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Abstract—As a widely-used platform to support various Java-
bytecode-based applications, Java Virtual Machine (JVM) in-
curs severe performance loss caused by its real-time program
interpretation mechanism. To tackle this issue, the Just-in-Time
compiler (JIT) has been widely adopted to strengthen the efficacy
of JVM. Therefore, how to effectively and efficiently detect JIT
bugs becomes critical to ensure the correctness of JVM. In this
paper, we propose a coverage-guided fuzzing framework, namely
JITfuzz, to automatically detect JIT bugs. In particular, JITfuzz
adopts a set of optimization-activating mutators to trigger the
usage of typical JIT optimizations, e.g., function inlining and
simplification. Meanwhile, given JIT optimizations are closely
coupled with program control flows, JITfuzz also adopts mutators
to enrich the control flows of target programs. Moreover, JITfuzz
also proposes a mutator scheduler which iteratively schedules
mutators according to the coverage updates to maximize the
code coverage of JIT. To evaluate the effectiveness of JITfuzz, we
conduct a set of experiments based on a benchmark suite with
16 popular JVM-based projects from GitHub. The experimental
results suggest that JITfuzz outperforms the state-of-the-art
mutation-based and generation-based JVM fuzzers by 27.9%
and 18.6% respectively in terms of edge coverage on average.
Furthermore, JITfuzz also successfully detects 36 previously
unknown bugs (including 23 JIT bugs) and 27 bugs (including
18 JIT bugs) have been confirmed by the developers.

I. INTRODUCTION

Java Virtual Machine (JVM) has been widely adopted in
many popular application domains, e.g., mobile applications
and cloud computing, by supporting the execution of Java
bytecode compiled from various high-level programming lan-
guages, e.g., Java, Scala, and Clojure [1]. However, while
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JVM is advanced in adopting interpretation in addition to
compilation for cross-platform execution, interpreting JVM-
based programs incurs high performance overhead. To tackle
this issue, the Just-in-Time compiler (JIT) has been designed to
improve runtime compilation performance of JVM-based pro-
grams by compiling selected code (e.g., frequently executed
code) into native machine code. In this way, the resulting JVM
bytecode can be executed directly without the costly interpre-
tation process, leading to efficient program execution. To date,
JIT has become a crucial component in JVM implementations
where its correctness plays a vital role in ensuring correct and
efficient execution of JVM-based programs.

While it is evident that testing JITs to ensure their correct-
ness is vital for the correct execution for JVMs, how to effec-
tively and efficiently test JITs remains rather challenging due
to the following reasons. First, JITs can hardly be thoroughly
tested because they include diverse optimization techniques
which are activated under diverse scenarios. That said, to
thoroughly test JITs, it is essential to create as many such
optimization scenarios as possible, which can be potentially
challenging. Second, while random/probabilistic mutation be-
comes a major paradigm adopted by many fuzzers [2, 3, 4, 5],
it is nevertheless inefficient for JIT testing since massive
resulting mutants cannot conform to JVM specification and
executing them easily terminates JIT testing early (e.g., in the
input verification phase [6]) to prevent testing deep JIT states.
At last, although traditional JVM fuzzing techniques have
proven that applying control-flow mutators can improve testing
effectiveness, such mutators can hardly be directly applied
in fuzzing JITs, e.g., adding new transitions in the existing
control flow graphs can easily break variable dependencies [7],
causing early-terminated JVM executions and thus leading
to insufficient JIT testing. Therefore, albeit general-purpose



JVM fuzzing techniques can occasionally expose JIT bugs,
there still is a pressing need for a dedicated fuzzing technique
specifically targeting JITs.

In this paper, we propose JITfuzz, a coverage-guided fuzzing
framework specifically targeting JITs. In particular, testing
JITs essentially is testing their mechanisms for compiling
bytecode into native machine code during runtime. Intuitively,
such mechanisms can expose interesting behaviors (which may
expose bugs) when triggering the usage of their optimization
techniques and enriching the control flows of target JITs.
Therefore in this paper, after explicitly launching JITs via
specific JVM commands, JITfuzz adopts two types of mutators
to advance thorough testing of the JIT mechanism. More
specifically, optimization-activating mutators are proposed to
trigger the activation of typical optimization techniques, e.g.,
the function-inlining-activating mutator is applied to create
scenarios where the function inlining strategy [8] is activated.
Meanwhile, noticing that mutating program control flows can
potentially affect JIT optimizations, we also propose control-
flow-enriching mutators to safely complicate program control
flows of the generated test programs (i.e., alleviating early
termination). Furthermore, JITfuzz adopts a mutator scheduler
to dynamically schedule the mutators to optimize the runtime
testing coverage of JITs.

To evaluate the effectiveness of JITfuzz, we first construct
a real-world benchmark suite composed of 6 commonly
adopted projects from prior JVM fuzzing work [7, 9] and
10 popular open-source projects in GitHub [10]. Next, by
choosing OpenJDKI19 [11] as our target JVM, we conduct
a set of experiments to explore the effectiveness of JITfuzz
and its components. The evaluation results suggest that JITfuzz
outperforms state-of-the-art mutation-based JVM fuzzer Class-
ming [7] and generation-based JVM fuzzer JavaTailor [9] by
27.9% and 18.6% respectively in terms of the code coverage.
Meanwhile, all our proposed technical components in JITfuzz,
including the mutators and mutator scheduler, are effective.
For instance, adopting mutator scheduler can increase the code
coverage by 10.2% on average. Moreover, JITfuzz success-
fully detects 36 previously unknown bugs on three commercial
JVMs while none of them can be detected by Classming or
JavaTailor. Specifically, 27 bugs have been confirmed by the
corresponding developers and 16 have already been fixed.
Moreover, 23 of them are JIT bugs where 18 have been
confirmed and 7 have been fixed.

In summary, our paper makes the following contributions:

o Approach. To our best knowledge, we propose the first
coverage-guided fuzzing framework for JVM JIT namely
JITfuzz with specifically designed mutators and mutator
scheduler.

« Implementation. We implement our approach as a prac-
tical tool based on the Jimple-level mutation via Soot [12]
with the source code available in our GitHub page [13].

« Evaluation. We evaluate JITfuzz under multiple experi-
mental setups, and the experimental results suggest that
JITfuzz outperforms Classming by 27.9% and JavaTailor
by 18.6% in terms of the code coverage. In addition,
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Fig. 1: The workflow of JVM JIT

JITfuzz successfully detects 36 previously unknown bugs
where 23 are JIT bugs.

II. BACKGROUND

In this section, we give an overview on the features of the
basic mechanism of JVM JIT and the challenges of fuzzing
JITs to motivate our work.

A. JVM JIT

In JVM, the Just-in-time compiler (JIT) selects code (e.g.,
frequently used methods) running on JVM and compiles them
into the native machine code to accelerate the execution for
target programs. Figure 1 illustrates the workflow of JIT. For a
given class file, when JVM executes a method, it first verifies
whether such a method is frequently used. If so, the method
is then compiled into native code by JIT and stored in the
compiled code cache for direct execution. Otherwise it is
regularly executed on the JVM bytecode interpreter. Since all
such selected methods only need to be compiled once, JIT
can significantly advance the execution efficiency of target
programs. Note that JIT can also be explicitly activated by
specifying the JVM command as java —-Xcomp cls for a
given class cls.

