenJDK. They implemented multiple

helper functions to analyze the control structure and inferred

that HotSpot may miscalculate the control flow and consider

certain nodes to be unreachable. As a result, such nodes

416: return

// Unreachable block

417: iinc 5, 1

420: iload 5

422: iconst_2

423: if_icmple 339

(end of bytecode)

(a) JSON.config() code snippet

623: areturn

// Unreachable block

624: iinc 20, 1

627: iload 20

629: iconst_2

630: if_icmple 336

(end of bytecode)

(b) JSON.parseObject() code snippet

Fig. 5: Unreachable basic blocks in the generated class

1 void PhaseGVN::dead_loop_check( Node *n ) {

2 if (n != NULL && !n->is_dead_loop_safe() && !n->

is_CFG()) {

3 bool no_dead_loop = true;

4 ...

5 if (!no_dead_loop) n->dump(3);

6 // assertion failure

7 assert(no_dead_loop, "dead loop detected");

8 }

9 }

10

Fig. 6: One dead loop assertion in HotSpot

take unexpected data as input and cause a dead loop, e.g.,

a data node in control flow graph references itself directly or

indirectly. Eventually, they decided to defer this issue to JDK

20 due to its complexity with the following feedback:

“The difficulty with this bug is that we have many paths

that get eliminated, finding the real source of the issue

feels like searching for a needle in a haystack.”

3) JIT crash during optimization: We reported an OpenJ9

vulnerability [63] on JIT optimizer, which has been confirmed

by the developers. When applying option optlevel at the

hot level or higher, JIT failed to compile a seed generated

from ParsedDecimal.class due to a segmentation error

within TR_OrderBlocks::peepHoleBranchBlock, as

shown in Figure 7.

1void TR_OrderBlocks::peepHoleBranchBlock(TR::CFG *
cfg, TR::Block *block, char *title)

2 {

3 ...

4 // crash

5 TR::Block *fallThroughBlock = fallThroughEntry->

6 getNode()->getBlock();

7

Fig. 7: Assertion failure during verification

The developers found that a node created by gener-

alLoopUnroller is NULL. Furthermore, this issue can

be bypassed by setting the JVM option disableGLU to

disable the general loop unroller. Eventually, devel-



opers concluded that JIT miscalculated the control flow graph

to incorrectly move certain nodes.

“However If I add tracing on this method, the crash

goes away. I’ll instrument the code and see if I can

catch the issue in an early stage of the optimization.”

4) Other runtime vulnerabilities: In addition to JIT vulner-

abilities, JITfuzz also reveals runtime defects. For example, we

reported an OpenJ9 vulnerability [64] on the verification stage,

which causes OpenJ9 to crash due to an assertion failure.

To locate this issue, the developers reproduced the crash in a

debug build and found that the crash occurred when releasing

the stackmap frame memory at /runtime/verbose/er-

rormessagehelper.c, as shown in Figure 8.

1 releaseVerificationTypeBuffer(StackMapFrame*
stackMapFrame, MethodContextInfo* methodInfo)

2 {

3 if (NULL != stackMapFrame->entries) {

4 PORT_ACCESS_FROM_PORT(methodInfo->portLib);

5 // crash

6 j9mem_free_memory(stackMapFrame->entries);

7 }

8 }

9

Fig. 8: Assertion failure during verification

The developers further found that OpenJ9 incorrectly built

stackmaps for the class file due to its huge size. In particular,

OpenJ9 cannot allocate the memory for its locals and stack

and the crash occurs when it tries to release the memory of

the stackmap frame. The developers replied as follows.

“There is no element of ’locals’ and ’stack’ in the

current stackmap frame in which case the code above

didn’t handle at this point.”

Eventually, the developers fixed this issue by adding addi-

tional checks to handle the case with empty locals and stack.

To summarize, by adopting the optimization-activating mu-

tators, the statement-wrapping mutators and the mutator sched-

uler with easy-to-capture coverage information, JITfuzz can

expose multiple types of JIT bugs which can be hardly

explored by the existing approaches.