JIT adopts multiple optimization techniques [8] to optimize
program compilation performance at runtime for realizing
efficient JVM execution via control flow analysis. Specifically,
many widely-used JVMs, e.g., OpenJDK [14], Openl9 [15],
OracleJDK [16], and JRockit [17], adopt common optimiza-
tion techniques such as function inlining [18], simplifica-
tion [19], escape analysis [20], and scalar replacement [21].
More specifically, function inlining refers to merging the
small-scale functions into their callers to accelerate the fre-
quent function calls. Simplification refers to using an equiva-
lent but simpler expression to replace the given expression for
improving runtime efficiency. Escape analysis refers to identi-
fying the dynamic scope of objects and determine whether to
allocate them on the Java heap or replace them with constants,
i.e., escape. Note that escape analysis can be implemented in
multiple levels, including GlobalEscape (i.e., objects escape
globally), ArgEscape (i.e., objects escape within the same
thread) and NoEscape (i.e., objects do not escape) [22]. Scalar
replacement is one typical solution of the escape analysis in
the ArgEscape level, i.e., replacing objects in the Java heap
within the same thread.



B. Motivation

JIT has been demonstrated to significantly impact the run-
time performance of JVM-based applications [23] and thus
strongly recommended by industrial developers [24]. While
testing JITs to ensure their correctness is essential, there
exists no dedicated testing technique for such specific purpose
to our best knowledge. Albeit the existing general-purpose
JVM fuzzers [25, 7, 9] can potentially expose JIT bugs
occasionally, they encounter severe challenges to prevent them
from effectively exposing the JIT bugs. In particular, when
ClassFuzz [25] randomly manipulates (e.g., deletes or inserts)
instructions, it can also generate vast invalid/illegal seeds
which essentially lead to testing ineffectiveness. Although
Classming [7] aims at improving over ClassFuzz for gener-
ating more valid seeds by intentionally breaching the variable
dependencies to expose erroneous data flows, it potentially
causes early-terminated JVM executions, i.e., insufficient test-
ing of JITs. Meanwhile, noticing that JavaTailor [9] demands
a preset database containing the Java programs executed to
trigger JVM bugs, applying JavaTailor to specifically expose
JIT bugs can be potentially challenging since the size of
the JIT bug datasets are often limited and can only cover a
small subset of possible bugs. To address these issues, it is
essential for a fuzzer aiming at extending the usage of the JIT
optimization techniques, which can be intuitively realized by
proposing the fuzzing strategy to both advance the activation
of the JIT optimization techniques and mutate control flows
while preventing early termination of their associated testing
runs.

Many fuzzers, e.g., AFL [2], MOPT [4], and Neuzz [26],
adopt code coverage as guidance to facilitate bug/vulnerability
exposure, i.e., generating mutants and retaining them as seeds
for further mutations if they are executed to increase/optimize
code coverage of target programs. However, code coverage can
hardly be applied for general-purpose JVM testing techniques
because JVMs are likely to cause non-deterministic coverage
at runtime due to their adopted mechanisms, e.g., parallel
compilation and on-demand garbage collection [7]. On the
other hand, we also notice that code coverage can be more
deterministically captured for JITs. Therefore, it is plausible
and potentially beneficial to adopt code coverage to guide our
JIT testing.

III. APPROACH

We propose JITfuzz, a coverage-guided fuzzer for JVM JIT
with two mutator types and a mutation scheduler. In particular,
JITfuzz is implemented with Jimple-level instructions provided
by Soot [12] which is a framework for analyzing and trans-
forming JVM-based applications. Figure 2 presents the overall
workflow of JITfuzz. Typically, Initialized with a seed corpus,
JITfuzz iterates each seed to generate mutants under a given
time budget. For each iteration, JITfuzz determines its mutation
limit (i.e., the number of mutators applied to the given seed)
according to the collected coverage updates. Note that in this
paper, JITfuzz develops four optimization-activating mutators
and two control-flow-enriching mutators to facilitate the usage
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Fig. 2: The framework of JITfuzz

of JIT optimization techniques and enrich the control flows.
Accordingly, JITfuzz adopts a mutator scheduler to select
and schedule the mutators by the mutation limit based on a
lightweight dynamic optimization algorithm to optimize the
runtime code coverage. Eventually, if such resulting mutant
increases code coverage in the target JIT, it is added to the
seed corpus for further mutations.

A. Mutators

As mentioned in Section II, JIT adopts multiple opti-
mization techniques to strengthen the runtime compilation
performance of JVM-based programs. Many such optimization
techniques involve complicated mechanisms, e.g., code analy-
sis and semantics-preserving code transformations, potentially
having the defects which can cause erroneous program ex-
ecutions. Intuitively, extensively applying such optimization
techniques can advance JIT bug exposure. Accordingly, we
determine to design optimization-activating mutators. Specif-
ically, we first analyze typical JIT optimization techniques,
e.g., simplification [19] and escape analysis [22, 27], and
then derive the strategies which aim for extensively triggering
the corresponding optimization techniques. As a result, such
strategies are adopted as the optimization-activating mutators.

We further realize that mutating control flows in seeding
class files for executing JIT can potentially advance the
effectiveness of JIT fuzzing due to the following reasons.
First, control-flow analysis can potentially advance the JIT
optimization techniques by identifying where and how to
optimize JVM-based programs [8]. Second, control-flow anal-
ysis can facilitate the correct compilation from Java pro-
grams into native machine code by verifying correctness of
semantics [28], etc. At last, existing work [29, 30, 31, 7]
also demonstrate that diversifying control flows in running
programs can significantly increase fuzzing performance, e.g.,
coverage. Accordingly in JITfuzz, we propose a set of control-
flow-enriching mutators including one statement-wrapping
mutator to strengthen the usage of basic blocks and one
transition-injecting mutator to strengthen the usage of their
transitions respectively based on the control flow of a given
seed. In addition, they both are designed to preserve semantics



correctness of target programs for preventing early-terminated
testing runs, e.g., causing no verification errors.

Note that prior to proposing the mutators, one should adjust
the setups of running JVMs such that JITs can be explicitly
launched. To this end, we use the JVM command java -
Xcomp cls for a given class cls.

1) Optimization-activating mutators: While optimization-
activating mutators can be proposed in accordance with
each existing optimization technique, exhaustively designing
them can be cost-ineffective. In this paper, we design four
optimization-activating mutators corresponding to the repre-
sentative optimization techniques in the existing JITs. i.e.,
function inlining [18], simplification [19], escape analysis [20],
and scalar replacement [21] which are commonly adopted by
the JITs from diverse well-recognized JVMs [14, 32, 33, 34].
Table I shows the details of the optimization-activating muta-
tors via rewrite rules [35].