V. THREATS TO VALIDITY

The threats to external validity mainly lie in the subjects

used in our benchmark. To reduce the threats, we determine

to collect important and influential real-world Java projects

to form our benchmark. Specifically, we first adopt all the 6

projects from JavaTailor. Next, we randomly select 10 GitHub

projects with decent star/LoC numbers. We then randomly

select one class with high cyclomatic complexity from each

project as the seed.

One threat to internal validity lies in the potential flaws in

our implementation of JITfuzz. To reduce the threat, the first

three authors in the paper have been carefully working on the

implementation for over one year. We manually reviewed all

our implemented code and tested them sufficiently for veri-

fying our implementation. Another threat to internal validity

lies in the scalability of optimization-activating mutators for

diverse JVM implementations. To reduce the threat, we recog-

nize four commonly-adopted optimization techniques after rig-

orous studies on multiple existing JVMs and design their cor-

responding optimization-activating mutators. Moreover, new

mechanism-based mutators can be easily proposed for JITfuzz

when including additional JIT optimization techniques.

The threats to construct validity mainly lie in the metrics

used. To reduce the threats, we use a widely-used metric, i.e.,

the edge coverage, to evaluate our approach. We also deliver

detailed bug report from real-world benchmarks to strengthen

the evaluation on the real-world applicability of JITfuzz.

VI. RELATED WORK

A. Fuzzing

Fuzzing [65] refers to an automated software testing tech-

nique that inputs unexpected or random data to programs

such that the program exceptions including crashes, failing

code assertions, or memory leaks can be exposed and moni-

tored. As a widely-adopted baseline fuzzer, AFL [2] provides

a fundamental implementation for coverage-guided fuzzing

framework with components such as instrumentation, edge

coverage collector, etc. Many existing fuzzers are proposed

to enhance the performance of AFL. For instance, Böhme

et al. [3] proposed AFLFast to enhance AFL by scheduling

the seeds via Markov chain. To explore the rare branches,

Lemieux et al. [5] attempted to first identify branches exercised

by limited seeds produced by AFL and then invest adequate

computation resources to such branches to thoroughly explore

target programs. Lyu et al. [4] proposed MOPT to improve

the performance of AFL by scheduling existing mutators via

the Particle Swarm Optimization (PSO) algorithm. Wu et

al. [66] found that combining deep learning and program

smoothing can be helpful for fuzzing while it also can be

improved by injecting a mechanism for identifying edge prop-

erties. They further discovered that the widely-adopted Havoc

mechanism potentially dominates the effectiveness of fuzzing

strategies [67]. Jiang et al. [68] found that the coordination

mode of fuzzing and concolic execution is the dominating

factor for the effectiveness of hybrid fuzzers. Furthermore,

fuzzing has been widely adopted in multiple domain-specific

scenarios. For example, Noller et al. [69] proposed QFuzz

to quantitatively evaluate the strength of side channels with

a focus on min entropy, which is a measure based on the

number of distinguishable observations (partitions) to assess

the resulting threat from an attacker who tries to compromise

secrets in one try. Andronidis et al. [70] leveraged the power

of snapshot of net applications to facilitate the fuzzing efficacy

of networking applications. Wu et al. [71] proposed Simulee

to fuzz CUDA programs for exposing their synchronization

bugs and further fixed them accordingly [72]. Ma et al. [73]

proposed PrIntFuzz to fuzz Linux drivers by a contructed

device simulator. Zheng et al. [74] proposed EQUAFL to fuzz

Linux-based IoT devices via switching emulation types. By



using raw html files as inputs, Song et al. [75] proposed

R2Z2 which utilizes differential testing framework to fuzz

web browsers. With the help of the debugging feature, Li et

al. [76] proposed µAFL to bridge the fuzzing environment on

PC and target firmware on microcontroller devices. Recently,

a large group of researchers have been focusing on applying

fuzzing/testing to the emerging AI/ML systems [77, 78, 79,

80, 81, 82, 83, 84].

Although many existing fuzzers have been proven effective

in fuzzing real-world programs, there exists no fuzzer specif-

ically for JVM JITs. In this paper, we propose JITfuzz, the

first coverage-guided JVM JIT fuzzer which includes multiple

effective mutators and a mutator scheduler to expand code

coverage and expose real-world JIT/JVM bugs.

B. Compiler and JVM testing

Researchers have spent large effort on compiler testing.

To date, a number of techniques have been proposed to

automatically generate programs for compiler testing. Yang

et al. [30] proposed Csmith, which generates the seeding

C programs to explore C compiler while preventing the

undefined and unspecified behaviors that might cause testing

insufficiency. Reddy et al. [85] proposed RLCheck, which

utilizes reinforcement learning to generate diverse valid inputs

to explore the programs requiring strict validation on the

inputs, e.g., JavaScript engine. Eberlein et al. [86] devel-

oped EVOGFUZZ, an evolutionary grammar-based fuzzing

approach to optimize the probabilities to generate test inputs

that are likely to trigger unexpected behaviors for applications

with common input formats (JSON, JavaScript, or CSS3). For

JVM testing, Yoshikawa et al. [87] proposed a random Java

program generator based on the predefined syntax to expose

JVM vulnerabilities by differential testing. Sirer et al. [88]

proposed lava to generate Java programs for JVM testing

via randomly iterating over the Java grammar productions.

Boujarwah et al. [89] utilized the predefined grammar of Java

programs to generate semantics-correct test cases to fuzz JVM.

More recently, Zhao et al. [9] proposed JavaTailor to generate

testing programs by learning information from historical bug-

revealing test programs to expose JVM defects.

Compared with the above-mentioned generation-based test-

ing approaches which either generate seeding programs from

scratch (e.g., RLcheck [85]), or require program samples with

additional efforts (e.g., JavaTailor [9]), the mutation-based test-

ing approaches are usually launched with specifically designed

mutators and collected seed corpus. To systematically parse

existing real-world code for producing discrepancy-induced

programs, Le et al. [90] introduced equivalence modulo inputs

(EMI) to mutate seed programs and validate the quality of

compilers. Zhang et al. [91] introduced the concepts of the

skeletal program enumeration and replaced the variables in

the original skeletal program to generate control flows for

compiler testing. Sun et al. [92] tested compilers via mutating

the live code of the input programs regardless the restriction

of only mutating the unreachable regions of input programs.

Donaldson et al. [31] developed GLFuzz for testing OpenGL

shading language compilers based on semantics-preserving

program transformations. Park et al. [93] proposed Die to fuzz

the JavaScript engine via the aspect preservation mutators. In

terms of testing JVM, Chen et al. [25] proposed classfuzz,

which utilizes Markov Chain Monte Carlo [94, 95] to guide

mutation via designed mutators. They also proposed class-

ming [7] to leverage the power of manipulating the control

flows of seeding class files to test the execution engine of

JVM.

Compared with traditional compiler and JVM testing ap-

proaches, our proposed JITfuzz can be readily applied to test

JITs thoroughly with the well-designed mutators and mutator

scheduler under given collection of seed inputs.

VII. CONCLUSION

In this paper, we develop a coverage-guided fuzzing

framework for JVM JITs, namely JITfuzz, which includes

four optimization-activating mutators and two control-flow-

enriching mutators. Moreover, JITfuzz adopts a lightweight

mutator scheduler to schedule the mutation limit and the

associated mutators for maximizing the overall effectiveness of

fuzzing. To evaluate the effectiveness of JITfuzz, we construct

a benchmark suite with 16 real-world JVM-based projects. Our

evaluation results suggest that JITfuzz can outperform state-

of-the-art Classming and JavaTailor by 27.9% and 18.6% in

terms of the edge coverage on average. Meanwhile, we also

demonstrate that all proposed mutators and the mutator sched-

uler are effective. Furthermore, JITfuzz successfully detects

36 previously unknown bugs none of which can be detected

by Classming or JavaTailor. Specifically, 27 of them have

been confirmed and 16 have been fixed by the corresponding

developers. More specifically, 23 of them are JIT bugs, 18

have been confirmed, and 7 have been fixed.
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