Function-inlining-activating mutator. Noticing that func-
tion inlining refers to merging the instructions of small-scale
functions into their callers to reduce the cost of function calls,
our function-inlining-activating mutator is proposed to replace
a randomly selected instruction with a function where only
such instruction is contained, as Rule 1. More specifically,
given an expression « op [ (op denotes a binary operator),
we create a new function f(x,y) which returns the expression
x op y. Consequently, we mutate the original expression
v = « op B as its corresponding transformation v = f(a, ) in
the given program context e. For instance, Example 1 shows
that the original instruction return i0 + i1l is mutated
by a function inline containing it in order to facilitate the
application of function inlining and test its capacity of merging
small-scale functions into their callers.

Simplification-activating mutator. Noticing that simpli-
fication refers to simplifying an arithmetic expression, the
simplification-activating mutator replaces a simplistic arith-
metic expression as a semantics-preserving yet complicated
expression. As in Rule 2, we update the original expression
« op [ with its semantics-preserving expression « op 3 + 0
and generate an expression expr calculated to be zero. Cor-
respondingly, we mutate the original expression v = a op 3
as v = « op B + expr. To illustrate, Example 2 shows that
we mutate the instruction 12 = i0 + il by adding and
subtracting a randomly generated integer i3 at the same time
to facilitate the application of simplification on the expression.

Scalar-replacement-activating mutator. Scalar replace-
ment essentially refers to investigating whether a stack variable
can replace an object allocated in the heap in order to
save memory resources. Accordingly, our scalar-replacement-
activating mutator is proposed to replace stack variables with
objects in the heap on target programs. Specifically, Rule 3
demonstrates that we first create an object obj and assign an
existing variable « as its field, and then replace o with the
field obj.field in any original expression o op (. Example
3 shows that we create a Digit object rO to mutate the
constant integer 0 in the original instruction to be its associated
value stored in r0 . integer so as to facilitate the application

Algorithm 1 Statement-wrapping Mutator

Input : Z, seed, Cnt
Output : mutant

1: function DEFAULTCONTROLFLOW

2 if Cnt > LIMITATION then

3 return mutant < seed

4 strategy <— randomly select 0 or 1
5: if strategy == 0 then

6: expr + “if (true) {Z;}”
7

8
9
0

1

if strategy == 1 then

expr + “loop (limit) {Z; limit -= 1;}”
mutant <— update with expr in the seed
Cnt <+ Cnt + 1

10:
1 return DEFAULTCONTROLFLOW (expr, mutant, Cnt)

of scalar replacement. Note that such mutator can also be used
for the escape analysis in the ArgEscape level [22] when JIT
verifies whether an object in the heap has side effects or not.

Escape-analysis-activating mutator. To facilitate the es-
cape analysis in the GlobalEscape level [22], we also design an
escape-analysis-activating mutator that replaces a local object
a with the static field of the object this.field, which is
referred by this pointer, as Rule 4. In Example 4, we first
create the local object and assign it as the static field of this
object, and then reassign the reference 10 to this.object.
Thus we create a GlobalEscape scenario to access the original
local object 10 via the static field this.object to facilitate
the application of escape analysis.

2) Control-flow-enriching mutator: In this paper, we pro-
pose a set of control-flow-enriching mutators to enrich the
program control flows for augmenting the fuzzing effective-
ness. Note that while the existing JVM fuzzers Classming and
ClassFuzz also adopt control-flow mutators, applying them
can easily cause early-terminated testing runs by generating
random transitions and fail to expand the size of control flows,
e.g., increase the number of basic blocks.

Statement-wrapping mutator. Intuitively, to increase the
number of basic blocks in the existing control flows without
devastating their executions, one can design if{true) state-
ments and/or loop(limit) statements to contain the existing
program statements. Accordingly, we design a statement-
wrapping mutator to wrap a given statement within if and/or
loop statement(s). Algorithm 1 presents the details of applying
a statement-wrapping mutator under an input instruction Z,
its associated seed, and a counter Cnt denoting the runtime
recursion depth. If Cnr exceeds threshold LIMITATION, the
real-time resulting mutant is returned (lines 2 to 3). Otherwise,
we randomly choose a design strategy to generate a new
expression expr to contain Z (line 4). One is to generate
an if{true) block (lines 5 to 6). The other is to generate a
loop(limit) block (lines 7 to 8). Then the mutant is derived
by updating the seed with the resulting expr (line 9) followed
by updating Cnt (line 10). Note that the above operations are
recursively executed (line 11).

Transition-injecting mutator. We propose a transition-
injecting mutator to enrich the transitions among basic blocks.
While we simply select two random basic blocks for generat-
ing their transition, we also realize that without ensuring the



TABLE I: Optimization-Activating mutators

| Optimization techniques | Rules for Jimple-level optimization-activating mutators | Example
Example 1:
Rule 1: -int 12 = i0 + i1l;
Function Inlining [[@['Y =« op ﬁ] end]] — +public int inline(int 10, int il) {
llet function f(z,y) =z op y in e[y = f(«a, B)] end] + return 10 + 1il;
+}
+int 12 = inline(i0, i1l);
E le 2:
Rule 2: xample 2:
Simplification lely = a op B] end] — -int 12 =10 + i1;
Hlet expr = 0n 6[’7 =aop B -+ expr] end]] +int 13 = new Random () .nextInt ();
+int 12 = (10 + i3) + (i1l - i3);
E le 3:
Scalar Replacement Rule 3: xamp=e
-int 10 = 0;

& Escape Analysis
(ArgEscape level)

[ely = o op 8] end] —

[let obj.field = o in e[y = obj.field op B] end]

+Digit r0 = new Digit (0);
+int 10 = rO0.integer;

Rule 4:

Escape Analysis lely = @ op B] end] —

(GlobalEscape level)

[let this. field = a in e[y = this. field op B] end]

Example 4:

-Object 10 = new Object ();
+this.object = new Object();
+Object i0 = this.object;

correct execution of the associated target programs, it is likely
to cause early-terminated program execution, i.e., the verifica-
tion error caused by undefined variables. Figure 3 presents a
real-world illustrative example (Since the code is complex, we
demonstrate the complete code and its corresponding labels in
[36] due to page limit) where the dark solid lines denote the
existing transitions between basic blocks. Assume by applying
the statement-wrapping mutators, a transition is established
from £8 to £5 (denoted as the red dash line) and thus leads to
an execution path [£1, £7, £8, £5]. However, since £5
depends on variables sampleIndex and samplePos [36]
defined in £3 instead of any of its predecessors on execution
path [f1, £7, £8, £5], this transition definitely causes
an undefined variable error and prevents further testing on the
deep states of JIT, e.g., the optimization techniques. Therefore,
when designing the transition-injecting mutator, we also need
to resolve the potential dependency issues so as to facilitate
testing deep states of target programs. Note that according to
Soot [12], any variables used by basic block S is defined either
in B or its dominators. Therefore, to prevent undefined vari-
able errors when creating a transition between two randomly
chosen basic blocks (represented as o — f3), it is essential to
redirect the transition from « to a dominator of /3 that define all
variables possibly used in 5. However, there can be a possible
side effect that if massive such transitions are redirected to
the same dominator such as the identical entry basic block
among similar seeds, their remaining partial control flows
can be quite alike or even identical, causing limited program
execution spaces and thus hindering program state exploration.
Therefore in this paper, for a randomly generated basic block
transition o« — (3, we determine to redirect it from « to the
closest dominator of # which causes no undefined variable
errors when applying the transition-injecting mutator.

Algorithm 2 illustrates our transition redirection mechanism
when applying the transition-injecting mutators. Given an in-
put seed, we first construct its control-flow graph and identify
its entry basic block (lines 2 to 3), and then generate a directed

Fig. 3: An example [36] for illustrating the transition-
injecting mutator

CFG by deleting all the transitions created by executing loop
expressions or applying transition-injecting mutators (line 4)
on top of the original CFG. After randomly selecting the
source basic block src and the sink basic block sink (lines
5 to 6), we store all the dominators of src in order as the list
srcPre (lines 9 to 11). Next, we also store all the dominators
of sink in order as the list sinkPre. Accordingly, we
identify the closest common dominator from sinkPre and
srcPre as sinkFiC (lines 12 to 17). Finally, we identify the
immediate post-dominator of sinkFiC in the set sinkPre
as sinkNew and create a transition from src to sinkNew
to generate a mutant (lines 18 to 19). For example in Figure 3,
we first assume £8 is src and £5 is sink. Next, we obtain
the closest common dominator for £8 and £5, i.e., £1. Then,
£2 is identified as the immediate post-dominator of £1 among
all the dominators of £5. At last, we create transition £8—£2
to generate a mutant.

We then discuss why Algorithm 2 can prevent early ter-
mination of program executions and limited program state
exploration, i.e., the sink dominator sinkNew selected by
Algorithm 2 is the closest dominator of sink causing no
undefined variable error. First, assume that redirecting the
transition from src to sinkNew incurs an undefined variable



Algorithm 2 Transition Redirection Mechanism

Input: seed

Output: mutant
1: function REDIRECTBASICBLOCKTRANSITION
2: controlFlowGraph <— obtainCFG(seed)
3 entry < identifyEntry(seed)
4: directedCFG <— deleteSelectedEdges(controlFlowGraph)
5: src < randomlySelectBasicBlock(directedCFG)
6.
7
8

sink <— randomlySelectBasicBlock(directedCFG)
srcPre, sinkPre, sinkFiC < {}, {}, {}
: srcNxt, sinkNxt < src, sink
9: while entry & srcPre do

10: srcNxt <— getDominator(srcNxt, directedCFG)

11: srcPre < srcPre U {srcNxt}

12: while entry & sinkPre do

13: sinkFiC < sinkPre N srcPre

14: if sinkFiC # @ then

15: break > sinkFiC only contains one dominator

16: sinkNxt < getDominator(sinkNxt, directedCFG)

17: sinkPre < sinkPre U {sinkNxt}

18: sinkNew <— get the immediate post-dominator of sinkFiC from
sinkPre

19: mutant <— create a transition from src to sinkNew

20: return mutant

error in the original error-free program execution, i.e., a vari-
able is used without a definition in sinkNew after redirection.
Then we infer that this variable can be accessed by sinkFiC
since sinkFiC dominates sinkNew in sinkPre. Accord-
ingly, this undefined variable error can be spread in sinkFiC
(otherwise, sinkFiC is obliged to define variables to prevent
the undefined variable error in sinkNew), contradicting our
assumption. Thus, redirecting the transition to sinkNew is
ensured to incur no undefined variable error. Next, we discuss
why sinkNew is the closest dominator of sink which the
transition can be redirected to without causing any undefined
variable error. Similarly, assume there is a post-dominator of
sinkNew which the transition can be redirected to without
causing any undefined variable error. Since redirecting the
transition from src to the post-dominator of sinkNew does
not cause any undefined variable error, we infer that sinkNew
is not allowed to define new variables (otherwise, it is possible
that the variable is only defined in sinkNew which is not
included in the execution after the transition redirection, caus-
ing an undefined variable error in its post-dominator). Such
inference contradicts the fact that sinkNew is allowed to
define new variables as a dominator of sink. Thus, sinkNew
is ensured to be the closest dominator of sink causing no
undefined variable error.

B. Mutator Scheduler

After proposing multiple mutator types to strengthen the
usage of the optimization techniques in JITs in JITfuzz, how to
aggregate their strengths to optimize their overall effectiveness
becomes our next challenge. To this end, intuitively, an opti-
mization guide is essential. Note that while JVMs are likely
to cause non-deterministic coverage at runtime due to their
adopted mechanisms, e.g., parallel compilation and on-demand
garbage collection [7] (such that coverage usually cannot be

applied as a guide for testing JVMs), coverage updates can
be more deterministically captured for JITs. Therefore, we
determine to adopt the runtime coverage updates of target
programs for guiding our mutator scheduling plans.

In this paper, we build our mutator scheduler upon the
UCB-1 algorithm [37], a lightweight algorithm which con-
structs an optimistic guess to the expected payoff of each
action and picks the action with the optimal payoff to guide
future iterative executions. The UCB-1 algorithm is adopted
to schedule the mutators in JITfuzz due to the following
reasons. First, in JITfuzz, scheduling mutators to optimize their
aggregated effectiveness at runtime essentially is a stochastic
optimization problem which exploits limited knowledge (i.e.,
runtime coverage). Notably, the UCB-1 algorithm is proposed
to exactly address such stochastic optimization problem and
has been widely adopted for similar tasks [37, 38, 39]. Next,
scheduling mutators for fuzzing essentially demands limited
overhead such that adequate computing resources can be lever-
aged for key technique components, e.g., mutations, program
executions, and coverage collections. Notably, the UCB-1
algorithm yields rather limited overhead, i.e., quickly adjusting
the mutator options based on runtime coverage updates, to
approach the optimal solutions for each iterative execution. As
a result, JITfuzz utilizes the UCB-1 algorithm to schedule the
mutators according to runtime coverage updates. In particular,
for a given seed, JITfuzz first identifies a mutation limit to
determine how many mutators should be scheduled. Similar to
AFL [2], JITfuzz adopts multiple mutation limit options (four
in our paper, i.e., 4, 8, 16, 32). Next, by the scheduled mutation
limit, JITfuzz repeatedly selects one mutator out of all the
six possible options (i.e., four optimization-activating mutators
and two control-flow-enriching mutators). More specifically,
the mutators can be scheduled via Equation 1 where result(t)
denotes both the mutation limit result and the corresponding
mutator result at the ¢-th iteration.

J

t;
1 J

result(t) = arg max (t— g xji +
/ J =1

In Equation 1, ¢; denotes the total number that the j-th
mutator/limit option has been selected till the ¢-th iteration, and
x; refers to the reward of the j-th mutator/limit option in the
i-th iteration. Accordingly, the selected mutators are applied
to the given seed in turn for generating the mutants at the ¢-
th iteration. Meanwhile, the obtained coverage is recorded to
update the scheduler as a reward, which is one if the coverage
is increased and zero otherwise.

C. Discussion

We consider the concept of JITfuzz can be inspiring for more
fuzzing domains where multiple components are included in
one testing target. In particular, when proposing mutants to
cope with the target program as a whole instead of their indi-
vidual components, it is possible that the generated mutators
fail to fully access their components and thus compromise
the fuzzing effectiveness. On the other hand, applying the
mutators for addressing individual components only might still



incur testing ineffectiveness, since they are highly likely to
cause divergent testing effects respectively [4]. Therefore, it
is promising to include an additional mutator scheduler to
augment their collective power.

IV. EVALUATION

In this section, we conduct a set of experiments to evaluate
the effectiveness of JITfuzz on a real-world benchmark suite
composed of 16 projects. In particular, we first collect 6
projects commonly adopted from prior work [7, 9] and 10
additional popular open-source Java projects in GitHub [10].
Next, we compare JITfuzz with state-of-the-art mutation-based
JVM fuzzer Classming [7] and generation-based JVM fuzzer
JavaTailor [9] in terms of the edge coverage results obtained
from JIT of our target JVM, and evaluate the effectiveness of
different components of JITfuzz. In particular, we attempt to
answer the following research questions:

o RQI: Is JITfuzz effective in fuzzing JIT?
e RQ2: Are the different components of JITfuzz effective in
terms of ablation study?

Moreover, we report and analyze the bugs on our adopted
benchmark exposed by JITfuzz. Note that all the evaluation
details are presented in our GitHub page [13].

A. Benchmark Construction

In this paper, we define a set of rules to collect influential
real-world Java projects in GitHub to form our benchmark
for our evaluation. In particular, we search with the keyword
“Java” on GitHub, and then randomly select 10 projects
with decent star number (larger than 100) and LoC numbers
(larger than 10k). In addition, we select all 6 projects from
state-of-the-art JavaTailor which are all excerpted from the
dacapo benchmark [40] with 102 stars. Table II demonstrates
the detailed information of our benchmark suite where the
top 6 projects are adopted by JavaTailor. Furthermore, for
each of these projects, we randomly select one of the ten
classes with the highest cyclomatic complexity [41] as the
seed program where the cyclomatic complexity refers to the
number of linearly independent paths through the source code
of a class [42, 43, 44, 45].

TABLE II: Benchmark information

[ Project [ Stars [ LoC | Initial class(seed)
avrora 111k ...avrora/Main.class
eclipse 26.4k ...EclipseStarter.class
pmd 102 197.4k | ...pmd/PMD.class
Jjython 360.7k | ...python/util/jython.class
fop 331.3k | ...fop/cli/Main.class
sunflow 28.5k ...sunflow/Benchmark.class
hutool [46] 23.5k | 265.7k | ..core.text.PasswdStrength.class
javapoet [47] 9.7k 12.4k ...ClassName.class
mybatis-3 [48] 17.5k | 161.3k | ...ibatis.parsing.GenericTokenParser.class
zxing [49] 29.9k | 219.3k | ...zxing.qrcode.encoder.Encoder.class
fastjson [50] 24.8k | 103.9k | ...fastjson.JSON.class
guice [51] 11.3k | 110.6k | ..inject.spi.InjectionPoint.class
commons-text [52] | 242 54.7k ...commons.text.numbers.ParsedDecimal.class
rocketmq [53] 17.8k | 178.2k | ...rocketmgq.filter.util. BloomFilter.class
spark [54] 9.3k 23.1k spark.resource.UriPath.class
vert.x [55] 3.3k 215.4k | ...vertx.core.json.JsonArray.class

B. Environment Setup and Implementation

We perform our evaluations on a work station, with AMD
EPYC 7H12 CPU and 256 GB memory. The operating system
is 64-bit Ubuntu 18.04.5 LTS. We choose HotSpot (Java
19) [14] as our target JVM to obtain the coverage results
and set the LIMITATION for Algorithm 1 to two. Note that
the results of more LIMITATION setups are presented in
our GitHub link [13] due to page limit. Moreover, following
prior work [2, 26, 56], we adopt the edge coverage [57]
obtained from JIT to reflect the effectiveness of our studied
techniques. To collect runtime edge coverage, we first obtain
all the source files of JIT only. Next, we utilize the partial
instrumentation tool from AFL++ [58] to instrument such
source files for runtime edge collection. Note that JVM does
have non-deterministic coverage such as garbage-collection
mechanism [7]. However, since we only include the source
files of JIT, such issues are mitigated while we collect the
edge coverage information during fuzzing JIT.

All our experiments are run for 24 hours following prior
work [56, 26, 59]. Note that all the experimental results are
averaged from five runs to reduce the impact of randomness.

C. Result Analysis

1) RQI: the effectiveness of JITfuzz: Table III demon-
strates the evaluation results of JITfuzz, JavaTailor and Class-
ming in terms of edge coverage.

Overall, we observe that JITfuzz can significantly outper-
form Classming in terms of the edge coverage. Specifically,
JITfuzz can explore averagely 34,939 edges, while Classming
only explores 27,306 edges, i.e., JITfuzz explores over 27.9%
more edges than Classming. Meanwhile, we also find that
JITfuzz outperforms JavaTailor by 18.6% (34,939 edges vs.
29,451 edges). Moreover, JITfuzz can significantly outper-
form Classming and Javalailor on each individual project
(from 4.9% to 1.8x for Classming and from 3.0% to 98.4%
for JavaTailor). Such results altogether reflect that JITfuzz
achieves significant edge coverage advantages over Classming
and JavaTailor.

We also apply the Mann-Whitney U test [60] to illustrate
the significance of JITfuzz in Table III. We can observe that
the p-values of JITfuzz comparing with other studied fuzzers
in terms of average edge coverage are far below 0.05, which
indicates JITfuzz outperforms all studied fuzzers significantly.

Finding 1: JITfuzz is more effective than Classming and
JavaTailor by exploring 27.9% and 18.6% more edges
on average.

2) RQ2: Effectiveness of each component: In this section,
we conduct a set of ablation studies to evaluate the effective-
ness of the key technical components in JITfuzz.

Effectiveness of the mutators. to perform ablation studies
on the effectiveness of each mutator, we build the following
six variant techniques of the original JITfuzz by disabling the
corresponding mutators, i.e., JITfuzz_iniine, JITfuzz_simp,
JITf’/lZZ—scalar’ and JITfuZZ—escapea JITﬁ"ZZ—wrap» and



JITfuzz_trqns Wwhich respectively disables the function-
inlining-activating mutator, the simplification-activating
mutator, the scalar-replacement-activating mutator, the
escape-analysis-activating mutator, the statement-wrapping
mutator, and the transition-injecting mutator. Accordingly,
we can derive the effectiveness of a mutator by comparing
the performance of its associated technique variant with the
original JITfuzz. Table III demonstrates the edge coverage
results of JITfuzz and our studied technique variants. In
general, we can observe that JITfuzz outperforms each variant
averagely from 12.2% to 26.9% in terms of edge coverage,
which is rather substantial. Moreover, we also find that
all the variant can outperform Classming in terms of edge
coverage from 0.8% to 14.0% respectively and three variants
outperform JavaTailor from 2.6% to 5.7%, which delivers the
fact that the framework of JITfuzz is robust even with partial
mutators. Such results suggest that all mutators are effective
and integrating them together optimizes the performance in
exploring edges for JIT.

Finding 2: Each mutator of JITfuzz is effective and
integrating them optimizes the performance of exploring
edges.

Effectiveness of the transition redirection mechanism.
We further investigate the effectiveness of the transition
redirection mechanism for applying the transition-injecting
mutator. As in Algorithm 2, the transition-injecting mutator
redirects a randomly generated transition from the source to
a dominator of the sink to prevent using undefined variables.
Accordingly, we build a technique variant JITfuzz,qndtr, Which
simply creates transition directly for two randomly chosen
basic blocks without applying any redirection while retaining
all other proposed mutators in this paper.

We can observe from Table III JITfuzz significantly outper-
forms JITfuzz,qndair by 28.6% on average in terms of edge
coverage, indicating that redirecting transitions is essential to
facilitate the efficacy of the transition-injecting mutator.

Finding 3: Transition redirection mechanism is essential
for the transition-injecting mutator in augmenting its
edge coverage performance.

Effectiveness of the mutator scheduler. To investigate
the effectiveness of mutator scheduler, we build a technique
variant JITfuzz,qndsch, Which randomly schedules the mutators
and the mutation limit in each iterative execution instead of
applying the coverage-guided mutator scheduler.

In general, we can observe from Table III that mutator
scheduler is effective since JITfuzz outperforms JITfuzz,qandsch
significantly by 10.2% (34,939 vs. 31,700 explored edges)
on average in terms of edge coverage. More specifically, we
can further observe that JITfuzz outperforms JITfuzz,qndsch
consistently upon all the benchmark projects. Such results
indicate that our adopted mutator scheduler is rather powerful
in strengthening the effectiveness of JIT fuzzing.

Finding 4: Adopting mutator scheduler can significantly
improve edge exploration for JITfuzz by scheduling
mutators and its mutation limit.

D. Bug Report and Analysis

JITfuzz is effective in exposing multiple real-world JIT/JVM
bugs where a bug is defined as a defect within a specific
JVM version in this paper. In our paper, a bug is exposed if a
seed 1) triggers any JVM crash, or 2) incurs different outputs
among different JVMs (e.g., one JVM normally terminates
while another reports an exception). After careful manual
analysis, we then report the potential bugs as well as the
corresponding seeds to the developers. Specifically, we apply
the seeds generated by JITfuzz in our evaluation to run multiple
JVMs, i.e., different versions of OpenJ9 [15], OpenJDK [14],
and OracleJDK [16], for exposing their bugs. Note that we
tend to include their recent versions since they are typically
adopted by a large-scale collection of real-world projects, i.e.,
potentially having more impact than the older ones.

Table IV demonstrates the detailed information where we
have successfully detected 36 JVM bugs. After reporting
them to the corresponding JVM developers, 27 of them have
been confirmed and 16 have been fixed. More specifically,
23 of them are JIT bugs, 18 have been confirmed, and 7
are fixed by the developers. Note that none of the bugs can
be detected by Classming or JavaTailor. To illustrate, we
observe that executing many seeds adopted by Classming
fail to activate JIT optimization techniques with the abrupt
termination. Meanwhile, the database adopted by JavaTailor
which contains the Java programs exposing JVM bugs fails to
contain sufficient JIT bugs for reference. We then introduce
four typical bugs exposed by JiTfuzz as follows.

1) JIT segmentation fault: We reported a vulnerability [61]
on the C2 compiler [62]—a specific JIT compiler in HotSpot
(OpenJDK), which affects several OpenJDK versions, includ-
ing 7u351, 8, 11, 17.0.2, 18, and 19. It was assigned with a bug
ID JDK-8283441 and has been fixed later. This vulnerability
is exposed by running the original JUnit tests with a seed
generated from JSON.class. In particular, the affected
JVMs crashed due to a segment fault within ciMethod-
Blocks: :make_block_at (int), as in Figure 4.

The developers located the issue to two methods in the seed
whose bytecodes end abruptly with unreachable basic blocks,
as shown in Figure 5. They found that HotSpot builds control
flow graphs for unreachable basic blocks where JIT fails to
validate. As a result, by compiling unreachable basic blocks,
JIT accesses invalid memory, causing the segmentation fault.
Eventually, they fixed this issue as follows:

“The new verifier checks by bytecodes falling off the
end of the method, and the old verify does the same,
but only for reachable code. So we need to be careful
of falling off the end when compiling unreachable code
verified by the old verifier.”



TABLE III: Effectiveness of the JITfuzz mutators

Variants by Disabling Mutators

Other Variants ‘

‘ Benchmark ‘ JITfuzz ‘ Classming | JavaTailor

JTfuzz_scatar  JITfuzz_cscape  JTfuzz_simp  JITfuzz_intine  JITfuzz_wrap  JITfuzz_trans | HTfuzzrandaer  JITfuzzrandsch \
hutool 37,006 | 32,994 33,345 34,209 34,483 35276 32,018 29,378 30,374 31,367 35,038
javapoet 36,178 | 33,948 35,138 33,675 30,990 34,296 34,135 32,381 32,070 32,465 33,599
mybatis 29,209 | 18,708 21,642 23,165 22,354 25,358 24,126 22,874 24,642 16,560 26,064
zxing 36,184 | 28,350 33,406 35214 30,161 34,931 35,680 34,474 28,731 29,682 32,156
fastjson 36,222 | 26,121 26,956 30,114 34,367 34,963 33,715 33,269 28,711 26,341 32,874
guice 36,852 | 30,757 32,257 29,805 31,241 30,571 24,521 26,937 28,227 26,734 32,144
commons-text | 36,863 | 35,147 34,058 35,075 36,075 36,881 34,503 32,958 34,039 33,129 33,039
rocketmg 32,808 | 29,043 30,910 26,977 28,457 24,097 26,241 26,012 24,060 24,782 30,422
spark 33,936 | 12,130 17,109 28,145 24,270 24,854 32,568 28,613 26,279 25,638 29,695
vert.x 34,056 | 24,162 25,598 28,056 23,806 31,199 22,785 27,322 25,302 26,986 32,238
avrora 36,835 | 29,339 32,634 28,879 28,208 36,275 32,539 28,344 24,598 28,150 33,073
eclipse 33,057 | 30,299 29,692 29,518 26,841 31,556 28,035 24,086 24,933 24,925 28,602
pmd 36,985 | 28,898 32,505 30,263 30,123 29,788 30,522 27,963 28,801 25441 32,623
jython 35,284 | 25,827 29,060 29,443 31,155 30,630 29,892 32,110 25,226 28,139 33,102
fop 32,713 | 22972 26,782 27,439 27,934 29,878 31,426 29,269 28,880 26,912 30,453
sunflow 34,846 | 28,202 30,133 33,632 26,595 27,584 30,553 30,851 25,713 27,317 32,002
[ average [ 34939 [27,306 [29451 [ 30,225 29,191 31,133 30,203 29,177 27,536 [ 27,160 31,700 \
[ p-value [NA— [0.004 [ 0.004 | 0.004 0.004 0.004 0.004 0.004 0.004 | 0.004 0.004 |
TABLE 1V: Issues found by JITfuzz
JVMs # Issues Reported | # Issues Confirmed | # Issues Fixed | ' VO1d Pha?eGVN: ’deadTlooP—CheCk( Node »n ) { '
JT | Non-JIT | JIT[  NonJIT JIT | Non-JIT if (EFG:()TUI;L && In->is_dead loop_safe() && !n—>
15_|
igmmigf lg 2 lg 2 2 g 3 bool no_dead_loop = true;
pen. 4 .
Openl9 4 8 4 4 0 4 5 if (!no_dead_loop) n->dump (3);
TOTAL 23 13 18 9 7 9 6 // assertion failure

ciBlock xciMethodBlocks::make_block_at (int bci) {
2 ciBlock *cb = block_containing(bci);
if (cb == NULL ) {
4 ciBlock *nb = new(_arena)
_num_blocks++, bci);
5 _blocks—->append (nb) ;
6 // segmentation fault
7 _bci_to_block[bci] =
8 return nb;
9 } else if (cb->start_bci()
10 return cb;
11 } else {
12 return split_block_at (bci);
13 }
14}

15

ciBlock (_method,

nb;

bci) |

Fig. 4: One C2 segmentation fault bug in HotSpot

2) Dead loop assertion failure:  JITfuzz discovered a
HotSpot vulnerability [61] on JIT caused by an assertion
failure, indicating that a dead loop was detected as in Figure 6.
The OpenJDK versions 8, 11, 17, 18, 19 and 20 are affected
by this vulnerability which has been reported to the developers
and assigned with a bug ID JDK-8280126.

The developers confirmed this bug and tried to analyze
the corresponding buggy class file but failed by applying
the tools provided by OpenJDK. They implemented multiple
helper functions to analyze the control structure and inferred
that HotSpot may miscalculate the control flow and consider
certain nodes to be unreachable. As a result, such nodes

416: return 623: areturn

// Unreachable block // Unreachable block
417: iinc 5,1 624: iinc 20, 1
420: iload 5 627: iload 20
422: iconst_2 629: iconst_2

423: if_icmple 339 630: if_icmple 336
(end of bytecode) (end of bytecode)

(a) JSON.config() code snippet (b) JSON.parseObject() code snippet
Fig. 5: Unreachable basic blocks in the generated class

assert (no_dead_loop, "dead loop detected");

Fig. 6: One dead loop assertion in HotSpot

take unexpected data as input and cause a dead loop, e.g.,
a data node in control flow graph references itself directly or
indirectly. Eventually, they decided to defer this issue to JDK
20 due to its complexity with the following feedback:

“The difficulty with this bug is that we have many paths
that get eliminated, finding the real source of the issue
feels like searching for a needle in a haystack.”

3) JIT crash during optimization: We reported an OpenJ9
vulnerability [63] on JIT optimizer, which has been confirmed
by the developers. When applying option optlevel at the
hot level or higher, JIT failed to compile a seed generated
from ParsedDecimal.class due to a segmentation error
within TR_OrderBlocks: :peepHoleBranchBlock, as
shown in Figure 7.

ivoid TR_OrderBlocks: :peepHoleBranchBlock (TR::CEFG *
cfg, TR::Block xblock, char xtitle)
{

4 // crash
5 TR::Block xfallThroughBlock =
6 getNode () —>getBlock () ;

fallThroughEntry—>

Fig. 7: Assertion failure during verification

The developers found that a node created by gener-—
alLoopUnroller is NULL. Furthermore, this issue can
be bypassed by setting the JVM option disableGLU to
disable the general loop unroller. Eventually, devel-



opers concluded that JIT miscalculated the control flow graph
to incorrectly move certain nodes.

“However If I add tracing on this method, the crash
goes away. I'll instrument the code and see if I can
catch the issue in an early stage of the optimization.”

4) Other runtime vulnerabilities: In addition to JIT vulner-
abilities, JITfuzz also reveals runtime defects. For example, we
reported an OpenJ9 vulnerability [64] on the verification stage,
which causes OpenJ9 to crash due to an assertion failure.

To locate this issue, the developers reproduced the crash in a
debug build and found that the crash occurred when releasing
the stackmap frame memory at /runtime/verbose/er—
rormessagehelper.c, as shown in Figure 8.

I releaseVerificationTypeBuffer (StackMapFramex
stackMapFrame, MethodContextInfox methodInfo)
2
if (NULL != stackMapFrame->entries) {
PORT_ACCESS_FROM_PORT (methodInfo->portLib) ;
// crash

6 j9mem_free_memory (stackMapFrame->entries);

Fig. 8: Assertion failure during verification

The developers further found that OpenJ9 incorrectly built
stackmaps for the class file due to its huge size. In particular,
Openl9 cannot allocate the memory for its locals and stack
and the crash occurs when it tries to release the memory of
the stackmap frame. The developers replied as follows.

“There is no element of ’locals’ and ’stack’ in the
current stackmap frame in which case the code above
didn’t handle at this point.”

Eventually, the developers fixed this issue by adding addi-
tional checks to handle the case with empty locals and stack.

To summarize, by adopting the optimization-activating mu-
tators, the statement-wrapping mutators and the mutator sched-
uler with easy-to-capture coverage information, JITfuzz can
expose multiple types of JIT bugs which can be hardly
explored by the existing approaches.

V. THREATS TO VALIDITY

The threats to external validity mainly lie in the subjects
used in our benchmark. To reduce the threats, we determine
to collect important and influential real-world Java projects
to form our benchmark. Specifically, we first adopt all the 6
projects from JavaTailor. Next, we randomly select 10 GitHub
projects with decent star/LoC numbers. We then randomly
select one class with high cyclomatic complexity from each
project as the seed.

One threat to internal validity lies in the potential flaws in
our implementation of JITfuzz. To reduce the threat, the first
three authors in the paper have been carefully working on the
implementation for over one year. We manually reviewed all

our implemented code and tested them sufficiently for veri-
fying our implementation. Another threat to internal validity
lies in the scalability of optimization-activating mutators for
diverse JVM implementations. To reduce the threat, we recog-
nize four commonly-adopted optimization techniques after rig-
orous studies on multiple existing JVMs and design their cor-
responding optimization-activating mutators. Moreover, new
mechanism-based mutators can be easily proposed for JITfuzz
when including additional JIT optimization techniques.

The threats to construct validity mainly lie in the metrics
used. To reduce the threats, we use a widely-used metric, i.e.,
the edge coverage, to evaluate our approach. We also deliver
detailed bug report from real-world benchmarks to strengthen
the evaluation on the real-world applicability of JITfuzz.

VI. RELATED WORK
A. Fuzzing

Fuzzing [65] refers to an automated software testing tech-
nique that inputs unexpected or random data to programs
such that the program exceptions including crashes, failing
code assertions, or memory leaks can be exposed and moni-
tored. As a widely-adopted baseline fuzzer, AFL [2] provides
a fundamental implementation for coverage-guided fuzzing
framework with components such as instrumentation, edge
coverage collector, etc. Many existing fuzzers are proposed
to enhance the performance of AFL. For instance, Bohme
et al. [3] proposed AFLFast to enhance AFL by scheduling
the seeds via Markov chain. To explore the rare branches,
Lemieux et al. [S] attempted to first identify branches exercised
by limited seeds produced by AFL and then invest adequate
computation resources to such branches to thoroughly explore
target programs. Lyu et al. [4] proposed MOPT to improve
the performance of AFL by scheduling existing mutators via
the Particle Swarm Optimization (PSO) algorithm. Wu et
al. [66] found that combining deep learning and program
smoothing can be helpful for fuzzing while it also can be
improved by injecting a mechanism for identifying edge prop-
erties. They further discovered that the widely-adopted Havoc
mechanism potentially dominates the effectiveness of fuzzing
strategies [67]. Jiang et al. [68] found that the coordination
mode of fuzzing and concolic execution is the dominating
factor for the effectiveness of hybrid fuzzers. Furthermore,
fuzzing has been widely adopted in multiple domain-specific
scenarios. For example, Noller et al. [69] proposed QFuzz
to quantitatively evaluate the strength of side channels with
a focus on min entropy, which is a measure based on the
number of distinguishable observations (partitions) to assess
the resulting threat from an attacker who tries to compromise
secrets in one try. Andronidis et al. [70] leveraged the power
of snapshot of net applications to facilitate the fuzzing efficacy
of networking applications. Wu et al. [71] proposed Simulee
to fuzz CUDA programs for exposing their synchronization
bugs and further fixed them accordingly [72]. Ma et al. [73]
proposed PrIntFuzz to fuzz Linux drivers by a contructed
device simulator. Zheng et al. [74] proposed EQUAFL to fuzz
Linux-based IoT devices via switching emulation types. By



using raw html files as inputs, Song et al. [75] proposed
R272 which utilizes differential testing framework to fuzz
web browsers. With the help of the debugging feature, Li et
al. [76] proposed pAFL to bridge the fuzzing environment on
PC and target firmware on microcontroller devices. Recently,
a large group of researchers have been focusing on applying
fuzzing/testing to the emerging AI/ML systems [77, 78, 79,
80, 81, 82, 83, 84].

Although many existing fuzzers have been proven effective
in fuzzing real-world programs, there exists no fuzzer specif-
ically for JVM JITs. In this paper, we propose JITfuzz, the
first coverage-guided JVM JIT fuzzer which includes multiple
effective mutators and a mutator scheduler to expand code
coverage and expose real-world JIT/JVM bugs.

B. Compiler and JVM testing

Researchers have spent large effort on compiler testing.
To date, a number of techniques have been proposed to
automatically generate programs for compiler testing. Yang
et al. [30] proposed Csmith, which generates the seeding
C programs to explore C compiler while preventing the
undefined and unspecified behaviors that might cause testing
insufficiency. Reddy et al. [85] proposed RLCheck, which
utilizes reinforcement learning to generate diverse valid inputs
to explore the programs requiring strict validation on the
inputs, e.g., JavaScript engine. Eberlein et al. [86] devel-
oped EVOGFUZZ, an evolutionary grammar-based fuzzing
approach to optimize the probabilities to generate test inputs
that are likely to trigger unexpected behaviors for applications
with common input formats (JSON, JavaScript, or CSS3). For
JVM testing, Yoshikawa et al. [87] proposed a random Java
program generator based on the predefined syntax to expose
JVM vulnerabilities by differential testing. Sirer et al. [88]
proposed lava to generate Java programs for JVM testing
via randomly iterating over the Java grammar productions.
Boujarwah et al. [89] utilized the predefined grammar of Java
programs to generate semantics-correct test cases to fuzz JVM.
More recently, Zhao et al. [9] proposed JavaTailor to generate
testing programs by learning information from historical bug-
revealing test programs to expose JVM defects.

Compared with the above-mentioned generation-based test-
ing approaches which either generate seeding programs from
scratch (e.g., RLcheck [85]), or require program samples with
additional efforts (e.g., JavaTailor [9]), the mutation-based test-
ing approaches are usually launched with specifically designed
mutators and collected seed corpus. To systematically parse
existing real-world code for producing discrepancy-induced
programs, Le et al. [90] introduced equivalence modulo inputs
(EMI) to mutate seed programs and validate the quality of
compilers. Zhang et al. [91] introduced the concepts of the
skeletal program enumeration and replaced the variables in
the original skeletal program to generate control flows for
compiler testing. Sun et al. [92] tested compilers via mutating
the live code of the input programs regardless the restriction
of only mutating the unreachable regions of input programs.
Donaldson et al. [31] developed GLFuzz for testing OpenGL

shading language compilers based on semantics-preserving
program transformations. Park et al. [93] proposed Die to fuzz
the JavaScript engine via the aspect preservation mutators. In
terms of testing JVM, Chen et al. [25] proposed classfuzz,
which utilizes Markov Chain Monte Carlo [94, 95] to guide
mutation via designed mutators. They also proposed class-
ming [7] to leverage the power of manipulating the control
flows of seeding class files to test the execution engine of
JVM.

Compared with traditional compiler and JVM testing ap-
proaches, our proposed JITfuzz can be readily applied to test
JITs thoroughly with the well-designed mutators and mutator
scheduler under given collection of seed inputs.

VII. CONCLUSION

In this paper, we develop a coverage-guided fuzzing
framework for JVM JITs, namely JITfuzz, which includes
four optimization-activating mutators and two control-flow-
enriching mutators. Moreover, JITfuzz adopts a lightweight
mutator scheduler to schedule the mutation limit and the
associated mutators for maximizing the overall effectiveness of
fuzzing. To evaluate the effectiveness of JITfuzz, we construct
a benchmark suite with 16 real-world JVM-based projects. Our
evaluation results suggest that JITfuzz can outperform state-
of-the-art Classming and JavaTailor by 27.9% and 18.6% in
terms of the edge coverage on average. Meanwhile, we also
demonstrate that all proposed mutators and the mutator sched-
uler are effective. Furthermore, JITfuzz successfully detects
36 previously unknown bugs none of which can be detected
by Classming or JavaTailor. Specifically, 27 of them have
been confirmed and 16 have been fixed by the corresponding
developers. More specifically, 23 of them are JIT bugs, 18
have been confirmed, and 7 have been fixed.
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